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Abstract

Cuttlefish are cephalopods capable of rapid camouflage responses to visual stimuli. How-

ever, it is not always clear to what these animals are responding. Previous studies have

found cuttlefish to be more responsive to lateral stimuli rather than substrate. However, in

previous works, the cuttlefish were allowed to settle next to the lateral stimuli. In this study,

we examine whether juvenile cuttlefish (Sepia officinalis) respond more strongly to visual

stimuli seen on the sides versus the bottom of an experimental aquarium, specifically when

the animals are not allowed to be adjacent to the tank walls. We used the Sub Sea Holo-

deck, a novel aquarium that employs plasma display screens to create a variety of artificial

visual environments without disturbing the animals. Once the cuttlefish were acclimated, we

compared the variability of camouflage patterns that were elicited from displaying various

stimuli on the bottom versus the sides of the Holodeck. To characterize the camouflage pat-

terns, we classified them in terms of uniform, disruptive, and mottled patterning. The elicited

camouflage patterns from different bottom stimuli were more variable than those elicited by

different side stimuli, suggesting that S. officinalis responds more strongly to the patterns

displayed on the bottom than the sides of the tank. We argue that the cuttlefish pay more

attention to the bottom of the Holodeck because it is closer and thus more relevant for

camouflage.

Introduction

Cuttlefish are capable of some of the most dynamic camouflage responses in the animal king-

dom. They can change their body patterns quickly because the chromatophores in their skin

are under direct neural control [1,2]. In addition to coloration, cuttlefish body patterning
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includes movement, posture, and texture, along with the use of reflective elements such as iri-

dophores and leucophores [1]. They use this varied and complex body pattern repertoire to

avoid detection by predators by resembling the diverse natural environments in which they live

and also to avoid recognition by mimicking other objects or disrupting their body outline.

Despite the diversity of their camouflage response, most forms of cuttlefish body patterning

have been previously classified into three general categories: uniform, mottled, and disruptive

[1]. Uniform or uniformly stippled patterning consists of little to no contrast with light colora-

tion displayed evenly across the mantle. Cuttlefish are uniformly colored when exposed to sub-

strates such as sand, low-contrast patterns, or solid-colored backgrounds [3,4]. Mottled is

characterized by larger, higher contrast elements than stippled, and the overall body tone can

be either light or dark. This camouflage pattern is seen when the animals are exposed to small

pebbles or a high density of contrasting elements such as checkerboard patterns [5–8]. Disrup-

tive body patterning consists of relatively large components that vary in color, contrast, and

orientation and serve to break up the outline of the animal. This body patterning can be seen

when cuttlefish are exposed to such surfaces as rocks, shells, and large, high-contrast patterns

[3,4,6,8,9]. These diverse body patterning responses are driven by visual stimuli; they can

change their appearance without any tactile information [1,10–12]. Several elements within

their environment are important for informing each body pattern response [13]. For example,

cuttlefish are sensitive to the size of repeating elements within patterns [9], specifically relative

to their own body size [6]. Cuttlefish also use the contrast and edges of visual patterns to help

dictate their camouflage response [9,10,14,15]. Other visual information important for influ-

encing body patterning include, but are not limited to, the area of patterns [16], number of

contrasting elements [3,7,9], spatial frequency [17], and visual depth [12].

Because cuttlefish have a wide field of view, it is not immediately clear from where in their

environment they are gathering these visual cues. However, several studies have shown that

cuttlefish change their body pattern in response to visual stimuli that are displayed on tank

walls, 3-dimensional objects, and substrata. For example, cuttlefish responded to the visual

information described above when it was displayed on the substrata. The animals also lift their

arms to mimic the angle of square wave stimuli presented on their tank walls, that is, side sti-

muli [11].

Researchers have also performed experiments to see if cuttlefish respond preferentially to

patterns presented either on the sides or bottom of their tank, rather than just one in isolation.

For example, Hanlon and Messenger [1], using uniformly colored stimuli, found that cuttlefish

respond to the bottom of the tank rather than the sides. Barbosa et al. [18], using both a uni-

form color and checkerboard pattern, found that the latter on either the bottom or sides of the

tank elicited disruptive coloration. Also, there was a stronger response when the patterns were

presented on both the bottom and sides. Buresch et al. [19] specifically tested whether cuttlefish

prefer to match their substrate or a 3D object placed in the experimental aquarium. Cuttlefish

chose to masquerade as 3D objects but only when those objects were high-contrast and the

substrate was low-contrast. To address more fully cuttlefish response to the bottom versus the

sides of a tank, Ulmer et al. [20] investigated the extent of disruptive coloration in cuttlefish

exposed to checkerboard patterns on 3D objects and the arena walls. Overall, they found that

checkerboard patterns on 3D objects or walls were more influential than stimuli on the bottom

in eliciting a disruptive patterning.

