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CUTTING EDGE

Cutting Edge: Deficiency of Macrophage Migration
Inh1b1tory Factor Impairs Murine Airway Allergic

Responses

Bing Wang, * Xiaozhu Huang,”" Paul ] Wolters,” Jiusong Sun, *Shiro szmoto,

Min Yang,*

ch/mm’ Riese,* Lin Leng, Harold A. C/mpman, Patricia W. Finn,>*

John R. David,” Richard Bucala,® and Guo-Ping Shi**

Increased levels of macrophage migration inhibitory fac-
tor (MIF) in serum, sputum, and bronchioalveolar lavage
fluid (BALF) from asthmatic patients and timeldose-de-
pendent expression of MIF in eosinophils in response to
phorbol myristate acetate suggest the participation of MIF
in airway inﬂammatz'on. In this study, we examined in-
flammation in OVA-sensitized mouse lungs in wild-type
and MIF-deficient mice (MIF "), We report increased
MIF in the lung and BALF of sensitized wild-type mice.

MIF "™ mice demonstrated significant reductions in se-
rum IgE and alveolar inflammatory cell recruitment. Re-
duced Th1/Th2 cytokines and chemokines also were de-
tected in serum or BALF from MIF '~  mice.
Importantly, alveolar macrophages and mast cells, but not
dendpritic cells or splenocytes, from MIF™"" mice demon-
strated impaired CD4™ T cell activation, and the recon-
stitution of wild-type mast cells in MIF '~ mice restored
the phenotype of OVA-induced airway inflammation, re-
vealing a novel and essential role of mast cell-derived MIF
in experimentally induced airway allergic diseases. The
Journal of Immunology, 2006, 177: 5779-5784.

acrophage migration inhibitory factor (MIF)® was
one of the first cytokines described, based on its role
in delayed-type hypersensitivity (1). Subsequent in-
vestigations demonstrated its participation in various human
diseases (2). Although MIF was initially thought to be expressed
primarily in T lymphocytes (1), recent investigations have re-
vealed that other tissues or cell types such as pituitary cells, as-
trocytes, macrophages (M), smooth muscles cells (SMC), en-
dothelial cells, and mast cells also express this cytokine under

inflammatory (3) or antigenic stimulation (4). An involvement
of MIF in allergic responses was suggested from observations of
increased MIF levels in bronchioalveolar lavage fluid (BALF)
from asthmatic patients (5). Eosinophils, the hallmark cells of
asthma, release MIF in a time- and concentration-dependent
fashion in response to phorbol myristate acetate (5). Further,
MIF levels are significantly higher in serum and sputum from
asthmatic patients and correlate with the production of eosin-
ophil cationic protein (6), a marker for eosinophilic inflamma-
tion of airways in bronchial asthma. It is uncertain, however,
whether MIF in asthmatic serum or sputum is a nondiscrimi-
nate marker of airway inflammation or directly participates in
asthma pathogenesis. In this study, we examined the role of
MIF deficiency in a murine model of allergic lung inflamma-
tion and demonstrate a pathogenic role for mast cell-derived
MIF in airway inflammation and allergy.

Materials and Methods

Animal protocol

BALB/c MIE-deficient mice C.129S4(BG6)-Mif™™¥¢ (MIF™7) were gener-
ated by backcrossing MTF /" mice in C57BL/G] background (7) to BALB/c
mice (>12 generations). To induce airway allergic responses, a 12-wk-old
mouse was immunized i.p. with 50 pug of OVA in 10 mg of AI(OH); on days 0,
7, and 14, followed by intranasal challenge with 1 mg of OVA on days 21, 22,
and 23 (8). On day 24, mouse serum collection, BALF harvesting, total leuko-
cyte counting, and Diff-Quik staining (cell typing) were performed as detailed
elsewhere (8).

Serum and BALF IgE and cytokine level determination

Serum total IgE was determined with a sandwich ELISA (8). Serum and BALF
eotaxin (Cell Sciences), MCP-3 (Cell Sciences), IL-4 (Pierce), IL-5 (Pierce),
IL-13 (PeproTech), IFN-vy (BioSource International), TGF-B1 (BioSource In-
ternational), and TNF-a (BioSource International) were determined using
ELISA kits according to the manufacturers’ instructions. MIF was measured by
a murine-specific, capture ELISA (detection limit of 0.16 ng/ml) (9).
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Preparation of lung dendritic cells, splenocytes, CD4" T cells, and mast cells

Mouse lung dendritic cells (DC) were isolated as described previously (10). DC
were verified by FACS analysis for CD11¢, DEC-205, I-AY, CD11b, CD14,
F4/80, and Gr-1. Isolated lung DC showed positive staining for the cell surface
markers of CD11c, DEC-205, and I-AY, and negative cell surface staining for
CD11b, CD14, F4/80, and GR-1. Splenocytes and CD4 " T cells were isolated
from C57BL/6] or DO11.10 mouse spleens as we reported previously (11). Mast
cells were derived from bone marrow from both MIF*"* and MIF~"~ mice in the
presence of murine IL-3 (PeproTech) as previously reported (12). PWM-stimu-
lated mast cells were prepared by differentiating bone marrow cells in medium con-
taining PWM-stimulated, splenocyte-conditioned medium as described (13).

