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Cuttings and Applications* 

Mark de Berg Otfried Schwarzkopf 
Utrecht University, Department of Computer Science, 
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands 

Abstract 

We prove a general lemma on the existence of {I/r)-cuttings of geometric objects 
in Ed that satisfy certain properties. We use this lemma to construct (I/r)-cuttings 
of (asymptotically) optimal size for arrangements of line segments in the plane and 
arrangements oftriangles in 3-space; for line segments in the plane we obtain a cutting 
of size O(r + Ar2/n2 ), and for triangles in 3-space our cutting has size O(r2a(r) + 
Ar /n3 ). Here A is the combinatorial complexity of the arrangement. Finally, we use 
these results to obtain new results for several problems concerning line segments in 
the plane and triangles in 3-space. 

1 Introduction 

A (1/r)-cutting for a set H of hyperplanes in Ed is partitioning of Ed into simplices with 
disjoint interiors, such that each simplex is intersected by at most n/r of the hyperplanes. 
Cuttings can be used to solve a variety of problems on sets of hyperplanes, using a divide
and-conquer approach. The efficiency of the resulting algorithms and data structures 
depends heavily on the size of the cutting, that is, its number of simplices. Therefore, 
much research in the past few years has been devoted to constructing cuttings of small 
size [2, 5, 7, 8, 9, 16, 17, 18]. These days there are several methods for constructing 
cuttings of optimal size O(rd ) [5, 7, 18]. 

The concept of cuttings is readily generalized to sets of other geometric objects than 
hyperplanes: a (1/r)-cutting for a set H of geometric objects in Ed is a partitioning of Ed 
into 'elementary shapes'-which we call boxes-such that each box is intersected by at 
most nlr objects. (See Section 2 for a more precise definition of a box.) In this paper we 
prove a general lemma on the existence of cuttings for sets of geometric objects in Ed that 
satisfy certain properties. More precisely, we show that a (1/r)-cutting of size O(r(r» 
exists, where r(r) is the expected number of boxes in a so-called canonical triangulation 
of a random subset R C H, where each object in H is drawn with probability rln. (Note 
that e-net theory [14] proves the existence of an O(logrlr)-cutting of size O(r{r».) 

We apply this General Cutting Lemma to construct cuttings of(asymptotically) opti
mal size for arrangements of line segments in the plane and for arrangements of triangles in 
3-space. For line segments this yields a cutting of size O( r + Ar2/n2), and for triangles in 
3-space our cutting has size O(r2a(r) + Ar3 In3 ). Here A is the combinatorial complexity 
of the arrangement. 

-This research was supported by the Netherlands' Organization for Scientific Research (NWO). 
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2.1 The General Cutting Lemma 

Let U be a set of geometric objects in Ed. A box is a closed subset of Ed which has constant 
description (that is, it can be represented in a computer with 0(1) space, and it can be 
checked in constant time whether a point lies in a box or whether an object intersects (the 
interior of) a box). Let H C U with IHI = n. For a box 8, let H, denote the set of objects 

. in H intersecting the interior of 8. A (1/r)-cutting 3(H) for H is a family of boxes with 
disjoint interiors that cover Ed and such that IH,I ~ n/r for all boxes 8 E 3(H). The 8ize 
of a cutting is the number of its boxes. We prove a result on the existence of (1/r)-cuttings 
of small size under some conditions on the universe U of objects. 

We require that we can define for every He U a canonical triangulation T(H) of H, 
defined as a set of boxes with disjoint interiors that cover Ed such that H, = 0 for every 
8 E T(H). We need the following properties: 

(Cl) If 8 E T(H) then there exists a unique inclusion-minimal subset 8(8) C H with 
8 E T(8(8)). The cardinality 18(8)1 is bounded by a constant D. 

(C2) For 8 E T(H), there is a unique set [(. such that for any R ::> H, s is in T(R) 
exactly if K, n R = 0. 

