
Discrete Comput Geom 6:385 406 (1991)

GDi
screte & Computational

eometry
1991 Springer-Verlag New York Inc

Cutting Hyperplane Arrangements*

Jifi Matou~ek

Department of Applied Mathematics, Charles University,

Malostransk6 nfim. 25, 118 00 Praha 1. Czechoslovakia

Abstract. We consider a collection H of n hyperplanes in E a (where the dimension

d is fixed). An e.-cuttin9 for H is a collection of (possibly unbounded) d-dimensional

simplices with disjoint interiors, which cover all E a and such that the interior of any

simplex is intersected by at most en hyperplanes of H. We give a deterministic

algorithm for finding a (1/r)-cutting with O(r d) simplices (which is asymptotically

optimal). For r < n I 6, where 6 > 0 is arbitrary but fixed, the running time of this

algorithm is O(n(log n)~ In the plane we achieve a time bound O(nr) for

r _< n I-6, which is optimal if we also want to compute the collection of lines

intersecting each simplex of the cutting. This improves a result of Agarwal, and gives

a conceptually simpler algorithm.

For an n point set X ~_ E d and a parameter r, we can deterministically compute

a (1/r)-net of size O(r log r) for the range space

(X, {X c~ R; R is a simplex}),

in time O(n(log n)~ d- 1 + roe11). The size of the (1/r)-net matches the best known

existence result. By a simple transformation, this allows us to find e-nets for other

range spaces usually encountered in computational geometry.

These results have numerous applications for derandomizing algorithms in com-

putational geometry without affecting their running time significantly.

1. Introduction and Statement of Results

Algor i thmic and p roo f techniques based on r a n d o m sampl ing have gained a

central pos i t ion in compu ta t i ona l geomet ry dur ing last few years. These techni-

ques, p ioneered by C la rkson (e.g., [C1]) and Hauss ler and Welzl [H W] yield near ly

* A preliminary version of this paper appeared in Proceedinos of the Sixth ACM Symposium on

Computational Geometry, Berkeley, 1990, pp. 1-9. Work on this paper was supported by DIMACS

Center.

386 J. Matou~ek

opt imal randomized a lgor i thms for an enormous range of geometr ic problems. In

a significant por t ion of these results, the following s ta tement is used:

Let H be a collection of n hyperplanes in E a, and let R be a random sample of r

hyperplanes of H. When we triangulate the reyions of the arrangement qf R (yieldin9

O(r a) simplices), then with high probability each simplex in this trianyulation is

intersected only by O((n/r) log r) hyperplanes of H.

This s ta tement is proved by an elementary probabil ist ic consideration. Similar

s ta tements can also be proved for other types of hypersurfaces; the tr iangulat ion

can be replaced by another suitable subdivision of the a r rangement into constant

complexi ty cells. In geometr ic algori thms, such results usually serve as an efficient

geometr ic d ivide-and-conquer strategy, al lowing us to divide a p rob lem involving

the hypersurfaces into smaller subprob lems defined by the cells.

For some reasons, people usually consider deterministic a lgori thms more

satisfactory than randomized ones. In this paper we give an efficient deterministic

analogy of the above probabil is t ic technique, which allows us to remove randomi-

zat ion from m a n y algorithms. We develop it for the case of hyperplanes but, as

we indicate, it can also be applied for other hypersurfaces.

Before we state the results we give some definitions. A cuttin9 is a collection

of (possibly unbounded 1) d-dimensional simplices with disjoint interiors, which

cover all E d. The size of a cutt ing is the number of its simplices. The total number

of faces of all d imensions is p ropor t iona l to the size. Let H be a collection of n

hyperplanes and let E be a cutting. For a simplex s ~ E, let H~ denote the collection

of hyperplanes intersecting the interior of s. A cutt ing E is an ~-cuttin9 for H

provided that I Hs I < ~n for every s e E. The number (l/e) is called the cuttin9 factor

of an e-cutting.

Several previous papers use other names for cutting, such as, e.g., partitionin9

[A l l or simplicial packin9 [CF] . The way the pa ramete r e defines how "f ine" a

cutt ing is, perhaps is not the mos t natural one, but it has been chosen in analogy

with e-nets.

Note that the definition does not require that a cutt ing is a simplicial complex

(after including faces of all dimensions), e.g., a vertex of one simplex may lie in the

interior of a face of ano ther simplex. Later we put addit ional restrictions on the

cuttings used in our algori thms.

A construct ion of an e-cutting for a collection of hyperplanes is usually applied

as a "d iv ide" step in a d iv ide-and-conquer strategy. Thus the size of the cutt ing

is very impor tan t for the efficiency of such algorithms, and we would like to have

it as small as possible.

The best size of a (1/r)-cutting we can hope for is of order r d. We can see this

as follows: a collection of n hyperplanes in general posi t ion determines f~(n d)

intersections (vertices of the arrangement) , and a single simplex of a (1/r)-cutting

may contain only O((n/r) d) of them.

I To be rigorous, we should work in the projective space; bearing this in mind, we freely use the
Euclidean space with more intuitive notions.

Cutting Hyperplane Arrangements 387

Chazelle and Friedman [CF] proved that for every H there exists a (1/r)-cutting

of asymptotically optimal size 0 (/) . They also gave a deterministic algorithm

which computes such a cutting, with time complexity O(n a~a+ 3)/2 + lr)" Their proof

shows that if we permit randomization, we can find such a cutting in expected

time O (n / l). We explain their proof (with some technical simplifications) in the

Appendix, and we apply their ideas at several other places in this paper.

For the two-dimensional case, Matougek [M2] independently gave an existence

proof for (1/r)-cutting of an asymptotically optimal size, and also an O(nr 2 log r)

deterministic algorithm computing it. The time complexity has been improved by

Agarwal [A1] to O (n r l o g n l o g ~ r) (~o < 3.3 is a constant), and the companion

paper [A2] gives an extensive survey of applications.

The time bound O(nr d 1) is optimal in the following sense: if we also want to

compute the collection of hyperplanes intersecting each simplex of the cutting (as

is the case in many applications), then the output size generally is already of order

f ~ (n / - 1). However, there are applications where this additional information is not

required (such as, e.g., the construction of a spanning tree with a low crossing

number), and then the above argument for optimality cannot be used.

The main result of this paper is the following:

Theorem 1.1. Given a collection H of n hyperplanes in E a and a number r < n x-6

(Jbr an arbitrary but.fixed 6 > 0), we can deterministically compute a (1/r)-cutting

of size O(rd) Jbr H, in time O(n(log n)Ar a- 1) (A is a constant dependin9 on dimension,

and the constant o f proportionality in the bound on the size of the cuttin9 increases

as 6 approaches to 0). For dimension 2, the running time can be made O(nr), which

is optimal if we also want to compute the collection of lines intersectin9 each simplex

of the cutting.

The proof of this theorem applies the techniques of [CF], [M1], and [M2],

and adds some new ingredients. For the sake of clarity we do not try to achieve

the best value of A. The two-dimensional result is similar to the result of [A1],

but the algorithm is conceptually simpler and more efficient. Our techniques also

give some results for a general value of r without the limitation r < n 1-6; see the

discussion in Section 3.2.

