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Simple Summary: Hepatocellular carcinoma is the most common primary liver malignancy in the
United States. Macrophages are immune cells that play a critical role in the promotion of cancer
growth and configuration of the hepatic microenvironment. Studying intrahepatic macrophages
is challenging because they are difficult to isolate, they transform their phenotype upon manipula-
tion, and in vivo animal models poorly replicate the liver microenvironment. Understanding the
complexity of intrahepatic macrophage populations is crucial because they coordinate antitumoral
immunity. Application of novel methods that can detect immune cell phenotypes, along with their
spatial co-localization in situ is critical and timely.

Abstract: The role of tumor-associated macrophages (TAMs) in the pathogenesis of hepatocellular
carcinoma (HCC) is poorly understood. Most studies rely on platforms that remove intrahepatic
macrophages from the microenvironment prior to evaluation. Cell isolation causes activation and
phenotypic changes that may not represent their actual biology and function in situ. State-of-the-art
methods provides new strategies to study TAMs without losing the context of tissue architecture
and spatial relationship with neighboring cells. These technologies, such as multispectral imag-
ing (e.g., Vectra Polaris), mass cytometry by time-of-flight (e.g., Fluidigm CyTOF), cycling of fluo-
rochromes (e.g., Akoya Biosciences CODEX/PhenoCycler-Fusion, Bruker Canopy, Lunaphore Comet,
and CyCIF) and digital spatial profiling or transcriptomics (e.g., GeoMx or Visium, Vizgen Merscope)
are being utilized to accurately assess the complex cellular network within the tissue microenvi-
ronment. In cancer research, these platforms enable characterization of immune cell phenotypes
and expression of potential therapeutic targets, such as PDL-1 and CTLA-4. Newer spatial profiling
platforms allow for detection of numerous protein targets, in combination with whole transcriptome
analysis, in a single liver biopsy tissue section. Macrophages can also be specifically targeted and
analyzed, enabling quantification of both protein and gene expression within specific cell phenotypes,
including TAMs. This review describes the workflow of each platform, summarizes recent research
using these approaches, and explains the advantages and limitations of each.

Keywords: cancer; CyTOF; HCC; liver; macrophages; spectral imaging; hepatic microenvironment;
TAMs; TME; spatial genomics; scRNA-seq

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in the
United States and worldwide [1]. The mortality rate from HCC is increasing faster than
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any other cancer in the United States and is also a leading cause of cancer deaths globally,
accounting for more than 700,000 deaths each year [2]. So far, the implementation of new
diagnostic strategies and therapeutic regimens has not yet resulted in a significant reduction
in mortality, as HCC is the second most lethal tumor, outranked only by pancreatic cancer, in
the United States [2]. The hepatic microenvironment in HCC is composed of a heterogenous
population of cells with distinct genetic and phenotypic properties and various effects on
tumor progression. Tumor-associated macrophages (TAMs) are a critical subpopulation that
can promote tumor growth within the hepatic microenvironment and unique phenotypes
with diverse functional properties have been described [3,4].

The specific role of TAMs in promotion of HCC is controversial and poorly under-
stood since most studies to date rely upon traditional in vitro and in vivo animal models
(e.g., mouse models) that poorly replicate the tumor microenvironment (TME) in hu-
mans [5–7]. The prevailing view is that TAMs in HCC are involved in immunosuppression,
angiogenesis, epithelial-mesenchymal transition, cytokine secretion, enhancement of metas-
tasis, and prolongation of stemness [4]. Preclinical studies have found a strong correlation
between macrophages infiltrating the TME and poor prognosis [4,6,7]. The profound in-
fluence of TAMs on tumor progression is confirmed by a growing body of data indicating
that agents targeting TAMs are critical for optimal HCC therapy [8]. Despite various
techniques for isolating and characterizing TAMs, their study is challenging because of the
following: (1) isolation of the cells from human liver tissue is laborious, (2) macrophages
transform their phenotype upon manipulation, and (3) in vitro and mouse model systems
poorly replicate the TME, and chronic disease observed in humans [9]. Therefore, other
methods that can study the complex hepatic microenvironment in situ in human liver
tissue may be better approaches. TAMs are a promising target for immunotherapy, and
accurate characterization will be necessary for successful implementation of precision
medicine approaches.

In this review, emerging platforms that can characterize intrahepatic macrophages
in situ in human liver tissue will be discussed. The basic principles of each technique are
outlined, along with the advantages and disadvantages of each platform. We also suggest
how each may contribute to the development of TAM-targeting drugs and personalized
medicine. Finally, recent investigations of TAMs in HCC progression are described.

2. Multispectral Imaging
2.1. Traditional Methods for Phenotyping Immune Cells In Situ

For more than 100 years, light microscopy has been the traditional method for pathol-
ogists to evaluate tissue specimens. The information obtained by reviewing hematoxylin
and eosin-stained tissue slides with brightfield microscopy is limited. With the develop-
ment of immunotherapy and increased implementation of precision medicine approaches,
pathologists need to provide more than just a diagnosis or margin status. They should
also report information about prognostic factors and expression of therapy-related tar-
gets, such as programmed death-protein 1 (PD-1) and its ligand (PDL-1), whenever pos-
sible [10–12]. Although development of chromogenic immunohistochemistry (IHC) in
diagnostic and research pathology was a major advancement, its use is limited since it
cannot characterize multiple immune cell phenotypes, particularly when multiple antigens
are colocalized on the same cell type or same cellular compartment (e.g., characterization
of TAMs) [11,13,14]. Macrophage markers can be stained on individual IHC slides and
then quantified. However, newer techniques that use multiplex immunofluorescence (IF)
combined with advanced imaging software for data analysis are more accurate and feasible
for phenotyping studies [14,15].

2.2. Multiplex Immunofluorescen Staining Technique Followed by Multispectral Imaging Analysis

Multispectral imaging is a technique that overcomes the above challenges since it
is equipped with a specialized camera. In multispectral imaging (MSI), antibodies are
conjugated with tyramide-fluorophores, called tyramide signal amplification (TSA). These
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types of fluorophores are suitable for MSI because the tyramide-fluorophores attach co-
valently to tyrosine amino acids; each of the antibodies are then removed sequentially,
leaving the stain intact when the antibody probes are removed. The signal each fluorophore
emits at specific wavelength is unmixed using a spectral library and a microscope that
has a paired of excitation/emission filter sets specific to the emission spectrum of each
fluorophore employed.