Synthesizing these studies, cuttlefish seem to respond predominantly to the sides and 3D

objects rather than the substrate. However, in all of the above studies, the animals were allowed

to move to the walls and 3D objects. Therefore, there remains the potentially confounding

issue of whether the animals are preferentially responding to the walls and 3D objects or if

instead the animals are simply responding to these vertical stimuli when they are close to them.

Cuttlefish Response to Bottom and Side Stimuli
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That is, it is not clear if cuttlefish still respond to walls when they are distanced from them. Fur-

thermore, in most of the above studies, only the extent of uniform and disruptive coloration

was examined; cuttlefish were only exposed to nearly uniform colors and patterns and checker-

board patterns of one size.

Here, we extend this previous research by examining the extent of uniform, disruptive, and

mottled camouflage responses of cuttlefish exposed to various stimuli and by determining

whether cuttlefish respond more to stimuli on the bottom or sides of an experimental tank

when they are not allowed to settle next to the tank walls. The bottom stimulus refers to a pat-

tern on the bottom of the tank, and the side stimulus refers to patterns projected simulta-

neously on all the sides of the tank. In this study, we exposed the cuttlefish Sepia officinalis

(Linnaeus) to five distinct stimulus patterns: small, medium, and large checkerboards, televi-

sion static, and uniform patterning (Fig 1). We restricted the cuttlefish to the middle of a novel

aquarium setup, the Sub Sea Holodeck (Fig 2 in [21]), and examined how variable the cuttlefish

coloration was while the bottom and side stimuli were changed. We were thus able to test the

hypothesis that cuttlefish still respond to the tank sides when not adjacent to them.

To analyze the cuttlefish responses, we manually classified them into varying degrees of uni-

form, mottled, and disruptive. Cuttlefish responses were classified into combinations of two of

the three patterns of uniform, mottled, and disruptive. The extent of categorization into each of

these groups was chosen in increments of 0%, 25%, 50%, 75%, or 100%, summing to 100% (Fig

3). For example, a response could be classified as 25% mottled and 75% uniform or 50% uni-

form and 50% disruptive. This classification scheme resulted in twelve possible categories. We

acknowledge that this method of classification limits the full range of potential camouflage pat-

terning responses. However, as also mentioned in theMaterials and Methods section, we

aimed to provide enough flexibility to adequately distinguish the cuttlefish responses while also

avoiding making the classification unnecessarily complex, the latter of which could lead to

inaccurate classifications. In addition, given our objective of comparing cuttlefish camouflage

responses to the bottom versus the side stimuli, the classification technique, as long as it is con-

sistent across all images, is somewhat arbitrary. Therefore, we also checked for consistency in

classification.

Fig 1. Stimulus patterns used for the tank bottom and side stimuli. (a) Small checkerboard, (b) medium checkerboard, (c) large checkerboard, (d)
television static, and (e) uniform grey. In all images, only a portion of the pattern is shown rather than the entire tank wall or tank bottom.

doi:10.1371/journal.pone.0138690.g001
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We investigated cuttlefish responses to bottom and side stimuli using complementary meth-

ods. We used ternary plots to categorize the cuttlefish responses (Fig 4). This type of graph

allows the representation of data into three categories that sum to a constant value, in this case

100%. The vertices of the triangle represent camouflage categorizations of 100% mottled

Fig 2. Sub Sea Holodeck. a. Schematic rendering of the Holodeck, with only three sides shown for clarity. b. Actual image of the Holodeck, showing the
vertical planes adjacent to the tank sides. The horizontal stimulus DLP screens are not shown. Both images taken from [21]. Reprinted from [21] with
permission from IEEE, original copyright 2015.

doi:10.1371/journal.pone.0138690.g002

Fig 3. Example images used for camouflage categorization of segmented cuttlefish images. (a) 100%mottled, (b) 100% uniform, (c) 100% disruptive,
(d) 50%mottled and 50% disruptive, (e) 50%mottled and 50% uniform, (f) 50% uniform and 50% disruptive.

doi:10.1371/journal.pone.0138690.g003
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(bottom right vertex), 100% disruptive (top vertex), and 100% uniform (bottom left vertex).