(C3) For a set H of objects and a parameter t ~ 1, there exists a (l/t)-cutting for H of 
size O(tO ), for some constant C. (This condition is easy to fulfill in general, since C 
can be chosen arbitrarily large). 

Let a set H of n objects and a parameter r ~ n/2 be chosen. For a box 8, let the 
exceS8 t, be the number rlH,I(r/n)1- Furthermore, let N(p, t) be the expected number 
of boxes with excess at least t in the canonical triangulation T( R) of a random sample 
R C H, where each object in H is drawn independently with probability p = r / n. The 
following lemma essentially follows from results by Chazelle and Friedman [7]. A short 
proof is given by Matousek [15]. 

Lemma 2.1 N(p, t) = 0(2-t ) . N(p/t, 0). 

(Actually, [7] and [15] define the excess in terms of 1[(,1 instead of IH,I. Observing that 
H, C K" it is not difficult to verify that the lemma as stated here follows from their 
result.) The following algorithm computes a (l/r)-cutting for a given set H. It is based 
on Lemma 2.1 and follows the lines of[7] and [15]. 

Algorithm 2.1 
{ Computes a (l/r)-cutting 3(H) for a set H of n objects. } 
1. Take a sample R C H by drawing every object in H with probability r/n. 
2. Construct the canonical triangulation T(R). 
3. for each box 8 E T(R) 
4. do Compute the set H, of objects in H intersecting s. 
5. Compute a (l/t)-cutting 2, for H. of size OCtO), where t = t, is the excess of s. 
6. Let 3(H) = {8' n s: s E T(R),s' E 2,}. 

Lemma 2.2 [General Cutting Lemma] Let H be a set of n objects in Ed and r ~ n a 
parameter. There exists a (1/r)-cutting for H, consisting ofO(r(r)) boxes, where r(r) is 
the expected number of boxes in the canonical triangulation of a random subset R C H, 
where every object in H is drawn with probability r/n. 
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Proof: Consider Algorithm 2.1. It is easy to check that this algorithm produces a 
(l/r)-cutting for H. Next we prove that the expected size of the cutting is O(r(r». This 
amounts to bounding the expected value S of the sum E.eT(R) tf. We can (crudely) 
estimate S by 

00 

2: N(p, t)tC, 
t=1 

and using Lemma 2.1 we can bound this by 

00 

E 2-t tC O(N(p/t, D)). 
t=1 

Since N(p/t, D) is the expected number of boxes in T(R') where R' is obtained by randomly 
drawing every object in H with probability pit = r /nt, we can bound N(p/t, D) by r( r It) ~ 
r(r). We thus get 

00 

S ~ 2:2-ttCO(r(r» ~ O(r(r». 
t=1 

Note that the algorithm is not guaranteed to give us a cutting of size O(r(r», but 
that this is only the expected size of the cutting. So what we should do is try a number 
of samples until we have found a good one. The expected number of trials is constant. 
Note that the time taken by the algorithm depends on the size of the cutting that is 
produced. But as soon as we spend too much time--that is, more time than is predicted 
by the expected size of the cutting-we may stop the algorithm and try the next sample. 0 

2.2 Cuttings for Segments in the Plane 

In this subsection we use the general result on cuttings stated above to prove a theorem 
on cuttings for arrangements of line segments in the plane. 

Theorem 2.1 Let H be a set ofn line segments in the plane with a total of A intersections. 
It is possible to construct a (1/r)-cutting3(H) for H of size O(r+Ar2/n2 ) in randomized 
time O(nlogr + Ar/n). 