MSI is ideal for analyzing multiple immune cell phenotypes in situ since it preserves
the tissue architecture and can determine the spatial location of cells within a region of
interest or whole scanned slide. MSI with platforms such as the Vectra or Polaris (Akoya
Biosciences, Marlborough, MA, USA) can detect up to 6-8 biomarkers in a single formalin-
fixed paraffin-embedded (FFPE) tissue section (Figure 1) [15]. The staining method is
similar amongst most of the MSI technologies discussed in this review, as the process
involves the following steps: (1) deparaffinization of the tissue slide, (2) slide fixation,
(3) antigen retrieval, (4) addition of a blocking reagent to prevent non-specific binding of
antibodies to the tissue or to Fc receptors, (5) incubation and binding of an unmodified
primary antibody to its target, (6) horseradish peroxidase (HRP)-conjugated secondary
antibody incubation and binding of the HRP-conjugated antibody to the primary antibody,
(7) HRP enzyme-mediated in situ deposition of the tyramide-fluorophore that covalently
binds to the tissue near the target, (8) antibody removal, (9) counterstaining of the tissue
with 4,6-diamidino-2-phenylindole (DAPI) or other nuclear stain, and (10) mounting of
the slide and visualization using fluorescence microscopy (Figure 1). Note that after step
8, steps 3 to 8 are repeated until the desired number of antibodies have been used. These
steps are unique to MSI that uses TSA.

Cancers 2022, 14, x  3 of 19 
 

2.2. Multiplex Immunofluorescen Staining Technique Followed by Multispectral Imaging 
Analysis 

Multispectral imaging is a technique that overcomes the above challenges since it is 
equipped with a specialized camera. In multispectral imaging (MSI), antibodies are con-
jugated with tyramide-fluorophores, called tyramide signal amplification (TSA). These 
types of fluorophores are suitable for MSI because the tyramide-fluorophores attach co-
valently to tyrosine amino acids; each of the antibodies are then removed sequentially,  
leaving the stain intact when the antibody probes are removed. The signal each fluoro-
phore emits at specific wavelength is unmixed using a spectral library and a microscope 
that has a paired of excitation/emission filter sets specific to the emission spectrum of each 
fluorophore employed. 

MSI is ideal for analyzing multiple immune cell phenotypes in situ since it preserves 
the tissue architecture and can determine the spatial location of cells within a region of in-
terest or whole scanned slide. MSI with platforms such as the Vectra or Polaris (Akoya Bio-
sciences, Marlborough, MA) can detect up to 6-8 biomarkers in a single formalin-fixed par-
affin-embedded (FFPE) tissue section (Figure 1) [15]. The staining method is similar 
amongst most of the MSI technologies discussed in this review, as the process involves the 
following steps: (1) deparaffinization of the tissue slide, (2) slide fixation, (3) antigen re-
trieval, (4) addition of a blocking reagent to prevent non-specific binding of antibodies to 
the tissue or to Fc receptors, (5) incubation and binding of an unmodified primary antibody 
to its target, (6) horseradish peroxidase (HRP)-conjugated secondary antibody incubation 
and binding of the HRP-conjugated antibody to the primary antibody, (7) HRP enzyme-
mediated in situ deposition of the tyramide-fluorophore that covalently binds to the tissue 
near the target, (8) antibody removal, (9) counterstaining of the tissue with 4,6-diamidino-
2-phenylindole (DAPI) or other nuclear stain, and (10) mounting of the slide and visualiza-
tion using fluorescence microscopy (Figure 1). Note that after step 8, steps 3 to 8 are repeated 
until the desired number of antibodies have been used. These steps are unique to MSI that 
uses TSA.  

 

Figure 1. Multispectral imaging workflow. (A) MSI consists of the following 10 steps: (1) deparaf-
finization of the tissue slide, (2) slide fixation, (3) antigen retrieval, (4) addition of a blocking reagent
to prevent non-specific binding of antibodies to tissue or to Fc receptors, (5) incubation and binding
of an unmodified primary antibody to its target, (6) HRP-conjugated secondary antibody incubation
and binding of the HRP-conjugated antibody to the primary antibody, (7) HRP enzyme-mediated
in situ deposition of the tyramine-fluorophore that covalently binds to the tissue near the target,
(8) antibody removal, (9) counterstaining of the tissue with DAPI, and (10) mounting of the slide and



Cancers 2022, 14, 1861 4 of 19

visualization using fluorescent microscopy. Note that, after step 8, steps 3 to 8 are repeated one to four
additional times or until the maximum number of antibodies (five for multiplex) is reached. (B) This
is a representative image of a 5-plex stained slide with the membrane antibodies CD163 paired with
the fluorophore TSA-Rhodamine 6G (gold), CD206 paired with the fluorophore TSA-Red 10 (red), and
CD14 paired with the fluorophore TSA-DCC 10 (aqua blue). A nuclear marker is represented by the
antibody anti-cytoglobulin paired with the fluorophore TSA-FAM (green). The cytoplasmic marker is
represented by CD68 paired with the fluorophore TSA-Cy5 (violet). In the figure, all five antibodies
are shown binding to the tissue at the same time to illustrate how different fluorophores signals are
produce simultaneously in situ. However, the antibodies do not remain bound to the tissue after
step 8. Only the fluorophores are attached to the tissue after step 8, as they form a covalent bond in
the vicinity where the antibody was previously bound to the antigen, amplifying the signal that is
acquired by the IF microscope. (C) We stained a representative human liver biopsy slide from a patient
with NASH and advanced fibrosis with a multiplex macrophage panel: CD68 (green-Opal 520), CD14
(Magenta-Opal 540), CD16 (red-Opal 620), CD163 (cyan-Opal 650), MAC387 (white-Opal 690), and
nuclear stain (Blue-DAPI). A single 20× fluorescence image was obtained after spectral unmixing was
applied. (D) Single multiplex images from Figure 1C were used to export multicomponent TIFF files
for Visiopharm analysis. A phenotyping application was used to determine the number of different
cellular phenotypes present in each image. Each colored dot represents a unique cellular phenotype.
Dark gray dots represent cells that were negative for all the markers in the multiplex panel. (E) The
same exported multicomponent TIFF files used in Figure 1D were used by the Visiopharm phenotype
matrix algorithms to determine the different cellular phenotypes present in each of the 20×multiplex
images. The colors shown for each of the different phenotypes correlate with the various colored
dots (i.e., individual cells) shown in the multiplex image from Figure 1D. Dark green and white
boxes indicate the populations with the highest and lowest prevalence, respectively. (F) t-SNE plots
highlight the unique patterns of concatenated cellular markers that are present in the image. This
algorithm uses nonlinear dimensional reduction to allow visualization of high dimensional data sets.
Cells with similar properties appear closer together and those that are dissimilar appear farther apart
in the 2-dimensional map. Abbreviations: 1st Ab, primary antibody; 2nd Ab, secondary antibody;
Ab, antibody; DAPI, 4′,6-diamidino-2-phenylindole; HRP, horseradish peroxidase; TSA, tyramine
signal amplifier.