Now let us recall the notions of a range space and an e-net, introduced in

[HW]. A range space is a pair (X, R), where X is a set (the points) and R is a set

of subsets of X (the ranges). Let e be a real number, O < ~ < 1. A subset N ~ X

is called an e-net for (X, R) if N intersects every range r e R with Ir[> ~[X[(this

definition makes sense for a finite X only).

Range spaces defined by simple geometric objects in Euclidean space (e.g.,

half-spaces, wedges, simplices) have a speical significance for computational

geometry. By an Hk-range we mean an intersection of k half-spaces (in E~). If X

is a subset of E d, we denote by Hk(X) the following range space: the point set will

be just X, and the ranges will be all subsets of X, which can be obtained as the

intersection of X with an Hk-range. The most interesting cases are k = 1 (ranges

defined by half-spaces) and k = d + 1 (ranges defined by simplices). In these special

388 J. Matou~ek

range spaces we have the following constructive analogue of the general existence

result of [HW]:

Theorem 1.2. Let k <<_ d + 1 be a f ixed integer. Given a set X of n points in E d and

a number r, we can deterministically f ind a (l/r)-net ~" size O(r log r)./or the range

space I-fl'(X), in time O(n(log n)ar ~- 1 + rB)(A, B are constants dependent on k and d).

Let us remark that our bound on the size of the e-net for a general dimension

d matches the best known upper bound (gained by probabilistic methods). At the

same time it is known that this upper bound cannot be improved for general range

spaces (see [PW]), but for range spaces Ilk(X) this is an open problem. For a

partial result in this direction see [SWM].

A simple transformation allows us to extend the above result to a deterministic

computation of e-nets in all range spaces usually encountered in computational

geometry; this observation is due to Yao and Yao [YY]. We explain this in Section

5. This in turn can be used for cutting collections of other hypersurfaces.

The above results allow us to remove randomization from many algorithms

without affecting their asymptotic time complexity significantly. From two-

dimensional applications (where our result only improves some logarithmic factors

compared with the result of Agarwal) let us mention, e.g., [EGH*] and the

examples in [A2]. Higher-dimensional ,91z~i~ations can be found, e.g., in [CEG]

and [AESW], and we believe that many other applications will be found.

The paper has two main parts. In one part (Section 2) we investigate "approx-

imating structures" for a collection of hyperplanes. In another part (Section 3) we

build the cutting algorithm in a recursive fashion, using tools developed in the

previous section as primitives. Section 4 describes how to compute e-nets (using

cuttings).

In the conference version of this paper, a somewhat worse size of the resulting

cutting was attained--O(ra(log r)~ The present version differs mainly by in-

corporating the technique of Chazelle and Friedman [CF], thus attaining asymp-

totically an optimal size of the cuttings. Moreover, one of the intermediate

products of the algorithm is singled out as a notion deserving attention (the

so-called e-approximation), which might shed more light on the interplay of

various "approximating structures" for a collection of hyperplanes.

The results of this paper were further improved in two recent papers: [M4]

and [M5]. The first one improves the running time in Theorem 1.1 to O(nr a 1)

for every dimension, and the second one shows that a (1/r)-cutting can be computed

in time O(n log r) if r is not too large (r < n 1/C2a- 1).

2. Approximating Structures for Collections of Hyperplanes

2.1. Preliminaries on Arrangements, Canonical Triangulation

We consider an arrangement H of n hyperplanes in E d. For terminology about

arrangements see [E]. Throughout this paper we assume that the hyperplanes are

in a general position, which simplifies many proofs and allows us to concentrate

Cutting Hyperptane Arrangements 389

on the essence. Similarly, when considering a collection of hyperplanes and an

E-cutting for it, we assume that the vertices of the cutting are not incident to the

hyperptanes. There is no loss of generality in the algorithms, since we may apply

the technique known as simulation of simplicity (see [EM] and [E]). This technique

formally introduces infinitesimal perturbations of the hyperplanes, which always

put them into a general position. It costs a constant multiplicative factor in the

running time.

The arrangement (as a cell complex) can be triangulated in various ways; we

use the so-called canonical triangulation. This triangulation is constructed as

follows: For every face of the arrangement (of any dimension), one vertex is defined

as the apex of that face; it is the vertex with the lexicographically smallest

coordinate vector. Then the triangulation is defined by induction on the dimension.

The triangulation of one-dimensional arrangements is unique. For an arrangement

of dimension d > 2, we first triangulate the n arrangements in d - 1 space formed

by intersecting every hyperplane with the n - 1 others. Then for a d-dimensional

face f , we triangulate it by the simplices arising as cones from the apex to the

simplices forming the triangulation of the lower-dimensional faces o f f not incident

to the apex o f f .

A more detailed discussion of the canonical triangulation appears in [C2] or

[CF]. For us it is important that this triangulation determines a simplicial complex

with O(n d) simplices. Given the hyperplanes, both the arrangement and its

canonical triangulation can be constructed in time O(n d) [EOS].

We call any cutting arising as a canonical triangulation of some arrangement

a standard cutting. For some purposes, the manipulations with standard cuttings

are slightly more efficient than for general ones.

2.2. Comput&g Subproblems Defined by Cutting

Lemma 2.1. Given a collection H o f n hyperplanes and a standard (1/r)-cutting ~-

Jbr H, we can compute the collection H s for every simplex s e'~ in total time

proportional to ~s~=- IHsI, i.e., in time O(nk/r) for a (1/r)-cutting of size k.

Proof. We determine the collection of simplices intersected by a hyperplane h,

for every h e H. First suppose that we already know one simplex intersected

by a hyperplane h. The remaining simplices can be determined by "walking along"

the hyperplane, which amounts to a searching in a graph of bounded degree (since

we assume that E is standard, thus it determines a simplicial complex). The time

needed for this is proportional to the number of intersected edges. This is the only

point where we need the "standardness" requirement, and obviously we might

relax it in various ways.

A starting simplex intersected by a hyperplane can be determined as follows:

At the beginning, we fix a vertical line 2, we compute all simplices of E intersecting

it, and we sort them in the order of their occurrence along 2. Then a starting

simplex for a hyperplane h can be determined by a binary search (we search for

the simplex containing the point h n 2). The time for this search is dominated by

the number of simplex/hyperplane incidences. []

390 J. Matou~ek

2.3. Refining a Cutting

In our algorithm we first show how to compute a (1/r)-cutting for small (e.g.,

constant) values of r. The following observation allows us also to deal with larger

r: Suppose that we are given a (1/r0-cutting E for H. For every s ~ E, let E~ be a

(l/r2)-cutting for the collection H s of hyperplanes intersecting the interior of the

simplex s. Then we can obtain a (1/r~r2)-cutting for H as follows: For every simplex

s of E, consider all nonempty cells of the form s c~ s', where s' is a simplex of Es.