Proof: To be able to apply the results of the previous subsection, we have to define a 
canonical triangulation T( H) for a set H of line segments in the plane. We take T( H) 
to be the trapezoidal decomposition of the arrangement A(H). This decomposition is 
obtained by adding a vertical segment through every vertex of A(H) (this can be an 
endpoint of a segment in H or an intersection between two segments) of maximal length 
that does not cross any segment in H. The resulting planar map consists of (possibly 
degenerated) trapezoids with disjoint interiors that cover the plane. One easily checks 
that the decomposition satisfies conditions (Cl) and (C2). (In this case the set K. is 
identical to the set H. of segments intersecting the interior of s.) Also condition (C3) 
can be fulfilled, because a (t/t)-cutting for the set of lines through the segments-which 
is obviously a (l/t)-cutting for the segments-of size O(t2 ) exists. Such a cutting can be 
constructed in time O(nt), see [5]. (Actually, a much simpler algorithm can be used, since 
any polynomial sized cutting is sufficient). 
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Next we bound the size ofT(R) for a random subset R C H that is obtained by picking 
every element in H with probability p = rJn. Clearly, the size of T(R) is linear in the 
complexity of A(R). The probability that a certain intersection between two segments 
in H is present in A(R) is r2Jn2. Hence, the expected number of trapezoids in T(R) is 
O(r + Ar2Jn2). We may conclude from the General Cutting Lemma that Algorithm 2.1 
constructs a (IJr)-cutting for H whose expected size is OCr + Ar2Jn2). 

It remains to prove the bound on the preprocessing time. The trapezoidal decomposi
tion T(R) can be constructed in time OCr log r+ IT(R)!), see [6]. Next we have to compute 
the sets H •. We do this for all trapezoids s simultaneously, as follows. We build a point 
location structure for T(R). For each segment e E H - R, we locate one endpoint in T(R) 
and we traverse T(R). We can step from one trapezoid intersected by e to the next by 
considering all adjacent trapezoids, similar to the incremental arrangement construction 
algorithm [11]. 

The time needed to trace one line segment e in this fashion can be bounded by con
sidering T( R U {e}). The intersection points cut the segments of R U {e} into pieces, and 
the time for e is linear in the number of trapezoids in T(R) adjacent to a piece of e, or 
to a piece of a segment in R which is in turn incident to e. This allows the application of 
Seidel's backwards analysis [21], and we can prove that the expected time to trace all the 
segments in H - R through T(R) is bounded by O(nlogr + ArJn). 

Finally, we compute for each trapezoid s a (IJt)-cutting 2., where t = t. is the excess 
of s, and we intersect the resulting boxes in 2. with s. As mentioned above, we can 
compute such a cutting of size O(t2) in time O(IH.lt). The total time for this is bounded 
by 

00 

~)H.lt. ~ ~)nJr)t~ ~ (nJr)"Lt2N(p,t) 
• • t=l 

Following the analysis given in the proof of the General Cutting Lemma, we see that this 
sum is bounded by O«nJr)r(r)), where r(r) = OCr + Ar2 Jn2 ) is the expected size of 
T( R). The time bound follows. 0 

2.3 Cuttings for Triangles in 3-Space 

As a second application of the general cutting lemma, we consider cuttings for arrange
ments of triangles in 3-space. We denote the arrangement of 3-space induced by a set H 
of triangles by A(H). The combinatorial complexity of A(H) is the total number offaces 
of various dimension (vertices, edges, facets and cells). The complexity of a subset of the 
cells is defined analogously. The cutting is based on the so-called Slicing Theorem, proved 
by Aronov and Sharir [4]. 

Theorem 2.2 (Slicing Theorem [4]) Let K be a collection of cells in an arrangement 
of n triangles in 3-space, with total complexity A. Then J( can be triangulated using 
O(n2a(n) + A) tetrahedra. 

This theorem implies the following: 

Theorem 2.3 Let H be a set of triangles in three-dimensional space, and let A denote 
the complexity of the arrangemen t they ind uce. There exists a (1 J r )-cutting for H of size 
O(r2a(r) + Ar3 Jn3 ). 
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Proof: Let R C H. It is fairly easy to check that applying the Slicing Theorem to 
the collection of all cells in ..4.(R) produces a canonical triangulation satisfying conditions 
(Cl)-(C2). There is one small subtlety, though: The decomposition produced by the 
Slicing Theorem depends on the order in which the triangles are treated. However, by 
fixing an (arbitrary) order on the triangles in H beforehand, the canonical triangulation 
can be made unique. Note that the set K. can now be strictly larger than the set H. of 
triangles intersecting a box (simplex of the slicing). Also (C3) is easily fulfilled: we just 
take a (l/r)-cutting of size O{r3 ) for the set of planes containing the triangles, which can 
be computed in O{ nr2) time [5]. 