MSI can be conducted with IF or brightfield chromogens; however, use of light mi-
croscopy is limited to fewer channels than IF as well as by broad spectral absorption.
A recent study was able to overcome this limitation by using new chromogens with nar-
row spectral absorption and matched illumination channels [10]. Another study used
chromogenic multiplexed IHC on a prostate cancer tissue microarray cohort consisting of
462 duplicate cores with outcome data and 384 duplicate cores from different disease stages.
The authors observed that chromogenic multiplexed IHC, in combination with digital
biomarker analysis software, was a reliable alternative for objective and high-throughput
biomarker quantification and colocalization [16]. Further development of this technique
may accelerate the integration of MSI into general pathology practice [3,17].

2.3. Vectra 3, Vectra Polaris and CODEX

In the field of phenoptics digital pathology, the Vectra 3 is a well-known example of
MSI technology. The Vectra 3 is an automated quantitative pathology imaging system,
with either a 6-slide capacity or 200 slide hotel attached to the scanner, that detects up
to 35 lambda channels (wavelengths) in the same tissue section, which can be used to
separate and identify 9 fluorochromes (8 antibodies and DAPI, nuclear counterstain).
While the system is capable of handling 9 fluorochromes, it is more commonly used to
detect 7 fluorochromes due to complexity. The platform was designed to operate with the
inForm imaging analysis software version 2.4.0. The Vectra 3 acquires images from tissue
sections labeled with Opal-conjugated fluorophores combined with TSA, which enhances
the intensity of the fluorophore signal [18]. Then, the Vectra 3 multispectral camera is
programed to capture images every 20 nm across the spectrum of 420 nm to 720 nm from
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various excitation filters resulting in the aforementioned 35 lambda channels collection.
The extraction of the spectral data from the images is possible because the Vectra 3 uses
a liquid crystal tunable filter (optical filter) that operates by transmitting a narrow band of
wavelengths. The optical filter is key because viewing a spectral image requires capturing
a collection of images of different wavelengths at each pixel location.

After gathering a complete spectrum of the image at every pixel location, the inForm
(Akoya Biosciences) software analyzes the tissue images using the following workflow:
(1) unmixing of each multispectral signal allows the identification and separation of weak
and overlapping signals from background autofluorescence, (2) artificial intelligence algo-
rithms are trained to automatically detect and segment specific tissue types, (3) after being
trained, the software will automatically locate and analyze specific regions within an image
or across images, (4) machine-learning algorithms separate cell phenotypes in a tissue
section, (5) a positive threshold is set based on the quantification of the stain intensity
and the calculated H-score, and (6) large sets of images or slides can be batch-processed,
reviewed, and merged to hasten and improve image analysis efficiency.

The Vectra Polaris is an upgraded version of the Vectra 3 that allows a higher through-
put, improved image quality, brightfield and/or IF whole slide scanning, and superior
quantitative analysis. The resolution of the Vectra Polaris at higher magnification is also
improved with the values of: (1) 40× = 0.25 µm/pixel, (2) 20× = 0.5 µm/pixel, and
(3) 10× = 1.0 µm/pixel. The Polaris also features bandpass filters optimized to a 7-fluorophore
assay in the second generation of Opal featuring two new fluorochromes Opals 480 and
780, replacing Opals 540 and 650. By replacing these two, fluorophores bandpass filters
were made possible, thereby reducing the lambda collections to nine channels, but still
retaining the multispectral benefits. The largest benefit is that data collection across the
entire slide is now possible.

For comparison, cyclic methods, including Akoya CODEX, CycIF, Lunaphore Comet,
Miltenyi MACSIma, Leica Microsystems Cell Dive, and Brukers Canopy, to name a few,
cycle fluorophores on and off the antibodies serially and align the images collected to create
a higher-plex image, depending on the number of cycles employed [4,19–21]. CODEX
employs an oligo cleavage, Canopy quenches the signal leaving the antibody and probe,
Miltenyi MACSIma erases the fluorescence signal of samples that have been stained with
fluorochrome-conjugated antibodies via photobleaching, and others methods remove
everything. These methods capture individual cycles rapidly, but this step must be repeated
multiple times, and the user faced with the daunting challenge of aligning all the images
collected per cycle. This dramatically affects the throughput as research interests scale
to higher parameter numbers. However, the RareCyte Orion platform generates same-
day whole-slide images with sub-cellular imaging resolution in a single stain, single scan
workflow. This platform scans up to 21 fluorescence channels simultaneously decreasing
the turnaround time as it does not use an iterative or cyclic process. Antigenic preservation
of the epitopes that the antibodies identify is optimized because only one staining cycle is
performed. The Leica Microsystems Cell Dive uses a protocol that reconstructs a component
image by layering multiple images generated through staining cycles, allowing complex
multiplexing of the tissue at single-cell resolution.

The CODEX platform is a modification of the conventional multiplex technique in
which antibodies are tagged with unique oligonucleotides and dye-oligonucleotides that
function as barcodes and reporters, respectively. CODEX provides high-parameter IF imag-
ing of fresh-frozen and FFPE tissue because the barcodes (oligonucleotides) and reporters
(dye-oligonucleotides) are iteratively hybridized and dehybridized across multiple cycles.
An advantage of Codex is its capacity to probe a broad range of molecules of interest in
a single tissue slide. The CODEX workflow and chemistry was recently applied in a colon
cancer study, in which the configuration, cell to cell interaction, and spatial organization
of the TME was characterized in great detail [22]. In the study, the investigators profiled
56 protein markers across 140 regions of interest from 35 advanced-stage colorectal cancer
patients. They correlated an enriched association between unique immune cell neighbor-
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hoods and outcomes. Enriched populations of PD-1+ CD4+ T cells within a granulocyte
cellular neighborhood correlated with better survival. In contrast, a worse outcome was
associated with an enriched cellular neighborhood where tumor and immune cells where
coupled, where T cells and macrophages where fragmented, and communication was
disrupted. They proposed that using their approach on a larger cohort may yield clini-
cally relevant biomarkers, treatment regimens, and better comprehension of the biological
landscape where immune cells coordinate antitumoral immunity.

2.4. Phenotyping Tumor-Associated Macrophages in the Tumor Microenvironment Using
Multispectral Imaging

For the study of macrophages by MSI microscopy, the addition of more channels
and narrow spectral absorption are critical since TAMs are often positive for multiple
markers in the same cellular compartment and each phenotype may have unique biological
functions [3]. TAM phenotype, polarization, and degree of infiltration have been correlated
with clinical prognosis, tumor behavior, and response to therapy [4,23,24]. For example,
using MSI on tissue biopsies obtained from 66 patients with HCC revealed that high co-
expression of CD38+ CD68+ on TAMs was associated with a better prognosis after surgery,
in comparison to patients whose tumor only expressed a high density of CD68+ [25]. In
addition, CD38+ expression was found to be enriched in TAMs with a cytokine profile
similar to that of M1 macrophages.