Each such cell is defined as the intersection of two simplices, and thus can be

triangulated using a constant number of simplices. It is easily seen that each of

the resulting simplices is intersected by at most n/rlr 2 hyperplanes, and thus these

simplices form a (1/rlr2)-cutting for H.

Let us look what happens to the size of the cutting in the above refinement

step. Assume for a moment that we have an algorithm computing a (1/ro)-Cutting

of size at most Krao for any collection H (where r 0, K are certain constants). If we

want to compute a (1/r)-cutting for H, where r = r~, we could use the refining step

m times. In the first step we get a (1/r0)-cutting of size at most Kr~o, in the second

step we obtain a (1/roZ)-cutting of size CK2(r2) a (C is some additional constant

factor arising from the triangulation of constant complexity cells in the refining

step), and in mth step we get a (1/r)-cutting of size C"- 1K"rd. Now if r is really

big (x/n, say), m will be of order log n and thus the size of our cutting will be very

far from optimal. To remedy this, our algorithm contains a simplification step,

which again improves the size of the cutting.

The cuttings we encounter in our cutting algorithm usually have the following

structure: they arise by refining a standard cutting using a standard cutting for

each of the collections Hs. Sometimes this refinement is repeated more than once,

but a constant number of times. It is not difficult to see that the claim of Lemma

2.1 remains valid for this kind of a cutting: we first trace the hyperplanes in the

first-level simplices and then in the refining simplices--for every first-level simplex

separately; similarly for more levels of refinement. We call cuttings satisfying the

claim of Lemma 2.1 walkable.

2.4. e-Approximations

The notion of e-approximation, which we introduce in this section, appears already

in [VC] and [HW], but so far it has not been applied in computational geometry.

Here it is an essential tool in our algorithm.

We say that a collection A of hyperplanes is an e-approximation for H provided

that, for every segment e, it is

Izel
< e,

IHel

Ihl IHt

where A e (resp. He) denotes the set of all hyperplanes of A (resp. of H) intersecting

the segment e.

Cutting Hyperplane Arrangements 391

Haussler and Welzl [HW] use the notion of e-approximation for a general

range space; it is such a subset A of the point set that the relative fraction of

elements of A in every range approximates the relative size of that range with

accuracy ~'. From this point of view, we should call our notion a weak e-

approximation, since we do not require that A ~_ H. However, we use the shorter

term, since we do not deal with any other e-approximations.

It is sometimes convenient to work with weighted collections of hyperplanes.

A weighted collection of hyperplanes is a pair H, w, where H is a collection of

hyperplanes, and w: H --* R § is a weight function on H. If X ~_ H, we write just

w(X) for ~.h~X w(h). The notions introduced for unweighted collections of hyper-

planes can usually be generalized for weighted collections in an obvious way, e.g.,

a cutting E is an e-cuttin9 for H, w provided that, for every simplex s of E, the

collection H~ of hyperplanes of H intersecting the interior of s has total weight at

most ew(H). Similarly, a weighted collection A, w is an e-approximation for H

provided that Iw(Ae)/w(A) - IHeI / IHII <- ~ for every segment e.

The collection H itself is, of course, an e-approximation for H for every e. But

the point is that the cardinality of e-approximations can be much smaller that the

cardinality of H, even depending on e only. A theorem due to Vapnik and

Chervonenkis [VC] implies the following: for every fixed dimension d, every H,

and every r, there exists an (unweighted) (l /r)-approximation of size O(r 2 log r)

for H.

In our algorithm we use a special type of (1/r)-approximation, which is larger

but still of polynomial size in r. First we introduce an equivalence relation on the

hyperplanes: we call two hyperplanes equivalent with respect to a point set P if

they separate the points of P in the same manner (or, in other words, there is no

point of P in one of the double wedges defined by these hyperplanes). Let E be a

(1/r)-cutting for H. We define a weighted collection of hyperplanes A, w as follows:

We pick in A one hyperplane h from every equivalence class of the hyperplanes

with respect to the set of vertices of E, and we define its weight w(h) to be the

number of hyperplanes in that equivalence class. Let us call this collection a

description of H relative to E. If E has k vertices, then there are no more than k a

equivalence classes there and thus J AI < U.

Lemma 2.2. A description of H relative to a (1/r)-cutting E is a (2/r)-approximation

for H.

Proof. Consider an arbitrary segment e and let s and s' be the simplices of ~,

containing the endpoints of e. Call an equivalence class of hyperplanes homogen -

eous for e if all its members intersect e or none does. The number of hyperplanes

of H from homogeneous classes intersecting e is exactly reflected in the description;

the only differences might arise for classes which are not homogeneous. But all

hyperplanes from such classes must intersect s or s', and thus their number is at

most 2lHI/r. []

Lemma 2.3. Given a walkable (1/r)-cutting of size k for H, we can compute the

description of H relative to E in time proportional to the number of simplex/hyper-

plane incidences, i.e., in time O(nk/r).

392 J. Matougek

Proof. We can compute the collection of simplices intersected by every hyper-

plane of H in the above time bound, and thus we can also obtain the collection

of edges of E intersected by that hyperplane. Now the collection of intersected

edges uniquely determines the equivalence class of a hyperplane. Having the set

of intersected edges for every hyperplane (as a list of integers not exceeding k), it

suffices to determine the classes of equal lists. To this end, we may sort each list

(in linear time) and then sort the lists lexicographically, which can also be done

in time proportional to the total size of the lists (see [-AHU]). []

A very straightforward operation for e-approximations is the merging of several

collections of hyperplanes:

Observation 2.4. Let H ~ Hm be collections o f hyperplanes and let Ai, wl be an

e-approximation for H i with wi(Ai) = IHil. I f we set A = A 1 u " " u A,. and w =

w 1 u " " w win, then A, w is an e-approximation for H = HI u " . u Hm. []

2.5. From Approximat ions to Cuttings and Back: The Simplification Step

We begin with a lemma observed by many researchers:

Lemma 2.5. Let E be a cutting such that no segment contained in the interior o f

a simplex o f E intersects more than en hyperplanes o f H. Then ~ is a (de)-cutting

for H.

Proof. Consider a simplex s e E and choose a set E of d of its edges, forming a

connected graph on the vertices of s. For every e e E, consider a segment e' in the

interior of s, intersecting the same subset of hyperplanes (meeting the interior of

s) as e does. No e' is intersected by more than en hyperplanes, and thus the interior

of s is intersected by no more than den hyperplanes. []

This implies the following observation, which serves as a base for a quick

computation of cuttings:

Lemma 2.6. Let A, w be an e-approximation for H and let 7~ be a g-cutting for A,

w. Then E is a d(e + ~)-cutting for H. []

Now if we have a (1/r)-approximation for H of small size (compared with the

size of H), we can afford to use a relatively inefficient algorithm to compute a

(1/r)-cutting for this approximation, which gives us a (2d/r)-cutting for H itself. A

polynomial-time algorithm for finding a cutting of asymptotically optimal size for

a collection of hyperplanes is due to Chazelle and Friedman; we only need to

extend it to a weighted case:

Theorem 2.7. Let H, w be a weighted collection o f n hyperplanes and let r <_ n be

a number. We can deterministically compute a walkable (1/r)-cutt ingfor H, w o f size

O(rn), in time bounded by a polynomial in n and r.

