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Abstract. Ecosystem models are often calibrated and/or validated against derived remote sensing data products, such as

MODIS leaf area index. However, these data products are generally based on their own models, whose assumptions may

not be compatible with those of the ecosystem model in question, and whose uncertainties are usually not well quantified.

Here, we develop an alternative approach whereby we modify an ecosystem model to predict full-range, high spectral resolu-

tion surface reflectance, which can then be compared directly against airborne and satellite data. Specifically, we coupled the5

two-stream representation of canopy radiative transfer in the Ecosystem Demography model (ED2) with a leaf radiative trans-

fer model (PROSPECT 5) and a simple soil reflectance model. We then calibrated this model against reflectance observations

from the NASA Airborne VIsible/InfraRed Imaging Spectrometer (AVIRIS) and survey data from 54 temperate forest plots in

the northeastern United States. The calibration successfully constrained the posterior distributions of model parameters related

to leaf biochemistry and morphology and canopy structure for five plant functional types. The calibrated model was able to10

accurately reproduce surface reflectance and leaf area index for sites with highly varied forest composition and structure, using 
a single common set of parameters across all sites. We conclude that having dynamic vegetation models directly predict surface 
reflectance is a promising avenue for model calibration and validation using remote sensing data.

1 Introduction15

Dynamic vegetation models play a vital role in modern terrestrial ecology, and Earth science more generally. The terrestrial

carbon cycle is a major biogeochemical feedback in the global climate system (Heinze et al., 2019), and accurate predic-

tions of terrestrial carbon cycling rely on accurate representations of vegetation dynamics (Pacala and Deutschman, 1995).

Vegetation also plays an important role in the water cycle and surface energy balance, with major climate implications (Bo-

nan, 2008). In addition, the distribution of tree species, the structure of plant canopies, and many other variables simulated20
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by dynamic vegetation models are also important predictors of biodiversity, making vegetation models an important tool for

conservation (McMahon et al., 2011). Effective calibration and validation of model projections is therefore of broad concern.

Many previous efforts have used various data streams calibrate or constrain dynamic vegetation model parameters and states.

Among these data streams, remote sensing is particularly promising due to its consistent measurement methodology and largely

uninterrupted global coverage. Data products derived from remote sensing observations have been used to constrain, among25

others, phenology (Knorr et al., 2010; Viskari et al., 2015), absorbed photosynthetically-active radiation (Peylin et al., 2016;

Schürmann et al., 2016), and primary productivity (MacBean et al., 2018). However, there are issues with using derived remote

sensing products to calibrate vegetation models. The relationships between remotely sensed surface reflectance and vegetation

structure and function are complex and multifaceted. Simple polynomial relationships between spectral indices (e.g., Normal-

ized Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI) and vegetation properties (e.g., leaf area index,30

LAI) are often confounded by other ecosystem characteristics, including soil (Myneni and Williams, 1994) and snow (Zhang

et al., 2020), or sensor configuration (Fensholt et al., 2004). More sophisticated approaches for estimating vegetation proper-

ties based on physically-based radiative transfer models face issues of equifinality, whereby many different combinations of

vegetation and soil properties can ultimately produce the same modeled surface reflectance (Combal et al., 2003; Lewis and

Disney, 2007). Meanwhile, the estimating quantities with more indirect relationships to surface reflectance, such as rates of35

primary productivity, requires a number of assumptions about resource use efficiency and other factors (Running et al., 2004)

that can introduce considerable uncertainty and bias into the estimates. Collectively, these issues help explain the large differ-

ences in estimates of surface characteristics across different remote sensing instruments (Liu et al., 2018). Robust, pixel-level

uncertainty estimates for remote sensing data products would help alleviate some of these concerns, but such estimates are not

widely available for most data products.40

One way to overcome these limitations of derived remote sensing data products while still leveraging the capabilities of

remote sensing is to work with lower-level surface reflectance products. This can be accomplished by coupling dynamic veg-

etation models with leaf and canopy radiative transfer models that simulate surface reflectance as a function of known surface

characteristics (Knorr and Lakshmi, 2001; Nouvellon et al., 2001; Quaife et al., 2008). Such an approach draws on decades

of research on simulation of vegetation optical properties given their structural and biochemical characteristics (Dickinson,45

1983b; Sellers, 1985; Verhoef, 1984; Lewis and Disney, 2007; Jacquemoud et al., 2009; Pinty et al., 2004; Widlowski et al.,

2007, 2015; Hogan et al., 2018) while avoiding the computational and conceptual challenges of inverse parameter estimation

in radiative transfer modeling (Combal et al., 2003; Lewis and Disney, 2007). Moreover, the ability to simulate dynamics of

surface reflectance in response to changes in ecosystem properties is valuable even independently of its utility for remote sens-

ing data assimilation, as vegetation-induced changes in surface reflectance exert a strong influence on climate (Bonan, 2008;50

Swann et al., 2010, 2012).