Mast cell reconstitution

Bone marrow-derived mast cells (BMMC) from MIF™" mice were washed
with calcium-free PBS and resuspended in PBS. Cells were immediately in-
jected into the tail veins of 5-wk-old MIF '~ mice (1 X 107 cells/mouse). These
mice were used in the allergic response model 7 wk after BMMC reconstitution,
when BMMC appeared in most recipient mouse lungs (14). Reconstituted
BMMC were examined using rabbit anti-murine MIF polyclonal Ab-mediated
immunostaining.

Preparation of mouse MIF polyclonal Abs

Full-length mouse MIF cDNA was subcloned into pCRT7/NT-TOPO vector
and expressed in BL21 (Invitrogen Life Technologies). Poly(His),-MIF fusion
proteins were purified over a His'Bind Quick column (Novagen), and purified
proteins were used for immunizing rabbits to produce polyclonal Abs (Proteintech
Group). Ab specificity was verified by M lysate immunoblot analysis and immu-
nostaining of lung paraffin sections from both MIF"™* and MIF '~ mice.

Lung histology

Mouse lungs were removed and fixed in 10% buffered formalin. Paraffin sec-
tions (4 um) were prepared and used for immunostaining of MIF (rabbit anti-
mouse MIF polyclonal Ab; 1/2000) and cell proliferation marker Ki67 (rabbit
anti-mouse polyclonal Ab; 1/1000, NovoCastra).

MLR and Ag presentation

MLR was carried as previously described (11) in RPMI 1640 on 96-well plates
with 2 X 10° T cells per well from C57BL/6] mice and different amounts APC,

>

FIGURE 1. Impaired allergic responses in MIF '~
mice. A, BALF MIF ELISA. OVA-sensitized MIF""*
mouse BALF contained higher amounts of MIF than
BALF from PBS-treated mice. B, Immunohistology.
Rabbit anti-mouse MIF polyclonal Ab-mediated im- B
munostaining demonstrated higher numbers of MIF-

Mouse BALF MIF (ng/ml)
]
o

positive cells in airway epithelial and peribronchial con-
nective tissues in OVA-sensitized lungs (midedle panel)
than in those sensitized with PBS (right panel), whereas
OVA-sensitized MIF '~ lungs were negative for this
Ab (left panel). C-G, Compared with OVA-sensitized
MIF~"~ BALF, OVA-sensitized MIF*"* mouse BALF
contained significantly higher numbers of total leuko-

cytes (C), eosinophils (D), and PMN cells (£), although

reductions in M¢ (F) and lymphocytes (G) were not F 1
significant. A, After OVA immunization, MIF /"~ s
mice developed significantly less total IgE than MIF*/* 8
i S 100
mice. *, p < 0.05. E
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including lung DC, alveolar M¢, resting BMMC, and PWM-stimulated
BMMC from BALB/c mice. Ag presentation was performed with 2 X 10°
DOI11.10 T cells mixed with 2 ug/ml OVA,,; 550 peptide and different
amount of APC. Plates were incubated for 2 days followed by the addition of 1
pCi of [PH]thymidine and another 6 h of incubation before harvesting.