Cutting Hyperplane Arrangements 393

For the unweighted case, this is just what Chazelle and Friedman [CF] proved.

As shown in [M3], the weighted case is no more difficult than the unweighted one:

Theorem 2.8 [M3]. Let H, w be a weighted collection of n hyperplanes and let

r <_ n be a number. Suppose that we canfind a (1/2r)-cuttin 9 of size at most S for

any collection of <_ 2n hyperplanes, in time at most T. Then we can find a (1/r)-cutting

for H, w of size at most S, in time O(T + n).

Proof. We reproduce the (simple) proof here: First we may norm the weight

function in such a way that w(H) = n (in linear time). Then we construct a multiset

H' of hyperplanes: it will contain just the hyperplanes of H, and a hyperplane

h ~ H will be contained in H with multiplicity [w(h)].

The cardinality of H' (counted with the multiplicities) is at most 2n: we have

IH'l = ~h~n[w(h)] < ~,h~H(W(h) + 1) < w(H) + IH] = 2n.

Now we use the algorithm for unweighted cutting on the multiset H' with

parameter 2r. It may be that the algorithm does not admit multiple occurrences

of hyperplanes, but in any case we may deceive it by simulation of simplicity (see

[EM]), i.e., by introducing infinitesimal perturbations and thus yielding (formally)

objects in general position. Simulation of simplicity increases the running time at

most by a constant factor. The resulting cutting may contain some simplices with

empty interior, but such simplices can be simply left out.

Finally it is easy to check that a (1/2r)-cutting for H' is a (l/r)-cutting for H,

w (and also a (1/r)-cutting for H). []

This finishes the proof of Theorem 2.7. For the sake of completeness, the method

of [CF] is explained in the Appendix (in a less general setting and with slightly

simplified calculations).

Summarizing, we have the following proposition:

Proposition 2.9. Given a (1/r)-approximation A, w for H, cortsisting of k hyper-

planes, we can compute a walkable (K/r)-cutting for H of size O(rd), in time polynomial

in k (K is a constant).

This shows how to compute a "simplified" cutting from an e-approximation.

In our algorithm we need to complement this by the computation of a "simplified"

e-approximation.

Lemma 2.10. Given a (1/r)-approximation A, ~ of size k for H and a (1/r)-cutting

of size O(r d) for A, ~, we can compute a (3/r)-approximation A, w of size O(r d2)

for H in time polynomial in k.

Proof We let A, w be the description of,4, ~ relative to E. By Lemma 2.2, A, w

is a (2/r)-approximation for A, ~ and thus also a (3/r)-approximation for H. The

cardinality of A is of order O(rd2). []

3 9 4 J . M a t o u g e k

3. The Cutting Algorithm

3.1. Recursion in n

In this section we give our first algori thm for finding a (l/r)-cutting. It will also

simultaneously find a (1/r)-approximation.

Algorithm C U T I

Input." H, a collection of n hyperplanes, and r < n, a parameter.

Output: E, a walkable (1/r)-cutting for H of size O(ra), and A, w, a (3/r)-

approximat ion for H of size O(ra~).
Method:

1. (Base case) If r is sufficiently large (greater than n ", where ~ is a suitable

positive constant), we output H itself as the (3/r)-approximation A, w and

we use the algori thm of Chazelle and Fr iedman (see Theorem 2.8) to compute

the (l/r) cutting E, in time polynomial in r. If the above condition does not

hold, we continue with the next step.

2. (Divide step) We choose a number m (which is specified later) and divide the

hyperplanes of H into m groups H 1 H,, of approximately equal sizes.

For every Hi we compute a (1/Kr)-approximation Ai, wi by a recursive

application of Algori thm CUT1 (K is the constant appearing in Proposi t ion

2.9).

3. (Merge step) We set A = A 1 u ... w A,, and ~ = w 1 w .-. u w~,; by Observa-

tion 2.4, this is a (1/Kr)-approximation for H, and its size is O(m. ra2).
4. (Simplification step) We apply the method of Proposi t ion 2.9 to compute a

(1/0-cutt ing E of size O(r d) for H using ,4, k. Then we use this cutting E and

,4, ~ to compute a (3/r)-approximation A, w of size O(r d~) for H according

to Lemma 2.10. We then output E and A, w.

This completes the description of Algori thm CUT1. Let Tx(n, r) denote the

worst-case running time of Algori thm CUT1 applied for n hyperptanes and a

parameter r. We want to show that

Tx(n, r) = O(n(log n)ar n) (1)

for some constants A, D.

If the base case occurs, then the execution time is polynomial in n and thus

also in r, so (1) is satisfied. Otherwise the recursive calls in the divide step take

time at most m'T(n/m, Kr), and the simplification step takes time O((mra2) ~') for

some constant c x. We get a recurrence

Tl(n, r) < m" Tl(n/m, Kr) + O(rnC'ra2C').

Choos ing m = n 1/c', it is not difficult to verify that a function Tx(n, r) satisfying

this recurrence is bounded as in (1) for D = d2cl and for any A with

(1 - 1~cO n > K n.

Cutting Hyperplane Arrangements 395

3.2. Recursion in r

In this section we improve the complexity of the algorithm from the previous

section, namely its dependence on r. The tool for this will be the refinement of a

cutting, introduced in Section 2.3. The starting observation is that if r is bounded

by a constant, then Algorithm CUT1 is already good enough. We arrange the

recursion in such a way that Algorithm C U T I will always work in this favorable

situation.

First let us assume that r is not too big; precisely that r < n ", where ~ is a

suitable positive constant. Then we use the following algorithm:

Algorithm CUT2

Input: H, a collection of n hyperplanes, and r < n ", a parameter.

Output." E, a walkable (1/r)-cutting for H of size O(rd).

Method:

1. (Base case) If r < r o (where ro is a suitable constant), we use Algorithm CUT1

directly. If r _> r o, we continue with the next step.

2. (Recursion) We use Algorithm CUT2 recursively to compute a walkable

(2/r)-cutting E~ of size k~ = O(r d) for H.

3. (Comput ing subproblems) For every simplex s of E 1 we compute the

collection H~ of hyperplanes intersecting its interior.

4. (Refinement) For every s, we use Algorithm CUT1 to compute a (1/4K)-

cutting E s of size at most k 2 = O(1) for H s (K is the constant from Proposi t ion

2.9). Then we use the method of Section 2.3 to compute a (1/2Kr)-cutting ~-

of size O(klk2) = O(r d) for H. This cutting is again walkable.

5. (Simplication step) We compute the description A, w of H relative to ~,,

which is a (1/Kr)-approximation for H. Then we apply the method of

Proposi t ion 2.9 to compute a (1/r)-cutting E of size O(r d) for H from A, w,

and we output this E. Note that the size of E compared with the size of

decreased by a constant factor only, but the constant of proport ional i ty for

the size now does not increase during the recursion (see the remark in Section

2.3).