However, externally coupling a vegetation model to a separate canopy radiative transfer model is not always necessary to

relate model predictions to surface reflectance, as land surface models have long included their own internal canopy radiative

transfer calculations (Dickinson, 1983a; Sellers, 1985). These calculations are necessary to simulate impact of vegetation on

surface energy balance (Bonan, 2008) and to accurately model plant function, which is fundamentally driven by light (Hikosaka55
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and Terashima, 1995; Robakowski et al., 2004; Niinemets, 2016; Keenan and Niinemets, 2016). Canopy radiative transfer

plays a particularly important role in the current generation of demographically-enabled dynamic vegetation models, where

differences in canopy radiative transfer representations and parametrizations have major impacts on predicted community

composition and biogeochemistry (Loew et al., 2014; Fisher et al., 2018; Viskari et al., 2019). To date, assimilation of remotely

sensed surface reflectance calculated from a vegetation model’s own representation of radiative transfer has been limited to only60

simple land surface models (e.g., SiPNET; Zobitz et al., 2014) and has not been attempted for more complex demographically-

enabled vegetation models.

Our previous work demonstrated that predictions of carbon cycling and community composition by the Ecosystem Demog-

raphy model, version 2 (ED2; Medvigy et al., 2009) are highly sensitive to changes in parameters related to canopy structure

and radiative transfer (Viskari et al., 2019). In this study, we build on this work by calibrating and validating the ED2 model us-65

ing remotely sensed surface reflectance. First, we couple the internal ED2 canopy radiative transfer model to the PROSPECT 5

leaf radiative transfer model (Feret et al., 2008) and the Hapke soil reflectance model (Verhoef and Bach, 2007) to allow ED2 to

predict surface reflectance spectra at 1 nm resolution across the complete visible-shortwave infrared (VSWIR) spectral region

(400 to 2500 nm). Second, we jointly calibrate this model at 54 sites in the US Midwest and Northeast where coincident veg-

etation survey data and NASA Airborne Visible/Infrared Imaging Spectrometer-Classic (AVIRIS-Classic) surface reflectance70

observations are available. We hypothesize that, with known stand composition and informative priors on foliar biochemistry,

calibration against airborne imaging spectroscopy will significantly constrain model parameters related to canopy structure.

Although the scope of our study is limited to the ED2 model, both the underlying size-and-age structure approximation of ED2

as well as many aspects of its canopy radiative transfer (e.g., two-stream approximation, treatment of leaf angles) are common

to other land surface models (e.g., FATES; Koven et al., 2020), meaning the insights from this work more broadly applicable75

in model vegetation modeling.

2 Methods

2.1 ED2 model description

The Ecosystem Demography version 2.2 (ED2) model simulates plot-level vegetation dynamics and biogeochemistry (Moor-

croft et al., 2001; Medvigy et al., 2009; Longo et al., 2019a). By grouping individuals of similar size, structure, and composition80

together into cohorts, ED2 is capable of modeling patch-level competition in a computationally efficient manner. Relevant to

this work, ED2 includes a multi-layer canopy radiative transfer model that is a generalization of the two-layer two-stream ra-

diative transfer scheme in CLM 4.5 (Oleson et al., 2013), which in turn is derived from Sellers (1985). A complete description

of the model derivation is provided in the supplementary information of Longo et al. (2019a), but for completeness, we provide

an abbreviated description below:85

Our core spatial unit of analysis is a patch—a group of plants with a common disturbance history (time since last distur-

bance). Each patch contains n cohorts—groups of plants of the same plant functional type (PFT) and size class. The full canopy

radiation profile in ED2 is defined by a vector X that contains two fluxes—upward (F up,i) and downward (Fdown,i)—for each
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cohort i, plus a downward flux from the atmosphere (Fdown,sky) and an upward flux from the ground (Fup,ground) surface (total

size 2n+ 2):90

X =



























Fup,ground

Fdown,1

Fup,1

...

Fdown,i

Fup,i

...

Fdown,n

Fup,n

Fdown,sky



























(1)

ED2 solves this vector using the following matrix equation:

M×X = Y (2)

where M is a (2n+ 2)× (2n+ 2) coefficient matrix and Y is a 2n+ 2 vector. The full form of Y is as follows:

Y =



























S0aground

S1r(ψ)1 [1− r0r1(1−α0)(1− τ0)(1−α1)(1− τ1)] (1− τ(ψ)1)(1−α1)

S1 [1− r1r2(1−α1)(1− τ1)(1−α2)(1− τ2)] (1− τ(ψ)1)(1−α1)(1− r(ψ)1)

. . .