We are thus in the position to apply the General Cutting Lemma. So let us bound 
the expected number of tetrahedra if the Slicing Theorem is applied to a random subset 
R C H. Let VH be the set of vertices in ..4.( H) that are the intersection of three triangles 
in H. Similarly, VR is the set of vertices in ..4.( R) that are the intersection of three trian
gles in R. Observe that the complexity of ..4.( R) is O( r2 + VR)' Recall that the random 
subset R CHis obtained by picking every triangle in H with probability r/n. Hence, 
the expected size of VR is O{lVHI(r/n)3». Since IVHI ~ A, a random sample R induces 
an arrangement of expected size O(r2 + Ar3/n3). The Slicing Theorem thus gives us a 
canonical triangulation of the desired size. 0 

Remark 2.1 Though it is not difficult to give a polynomial time construction algorithm 
for Theorem 2.3, we do not know how to construct the cutting in time close to O( nra( r) + 
Ar2/n2), which is the total size of all sets H •. The main problem is to give an efficient 
algorithm for the Slicing Theorem. In our applications, however, r will be constant and a 
brute-force construction method suffices. 

3 Applications in the Plane 

3.1 Counting Intersections 

In the previous section we have seen that it is possible to construct a (l/r )-cutting for a 
set H of line segments whose size depends on A, the complexity of ..4.(H). In some cases 
it may thus be advantageous to choose r dependent upon A. But then we need to know 
A, of course. Note that A = O( n + I), where I is the number of intersections in H. The 
fastest algorithm to count the number of intersections in a set H of n segments in the 
plane runs in time O{n4/ 3 Iog1/3 n), see Chazelle [5]; we will present an algorithm that 
counts the number of intersections faster when this number is o( n2 ). 

Theorem 3.1 Let H be a set ofn line segments in the plane. The numberofintersections 
in H can be counted in O{nlogn + Al/3n2/310g1/3 n) randomized time, where A is the 
complexity of ..4.(H). 

Proof: According to Theorem 2.1, we can construct a (l/r)-cutting for H of size OCr + 
Ar2/n2) in randomized time O(nlogr(1 + Ar/n2». We would like to construct such a 
cutting for r = n2/{n + A), thus obtaining a cutting of size O{r) = O(n2 /{n + A» such 
that each triangle in the cutting is intersected by at most n/r = (n + A)/n segments. 
Inside each triangle of the cutting, we then count the number of intersections in time 
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be bounded as follows 

• 
~ (n + m) log(n + m) + «n + A)/n)2/32°(Iog*(n+m» L IP.12/3 

• 
~ (n + m) log(n + m) + «n + A)/n)2/320(log*(n+m» [(n2 /(n + A»«m + A)/n)2/3] 

~ (n+m)log(n+m) + AI/3m2/320(log*(n+m» 
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o 

4 Point Location in 3-Space 

In this section we study the following point location problem: store a set H of n triangles 
in 3-space such that one can determine efficiently the cell of A( H) that contains a query 
point. 

4.1 The structure 

Our point location method for arrangements of triangles is almost the same as the 'stan
dard method' for point location in arrangements of hyperplanes. We compute a cutting 
of constant size, which we associate with the root of a tree T. Each tetrahedron s in the 
cutting is associated with a unique child v. of the root of T. Node v. is the root of a recur
sively defined structure on the set H(v.) of triangles that intersect s. When the number 
of triangles at some node I' in T drops below some constant-we call I' a small node-we 
proceed as follows. Let s,., be the tetrahedron corresponding to node 1', and let F(s,.,) be 
the set offacets of sl" We construct the cells ofthe arrangement A( H (I') U F( s,.,» that lie 
inside s,., explicitly. Every cell is then stored in a separate leaf, which becomes a child of 
1'. In other words, a leaf which is a child of I' corresponds to the region of points inside s,.. 
which can be connected by a path that stays inside 8,., and does not intersect any triangle. 