Initiation of TAM-targeted therapy is another instance where determination of the
presence of specific macrophage phenotypes is crucial for effective treatment. Some au-
thors propose that TAM-targeted therapy should be divided into four categories for HCC:
(1) inhibiting recruitment of monocytes, (2) eliminating TAMs already present in tumor
tissue, (3) re-educating the functions of polarized TAMs by making M2 macrophages more
M1-like, and (4) neutralizing the tumor-promoting factors of TAMs [4]. A limitation of
these approaches is that to be effective, the specific target must be present. Standard IHC
has not proven efficient for detecting the presence or absence of multiple TAM targets
because it requires multiple slide levels, and tissue biopsies are scarce in most cases. MSI
makes this approach much more feasible by enabling the detection of multiple markers
in a single unstained tissue slide. For example, Saldarriaga et al. [18] identified numerous
phenotypes of intrahepatic macrophages in different types of chronic liver diseases using
only a single unstained slide from each patient’s liver biopsy.

2.5. Limitations of Multispectral Imaging and Future Directions

Studies using MSI in cancer research are growing in number. The field of immuno-
oncology has had several breakthroughs with the implementation of immunotherapies,
such as the immune checkpoint inhibitor family (e.g., nivolumab, ipilimumab, and pem-
brolizumab). Immunophenotyping can be correlated with prognosis and response to
immunotherapy. A major challenge is that it is often difficult to predict who will respond
to each therapy. Characterization of the various cell phenotypes present in the complex
hepatic microenvironment will facilitate personalized approaches to therapy.

An obstacle to integrating MSI into the clinical context is the complexity and lack
of clinical data [26]. The translation of MSI into patient care is dependent on standardiz-
ing a workflow validated in multiple centers, clinical trials, and clinical laboratories [27].
There is also resistance from pathologists to transition from brightfield to other types of
microscopies. Quality control is another issue, as standardizing reproducible antibody
performance for MSI in the histopathology laboratory has not been straightforward [11].
These challenges may soon be overcome due to increasing expertise in computerized-aided
software and the use of machine learning and artificial intelligence. The development of
spectral libraries using advanced imaging software platforms, such as inForm or Visio-
pharm (Hoersholm, Denmark), has solved these technical problems by improving the user
interface and providing automated image analysis algorithms.
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When these limitations are resolved and MSI is more well-adapted by pathologists and
histopathology laboratories, it will play a central role in the diagnosis and management of
many tumors, including HCC [11,26,28]. In clinical oncology, trials using MSI have shown
that the presence of specific receptors on tumor infiltrating lymphocytes, not only on TAMs,
are key mediators of tumor progression [29]. Ideally, these will allow personalization of
treatment and the ability to better characterize the TME [28,30,31]. Complex spatial and
nearest neighbor analyses, using platforms such as CODEX, highlight the potential of MSI
in future clinical studies and translational research.

3. Cytometry by Time-of-Flight
3.1. Cytometry by Time-of-Flight: A Fusion of Multiple Techniques

It was in the late 1960s that the roots of fluorescence-activated cell sorting (FACS)
originated [32,33]. Some of the core technological principles used in the analysis and
sorting of FACS remain unchanged [32]. FACS is a technique that involves staining cells
with fluorescently labeled antibodies directed against a cell surface or intracellular epitope.
Then, the labeled cells are passed through an excitation laser [34]. The fluorophores are
excited by the laser beam and emit light at a certain wavelength. As each cell in the
suspension passes in single file, the wavelength of the light emitted by each stained cell
is capture by a photoelectric cell that gauges the intensity of the fluorescent excitation.
These measurements are plotted as a distribution of emitted light signals. Flow cytometry
follows the same principle as FACS, but it does not retain a purified population of cells.
Methods using elemental mass spectrometry which label cells with antibodies conjugated
with isotopes of different atomic weights rather than fluorescent molecules have gained
popularity in both the medical and research fields [35]. Flow cytometry is a standard
method for the diagnosis of leukemias and lymphomas in clinical laboratories and remains
the main method for characterizing immune cells in the field of immunology. However,
mass cytometry is growing in demand in cancer and immunology research.

3.2. Cytometry by Time-of-Flight Workflow

Understanding the principles of flow cytometry, FACS and elemental mass spectrome-
try is necessary before designing studies using cytometry by time-of-flight (CyTOF) because
this platform fuses certain aspects of each of these techniques [35–37]. CyTOF is unique
among other technologies because it can analyze single cells in suspension, similar to
flow cytometry. Additionally, analogous to a high-plex MSI, it has been adapted to probe
paraffin-embedded tissue sections in situ, using a variation called imaging mass cytometry
(IMC; Fluidigm, South San Francisco, CA, USA). CyTOF was developed to expand the
number of cellular parameters that could be measured simultaneously. This platform
provides a novel solution to the fluorophore-labeled techniques, such as FACS and flow
cytometry, in which spectral overlap between fluorescence emission profiles limits the
number of markers that can be used. Furthermore, it takes advantage of the ability of
elemental mass spectrometry (Inductively coupled plasma mass spectrometry or ICP-MS)
to distinguish isotopes with high accuracy.