Sir(ψ)i [i− ri−1ri(1−αi−1)(1− τi−1)(1−αi)(1− τi)] (1− τ(ψ)i)(1−αi)

Si [1− riri+1(1−αi)(i− τi)(1−αi+1)(1− τi+1)] (1− τ(ψ)i)(1−αi)(1− r(ψ)i)

. . .

Snr(ψ)n [1− rn−1rn(1−αn−1)(1− τn−1)(1−αn)(1− τn)] (1− τ(ψ)n)(1−αn)

Sn [1− rnrn+1(1−αn)(1− τn)(1−αn+1)(1− τn+1)] (1− τ(ψ)n)(1−αn)(1− r(ψ)n)

SWsky



























(3)95

Here, aground is the albedo of the ground under the canopy and SWsky is the incident shortwave hemispherical flux from

the sky; both are exogenous inputs to the model. Si is the direct (“beam”) radiation at layer i, and is calculated in a loop as

follows:

Si = Si+1τ(ψ)i (4)
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with Sn+1 as the incident direct solar flux at the top of the canopy (i= n+ 1), an exogenous input.100

Other coefficients are backscatter of direct (r(ψ)i, given zenith angle ψ) and diffuse (ri) radiation, interception of direct

(tau(ψ)i) and diffuse (taui) radiation, and absorption (αi). Derivations of these coefficients are given later in this section.

The coefficient matrix M is a sparse, tridiagonal matrix (i.e., zero elements everywhere except the diagonal and first-order

off-diagonal elements); for example, for n= 3:

M =















1 0 0 0 0 0

m2,1 m2,2 m2,3 0 0 0

0 m3,2 m3,3 m4,3 0 0

0 0 m4,3 m4,4 m4,5 0

0 0 0 m5,4 m5,5 m5,6

0 0 0 0 0 1















(5)105

For i= 1,2,3...n where n is the number of cohorts, the m terms are defined as follows:

m1,1 = 1

m2i,2i−1 = − [τi + (1− τi)(1−αi)(1− ri)]

m2i,2i = −ri−1 [τi + (1− τi)(1−αi)(1− ri)] (1−αi−1)(1− τi−1)

m2i,2i+1 = 1− ri−1ri(1−αi−1)(1− τi−1)(1−αi)(1− τi)

m2i+1,2i = 1− riri+1(1−αi)(1− τi)(1−αi+1)(1− τi+1)

m2i+1,2i+1 = −ri+1 [τi + (1− τi)(1−αi)(1− ri)] (1−αi+1)(1− τi+1)

m2i+1,2i+2 = − [τi + (1− τi)(1−αi)(1− ri)]

m2n+2,2n+2 = 1 (6)

Canopy optical property coefficients are derived as follows:

Following Oleson et al. (2013), forward- (ν) and backscattering (ω) of canopy elements (leaves or stems) are defined as a110

function of those elements’ reflectance (R) and transmittance (T ; wood transmittance is assumed to be zero). (We use index p

to refer to PFT and p(i) to refer to the PFT of cohort i).

νi,leaf =Rp(i),leaf +Tp(i),leaf

νi,wood =Rp(i),wood

(7)
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ωi,leaf =
Rp(i),leaf +Tp(i),leaf + 1

4 (Rp(i),leaf −Tp(i),leaf)(1−χp(i))
2

2(Rp(i),leaf +Tp(i),leaf)
115

ωi,wood =
Rp(i),wood + 1

4 (Rp(i),wood)(1−χp(i))
2

2Rp(i),wood
(8)

where χ is the leaf orientation factor parameter, defined such that −1 is perfectly vertical leaves, 1 is perfectly horizontal

leaves, and 0 is randomly distributed leaf angles. Both of these quantities are calculated independently for leaves and wood,

and then averaged based on the relative effective area of leaves (Li) and wood (Wi) within a canopy layer.

νi = νi,leaf
Li

Li +Wi

+ νi,wood(1−
Li

Li +Wi

) (9)120

ωi = ωi,leaf
Li

Li +Wi

+ωwood(1−
Li

Li +Wi

) (10)

To account for non-uniform distribution of leaves within a canopy, ED2 has a PFT-specific clumping factor (q) parameter

that serves as a scaling factor on leaf area index. Therefore the effective leaf area index (L) is related to the true leaf area index

(LAI) by:

Li = LAIi × qp(i) (11)125

The leaf area of a cohort (LAIi) is calculated as a function of leaf biomass (Bleaf,i, kgC plant−1), specific leaf area (SLAp,

m2 kgC−1), and stem density (nplant, plants m−2):

LAIi = nplant,iBleaf,iSLAp(i) (12)

In turn, Bleaf,i is calculated from cohort diameter at breast height (DBHi, cm) according to the following allometric equa-

tions:130

Bleaf,i = b1Blp(i)DBH
b2Blp(i)

i (13)

where b1Blp(i) and b2Blp(i) are PFT-specific parameters. The wood area of a cohort (WAIi) is calculated directly from

DBH according to a similar allometric equation:

WAIi = nplant,ib1Bwp(i)DBH
b2Bwp(i)

i (14)
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where b1Bwp(i) and b2Bwp(i) are PFT-specific parameters.135

The directional extinction coefficient (K(ψ)p)—closely related to the inverse optical depth for direct radiation (µ0,p)—can

be expressed as:

K(ψ)p = µ−1
0,p =

G(ψ)p

cos(ψ)
(15)

where G(ψ)p describes the mean projection per unit leaf area (or “relative projected leaf area”) in direction ψ.