The percentage in a particular category decreases linearly with increasing distance from the

corresponding 100% vertex. The percentages in the other categories are determined by follow-

ing the point of interest along or parallel to the dashed internal grid lines (Fig 4). For example,

to determine the percent disruptive, move from the point of interest toward the right side of

the triangle, along or beside the grid lines parallel to the bottom. To determine the percent mot-

tled, move from the point of interest toward the bottom of the triangle, parallel to the grid lines

that form a 60° angle with the triangle bottom. The percent uniform is determined by moving

toward the left side of the triangle, following the grid lines that form a 120° degree angle with

the bottom.

Because of our chosen classification scheme, all of the original camouflage categorizations

are on the perimeter of the ternary plot. The right side of the ternary plot includes categoriza-

tions of images with some percentage of mottled and disruptive camouflage patterning. The

left side of the ternary plot includes categorizations of uniform and disruptive camouflage, and

the bottom of the ternary plot includes images that are uniform and mottled. We also

Fig 4. Example ternary plot showing the locations of camouflage categories (blue dots along the perimeter). The triangle vertices indicate categories
that include only one camouflage pattern. Examples of mixed categories are indicated with the translucent red arrows. Categorizations that are mixtures of
mottled and disruptive are along the right triangle perimeter. Classifications that are mixtures of uniform and disruptive coloration are along the left perimeter.
Categorizations that are mottled and uniform are long the bottom perimeter. See the text for further information on interpreting ternary plots.

doi:10.1371/journal.pone.0138690.g004
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performed Kruskal-Wallis tests separately for the percent mottled, disruptive, and uniform in

the cuttlefish responses to examine if there were differences in camouflage display when chang-

ing the bottom stimuli and when changing the side stimuli.

Results

Comparing responses within bottom stimuli

Cuttlefish exposed to a small checkerboard bottom stimulus exhibited only 3 of the 12 possible

camouflage categories (in order of decreasing frequency): 100% mottled, 75% mottled and 25%

uniform, and 75% mottled and 25% disruptive (Fig 5a). The 100% mottled category was the

most common, containing nearly 3/4 of the cuttlefish responses to a small checkerboard bot-

tom stimulus.

Among cuttlefish exposed to a medium checkerboard bottom, the camouflage responses

were more varied (Fig 5b). Similar to the small checkerboard bottom results, 100% mottled

contained the greatest proportion, around 2/5, of the cuttlefish camouflage responses. How-

ever, the cuttlefish responses to the medium checkerboard bottom were also categorized into

every possible combination of mottled and disruptive coloration and also every combination of

uniform and disruptive body patterning (Fig 5b). The animals less frequently showed mixed

patterns of uniform and mottled coloration.

Among animals responding to a large checkerboard bottom stimulus, again the classifica-

tion was varied (Fig 5c). The most common camouflage categories were 75% mottled and 25%

disruptive, 50% each of mottled and disruptive, and 50% mottled with 50% uniform. Each of

those camouflage categories contained nearly 1/5 of the cuttlefish responses to a large checker-

board bottom.

The cuttlefish responses to a television static bottom (Fig 5d) were similar to the responses

to the small checkerboard bottom stimulus (Fig 5a); most categorizations contained a relatively

large percentage of mottled. In fact, the cuttlefish responses to the television static bottom were

most often (~2/3 of the time) classified as 100% mottled (Fig 5d). However, unlike the cuttle-

fish response to the small checkerboard, a small proportion (~1/25) of cuttlefish responses

were 50% uniform, 50% disruptive patterns.

The cuttlefish responses to a uniform bottom were unique in that they most frequently (~ 9/

10 of responses) had a relatively large (50–100) percentage of uniform coloration patterning

(Fig 5e). The camouflage category that contains the highest proportion (~1/3) of cuttlefish

responses was 75% uniform and 25% mottled.

Comparing responses within side stimuli

The responses of cuttlefish to different side stimuli were not strongly distinct from one another

(Fig 6). The 100% mottled category contained the highest proportion (from ~1/3 to 2/5) of cut-

tlefish responses to each of the 5 vertical stimuli. Furthermore, the cuttlefish responses within a

stimulus group were relatively varied; nearly every possible camouflage category was expressed

for each stimulus projected on the tank sides (Fig 6). For example, the animals responded to

the large checkerboard by displaying 8 out of the possible 12 camouflage categories (Fig 6c).

The response of the cuttlefish to the small checkerboard and television static side stimuli were

classified into all 12 camouflage categories (Fig 6a and 6d).