Results and Discussion
MIF deficiency reduces airway allergic responses

In accord with what has been found in human asthmatic pa-
tients (5), the BALF of OVA-sensitized MIF*"* mice con-
tained higher amounts of MIF than the saline-sensitized con-
trols (Fig. 14), whereas the BALF of OVA-sensitized MIF~ =
mice contained no MIF (data not shown). Immunohistochem-
ical analysis using an anti-murine MIF polyclonal Ab also re-
vealed increased production of MIF in the airway epithelial cells
and in peribronchial inflammatory cells, including mast cells.
There was a clearly increased density of peribronchial inflam-
matory cells in the experimentally induced lungs (Fig. 1B).
These initial data suggested a correlation between MIF expres-
sion and murine airway inflammation and that a lack of MIF
reduces such allergic responses. This hypothesis was examined
using MIF~ /" mice. In the same model, OVA-sensitized
MIF~"~ mice showed evidence of reduced total leukocyte infil-
tration (Fig. 1), including eosinophils (Fig. 1D) and polymor-
phonuclear (PMN) cells (Fig. 1E) in the BALF when compared
with those in OVA-sensitized MIF""" mice. The reductions in
Md (Fig. 1F) and lymphocytes (Fig. 1G) were not statistically
significant (ANOVA ¢ test), suggesting that MIF is not essential
for M¢ or lymphocyte recruitment but plays a more dominant
role in lymphocyte activation and cytokine production. Eosin-
ophils play a critical role in allergic airway remodeling (15) and
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often serve as hallmarks of allergic airway inflammation. Re-
duced eosinophil infiltration in MIF '~ mice thus suggested a
direct participation of MIF in airway allergic responses. Along
with reduced eosinophil infiltration, serum total IgE levels also
were significantly lower in MIF '~ mice after OVA immuni-
zation (Fig. 1H). Reduced IgE was not due to altered B cell
function, because splenocytes from MIF '~ mice showed sim-
ilar levels of cell surface I-A expression, LPS-induced prolifer-
ation, and DO11.10 T cell activation as those from MIF""*
mice (data not shown). These data in MIF '~ mice unequivo-
cally demonstrated that MIF is not simply a molecule marker of
inflammation but rather plays an essential role in the pathogen-
esis of allergic airway diseases.

MIF-deficient BALF or serum contains reduced levels of chemokines

Reduced inflammarory cell infiltration in MZF '~ mice sug-
gested reductions in chemoattractant production. We antici-
pated that MIF may affect the production of chemoattractants
and indirectly impair leukocyte or eosinophil infiltration into
the lung. To test this hypothesis, we measured both eotaxin and
MCP-3 in serum and BALF. Eotaxin acts via the CCR3 recep-
tor to mediate the chemotaxis of both eosinophils and mast cells
in allergen-sensitized airway inflammation and hyperrespon-
siveness (16). An eotaxin ELISA demonstrated a significant re-
duction in this chemokine in BALF, but not in serum, from
OVA-sensitized MIF '~ mice as compared with OVA-sensi-
tized MIF™" mice (Fig. 24). MCP-3 is important for eosino-
phil infiltration and activation and acts via CCR1, CCR2, and
CCR3 (17). Consistently, serum but not BALF from OVA-sen-
sitized MIF "~ mice showed a significant reduction of this che-
mokine (Fig. 2B). Therefore, MIF appears to regulate the pro-
duction of chemokines to control migration and activation of
eosinophils (Fig. 1D) or other leukocytes such as PMN (Fig. 1E).

Another hallmark of airway inflammation is increased cell
proliferation mediated by TGF-f from eosinophils (18) or air-
way SMC (19). In vitro experiments demonstrated that TGF-f3
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induces MIF expression in murine colon carcinoma cells (20)
and, in turn, MIF regulates TGF- expression in mesangial
cells (21). Therefore, it is possible that reduced numbers of eo-
sinophils in MIF~'~ mice may lead to a reduction of BALF
TGE-B levels, which may explain reduced peribronchial in-
flammatory cell densities in MIF '~ mice (Fig. 1B) by an im-
pairment in their proliferation. A TGF-1 ELISA affirmed this
hypothesis and demonstrated a significant reduction of this
multifunctional growth factor in BALF but not in the serum of
saline- or OVA-sensitized MIF~’~ mice (Fig. 2C). These data
suggest a role for MIF in eosinophil and/or airway SMC TGF-f3
production and consequent airway inflammatory cell prolifer-
ation. Indeed, the numbers of Ki67-positive cells were reduced
in OVA-sensitized MIF '~ lungs relative to OVA-sensitized
MIF™* lungs (Fig. 2D).