As in CLM 4.5 (Oleson et al., 2013) and Sellers (1985), the leaf angle distribution function and parameterization used in140

ED2 is based on Goudriaan (1977):

G(ψ)p = φ1,p +φ2,p cos(ψ) (16)

φ1,p = 0.5− 0.633χp − 0.33χ2
p (17)

φ2,p = 0.877(1− 2φ1,p) (18)

Coefficients φ1,p and φ2,p are also used to define the inverse optical depth for diffuse radiation per unit plant area (µ̄p)145

(subscript p is omitted from the next three equations for convenience):

µ̄=
1

φ2

(

1−
φ1

φ2
ln

(

1 +
φ2

φ1

))

(19)

The beam backscatter (or “upscatter”) coefficient for direct radiation, β0, is defined as:

β0 = as(ψ)
1 + µ̄K(ψ)

µ̄pK(ψ)p

(20)

where as(ψ) is the single scattering albedo coefficient, defined as (subscript p dropped for simplicity):150

as(ψ) =
1

2

G(ψ)

φ2 cosψ+G(ψ)

(

1−
φ1 cosψ

cosψ+G(ψ)
ln

(
φ1 cosψ+φ2 cosψ+G(ψ)

φ1 cosψ

))

(21)

(For simplicity, as here is equivalent to as

ω
in Oleson et al. (2013) equation 3.15, where ω is the leaf backscatter.)

The transmissivity of a layer to direct radiation for solar zenith angle ψ (τ(ψ)i) is given by

τ(ψ)i = exp(−K(ψ)p(i)TAIi) (22)

where TAIi is the total plant area index (sum of effective leaf area index, Li, and wood area index, Wi).155
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2.2 ED2-PROSPECT coupling

By default, ED2 performs canopy shortwave radiative transfer calculations for two broad spectral regions: visible (400–700

nm) and near-infrared (700–2500 nm). For each of these regions, ED2 has user-defined prescribed leaf and wood reflectance

and transmittance for each PFT, and calculates soil reflectance as the average of constant wet and dry soil reflectance values

weighted by the relative soil moisture (0 = fully dry, 1 = fully wet). In this study, we modified ED2 to perform the same canopy160

radiative transfer calculations but in 1 nm increments across the range 400–2500 nm. We then simulated leaf reflectance and

transmittance using the PROSPECT 5 leaf RTM, which has the following five parameters: Effective number of leaf mesophyll

layers (N, unitless, >= 1), total chlorophyll content (Cab, µg cm−2), total carotenoid content (Car, µg cm−2), water content

(Cw, g cm−2), and dry matter content (Cm, g cm−2) (Feret et al., 2008). For wood reflectance, we used a single representative

spectrum—the mean of all wood spectra from Asner (1998), resampled to 1 nm resolution—for all PFTs. For soil reflectance,165

we used the simple Hapke soil submodel used in the Soil-Leaf-Canopy RTM (Verhoef and Bach, 2007), whereby soil re-

flectance is the average of prescribed wet and dry soil reflectance spectra weighted by a relative soil moisture parameter (̺soil,

unitless, 0–1). The final coupled PROSPECT-ED2 canopy radiative transfer model (hereafter known as “EDR”) has 12 param-

eters for each PFT— 5 parameters for PROSPECT, specific leaf area, two parameters each for the leaf and wood allometries,

and clumping and orientation factors—and one site-specific parameter—the relative soil moisture (Table 1).170

2.3 Site and data description

For model calibration, we selected 54 sites from the NASA Forest Functional Types (FFT) field campaign that contained plot-

level inventory data (stem density, species identity, and diameter at breast height, DBH) coincident with observations of the

NASA Airborne Visible/Infrared Imaging Spectrometer-Classic (AVIRIS-Classic). These sites are located in the United States

Upper Midwest, northern New York, and western Maryland, and include stands dominated by either evergreen or deciduous175

trees and spanning a wide range of structures, from dense groups of saplings to sparse groups of large trees (Figure 1). We

grouped the tree species in these sites into five different PFTs as defined by ED2: Early successional hardwood, northern mid-

successional hardwood, late successional hardwood, northern pine, and late successional conifer. The mappings of tree species

onto these PFTs are provided as a CSV-formatted table in the file inst/pfts-species.csv in the source code repository

for this project (see Code and Data Availability section).180

AVIRIS-Classic measures directional surface reflectance from 365 to 2500 nm at approximately 10 nm increments. How-

ever, because of unrealistic values in the shortwave infrared spectral region (>1300 nm) in the AVIRIS observations (likely

caused by faulty atmospheric correction), we only used observations from 400 to 1300 nm for model calibration and validation.