To locate a point q in the arrangement A(H), we we can now proceed in a a standard 
manner. We start in the root, and whenever we are at a node v, we continue in the child 
I' of v where the tetrahedron associated with I' in the cutting of v contains q. In this 
fashion, we can walk down T in O(1og n) time. 

The following lemma proves the correctness of our point location scheme. 

Lemma 4.1 The cell of A(H) that contains a query point q is uniquely determined by 
the leaf where the search path of q in Tends. 

Proof: From the way T is defined it follows that a triangle in H intersects the tetrahedron 
s,., if and only if the triangle is in H(Jl.). But this means that if we can connect two points 
with a path inside s,., that does not intersect any triangle in H(Jl.), then the path does not 
intersect any triangle in H. Hence, two points whose search paths end in the same leaf 
must be in the same cell of A(H). 0 

Note that the reverse is not true: For two points lying in the same cell of A(H), we 
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might wind up in two different leaves of T. This implies that in order to use the above 
structure for point location, we still have to associate leaves in T with the corresponding 
cells in A(H). Below we show how to do this, and we analyze the amount of storage and 
preprocessing time that we need. Anticipating these results, we state the main theorem 
of this section. 

Theorem 4.1 For any e > 0, there exists a structure for point location in an arrangement 
of n triangles in 3-space with total complexity A whose query time is o (log n) and that 
uses O(n2+e + A1+e) storage. The structure can be built in O(n2+e + A1+e) randomized 
time. 

4.2 Preprocessing 

The preprocessing of the structure consists of two tasks: the tree T has to be built, and 
we have to associate the leaves of T with the corresponding cells of A(H). The first task 
is a fairly standard exercise, so let us concentrate on the second task, which is to associate 
leaves with cells. Thus we have to determine which leaves of T correspond to the same 
cell. We will do this in a bottom-up manner. Each leaf in the tree will be an element in a 
Union-Find structure. The initial sets in the Union-Find structure are the singleton sets 
corresponding to these elements. At the end of the algorithm the sets will correspond to 
the cells in A(H). To this end we perform certain unions as we work our way up the tree. 
These unions are such that the following invariant is maintained: when we have handled 
a node v then the leaves in the subtree Tv rooted at v are in the same set if and only if 
they correspond to the same cell of A(H(v) U F(sv». This means that we are ready when 
we have restored the invariant at the root of T, where we have s root = E3. 

The invariant is trivially true at the small nodes of the structure, so now consider a 
non-small node v in T. Every child J.1. of II corresponds to a certain tetrahedron s'" in the 
cutting for H(v). Consider the part of A(H) inside s,.,. There are cells of A(H) that are 
fully contained in s'" and cells that intersect the boundary of s,.,. The first type of cells is 
of no concern any more at this stage of the algorithm: all the leaves that correspond to 
such cells are in the subtree rooted at J.1., and therefore they are already in the same set. 
The latter type of cells need further treatment, since they induce leaves not only in the 
subtree rooted at J.1. but also in other subtrees. In other words, we have to union the set 
that contains the leaves in T,., corresponding to such a cell with the sets corresponding to 
the same cell that contain the leaves in other subtrees T,.". This is done with the following 
straigh tforward procedure. 

1. Let M be the set of tetrahedra corresponding to the children of v. Compute all pairs 
of facets of tetrahedra in M that intersect. 