MIF deficiency impairs Thl and Th2 cytokine production

In addition to leukocyte infiltration, T cell activation and cyto-
kine production also play critical roles in the pathogenesis of
allergic airway diseases such as asthma. Although asthma is me-
diated by Th2-type T cells, which produce a repertoire of cyto-
kines including IL-4, IL-5, and IL-13, there is a clear role for
Th1 cytokines such as IFN-7y in both the establishment and di-
rection of the allergic phenotype. Increased MIF levels in hu-
man asthmatic serum, sputum, and BALF (5, 6), as well as
OVA-sensitized MIF™" mouse BALF (Fig. 1A4), suggest a role
of MIF in maintaining airway inflammation and T cell activi-
ties. Therefore, a lack of MIF may lower airway inflammation,
as reflected by a reduction of BALF total leukocytes (Fig. 1C) or
eosinophils (Fig. 1D) and reduce T cell activity. To test this
hypothesis, we measured both the Thl cytokines IFN-y and
TNF-a and the Th2 cytokines IL-4, IL-5, and IL-13. BALF but
not serum IFN-y levels were significantly reduced in MIF '~
mice (Fig. 34), although BALF TNF-a was undetectable (data
not shown) and serum TNF-« levels remained the same (Fig.
3B). Whereas serum levels of IL-4 were undetectable (data not
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FIGURE 2. MIF-deficiency reduced chemokine and 0.02 =
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FIGURE 3. Thl and Th2 cytokine profiles. A4, IFN-y
levels were reduced in OVA-sensitized MIF '~ mouse
BALF but not in serum. B, Serum TNF-« levels were un-
detectable and BALF TNF-a levels showed no differences
between OVA-sensitized MIF™" and MIF '~ mice. C,
IL-4 levels were reduced in OVA-sensitized MIF '~
mouse BALF, whereas serum IL-4 levels were undetect-
able. D, IL-5 levels also were reduced in OVA-sensitized
MIF "~ mouse BALF but not in serum. E, Both serum and
BALF IL-13 were reduced in OVA-sensitized MIF '~
mice. ¥, p < 0.05.

shown) and those of IL-5 were the same between MIF™" and
MIF~"" mice (Fig. 3D), BALF IL-4 (Fig. 3C), BALF IL-5 (Fig.
3D), and serum and BALF IL-13 (Fig. 3E) were all reduced in
MIF~"~ mice. Thus, MIF appears to act on both Th1- and
Th2-type cells in this model of airway inflammation.

MIF deficiency reduces T cell activation

Th1-and Th2-type T cells play essential roles in airway allergic
responses (22). Increased levels of Th1- and/or Th2-type cyto-
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kines in the serum or BALF of subjects with asthma or Ag-sen-
sitized airway inflammation suggest an enhancement of T cell
activation. Thus, reduced levels of T cell cytokines in MIF~ =
mice (Fig. 3) suggested a suppression of T cell activation pre-
sumably due to the lack of MIF. Indeed, MIF is well known to

stimulate T cells both in vitro and in vivo (4). T cell activation
can be mediated directly by cytokines or via APC such as B cells,
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DC, M¢, and mast cells. To test these possibilities, we performed
MLR using C57BL/6] CD4 " T cells and Ag presentation using

FIGURE 4. MLR (4, C, E, and G) and Ag presentation
(B, D, and F). Lung DC from MIF""* and MIF™'~ mice
were equally potent in activating C57BL/6] CD4™ T cells
(A) and DO11.10 CD4™ T cells (B). In contrast, com-
pared with those from MIF""* mice, alveolar M¢ (C and
D) and BMMC (£ and F) from MIF~"~ mice showed im-
paired capability in activating C57BL/6] CD4™ T cells in
MLR assay (C and E) and OVA,,; 559 peptide-mediated
DO11.10 CD4™ T cell activation (D and F). PWM-stim-
ulated BMMC from MIF "~ also demonstrated reduced
CD4" T cell proliferation relative to those from ML,

mice (G).
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DO11.10 T cells in the presence of OVA5,5 334 peptide and dif-
ferent APC obtained from MIF '~ mice, including lung DC, al-
veolar M, and BMMC. Surprisingly, DC from MIF~ ~ mice ac-
tivated T cells as well as DC from MIF*""* mice in both assays (Fig.
4, Aand B). In contrast, both M¢ (Fig. 4, Cand D) and BMMC
(Fig. 4, Eand F) from MIF™* mice and MIF~'~ mice differed in
their ability to elicit T cell activation, although cell surface I-A? lev-
els in DC, M, and BMMC were not affected by MIF deficiency
(data not shown). Further, PWM-stimulated MIF "~ BMMC
also showed a reduction in T cell activation (Fig. 4G). Impaired T
cell activation by MIF~~ BMMC was not due to an alteration in
their intrinsic development or function, as we did not detect sig-
nificant differences in either morphology or IgE-induced degran-
ulation in BMMC from MIF*"* and MIF~"~ mice according to
an established protocol (23) (data not shown). These observations
suggested a novel function for mast cell and Mp-derived MIF in T
cell activation and potentially airway inflammation. However,
MIF from other cells such as eosinophils, airway SMC, airway ep-
ithelial cells (Fig. 1B), and even T cells themselves may be equally
important to T cell activation and airway allergic responses.