Following Shiklomanov et al. (2016), we used the relative spectral response functions of AVIRIS-Classic to relate the 1 nm

EDR predictions to the 10 nm AVIRIS-Classic measurements.185
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Figure 1. Sites selected for analysis, in “stand structure” (main figure) and geographic (inset) space.

2.4 Model calibration

To estimate EDR parameters from AVIRIS observations, we used a Bayesian approach that builds on our previous work at the

leaf scale (Shiklomanov et al., 2016). For a parameter vector Θ and matrix of observations X, the typical form of Bayes’ rule

is given by:

P (Θ|X)
︸ ︷︷ ︸

Posterior

∼ P (X|Θ)
︸ ︷︷ ︸

Likelihood

P (Θ)
︸ ︷︷ ︸

Prior

(23)190
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Rather than performing a separate calibration at each site, we performed a single joint calibration across all sites. Therefore,

our overall likelihood (P (X|Θ)) was the product of the likelihood at each site (P (Xs|Θ), for site s):

P (X|Θ) =
∏

s

P (Xs|Θ) (24)

The likelihood at each site s is based on how well EDR predicted surface reflectance (Rpred,s) matches that site’s observed

AVIRIS surface reflectance (Xs) given the known forest composition at that site (comps) and the current estimate of the overall195

parameter vector. Similar to Shiklomanov et al. (2016), we assumed a normally-distributed residual error between predicted

and observed reflectance. However, to account for the large differences in the range of feasible reflectance values in different

wavelength regions (for vegetation, reflectance in the 400-700 nm range is typically much lower than in the 700-1400 nm

range), we used a heteroskedastic error model where the residual variance was a linear function of the predicted reflectance

(with slope m and intercept b). In addition, to mitigate sampling issues related to EDR’s saturating response to increasing total200

LAI, we added an additional term to our likelihood that assigns a fixed lognormal probability distribution (with parameters 1

and 0.5, respectively) to the EDR predicted LAI for a given site (LAIpred,s). The expression for the site-specific likelihood is

therefore:

Rpred,s,LAIpred,s = EDR(Θ|comps) (25)

P (Xs|Θ) = Normal(Xs|Rpred,s,mRpred,s + b) LogNormal(LAIpred,s|1,0.5) (26)205

Therefore, our parameter vector Θ consists of the following (summarized in Table 1): 10 EDR parameters per PFT—5

parameters for the PROSPECT 5 model (N, Cab, Car, Cw, Cm) and 5 EDR parameters related to canopy structure (q, χ, SLA,

b1Bl, b1Bw)—, 1 parameter per site (relative soil moisture, ̺soil,s), and the residual slope (m) and intercept (b). (With 5 PFTs

and 54 sites, this means that Θ has length (10× 5) +54 + 2 = 106).

For priors on the PROSPECT 5 parameters and SLA, we performed a hierarchical multivariate analysis (Shiklomanov et al.,210

2020) on PROSPECT 5 parameters and direct SLA measurements from (Shiklomanov, 2018, Chapter 3). For priors on the

leaf biomass allometry parameters, we fit a multivariate normal distribution to allometry coefficients from Jenkins et al. (2003,

2004) using the PEcAn.allometry package (https://github.com/pecanproject/pecan/tree/develop/modules/allometry). For

the clumping factor, we used a uniform prior across its full range (0 to 1), and for the leaf orientation factor, we used a weakly

informative beta distribution re-scaled to the range (−1,1) and centered on 0.5 (Table 1).215

To alleviate issues with strong collinearity between the allometry parameters and the specific leaf area, we fixed the allometry

exponent parameters (b2Bl and b2Bw) to their prior means for each PFT. Doing so dramatically improved the stability of the

inversion algorithm and the accuracy of the results.