Let us denote the worst-case running time of Algorithm CUT2 by T2(n, r). F r o m

the base case we get

T2(n, r) = O(n(log n) a) for r < r 0.

The recursion step requires time Tz(n, r/2), the comput ing subproblems time is

O(nr d- 1), the refinement time is O(rd) �9 Tl(n/r, 2K) = O(nr ~- l(log n) A) and, finally,

the simplification step needs time O(nr ~- 1) plus time which only depends poly-

nomially on r. We get the following recurrence relation:

T2(n, r) <_ T2(n, r/2) + O(n(log n)Ar d- l) + O(nr d- 1 + r n)

396 J. Matou~ek

(for a certain constant B). The solution of this recurrence is

Tz(n, r) <_ O(n(log n)Ar a- i + rB).

Since we have assumed that r < n ", the first term dominates the term r n.

For a bigger value of r (but smaller than n 1-6 for a fixed 5 > 0), the idea is to

use refinement of the cutting a constant number of times, this time without a

simplication step (which is prohibitively expensive for bigger values of r). The

complete Algorithm CUT3 computing ~ (1/r)-cutting for a collection H of n

hyperplanes can be formulated as follows:

I f r < n" (where ~ is as in Algorithm CUT2), use Algorithm CUT2 to compute

the answer. Otherwise set r~ = n" and r 2 = r/r~, compute a (1/r0-cutting -=~ for

H using Algorithm CUT2 and for every collection H~ (se=-~) compute a

(1/r2)-cutting -=~ by a recursive application of Algorithm CUT3. Use these

cuttings to refine E t as in Section 2.3.

Suppose that Algorithm CUT3 is called for some n and r; let us express this

by writing CUT3(n, r). Then in the first level of recursion we have a call of

the form CUT3(n I -~, r/n~), in the second level of recursion we have CUT3(n (t _~)2,

r/n ~+11 -~)~), and in the kth recursion level we get CUT3(n (~ -')*, r/nC~), where Ck =

~=1(1 --~)J-lCC Since Ck tends to 1 with growing k, in a constant number of

recursion levels c k exceeds 1 - 6 (for a fixed 6 > 0), and the recursion in Algorithm

CUT3 terminates. The bound for the size of the resulting cutting is now obvious,

and the analysis of the running time is also straightforward and we omit it. This

finishes the proof of Theorem 1.1 for a general dimension.

Let us remark that the difference 1 - c k decreases exponentially with k,

and thus that for any r _< n the recursion Algorithm CUT3 terminates within

O(log log n) levels. This in turn implies that we may compute a (1/r)-cutting

of size O(rd(log r) c) (C a constant) by Algorithm CUT3, with running time

O(n(log n)Ar a-l(lOg r)C). An alternative way for a value of r near to n is to let

Algorithm CUT3 go only into a constant depth of recursion, and then solve the

"sufficiently small" subproblems by an application of the procedure of Chazelle

and Friedman. A straightforward analysis of this approach shows that we get a

cutting of asymptotically optimal size, but the running time increases by a factor

O(n ~) (6 > 0 is again arbitrary but fixed).

Let us turn to the planar case. Here we may replace the application of Algorithm

CUT1 in Algorithm CUT2 by a more efficient procedure, which computes a

(1/r)-cutting in linear time for a value of r bounded by a constant:

Theorem 3.1 [M2]. Given a collection H of n lines, we can compute a (1/r)-cuttin9

of size O(r 2) for H in time O(nr 2 log r).

For the running time of the modified version of Algorithm CUT2, we now

obtain a recurrence

Tz(n, r) < Tz(n, r/2) + O(nr + rB),

Cutting Hyperplane Arrangements 397

whose solution is immediately seen to satisfy Tz(n, r)= O(nr + rB). Further, we

proceed exactly as for the case of a general dimension.

Let us remark that the algorithm from Theorem 3.1 can also replace the calls

to the procedure of Chazelle and Friedman in Algorithm CUT2: according to

Theorem 2.8, we may also apply it for a weighted collection of lines. We also note

that an arbitrary planar cutting can be easily refined into a cutting which is a

triangulation (i.e., a simplicial complex), and hence the computation of sub-

problems for any given cutting or a description relative to a given cutting poses

no problem. Simulation of simplicity can be used to avoid degenerate cases.

4. Computing e-Nets

4.1. A Special Case of the Greed)' Algorithm Jbr the Covering Problem

As subroutine of our algorithm for e-nets, we need to solve the following

combinatorial problem:

Let G = (A, B, E) be a bipartite graph with vertex sets A and B and edge set

E ~_ A x B. We want to find a subset X ~_ A as small as possible, such that every

vertex h ~ B has a neighbor a ~ X, i.e., such that the whole B is covered by the

vertices of X. This problem can also be viewed as set-covering problem (if B

corresponds to points, A to sets, and E to the incidence relation) or hypergraph-

transversal problem (if the role of sets and points is interchanged); we find the

bipartite graph view the most intuitive one.

It is well known that this problem is NP-complete and also well known is an

approximate algorithm solving this problem, the so-called greedy algorithm (usu-

ally attributed to Lovfisz; see, e.g., [CF] for references). This algorithm proceeds

as follows:

We put A1 -- A, B1 = B. In the ith step we select a vertex a~A~, which has

the maximum number of neighbors in Bi, and we set A~+I = A~\{ai}, Bi+I =

B~\Nbh(ai), where Nbh(a) denotes the set of all neighbors of a in G. We continue

in this manner until B~+1 becomes empty. Then X = {a~ a~} is a covering

subset. Obviously, the greedy algorithm can be implemented to run in time

O([A[+ [B] + [E[). We need the following result about the size of the solution

found by the greedy algorithm:

Lemma 4.1 [CF] . Suppose that every vertex b 6 B has at least e[A[neighbors in

A (e > 0 is a parameter). Then the greedy algorithm.finds a covering subset X ~_ A

of size at most O((1/e) logfB[).

Proof outline. We know that every vertex of Bi has degree greater than e[A[, thus

the total number of edges joining Bi to Ai is at least e[A]']Bil, and since IAi[< IAI,

there exists a vertex a~A~ with at least ~:[B~[neighbors in B~. We get that

IB~+I[<]Bi]-(1 --e), hence the number of steps of the greedy algorithm we have

to execute is at most log 1 _E[B[= O((1/e)log] B[). []

398 J. Matou~ek

It is amusing that the greedy algorithm for our special case can also be viewed

as a special case of the method of conditional probabilities of Raghavan and

Spencer (see [R], IS], and also the Appendix). Namely, we can easily show that

when choosing a random r-tuple of vertices of A, the expected number of

uncovered vertices of B will be smaller than one for r > (C/e)loglB] (C is a suitable

constant). If we now assume that every vertex of B has exactly elAP neighbors

(which we may do, since we can remove the superfluous edges), then the algorithm

given by the method of conditional probabilities and the greedy algorithm are

exactly the same.

4.2. Apply&g the Greedy Algorithm

In this section we consider the computat ion of e-nets for the range spaces of the

form Hk(X). Our procedure is almost identical to the one given in [M2] for the

two-dimensional case (with one improvement).