Mast cell-derived MIF is required for airway inflammation

Our MLR and Ag presentation assays demonstrated that MIF
from M@ and BMMC, but not from DC, are essential for in
vitro CD4™ T cell activation (Fig. 4). Nevertheless, lung DC
are important in initiating and maintaining allergic airway in-
flammation by polarizing naive T cells into either Th1 or Th2
effector cells, and they establish T cell memory and tolerance to
inhaled Ags (24). It is possible that DC express insufficient MIF
and, therefore, the MIF-related effects are not strongly medi-
ated by these cells. Moreover, it is known that other cells such as
eosinophils and airway epithelial and SMC also produce MIF
(18, 19) (Fig. 1B) and, therefore, the role of BMMC- or M-
derived MIF in T cell activation/proliferation observed from
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our in vitro pure cell population assay (Fig. 4) may be compen-
sated by MIF released from other cell types in vivo.

Mast cells are important cellular effectors in asthma or acute
or chronic airway inflammation, and their role in other inflam-
matory/autoimmune pathologies is gaining increasing promi-
nence (2). Mice lacking mast cells are resistant to allergen-in-
duced airway inflammation, and the reconstitution of BMMC
into mast cell-deficient mice restores the inflammatory pheno-
type (12, 25). It is thought that mast cells contribute to airway
inflammation by enhancing proliferation and cytokine produc-
tion of multiple T cell subsets via direct mast cell-T cell inter-
actions and by undefined soluble factors (26) such as MIF. In-
deed, we detected 52 * 2.1 ng/ml MIF in the conditioned
medium of 1 X 10° resting BMMC, and mast cells in normal
lung were also immunoreactive for MIF (data not shown). To
examine this hypothesis in vivo, we injected MIF"* BMMC
into MIF~'~ mice and induced airway inflammation. MIF-
positive BMMC can be detected within reconstituted and
OVA-immunized MIF~'~ lung parenchyma (Fig. 54) and ad-
jacent to the airway (data not shown), but not in nonreconsti-
tuted MIF~~ lungs (Fig. 1B, lefi panel). OVA-sensitized,
BMMC-reconstituted MIF '~ lungs contained higher num-
bers of Ki67-positive cells in the peribronchial tissues than
those in nonreconstituted OVA-sensitized MIF '~ lungs (Fig.
5B), providing direct evidence for mast cell-derived MIF in air-
way inflammatory cell proliferation. Consistent with increased
cell proliferation, BMMC reconstitution also restored the air-
way inflammatory phenotype, including the recruitment of to-
tal leukocytes (Fig. 5C), eosinophils (Fig. 5D), and PMN cells
(Fig. 5E), although M¢ numbers were not affected (Fig. 5F).
Inversely, BMMC reconstitution reduced total lymphocyte
numbers in MIF '~ mice (Fig. 5G), similar to what was seen
previously (25). Such reduction in BALF lymphocytes did not
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affect the Ag-sensitized airway immune responses. Indeed, re-
constituted MIF '~ mice produced comparable amounts of se-
rum total IgE as MIF*™ mice (Fig. 5H), suggesting that the
lymphocytes in BMMC-reconstituted mice acted comparably
to those in MIF"* mice. Phenotype recovery in reconstituted
mice was not due to excessive mast cells in their lung. Methyl-
ene blue staining demonstrated similar numbers of mast cells
per lung section in BMMC-reconstituted mice vs wild-type
mice (32 £ 5vs38 = 5; p = 0.39, n = 5). Therefore, BMMC-
derived MIF is sufficient to initiate T cell activation in this mu-
rine allergic response model.

It remains to be explained why MIF~’~ mice showed im-
paired airway inflammation after aluminum-conjugated OVA
sensitization (Fig. 1), whereas similar models did not yield a
similar reduction of airway allergic responses in mast cell-defi-
cient mice (12). Although not conclusive, our data suggest that
MIF from both mast cells and M are critical to T cell activa-
tion and, therefore, M¢ in addition to mast cells may contrib-
ute to aluminum-OVA-induced airway inflammation. Further,
in contrast to mast cell-deficient mice, mice deficient in the
mast cell-activating molecules Igu (27) and FceRla (28)
showed impaired eosinophil infiltration relative to their wild-
type controls after aluminum-OVA sensitization. Therefore,
more complex mechanisms may be involved.

In summary, our study demonstrates that MIF production in
the lungs, in part from intrapulmonary mast cells and M, par-
ticipates directly in allergic airway inflammation by enhancing
inflammatory cell recruitment and activating lymphocytes to
promote the release of Th1/Th2 cytokines and chemokines.
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