We fit this model using the Differential Evolution with Snooker Update (“DEzs”) Markov-Chain Monte Carlo (MCMC)

sampling algorithm (ter Braak and Vrugt, 2008) as implemented in the R package BayesianTools (Hartig et al., 2019). We220
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Table 1. EDR parameters and prior distributions

Type Name Description Unit Prior

Leaf RTM parameters

(1 per PFT)

N Effective number of leaf mesophyll layers unitless MvNormal(µ,Σ)1

Cab Total leaf chlorophyll content µg cm−2 MvNormal(µ,Σ)1

Car Total leaf carotenoid content µg cm−2 MvNormal(µ,Σ)1

Cw Leaf water content g cm−2 MvNormal(µ,Σ)1

Cm Leaf dry matter content g cm−2 MvNormal(µ,Σ)1

Canopy RTM parameters

(1 per PFT)

SLA Specific leaf area kg m−2 MvNormal(µ,Σ)1

q Canopy clumping factor unitless Uniform(0,1)

χ Leaf orientation factor unitless 2×Beta(18,12)− 1

b1Bl Leaf biomass allometry base unitless LogNormal(ml,sl)
2

b1Bw Wood biomass allometry base unitless LogNormal(mw,sw)2

Other parameters ̺soil,s Relative soil moisture content at site s unitless Uniform(0,1)

a Residual slope unitless Exponential(1)

b Residual intercept unitless Exponential(10)

1 PFT-specific multivariate normal distribution fit to PROSPECT parameters and SLA from Shiklomanov (2018), chapter 3.
2 PFT-specific results from Bayesian fits of allometric equations to allometry data from Jenkins et al. (2003, 2004) using the PEcAn.allometry package.

ran the algorithm using 8 independent chains for as many iterations as required to achieve convergence, assessed according

to a Gelman-Rubin Potential Scale Reduction Factor (PSRF) diagnostic value of less than 1.1 for all parameters (Gelman and

Rubin, 1992).

2.5 Analysis

To assess the extent to which AVIRIS-Classic observations were able to constrain parameter estimates, we compared the225

prior and posterior distributions for all parameters. To evaluate the performance of the calibrated model, we compared the

posterior credible and predicted 95% intervals of EDR-predicted spectra against the AVIRIS observations at each site. We

also compared the EDR-predicted LAI against field observations at each site. To evaluate goodness-of-fit and additive and

multiplicative biases, we used an ordinary least squares regression of mean observed vs. posterior mean predicted LAI.

3 Results230

Model calibration improved the precision of most PFT-specific parameter estimates, including parameters whose prior distribu-

tions were informative (Figure 2). For leaf traits, PFT rankings of the posterior estimates largely followed the relative positions

of the priors. The effective number of leaf layers (PROSPECT N parameter) was higher for needleleaved than broadleaved

PFTs, with the highest value for northern pine and the lowest value for mid hardwood. Estimated total chlorophyll contents
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Figure 2. Marginal prior (pre-calibration; grey) and posterior (post-calibration; black) distributions of PFT-specific parameters related to leaf

biochemistry and canopy structure. Distributions are shown as violin plots (rotated and mirrored kernel density plots). PFTs are abbreviated

as follows: EH:Early Hardwood; MH:North Mid Hardwood; LH:Late Hardwood; NP:Northern Pine; LC:Late conifer
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Figure 3. (Left) Comparison between AVIRIS observed (black) and EDR predicted (mean prediction in green, 95% posterior predictive

interval in gray) surface reflectance for a sample of sites used in the calibration. (Right) Histogram of stem diameter at breast height (DBH)

by plant functional type (PFT) at the corresponding site.

(Cab) were similar across all PFTs, with the highest values for early and mid Hardwood followed closely by late hardwood235

and late conifer, and the lowest values for northern pine. Estimates of leaf total carotenoid (Car), water (Cw), and dry matter

contents (Cm) had distributions that overlapped for all PFTs, though the central tendency of late conifer was slightly higher

than other PFTs for all three traits. Finally, estimated specific leaf area (SLA) was highest in early hardwood, followed by late

hardwood and mid hardwood, and was comparably low for northern pine and late conifer.

Compared to leaf traits, canopy structural traits had less informative (and PFT-agnostic) priors and were more constrained240

by the calibration. Although the estimated parameter distributions were still mutually overlapping in most cases, the constraint

did suggest differences between PFTs for some parameters. For example, leaf orientation factors and, to a lesser extent, canopy

clumping factors and leaf biomass allometry parameters (b1Bl) were higher for mid- and late-successional broadleaved PFTs

than other PFTs. Meanwhile, northern pine had the lowest leaf biomass allometry parameters and clumping and orient factors,

and the highest wood biomass allometry parameter (b1Bw). Calibration provided only limited constraint on site-specific soil245

optical properties, with posterior estimates that were typically almost as wide as the uninformative prior distributions for all

but a few specific sites (Figure A1).

The accuracy and precision of EDR simulated spectra relative to AVIRIS observations varied across sites (Figures 3, 4,

and A2). The largest differences between observed and predicted reflectance were in the near-infrared region, particularly from

775 to 1100 nm, while predictions in the visible range agreed well with observations in all but a few cases. That said, the250

EDR predictive interval overlapped observations in all but a few individual cases (Figure A2), suggesting that our estimates of
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Figure 4. Difference between AVIRIS observed and EDR predicted (mean) site surface reflectance. One line per site and observation is

shown (some sites had multiple observations).