CyTOF replaces the fluorophores by using element isotopes as labels. The isotope re-
porter is above 89 amu, and includes the transition metals, but also the rare earth/lanthanides,
actinides, and others. An elegant advantage of this substitution is that, with non-biological
markers, such as metal-isotopes (e.g., lanthanide), the tissue background noise can be
removed since it is clear that the signal is coming from the non-biological marker [38].
The cells and/or tissue with an epitope-specific antibody conjugated to an element iso-
tope reporter are vaporized and quantified by a time-of-flight (TOF) mass spectrometer
(Figure 2A) [34,36]. In suspension CyTOF, each cell is nebulized into single-cell droplets
and passed through the plasma torch that ionizes the sample. Then, the isotope reporters
are quantified through the TOF chamber. The data can be presented in a similar fashion to
that of conventional flow cytometry plots and heat maps of induced phosphorylation [37].
This platform can detect more than 50 labels with a theoretical limit of 135 channels in the
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current instrument configuration [38]. This is substantially more than what is detected
by conventional flow cytometry. For example, the Cytek Aurora, a multispectral flow
cytometer has demonstrated the ability to detect 40 channels successfully [39]. While the
suspension CyTOF can detect more than 50 labels currently, the imaging CyTOF is more
limited and has collected sample sets of 42 antigens in a single tissue [35,37,40]. This
variance is due to some isotopes natively adhering to glass, creating complications in their
use for imaging approaches where the tissue is housed on a glass slide.
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reconstructed. As shown in Figure 2B, in IMC, the first step is to label a tissue section with 
the pre-selected panel of antibodies conjugated with stable isotopes. Then, the tissue is in-
serted into an ablation chamber and a camera acquires images from the tissue slide for re-
gion of interest (ROI) selection. In the ablation chamber, ROIs are scanned by a solid laser 
operating at 213 nm and directed to 1 μm area per ablation spot, which equates to the pixel 
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Figure 2. Cytometry by time-of-flight workflow. (A) Suspension CyTOF consists of the following
steps: (1) cells are selected, (2) antibodies are conjugated with a transition element isotope, (3) the
cells are incubated with the antibodies conjugated with a transition element isotope, (4) the cells
with an epitope-specific antibody conjugated to a transition element isotope reporter are vaporized,
(5) vaporized cells enter the time-of-flight analyzer, where the isotopes are quantified, and (6) data
are analyzed by a computer software. (B) Imaging mass cytometry consists of the following steps:
(1) tissue is labeled with a pre-selected panel of antibodies conjugated with stable isotopes, (2) the
tissue is inserted into an ablation chamber and a camera (not shown) acquires images from the tissue
slide, (3) the laser beam ablates a spot of tissue stained with the metal-tagged antibodies, forming
aerosol plumes, (4) plumes of tissue matter are directed by a flow of inert gas (Argon) into a coupling
tube that delivers them to an inductively coupled plasma ion source, where they are vaporized,
atomized, and ionized, (5) the metal-isotope ion cloud passes into the TOF mass spectrometer for
analysis of isotope abundance, and (6) data are analyzed using computer software. Abbreviations:
Ab, antibody; Ar, argon.

The IMC workflow follows the same underlying principles as suspension CyTOF,
however, since a laser ablates the tissue during the analysis and the architecture needs to
be reconstructed. As shown in Figure 2B, in IMC, the first step is to label a tissue section
with the pre-selected panel of antibodies conjugated with stable isotopes. Then, the tissue
is inserted into an ablation chamber and a camera acquires images from the tissue slide
for region of interest (ROI) selection. In the ablation chamber, ROIs are scanned by a solid
laser operating at 213 nm and directed to 1 µm area per ablation spot, which equates to the
pixel resolution of the resulting image. On each laser shot, the laser beam ablates a spot of
tissue stained with the metal-tagged antibodies, forming aerosol plumes. The plumes of
tissue matter are directed by a flow of inert gas (Argon) into a coupling tube that delivers
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them to an inductively coupled plasma ion source where they are vaporized, atomized, and
ionized. Then, high-pass ion optics remove the low-mass ions (Carbon, Oxygen, Nitrogen,
etc.) that are not of interest before the metal-isotope ion cloud passes into the TOF mass
spectrometer for analysis of isotope abundance, and, therefore, epitope abundance. The
number of metal-tagged antibodies from each tissue spot, corresponding to a laser shot, are
counted simultaneously, and mapped to the location of each spot. A useful approach to
understand how IMC indexes each tissue spot, is to imagine that each laser shot represents
one pixel of the tissue image, whilst the isotopes are the colors (RGB) of each pixel. The
spatial resolution of the tissue image can be optimized by decreasing the speed or size of
the laser shot.

3.3. Use of Cytometry by Time-of-Flight for Characterization of Multiple Macrophage Phenotypes
in the Hepatic Microenvironment

In a study dissecting the cancer-immune landscape in HCC using CyTOF, it was
observed that TAMs play an essential role in the configuration of an immunosuppressive
gradient across the tumor, non-tumor, and peripheral blood microenvironments [41]. Inter-
estingly, the study also identified a chemotactic gradient in the tissue microenvironment,
composed of the chemokines CCL20 and CXCL10, attracting TAMs and resident natural
killer (NK) cells. It was observed that both types of cells induced an immunosuppressive
microenvironment via the expression of high levels of IL-10 by TAMs and low levels of
granzyme B by NK cells. Furthermore, this study showed that HBV patients who developed
HCC had increased expression of both IL-10 by TAMs and the exhaustion markers PD-1,
CD152, and Lag-3 by tumor-infiltrating lymphocytes, as compared to non-tumor-infiltrating
lymphocytes. The authors claimed that this observation suggests that HCC patients treated
with either macrophage-targeted therapy or immune checkpoint inhibitors will not have
an illicit off-target immune response in the remaining non-cancerous tissue infected with
HBV [41]. What appears certain from this study, and others, is that targeting the TAM
chemokine axis can enhance the effect of immune checkpoint inhibitors by recruiting and
activating more CD8+ and CD4+ T cells, which increases the number of tumor-infiltrating
lymphocytes and makes the microenvironment less immunosuppressive [42–45].

The topology of the tissue microenvironment was analyzed by Sheng et al. [24] us-
ing IMC since suspension CyTOF cannot adequately assess intratumoral heterogeneity
in situ, in the context of intact architecture or spatial context [24,46]. IMC provides in
situ information regarding the tissue architecture and neighboring cell interactions by
limiting the tissue analysis to ROIs. The topological analysis of Sheng et al. [24] revealed
three important observations. First, the tissue microenvironment of HCC is divided into
regional cellular functional units that impact the prognosis of patients. Second, CD80+/86+

infiltrating macrophages activated CD8+ T cells via the CD28 signaling pathway. In con-
trast to CD80+/86+ infiltrating macrophages, Kupffer cells positive for the PD-L1 marker
inactivated CD8+ T cells by dephosphorylating CD28. Third, in a mouse model, depletion
of Kupffer cells augmented the number of infiltrating macrophages, reduced the tumor
growth, and improved the efficacy of an anti-PD-1 inhibitor.

3.4. Cytometry by Time-of-Flight Limitations and Future Directions

This technology is powerful and enables profiling of many cellular features, with an en-
hanced resolution of TAM phenotypes, and provides the opportunity for high-dimensional
analyses [35]. As discussed above, the results from experiments using CyTOF have raised
the issue that the optimal use of new immunomodulators should include technologies
that stratify patients into responders and non-responders [47]. The justification for this
argument is that CyTOF played an essential role in generating empirical data suggesting
that the presence of PD-L1+ Kupffer cells will reduce the efficacy of an anti-PD-1 inhibitor.
Limitations of CyTOF include: (1) vaporizing cells is an irreversible step, (2) during IMC,
laser ablation results in loss of the tissue for further testing, and (3) the sensitivity for
measuring lower expressing molecular characteristics is challenging due to the directly
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conjugated antibody (no secondary amplification), [35,48]. The requirement for large quan-
tities of cells to be analyzed may be a hinderance for studying TAMs, if they are present in
low numbers in a tissue specimen. Despite these limitations, studies using CyTOF have
provided new insights into the role of TAMs in the tissue microenvironment, HCC progres-
sion and prognosis, and response to therapy. Therefore, highly multiplexed epitope-based
imaging may become a cornerstone in the study of TAMs and HCC as biomedical research
translates spatial genomic data into more precise medical treatments.