First we define a dual counterpart of the range space Hk(x); we need a slightly

more general definition:

Let cg be a collection of subsets of E d and let k be a natural number (the

interesting cases are k < d + 1). A k-combination of cs is an ordered pair K =

({X1, X 2 , X,,}, {X,.+I, X,,+2 Xk}), where 0 _< m < k and the X, are ele-

ments of ~. We say that a nonvertical hyperplane h realizes the k-combination K

if X~ X,, lie above h and Xm+l X k lie below h. Let H be a set of

hyperplanes; we define a range space

DHk(H) = (H, {{h e H; h realizes K}; K a k-combination of points of Ed}).

Let X be a point set in general position. Then all ranges of Hk(x) arise as

intersections of X with Hk-ranges determined only by half-spaces with nonvertical

bounding hyperplanes, and by the properties of duality transform, the range spaces

Hk(X) and DHk(D(X)) are isomorphic, in particular, e-nets are preserved by the

transform.

The proof of the following lemma is identical to the proof of Lemma 5.2 of

[M23:

Lemma 4.2. Let H be a set of n hyperplanes and let E be an e-cutting.for H.

Suppose that N ~_ H is a subset with the following property: Every k-combination

of simplices of'g, which is realized by more than 6n hyperplanes of H, is also realized

by a hyperplane of N (let us call this a 6-covering property of N). Then N is a

(ke + 6)-net for the range space DHR(H). []

This lemma is a base of our construction of e-nets for DHk(H). Suppose that

we are given a (1/r)-cutting 2 of size O(r d) for H. We define a bipartite graph

(A, B, E) as follows: We put A = H, we let B be the set of all k-combinations of

the simplices of E realized by more than n/r hyperplanes of H and we put an edge

(h, K) into E whenever the hyperplane h e l l realizes the k-combination K. The

Cutting Hyperplane Arrangements 399

size of B is O(r kd) and every vertex of B has degree at least n/r, hence by Lemma

4.1 the greedy algorithm applied on this bipartite graph computes a covering

subset of A (which is just a subset of hyperplanes with the (1/r)-covering property)

of size O(r log r). By Lemma 4.2, this covering subset is a ((k + 1)/r)-net for DHk(H).

The above bipartite graph is unnecessarily large for our computation. We

observe that when two hyperplanes h, h' are equivalent with respect to the set of

vertices of E, then they have the same neighborhood in our bipartite graph. If we

leave only one hyperplane (vertex) of every equivalence class in the bipartite graph,

then obviously the greedy algorithm attains a covering subset of exactly the same

size as for the full graph. This reduced graph has a size polynomial in r. We thus

first compute the description of H relative to E (in time O(nr d- 1)), and then we

construct the reduced bipartite graph and apply the greedy algorithm on it. We

summarize our considerations as follows:

Proposition 4.3. Let k < d + 1 be fixed. Given a walkable (1/r)-cutting of size O(r d)

Jbr H, we can compute a ((k + 1)/r)-net o f size O(r logr) for DHk(H), in time

O(nr a 1 + r B) (B < kd + d z is a constant).

Using this proposition, we see that Theorem 1.2 can be deduced from Theorem

1.1. For a value of r close to n, which is prohibited in Theorem 1.1, we may use

the (1/n)-cutting arising by canonical triangulation of the arrangment of H

(computed in time O(nd)) as a starting point in the previous proposition. The factor

r B will be much larger than n d, and so this will not increase the bound on the

running time.

5. Applications for Other Geometric Objects

Yao and Yao [YY] observed that an algorithm for half-space range queries in a

general fixed dimension can also be used for answering other types of geometric

queries, using a simple "lifting" transformation on the problem in question. As

noted by Welzl, a similar argument shows that questions about e-nets in range

spaces arising in computational geometry can be reduced to the case of range

spaces of the form Hk(x) (with k and the dimension d fixed).

Let us say that a range space (X, R) is embeddable in a range space (Y, S) if

there exists an injective mapping ~o: X ~ Y, such that, for every r ~ R, q~(r) can be

expressed as s c~ ~p(X) for some s E S (this definition appears in [AHWW]).

Obviously if we can determine e-nets for subspaces of the space (Y, S), then e-nets

for subspaces of (X, R) can be determined as inverse.images under r

In range spaces encountered in computational geometry, the ranges can usually

be described by conjunctions and disjunctions of fixed-degree polynomial in-

equalities. Disjunctions are easy to handle in e-net construct ion--we can just form

a union of e-nets. It is not difficult to see that range spaces with ranges contained

in E a and defined by a conjunction of k fixed-degree polynomial inequalities are

embeddable in range spaces of the form Hk(X), where X ~_ E a' for some d' bounded

by a constant. The idea is to assign one coordinate in the image space to every

400 J. M a t o u g e k

monomial occurring in the defining polynomials. For example, the range space in

E 3 with ranges defined by balls of the form

{(x, y, z); (x -- a) 2 + (y - b) 2 + (z - - c) 2_<r 2} (2)

can be embedded as follows: the mapping q~: E 3 - * E 6 will be defined by

q~(x, y, z) = (x, x 2, y, y2, z, z2),

and then the points in the sphere (2) will be those which are mapped into the

half-space

x2 -- 2ax l + x , - 2bx3 + x6 - 2cx5 ~ r 2 - - a 2 - - b 2 - c 2 .

This example also shows that the general method does not always give the most

efficient embedding; the range space defined by balls can be represented by

half-spaces in dimension 4, using the well-known lifting to the paraboloid.

Finding e-nets can also be applied for cutting arrangements of more compli-

cated hypersurfaces (than hyperplanes). The size of the cuttings obtained depends

crucially on the ability to divide the cells of an arrangement of the hypersurfaces

considered into constant-complexity cells. The most general known results in this

direction are given in [CEGS].

Let us again give a concrete example for a collection of circles in the plane

(where no problems with triangulations arise). The geometric fact we need is that

an arrangement of n circles can be vertically subdivided into O(n 2) "circular

trapezoids" (figures bounded by two vertical segments and two circular arcs).

Given a collection H of n circles, we define a range space

(H, {HR; R is a circular trapezoid}),

where HR ---- {h ~ H; h c~ R # ~;~}. Let us construct a (1/r)-net N for this range

space using Theorem 1.2 (and the embedding method described above). When we

construct the vertical subdivision of the arrangement of N, then every cell will be

intersected by at most n/r circles of H (note that it is not sufficient to compute a

(1/r)-net for ranges defined on H by segments only, as is the case for a collection

of lines). In this way, we get something like a (1/r)-cutting of size O((r log r) 2) for

H. We can afford to refine this cutting a constant number of times (similarly as

in Section 2.3). The important fact here is that an intersection of two circular

trapezoids can be subdivided into a constant number of circular trapezoids.

Therefore we can always work with small values of r in the e-net algorithm and

get an overall running time of order O(nr 1 +~) (for arbitrarily small fixed t5 > 0).