Figure 5. EDR predictions of leaf area index (LAI) compared to observed values.

model uncertainty are realistic. We did not observe any consistent patterns in mismatch between observed and EDR predicted

reflectance with respect to tree size, stem density, or composition (Figures A3–A13).

Leaf area index predicted from calibrated EDR parameters captured 43% of the variability in the observations (Figure 5).

The observed vs. predicted line had a slope of 0.37 and an intercept of 2.80, indicating that EDR calibration underpredicted255

LAI on average but overexagerrated across-site LAI variability.
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4 Discussion

Calibrating and validating vegetation models using optical remote sensing data typically involves derived data products (e.g.,

MODIS GPP) that rely on their own models; in other words, “bringing the observations closer to the models”. In this study,

we presented an alternative approach whereby we bring the models closer to the observations by training a vegetation model to260

simulate full-range hyperspectral surface reflectance as observed by optical remote sensing instruments. We then demonstrated

how this approach could be used to calibrate the model against airborne imaging spectroscopy data from AVIRIS-Classic.

We found that such calibration reduced uncertainties in parameters related to leaf biochemistry and canopy structure, even

for parameters with well-informed priors (Figure 2). Moreover, we found that that the calibrated model was able to reproduce

observed surface reflectance (Figures 3 and 4) and leaf area index (Figure 5) reasonably well across large number of structurally,265

compositionally, and geographically diverse sites (Figure 1).

Compared to previous similar efforts that have coupled vegetation models to external canopy radiative transfer models (Knorr

and Lakshmi, 2001; Nouvellon et al., 2001; Quaife et al., 2008), our work is novel because it uses a canopy radiative transfer

formulation that already exists inside the model itself. This reduces the number of new assumptions and variables we have to

introduce and increases the extent to which constraint on canopy radiative transfer parameters propagates to other related pro-270

cesses in the model. For example, to couple the Geometric Optic Radiative Transfer (GORT) model to the Data Assimilation

Linked Ecosystem Carbon (DALEC) model, Quaife et al. (2008) had to assume a relationship between the GORT-predicted

foliage area volume density and DALEC-predicted foliar biomass, which required introducing an additional fixed parameter

(grams of leaf carbon per leaf area) present in neither model. More importantly, in such a coupling, the only way that observed

reflectance constrains the model is through the foliar biomass, and additional information from the reflectance on canopy struc-275

ture is confined to the GORT parameters. By contrast, in our approach, parameters and states in the shortwave canopy radiative

transfer submodel also influence other model processes, including thermal radiative transfer, micrometeorology, and competi-

tion (Longo et al., 2019b), with profound consequences for model predictions of ecosystem fluxes and composition (Viskari

et al., 2019).

The canopy radiative transfer model in ED2 is derived from the two-stream model of Sellers (1985) and adapted to a multi-280

level canopy. Similar versions of this two-stream formulation are present in other land surface models, including CLM (Oleson

et al., 2013), SiB (Baker et al., 2008), Noah (Niu et al., 2011), tRIBS-VEGGIE (Ivanov et al., 2008), IMOGEN (Huntingford

et al., 2008), and JULES (Best et al., 2011). Although the exact parameterization and implementation differs across these

models, the similarity of the underlying conceptual framework means that our approach should be directly transferable to all

of these models as well.285

One limitation of the two-stream canopy radiative transfer approach in the context of remote sensing is the absence of any

angular information in the output. More precisely, the quantity simulated by EDR is the bi-hemispherical reflectance (BHR),

whereas the atmospherically-corrected AVIRIS-Classic quantity is closest to the hemispherical-directional reflectance factor

(HDRF) (Schaepman-Strub et al., 2006, sensu). Under specific sun-sensor geometries and atmospheric and illumination condi-

tions, canopy reflectance can have a significant angular dependence, especially in sparse or structurally complex canopies (e.g.,290
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“hot spot effect”; Maignan et al., 2004; Schaepman-Strub et al., 2006). However, in simulations of black spruce canopy BHR

and HDRF under different conditions, Schaepman-Strub et al. (2006) find differences of no more than 2% between these quan-

tities in the 650–670 nm region, which are smaller than the width of the predictive uncertainty intervals in our results for the

same wavelengths (Figure 3). Moreover, the lower altitude and narrow field-of-view of the AVIRIS-Classic instrument used in

this study mean that all observer zenith angles are effectively nadir or very close, Finally, multiple versions of the two-stream295

approximation developed over the last 20 years have been validated against reflectance from more complex 3D ray-tracing

simulations and remotely sensed observations, and none have identified treatment of angular effects as the primary source of

uncertainty (Hogan et al., 2018; Yuan et al., 2017; Pinty et al., 2004). We therefore conclude that additional computational and

conceptual challenges (as well as parameter uncertainties) associated with treatment of angular effects in similar models are

unwarranted.300

A related issue is the missing or simplistic treatment of two- and three-dimensional heterogeneity in canopy structure in