4. Digital Spatial Profiling
4.1. Digital Spatial Profiling: From DNA Microarrays to Spatial Genomics

DNA microarrays use a pre-selected collection of DNA probes assembled on a solid
surface to quantify the presence of a complementary sequence of DNA in a sample [49].
This technology emerged from the need to rapidly screen thousands of Escherichia coli
colonies to identify clones containing DNA that was complementary to a probe [50]. Real
time polymerase chain reaction (PCR) is another technology that quantifies gene expression
by measuring the amplification of a target sequence during PCR rather than at the end of
the reaction. Both techniques quantify gene expression with high precision but lack spatial
information of protein and gene expression. Characterization of the tissue microenviron-
ment by profiling the spatial relationships of protein and gene expression is critical for
understanding the role of TAMs in HCC.

Spatial characterization of whole transcriptome analysis (WTA) and protein expression
in TAMs requires two complementary features. First, obtaining new insights into the
role TAMs play in the microenvironment requires detailed profiling of WTA and protein
expression. Spatial characterization of both genomic and protein expression in TAMs will
provide compelling evidence of the crosstalk between macrophages and other immune
cells, such as CD8+ and NK cells, in the tissue microenvironment that control progression
of malignant cells. Second, this must be accomplished while simultaneously retaining the
hepatic architecture. Nanostring developed a technology, called GeoMx digital spatial
profiling (GeoMx DSP), which addresses this critical need. This unique platform is able to
perform WTA and detect protein expression within a ROI containing multiple to hundreds
of cells, depending on ROI size, from a single FFPE tissue slide. Visium Spatial Gene
Expression is another platform that can be used to address the need mentioned above using
a different workflow that is explained below.

4.2. Digital Spatial Profiling Workflow

DSP is a technology that combines multiplexed, spatial characterization of pre-selected
proteins and/or RNA probes in a tissue by detecting oligonucleotide barcodes conjugated
by photocleavable linker to either primary antibodies or nucleic acid probes (Figure 3A).
The probes target a transcript or protein of interest. A feature of the probes is the unique
barcode RNA sequence that allows indexing of individual proteins or mRNA. After the
target-specific barcodes are liberated by the UV laser from the selected ROIs, they are then
counted by an nCounter platform (Figure 3B). GeoMx DSP stores data from each ROI after
the expression of a target is quantified. This tissue based spatial characterization of genes
and proteins is possible since this platform’s UV laser is guided to work in one region of
interest at a time and each target quantified by the nCounter is mapped back to the ROI
from where it originates. This technology provides significant new insights into the role
that TAMs play in the progression of HCC by combining multiplex microscopy and spatial
genomics. It is capable of profiling the cell phenotype and corresponding gene expression
in a single ROI.
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Figure 3. Digital spatial profiling workflow (A) The workflow involves these steps: (1) tissue of
interest is biopsied (e.g., liver), (2) tissue is sectioned and fixed to a positively charged glass slide,
(3) the slide is stained with up to four morphology markers and a nuclear stain, (4) probes are
incubated with the tissue; (5) regions of interest (ROIs) are selected after incubation; (6) target-specific
barcodes are liberated by the ultraviolet laser from the selected ROIs, (7) targets are quantified by the
nCounter platform, and (8) data are analyzed using a combination of imaging analysis software and
R scripts, several of which are provided by the company. (B) The top image represents an RNA probe
that is composed of a target complementary sequence conjugated with a photocleavable linker that
bonds oligonucleotide RNA sequence barcode. The bottom image represents a protein probe that is
composed of a target antibody conjugated with a photocleavable linker that bonds an oligonucleotide
RNA sequence barcode. (C) Representative image of a ROI within the liver lobule and (D) represents
the respective CD163+ tissue segmentation. (E) Representative image of a ROI within the portal
tract and (F) represents the respective CD163+ tissue segmentation. (G) Example of a volcano plot
showing enriched liver protein expression by CD163+ macrophages in the liver lobule of HCV+
patients with cirrhosis who did and did not develop HCC. The plot was generated by probing protein
expression from a liver biopsy. Abbreviations: Ab, antibody; ROI, region of interest; UV, ultraviolet.
Scale bar = 100 µm.

Another similar platform is Visium Spatial Gene Expression, a spatial transcriptomics
platform that works with cell capture slides that contain four capture areas with 5000 bar-
coded spots. Multiple barcoded spots capture oligonucleotides that bind to the RNA in the
tissue. Each barcoded spot captures the transcripts from 1–10 cells. Thus, Visium Spatial
Gene Expression is approaching single-cell level, however, it can provide high-resolution
transcriptomics data while keeping the liver architecture intact. Briefly, tissue sections are
placed onto the capture areas, stained with H&E or IF staining, and imaged. Then, the
tissue is permeabilized to release the mRNA so it can be captured, and the resulting mRNA
is synthesized into cDNA. Sequencing libraries are then prepared.

The Rebus Esper Spatial Omics and Nanostring CosMx are unique DSP platforms
as they provide spatial transcriptomics at single-cell resolution while maintaining the
architectural context across large tissue sections. The Rebus Esper can generate spatially
resolved quantitative multiplexed data for more than 100,000 cells in less than two days by
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combining high resolution images, optimized assays, and using software with advanced
data processing [51]. Like other DSP platforms, ROIs are selected from which spatial
data is acquired. The automated system performs all reactions, washes, and imaging
acquisition. Once the images are acquired, they are processed by cutting-edge algorithms
that localize and quantify cellular features, such as RNA transcripts in single cells [52].
This results in spatially annotated data that can be used by other software programs
for single-cell analysis and precise spatial genomic mapping. The NanoString Cosmx is
a spatial multiomics single-cell imaging solution used to profile gene and protein expression
from FFPE tissues at single-cell and subcellular resolution [51]. The applications of these
technologies for HCC research are promising as the tissue transcriptomics can be divided
into various neighborhood clusters that are able to phenotype the tissue microenvironment
in unprecedented detail.