2. Let I, I' be a pair of intersecting facets, and let J.1. and J.1.' be the children of v that 
correspond to the tetrahedra with facets I, I'. 
(i) Compute the arrangement A(H(v) n I n I'). 
(ii) For each region 9 of A(H(v)n/n/') that is not contained in a triangle of H(v), 
do the following: Search with a point pEg in T,., and T,.". Let "'{,"'{' be the leaves 
where the search paths end. Compute the union of the sets containing "'{ and "'{' by 
performing the following operation on the Union-Find-structure: UNION( FINDC'Y), 
FIND( "'{') ). 
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It is not difficult to prove that this procedure correctly collects all leaves of T belonging 
to the same cell. 

4.3 Analysis 

Above we have described our point location data structure and shown how to build it. 
Next, we analyze the amount of storage and the preprocessing time. Let us start with the 
amount of storage. 

By Theorem 2.3, we can construct a (l/r)-cutting of size O(r2a(r) + Ar3 /n3 ). Hence, 
if A ~ n3 / r, then we obtain a cutting of size O( r2a( r)). Let nil denote the size of the 
set H(v) of triangles that are considered at node v, and let All denote the complexity 
of A(H(v)). By the above argument, we can construct a cutting of size O{r2a{r)) if 
All ~ n!/r. Otherwise, we obtain a cutting of size O(r3)j in that case it follows in a 
standard manner that we can achieve, for any e > 0, a total amount of storage of O( n!+e). 
Let e > 0. If Mil denotes the amount of storage used by the subtree rooted at node v, 
then there exists a constant c such that 

M ~ { cr2a(r) + E,,=c/&ild(lI) M" if All ~ n~/r 
II ~ cn3+e otherwise 

II 

Note that at each child J.t of a node v we have nIl ~ nll/r. Furthermore, we know that 
E,,=child(lI) A" ~ All. Using the above facts, we will show by induction that Mil ~ dn~+e + 
A~+e for some constant d: 

• case (i): All ~ nUr 

Mil ~ cr2a( r) + E,,=c/&ild(lI) M" 

~ cr2a(r) + E,,=d&ild(lI) [dn!+e + A~+e] 
~ cr2a(r) + E,,=child(lI) d[nll /r]2+e + E,,=child(lI) A~+e 

~ cr2a(r) + cr2a(r)d[nll /r]2+e + At+e 

~ er2a{ r) + dn~+e[cx:.~r)] + A~+e 
for r and nil sufficiently large 

• case (ii): A" ~ nUr 

3 
2_ 

~ en +e[~] 
II cr1+-

for nil sufficiently large 

Note that the above calculation holds for any fixed e > 0, provided we choose r appropri
ately. 

Finally, let us analyze the time taken by the preprocessing procedure. Recall that 
preprocessing was done in two stages: first, the tree was built and then the leaves were 
grouped into sets that correspond to the same cell of the arrangement. The time that 
we need at a node v during the first stage is dominated by the time needed to construct 
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a cutting of constant size Tj this is linear in v (the constant of linearity clearly depends 
on T). As for the second stage, we note that the time needed for one pair of tetrahedra 
is bounded by O( n~ log n), with a constant of proportionality depending on T. Thus the 
time spent at node v is O(nv). Using this fact one can prove that the preprocessing time 
is O(n2+~ + A1+~). (In fact, the above calculation holds almost verbatim.) 

5 Concluding Remarks 

We have proved a general lemma on the existence of cuttings of small size. We applied this 
General Cutting Lemma to obtain cuttings for arrangements of line segments in the plane 
and arrangements of triangles in 3-space of (asymptotically) optimal size that depends on 
the complexity of the arrangement. It seems that cuttings provide a useful tool for solving 
problems on such arrangements. As an example, we applied our results to obtain new 
solutions for intersection counting and a variant of Hopcroft's problem in the plane, and 
for point location in 3-space. 

Our algorithms for computing these cuttings are based on random sampling. While 
they can all be made deterministic using Chazelle and Friedman's conformal samples [7], 
it would be interesting to find more efficient deterministic algorithms for computing these 
cuttings. Another direction for further research is to find more applications of our General 
Cutting Lemma. 
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