EDR. For one, the treatment of leaves as infinitely small elements randomly distributed through the canopy space—a common

feature of all two-stream approximations—neglects complex realities of the canopy light environment such as gaps and self-

shading. In EDR, self-shading is handled via the clumping factor parameter, which functions as a scalar correction on the leaf

area index (Equation 11). A key feature of EDR design is its representation of multiple co-existing plant cohorts competing305

for light within a single patch; however, horizontal heterogeneity and competition between these cohorts is ignored. Improved

representation of lateral energy transfer can improve the accuracy of simulations of the canopy light environment, and recent

theoretical advances show that this can be accomplished without a significant loss in computational performance (Hogan et al.,

2018). Treatment of horizontal competition also plays an important role in the outcomes of competition for light between

different plants (Fisher et al., 2018). A useful avenue for development and parameterization of these models is comparison to310

more sophisticated and realistic three-dimensional representations of radiative transfer (e.g. Widlowski et al., 2007), which are

themselves too computationally demanding to be coupled to ecosystem models, but from which empirical distributions and

response functions could be derived and against which the behavior of simpler models could be evaluated.

5 Conclusions

Remote sensing observations are unrivaled in their spatial completeness and extent, notably extending to regions like the tropics315

and high latitudes that are relatively undersampled but have a disproportionate impact on the global climate system (Schimel

et al., 2015) and/or global biodiversity (Jetz et al., 2016). At the same time, satellite time series provide multidecadal records

with relatively high temporal frequency, which have tremendous utility for calibrating model projections of past ecological

dynamics (Kennedy et al., 2014; Pasquarella et al., 2016). Used in combination with other emerging data sources, including

global trait databases and eddy covariance measurements, remote sensing can be a transformative force in ecosystem ecology.320

In this paper, we showed that using a vegetation model to directly simulate surface reflectance is a promising approach for

calibrating and validating models against remotely sensed observations. To do this, we modified the ED2 dynamic vegetation

model to predict full-range hyperspectral surface reflectance and then calibrated this modified model against airborne imaging
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spectroscopy data. The calibration successfully constrained the distributions of model parameters related to canopy structure

and leaf biogeochemistry for five plant functional types for five plant functional types characteristic of temperate forests of325

the northeastern United States. The calibrated model was able to accurately reproduce surface reflectance and leaf area index

for sites with highly varied forest composition and structure, using a single common set of parameters (i.e., not site-specific

parameters). Although our study focused only on the ED2 model, the basic structure and assumptions of the ED2 canopy

radiative transfer scheme are shared by many other vegetation models, so we expect that our approach has high transferability

within the vegetation modeling community.330

Code and data availability. All of the code and data required to reproduce this study are publicly available via an Open Science Framework

(OSF) project, located at https://osf.io/b6umf/.

Appendix A: Supplementary figures

Figure A1. Site-specific relative soil moisture (0 = dry, 1 = wet) posterior estimates. Sites are sorted in order of increasing weighted evergreen

fraction.
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Figure A2. Comparison between AVIRIS observed (black) and surface reflectance for each site used in the calibration. Sites are sorted

in order of decreasing mean difference between observed and EDR predicted reflectance (largest underestimates first, largest overestimates

last).
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Figure A3. Mean reflectance bias (EDR predicted - observed) for each by spectral region and dominant plant functional type (PFT). PFTs

are abbreviated as follows: EH:Early Hardwood; MH:North Mid Hardwood; LH:Late Hardwood; NP:Northern Pine; LC:Late conifer
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Figure A4. Mean reflectance bias (EDR predicted - observed) for each by spectral region and dominant plant functional type (PFT) as

a function of site stem density. PFTs are abbreviated as follows: EH:Early Hardwood; MH:North Mid Hardwood; LH:Late Hardwood;

NP:Northern Pine; LC:Late conifer
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Figure A5. EDR predicted vs. observed spectra and species composition for the first quartile of sites by DBH.
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Figure A6. As above, but for the second quartile of sites by DBH.
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Figure A7. As above, but for the third quartile of sites by DBH.
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Figure A8. As above, but for the fourth quartile of sites by DBH.
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Figure A9. As above, but for sites where Early Hardwood trees had the largest mean DBH.
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Figure A10. As above, but for sites where Mid Hardwood trees had the largest mean DBH.
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Figure A11. As above, but for sites where Late Hardwood trees had the largest mean DBH.
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Figure A12. As above, but for sites where Pine trees had the largest mean DBH.
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Figure A13. As above, but for sites where Late Conifer trees had the largest mean DBH.
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