For comparison, novel technologies such as the dual-aptamer activated proximity-
induced droplet digital-PCR can quantify tumor-derived exosomal proteins [53]. This ap-
proach can provide valuable information on the role that TAMs play in the TME since
HCC cells release exosomes, such as miR-23a-3p, which upregulates PDL-1 expression in
macrophages [54]. This has clinical implications, as the expression of PDL-1 is a known
predictor of response to immune checkpoint inhibitors [55]. Similarly, the sensitivity of
digital droplet PCR and next generation sequencing can detect expression of biomarkers
that are of low concentration, and they have shown greater diagnostic efficacy than more
conventional methods such as RT-PCR [56]. Although these techniques are able to provide
genomic information, they lose critical information about spatial context. Robust analysis of
TAM phenotypes in the TME must include spatial relationships with neighboring cells. As
mentioned, the crosstalk and proximity of different cell populations is key to understanding
TME biology.

4.3. Digital Spatial Profiling of Biomarkers and Fetal-like TAMs

DSP techniques have been used in an elegant study to more closely examine the asso-
ciation between the onco-fetal reprogramming of endothelial cells and TAMs in HCC. In
the study, Sharma et al. [57] investigated the link between phenotypic features of malignant
cells and early development programs. They observed that the HCC tissue microenvi-
ronment was similar to the ecosystem of fetal development, expressing fetal-associated
endothelial cells and fetal-like TAMs. The biological implication of this observation is that
malignant cells take advantage of fetal programs to generate a fetal microenvironment that
is immunologically more tolerogenic. In this fetal microenvironment, tumor cells evade the
immune system, which is more tolerogenic than the adult microenvironment. Also, the
identification of fetal TAMs agrees with the prevailing view that, within the tissue microen-
vironment, the behavior of each TAM is not biologically equivalent. The authors proposed
that these fetal programs are potential targets for therapy and may yield biomarkers to
stratify patients into immune checkpoint inhibitor responders and non-responders.

4.4. Digital Spatial Profiling Limitations and Future Directions

Although these platforms have already provided new insights into the role of TAMs in
HCC, GeoMx DSP and Visium are not without limitations, which include: (1) the data are
restricted to a ROI, (2) not all genes and proteins are available, (3) the mechanism cannot be
confirmed or induced by DSP because this platform is not a functional test, (4) the WTA
and protein essay are performed separately, on two different slide sections from a tissue
biopsy, (5) high complexity, (6) cost, (7) requires at least 150–200 crlls/ROIs for sufficient
counts, (8) ROIs limited to an area of illumination of 600 µm in diameter, and (9) deeper
sequencing is required if rare targets are need to be identified, which is more costly and
time consuming. In addition, GeoMx DSP and Visium are currently limited for use in
human or mouse tissues only.
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5. Single-Cell RNA Sequencing
5.1. Single-Cell RNA Sequencing: Genomic Characterization of Individual Cells

The development of single-cell RNA sequencing (scRNA-seq) started with single-
cell quantitative PCR (qPCR) [58]. The latter technique quickly advanced into a whole
transcriptome analysis using microarrays. The adaptation to single-cell RNA sequencing
followed, and the first scRNA-seq results were published in 2009 [59]. The technique was
hastily adopted as the single cell resolution offers new insights into cell biology; it is more
sensitive and can detect 75% more genes than microarrays [59].

5.2. Single-Cell RNA Sequencing Workflow

As shown in Figure 4, the technique consists of isolating single cells for lysis. The
RNA molecules of interest are purified and extracted from the total single-cell RNA. Using
a reverse transcription reaction, single-stranded RNA is converted into complementary
DNA. Subsequently, RNA-seq libraries are created by adding adapters and barcodes that
are sequenced using a next generation sequencing (NGS) platform. The data generated by
the NGS are trimmed, filtered, and analyzed by a computer software algorithm. Finally,
this analysis identifies specific phenotypes and subpopulations of rare cell types. However,
unlike the previous platforms discussed, the tissue architecture is not preserved.
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Figure 4. Single-cell RNA sequencing workflow. ScRNA-seq is a technique that consists of the
following steps: (1) tissue of interest is selected (e.g., liver), (2) the tissue is dissociated using
enzymatic digestion, (3) isolated single cells are lysed, (4) RNA molecules of interest are purified
and extracted from the total single-cell RNA, (5) a reverse transcription reaction is used to convert
single-stranded RNA into complementary DNA, (6) complementary DNA is amplified using real-
time polymerase chain reaction, (7) RNA-seq libraries are created by adding adapters and barcodes,
(8) DNA is sequenced using a next generation sequencing platform, (9) the data generated by the NGS
are trimmed, filtered and analyzed by computer software algorithms to yield single-cell expression
profiles, and (10) cells are mapped to specific phenotypes and subpopulations of rare cell types.
Abbreviations: cDNA, complementary DNA.
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5.3. Decoding the Tumor Microenvironment of Hepatocellular Carcinoma One Cell at a Time

More studies using scRNA-seq are likely to reveal crucial aspects of the TME and TAM
phenotypes, such as population heterogeneity and changes associated with chemotherapy,
prognosis, and tumor progression. The tissue microenvironment of HCC is complex, as it is
composed of multiple cellular phenotypes, such as TAMs, tumor infiltrating lymphocytes,
stromal cells, malignant cells, cytokines and chemokines, and physical barriers, such as the
extracellular matrix [60]. Single-cell resolution has revealed new paradigms in the crosstalk
between macrophages and the microenvironment. For instance, ScRNA-seq was used to
describe how some microenvironmental cues determine macrophage polarization and the
fate of tissue fibrosis [61]. Another research group observed in a single-cell study, how
transcriptional profiling of bone marrow macrophages identified which subpopulation
was activated [62]. Furthermore, single-cell studies have shown that within the same
tissue, subsets of immune cells respond differently to the same stimulus. Another study
analyzed the immune system by using biopsies from a cohort of eight patients with HBV-
associated HCC. They found a negative correlation between the proportion of M2 TAMs
and the proportion of tumor-infiltrating T cells in scRNA-seq and deconvoluted bulk-cell
RNA-seq datasets [60]. This result was confirmed by IHC of CD8+ T cells and CD163+

M2 TAMs in HCC biopsy specimens [60]. They also observed that expression of the
immunosuppressive marker LAIR1 was enriched in TAM cell clusters expressing the cancer
promoting M2 macrophage marker CD163 [60]. As a result of using scRNA-seq, certain
TAM characteristics have been identified, which are potential therapeutic targets of immune
checkpoint inhibitors.

5.4. Single Cell RNA Sequencing Limitations and Future Directions

A limitation of using scRNA-seq is the loss of tissue architecture because it requires
tissue dissociation. This hinders a robust spatial analysis of the tissue microenvironment
cell-cell interactions. ScRNA-seq allows for the pre-selection of a unique set of genes to
study. This pre-selection of genes is restricted to the availability of primers and specific
antibodies, as well as to the limited number of genes and proteins of interest. This decreases
the amount of genomic data that can be extracted from a tissue because the tissue available
to study is scarce.