The price we pay for this is a high-degree polylogarithmic factor in the size of the

resulting refined cutting.

Let us remark that in some cases, our algorithm for finding cuttings for

hyperplanes can be directly modified for curved surfaces (obtaining a better result

than by the above method with e-nets), but the approach via e-nets seems to be

simpler and more general.

Cutting Hyperplane Arrangements 401

6. Conclusion

In this paper we give deterministic algorithms for finding asymptotically optimal

cuttings and e-nets (of the best size guaranteed by known existence proofs) for

"geometric" range spaces, all this in theoretically reasonable time. An important

open problem is to improve the O(r ~) factor in the computation of (1/r)-nets

in Theorem 1.2. Our result is satisfactory for small values of r only and it is

quite inadequate, e.g., for r = xfn. Also, the computation of (1/r)-cuttings is

unsatisfactory for r approaching n (e.g., r = n/log n), which is sometimes required

for applications.

We have avoided the issue of parallel implementations of our algorithms. The

only nontrivial part in this respect is the method of conditional probabilities (or

the greedy algorithm in the case of e-nets). It seems that here we should be able

to use the results of [BRS] and [BR] without much difficulty, but this has not

been elaborated in detail.

Appendix. Computing Optimum-Sized Cutting in Polynomial Time

Here we give the proof of Theorem 2.7 for the unweighted case, essentially

following Chazelle and Friedman [CF]. The proof also goes through for the

weighted case with trivial modifications (replacing cardinalities by weights every-

where); we prefer to give it for the unweighted case.

First we have to say more about canonical triangulations; for the proofs we

refer to [CF]. If S is a collection of hyperplanes, let CT(S) denote the set of

full-dimensional simplices of the canonical triangulation of the arrangement of S

The canonical triangulation has the following properties:

Lemma A.1 [CF]. Let H be a collection of hyperplanes in E a.

(i) For every simplex s o f CT(H), there exists a unique inclusion-minimal

collection S(s)~_ H, such that s ~ CT(S). This collection S(s) has at most a

constant number D = d(d + 3)/2 of hyperplanes.

(ii) I f S is a subcollection of H and s is a simplex CT(S), then s belongs to the

canonical triangulation of H iff its interior is intersected by no hyperplane of H.

Part (i) of this lemma implies that there are only polynomially many (in 1HI)

simplices which can ever appear in the canonical triangulation of a sample drawn

from H---namely, those belonging to the canonical triangulation of some subset

of at most D hyperplanes of H. Let us denote the set of these "candidate simplices"

by ~--(H).

Part (ii) gives us a criterion when a candidate simplex s ~ J (H) appears in the

canonical triangulation of a sample R ~_ H: this is iff

(a) S(s) c R and

(b) H ~ n R = (g.

402 J. Matougek

Now we can begin with the construction of the desired small (1/r)-cutting for

H. The proof is probabilistic; the derandomization comes in the end.

Let us draw a random sample R from H in such a way that every hyperplane

h e H is drawn with probability r/n and the choices are independent (thus the

expected size of R is just r).

Let us consider the canonical triangulation CT(R) (call its simplices the

first-generation simplices). The sample R is too rough to guarantee a cutting factor

of order r, at least using the usual probabilistic argument. We refine this cutting

similarly as in Section 2.3, but we are more careful about the cutting factors of

the secondary cuttings. Namely, for every first-generation simplex s, we compute

a (1/t~)-cutting E~ for H S, where t, is the factor by which I Hsl exceeds the quantity

n/r, thus we set t s = I Hsl'r/n.
Let us assume for this moment that we can make the size of each of the

secondary cuttings E~ polynomial in t~, say at most g (this is a much milder

requirement than the asymptotically optimal size t~). Then the total size cI~(R)

of the resulting cutting E(R) is

cI)(R) < ~ t~,
s~CT(R)

and our goal is to show that the expected value of this quantity is of the same

order as the expected size of CT(R), i.e., O(ra).
The reason why this is true is that the existence of many simplices s with large

t~ is extremely improbable, more exactly the expected number of simplices with

ts > t decreases exponentially with t.

Let us prove this. We put 9- = ~-(H) and ~ = {se Y ; [Us[> tn/r} (these are

those of the candidate simplices for which the number of hyperplanes intersecting

it exceeds the number allowed for a (1/r)-cutting by a factor at least t).

Let t be a parameter and let a random variable nt be the number of simplices

s of the canonical triangulation of R, whose interior intersects more than tn/r
hyperplanes of H. We bound the expectation Ent. This expectation can be

expressed as

Y~ p(s),
s E ~

where p(s) denotes the probability that a simplex s belongs to the canonical

triangulation of R. Now, using Lemma A. 1, p(s) is the probability that each of the

hyperplanes of S(s) falls into R and none of the hyperplanes of H s does, thus

En t = ~ 1 - (3)

In order to estimate this sum from above, we consider another random sample

R' _~ H, where a hyperplane h e H is chosen with probability (r/n)/t, thus we pick

approximately r/t hyperplanes. Let n' denote the number of simplices in the

Cutting Hyperplane Arrangements 403

canonical triangulation of R'. Since the expected size of R' is r/t, intuitively the

expectation of n' should be at most of order O((r/t)a), and this is indeed true (this

is shown by estimating the expectation of I R' [a). On the other hand, we can write

E n ' = ,~: \ t n / \ tn /

o r Is(s) l

Every term in the last sum is just the corresponding term in (3) multiplied by

the factor

t_o(1 -r /(tn)~l H,I
f(s) = k, 1 ~ ~]

Now we may assume that r/n < �89 (for larger r, the canonical triangulation of the

arrangement of H will do as the desired (1/r)-cutting). Using the inequalities

1 - x < e -x (valid for all x) and 1 - x > e -2x (valid for x < �89 we estimate the

above factor by

tn

Since we consider only simplices s t ~-~t, i.e., with IHs[> tn/r, we get

f(s) > t - %' - 2,

and thus we have

En t < tDe- o-2)En, < O(rd)t D - d e - (t - 2).

We may now return to the expected value of the size ~(R) of the cutting E(R)

constructed by the above two-step process (triangulating the arrangement of R

and refining the cutting for every simplex separately). This expectation will be

bounded by

E (R) _< : . E , , < O(r =
t = l t = l

Now we have a randomized precedure which allows us to compute a (1/r)-

cutting of an asymptotically optimal size. Implementing it carefully, we can achieve

an expected running time O(nr ~- 1). The method of conditional probabilities of

Raghavan [R] and Spencer [S] allows us to make the computations deterministic-

ally in polynomial (although much longer) time.

404 J. Matougek

In our setting the method is applied as follows. We want to compute a sample

/~, for which the value of ~(/~) is not bigger than the expectation EO(R) (or, at

least, of the same order). We order the hyperplanes of H into a sequence h~,

h 2 h, and we note that the random selection of R can be viewed as a choice

of the characteristic v e c t o r (XR(hl) xR(hn)) (w h e r e XR(h) = 1 if h e R, xR(h) = 0

otherwise), whose components are independent r andom 0/1 variables, each of them

having the value t with probabili ty r/n.