The experimental design and research question being addressed should be considered
before selecting a scRNA-seq platform. Each scRNA-seq platform is unique in the following
common steps: (1) cell isolation method (e.g., FACS vs. microfluidics), (2) number of cells
required per experiment, (3) cost per cell analysis, and (4) the sensitivity and the amount
of genes detected per cell for cell lines and per cell for primary cells is different [62].
Investigators must plan carefully before choosing which scRNA-seq platform is suitable
for their research study.

6. Conclusions

This review has demonstrated that several cutting-edge platforms are unveiling new
paradigms in the role TAMs play in the tissue microenvironment of HCC. The advantages
and disadvantages of each platform are highlighted in Table 1. Despite their unique meth-
ods, there is a common pattern in the experimental data. For example, experiments using
the platforms discussed in this review support the critical role TAMs play in the tumor
immune microenvironment and progression of HCC [24,41,57,60,63]. Through unique
pathways, each TAM phenotype can create an immunosuppressive tissue microenviron-
ment that favors the proliferation of malignant cells [24,41,57,60,63]. This strongly suggests
that no single TAM-targeted therapy will be effective in every HCC case and that more
than one phenotype of TAM may have to be targeted in each patient. Two important
questions that remain unanswered are whether M2 macrophages favor the progression of
the tumor because they become dysfunctional, or because malignant cells take advantage of
the immunosuppressive microenvironment created by M2 macrophages. These questions
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are crucial because they will provide substantial evidence to support the use of macrophage
targeted therapy as an adjuvant therapy in the treatment of HCC.

Table 1. Summary of strengths, weakness, opportunities, and threats for each platform.

Platform Strengths Weakness Opportunities Threats

MSI

Provides in situ visualization
of multiple cell phenotypes,

while preserving
tissue architecture

Data can be used for spatial
and nearest-neighbor analyses
Allows data collection across

entire tissue section

Limited amount of markers
can be analyzed

Spectral overlap can hinder
colocalization analysis and
biomarker quantification

Presence of specific TAMs in
the TME may allowed for

personalized treatment
Automated equipment for

high throughput is available
Can be incorporated

into routine
brightfield microscopy [10]

Additional standardization
is needed prior to clinical
implementation [11,27]
Most pathologist lack

training with
MSI microscopy [11]

IMC

Allows for in situ visualization
of more than 40 targets [35,39]

No spectral overlapping
The use of non-biologic

markers increases
signal-to-noise ratio [38]

Vaporization of cells and
tissue ablation are
irreversible steps

Provides high-dimensional
analysis of various

cellular features [35]
Allows for stratification of

patients into treatment
responders and

non-responders [41,47]

Targets with low
exppression or specific

populations of cells may be
challenging to detect [35,48]

Complexity of
data analysis [35,48]

DSP

Spatial characterization of
both RNA and protein

expression using a limited
amount of tissue

Allows for morphological
segmentation of a unique

population of cells [57]
Combines high-plex

microscopy and
spatial genomics

Analysis is limited to
pre-selected proteins and

RNA probes
Gene and protein assays are
evaluated on two sequential

slide sections from
a tissue block

Gene expression and protein
profiling in a single ROI
Single cell resolution is

in development

High Cost
Requires at least

150–200 cells per ROI for
sufficient counts

Rare target analysis is more
costly and time consuming

ScRNA-seq

Single cell RNA resolution
transcriptomics

Accurate identification of
specific phenotypes and
subpopulations of rare

cell types

Loss of
tissue architecture [62]

No spatial
co-localization analysis

Characterization of cellular
crosstalk at single

cell resolution
Profile potential therapeutic

targets for
rare phenotypes [60,61]

Cell isolation method,
number of cells per

experiment, cost per cell and
sensitivity vary between

scRNA-seq platforms [62]

Abbreviations: DSP, digital spatial profiling; IMC; imaging mass cytometry; MSI, multispectral imaging; ScRNA-
seq, single-cell RNA sequencing; TAMs, tumor-associate macrophages.

These cutting-edge platforms are being used more commonly in the cancer field due
to increased use of immunotherapy regimens and more clinical desire to predict a patient’s
response to therapy before initiation. The addition of immune checkpoint inhibitors, as ad-
juvant treatment for different types of tumors, including HCC, is becoming more common
and the efficacy of immune checkpoint inhibitors, depends on the immune cell topology of
the tissue microenvironment [64,65]. Soon, the presence of unique phenotypes of immune
and stromal cells will determine if immunotherapy is clinically indicated in HCC. Immune
checkpoint inhibitors are currently used as a second line therapy for patients with HCC
who are non-responsive to first line sorafenib or have advanced disease [66]. Furthermore,
recent data indicates that, in addition to T cells, other cells, and components of the tissue
microenvironment, such as B cells, myeloid lineage cells, cancer-associated fibroblasts,
and the vasculature play critical roles in the effectiveness of immune checkpoint block-
ade [64]. Successful personalization of immunotherapy requires accurate characterization
of the tissue microenvironment. Techniques that may be subtly changing the phenotype of
these cellular targets during isolation, such as flow cytometry, may be missing some key
components to advance our knowledge of TAM biology.

In HCC, response to immunotherapy is evaluated by using different classification sys-
tems, radiologic images, clinical parameters, and tissue biopsy, which is the gold standard.
Although there is a clinical trend towards thinking that non-invasive testing is equal or
superior to invasive testing, it should be explicitly mentioned that non-invasive testing
loses exponential amounts of information about the tissue architecture. In a tissue biopsy
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the submicron resolution of the spatial context is 10,000 times more than the standard MRI
(40×whole slide 0.11× 0.11 µm3 vs. MRI 1.5× 1.5 mm3). A study of Hodgkin’s lymphoma
patients, showed that MSI and digital imaging analysis are effective strategies of profiling
the immunomodulatory proteins expressed by multiple populations of immune cells in
the tissue microenvironment, which may guide clinicians’ choice of immunotherapy or
combination therapy [65]. In addition, despite years of research, systemic biomarkers that
can provide diagnostic and/or prognostic information remain limited in HCC [67,68].

In summary, regardless which of the above platforms are utilized, there are clear data
supporting the following: (1) TAMs may be negative regulators of the immune response in
the TME, (2) clinical outcomes may be impacted by the type of TAM present in the tissue
microenvironment, (3) TAMs can decrease the efficacy of immune checkpoint inhibitors,
and (4) targeted therapy against TAMs is a promising avenue for personalized precision
medicine approaches for the treatment of HCC [24,69].
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