For a 0/1 vector (Pl, P2 p~), we set

E(pl p~) = E(~(R) I ZR(h,) = p~ ZR(h~) = p,).

In other words, E(p 1 Pi) is the expected value of ~(R) if the first i entries of

ZR are fixed as (Pl Pi) and the remaining ones are chosen randomly. Thus

E(xR(hO ZR(h,)) for a specific R is nothing but O(R), while E (without para-

meters, i.e., for i = 0) is just the expected value of O(R) for a random choice of R.

Suppose that Pl pi_ 1 have been fixed in such a way that E(p~ P i - 1) <- E

(this is trivially true for i = 1). We compute values V o = E(p~ pg_~,0) and

V 1 = E(p~ P~-1, 1). The properties of conditional expectation guarantee that

min(Vo, V1) _< E(pl Pi- 1), and we can thus set Pi so that E(p 1 , Pi) = lip, <- E.

In this way we finally compute a vector (pl p,), which determines a sample R

with O(R) _< E.

We have to assure that the conditional expectations E(p 1 pi) can be

evaluated in polynomial time. We observe that E(p~ p~) can be expressed as

a sum similar to (3), where the summand for a gives simplex s means the probabili ty

that s will occur in the canonical tr iangulation of R (when the first i components

of the characteristic vector of R are fixed to (Pl Pi)). Moreover, it suffices to

evaluate the expectations with accuracy O(n-2) (say), since we can afford to lose

this quanti ty in the size of the resulting cutting in each of the n steps of the choice.

It is not difficult to see that these computa t ions can be done in polynomial time.

We have left aside the question of how to compute the secondary cuttings inside

the first-generation simplices. Recall that the problem here is to compute a

(1/r)-cutting of size polynomial in r for a given collection of hyperplanes. Here we

may proceed as follows: picking a larger r andom sample R of the given collection

of hyperplanes (of size Cr log r, C a sufficiently large constant), the expected

number of simplices intersected by more than n/r hyperplanes will be smaller than

i, and thus the method of conditional probabilities allows us to construct a

(1/0-cutting of size O((r log r)d). Another (but actually quite similar) approach is

via e-nets; this has been elaborated on in the conference version of this paper. In

both these cases these secondary cuttings are s tandard and thus the whole cutting

is walkable. This finishes the proof.

References

[AESW] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum
spanning trees and bichromatic closest pairs. In Proc. 6th ACM Symposium on Computa-

tional Geometry, pages 203-210, 1990.

Cutting Hyperplane Arrangements 405

[A1]

[A2]

[AHU]

[AHWW]

[BR]

[BRS]

[CEG]

[CEGS]

[CF]

[Cl]

[C2]

[E]

[EGH*]

[EM]

[EOS]

[HW]

[M1]

[M2]
[M3]

[M4]

[M5]

[PW]

JR]

Es]

P. K. Agarwal. Partitioning arrangments of lines, I: An efficient deterministic algorithm.

Discrete & Computational Geometry, fi:449~483, 1990.

P. K. Agarwal. Partitioning arrangements of lines, I1: Applications. Discrete & Computa-

tional Geometry, 5:533-573, 1990.

A. V. Aho, J. E. Hopcroft, and J. D. Ulman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, MA, 1983.

N. Alon, D. Haussler, E. Welzl, and G. W6ginger. Partitioning and geometric embedding

of range spaces of finite Vapnik-Chervonenkis dimension. In Proc. 3rd ACM Symposium

on Computational Geometry, pages 331-340, 1987.

B. Berger and J. Rompel. Simulating (log n)C-wise independence in NC. In Proc. 30th IEEE

Symposium on Foundations of Computer Science, pages 2 7, 1989.

B. Berger, J. Rompel, and P. W. Shor. Efficient NC algorithms for set cover with

applications to learning and geometry. In Proc. 30th 1EEE Symposium on Foundations of

Computer Science, pages 54~59, 1989.

B. Chazelle, H. Edelsbrunner, and L. Guibas. Lines in space: Combinatorics, algorithms

and applications. In Proc. 21st ACM Symposium on Theory of Computing, pages

389 392, 1989.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly-exponential stratification

scheme for real semi-algebraic varieties and its applications. In Proc. 16th International

Colloquium on Automata, I-zmguages and Programming, pages 179-192, 1989.

B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in

geometry. Combinatorica, 10:229-249, 1990.

K. L. Clarkson. Applications of random sampling in computational geometry, II. In Proc.

4th ACM Symposium on Computational Geometry, pages 1 11, 1988.

K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM Journal on

Computin9, 17:830.847, 1988.

H. Edelsbrunner. Aloorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.

H. Edelsbrunner, L. Guibas, J. Herschberger, R. Seidel, M. Sharir, J. Snoeyink, and E.

Welzl. Implicitly representing arrangements of lines or segments. Discrete & Computational

Geometry, 4:433~166, 1989.

H. Edelsbrunner and P. Mficke. Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms. ACM Transactions on Computer Graphics,

9:66-104, 1990.

H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of hyperplanes

with applications. SIAM Journal on Computing, 15:341-363, 1986.

D. Haussler and E. Welzl. e-nets and simplex range queries. Discrete & Computational

Geometry, 2:127 151, 1987.

J. Matou~ek. Approximate half-planar range counting. KAM Series (technical report)

59--87, Charles University, Prague, 1987. A revised version (Approximate levels in line

arrangements) in SIAM Journal on Computing, 20t2):222-227, 1991.

J. Matougek. Construction of e-nets. Discrete & Computational Geometry, 5:427~,48, 1990.

J. Matou~ek. More on cutting arrangements and spanning trees with low crossing number.

Tech. Report B-90-2, FB Mathematik, FU Berlin, 1990.

J. Matougek. Approximations and optimal geometric divide-and-conquer. In Proc. 23rd

A CM Symposium on Theory of Computing, pages 506-511, 1991.

J. Matougek. Efficient partition trees. In Proc. 7th ACM Symposium on Computational

Geometry, pages 1 9, 1991.

J. Pach and G. W6ginger. Some new bounds for epsilon-nets. In Proc. 6th A CM Symposium

on Computational Geometry, pages 10-15, 1990.

P. Raghavan. Probabilistic construction of deterministic algorithms: approximating pack-

ing integer programs. In Proc. 27th IEEE Symposium on Foundations of Computer Science,

pages 10-18, 1986.

R. Spencer. Ten Lectures on the Probabilistic Method. CBMS NSF, SIAM, Philadelphia,

PA, 1987.

406 J. Matou~ek

[SWM] R. Seidel, E. Welzl, and J. Matou~ek. Netting a lot with a little: Small t:-nets for disks and

half-spaces. In Proc. 6th ACM Symposium on Computational Geometry, pages 16--22, 1990.

[VC] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and Its Applications, 16:264-280, 1971.

[YY] F. F. Yao and A. C. Yao. A general approach to geometric queries. In Proc. 17th ACM
Symposium on Theory of Computing, pages 163 168, 1985.

Received July 5, 1990, and in revised form February 19, 1991.