Comparing between bottom and side stimuli

To aid comparisons across the responses to the bottom and side stimuli, we calculated the cen-

ter of mass of the cuttlefish responses to each bottom and side stimulus pattern (Fig 7). That is,

Cuttlefish Response to Bottom and Side Stimuli
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Fig 5. The classification of responses of cuttlefish exposed to different bottom stimuli. See text and Fig 4 for an explanation on how to read ternary
plots. The larger the dot and warmer the color, the greater the proportion of images in that category. Proportion of cuttlefish images exposed to a bottom
stimulus of (a) small checkerboard, (b) medium checkerboard, (c) large checkerboard, (d) television static, and (e), uniform.

doi:10.1371/journal.pone.0138690.g005
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Fig 6. The classification of responses of cuttlefish exposed to different side stimuli. See text and Fig 4 for an explanation on how to read ternary plots.
The larger the dot and warmer the color, the greater proportion of responses in that camouflage category. Proportion of cuttlefish responses to a vertical
stimulus of (a) small checkerboard, (b) medium checkerboard, (c) large checkerboard, (d) television static pattern, and (e) uniform color.

doi:10.1371/journal.pone.0138690.g006
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for a given stimulus pattern, we calculated the average percent mottled, disruptive, and uniform

out of all the camouflage responses (Table 1). Because no average value was zero for disruptive,

mottled, nor uniform, all mean values were in the interior of the ternary plots. We also calcu-

lated the bootstrapped 95% confidence intervals (see Materials and Methods for details on this

Fig 7. Average response of cuttlefish to each of the five stimulus patterns. The asterisk indicates the average value, and the surrounding shapes are
the bootstrapped 95% confidence intervals. See text and Fig 4 for information on reading ternary plots. (a) Average response to different bottom stimuli. (b)
Average response to different side stimuli.

doi:10.1371/journal.pone.0138690.g007

Table 1. Average percent classification of disruptive, mottled, and uniform for each of the bottom and side stimuli treatments.

Stimulus treatment Average percent mottled (upper,
lower 95% confidence interval)

Average percent disruptive (upper,
lower 95% confidence interval)

Average percent uniform (upper,
lower 95% confidence interval)

Bottom small
checkerboard

93% (88, 97%) 2% (0, 6%) 5% (1, 10%,)

Bottom medium
checkerboard

64% (51, 77%) 17% (6, 29%) 19% (8, 31%)

Bottom large
checkerboard

33% (22, 44%) 42% (31, 53%) 25% (14, 36%)

Bottom television
static

83% (73, 93%) 10% (1, 19%) 7% (0, 15%)

Bottom uniform 20% (8, 32%) 20% (9, 33%) 60% (47, 72%)

Side small
checkerboard

48% (29, 67%) 30% (11, 49%) 22% (4, 41%)

Side medium
checkerboard

63% (46, 79%) 14% (1, 30%) 23%, (9, 38%)

Side large
checkerboard

54% (38, 71%) 18% (6, 30%,) 28% (14, 43%)

Side television static 59% (43, 76%) 14% (1, 28%) 27% (11, 43%)

Side uniform 59% (44, 73%) 23% (9, 38%) 18% (5, 32%)

doi:10.1371/journal.pone.0138690.t001
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method) for these mean values, which reflect both the variability in responses and the number

of images.

When we compared the average camouflage responses to the bottom stimuli, some general

patterns arose. The average response to the small checkerboard bottom was 93% mottled (88%,

97% upper and lower 95% confidence intervals) (Fig 7a, Table 1) while disruptive and uniform

patterning made up 2% (0%, 6%) and 5% (1%, 10%) of the average classification, respectively

(Table 1). For the medium checkerboard, the response was 64% (51%, 77%) mottled but also

included nearly equal percentages of disruptive and uniform patterning (Fig 7a, Table 1). For

the large checkerboard, the average was 33% (22, 44%) mottled, 42% (31, 53%) disruptive, and

25% (14, 36%) uniform. Given the lack of overlap in the confidence intervals shown in Fig 7a

among the small, medium, and large checkerboard averages, the camouflage classifications of

animals exposed to these different bottom stimuli were significantly distinct.

The average response to the television static bottom stimulus was 83% (73, 93%) mottled,

10% (1, 19%) disruptive, and 7% (0, 15%) uniform. This average was not significantly different

from the small checkerboard average (Fig 7a). The mean response to the uniform bottom was

approximately 60% (47, 72%) uniform with nearly equal percentages of mottled and disruptive

patterning.

Based on the results of the Kruskal-Wallis test, there were statistically significant differences

in the percent mottled coloration among different bottom stimuli, χ2(4) = 81.30, p<<0.001.

Post-hoc comparisons of the percent mottled response using a Dunn-Sidak approach (Fig 8a)

showed that the small checkerboard, medium checkerboard, and television static stimulus

groups (M = 133.9, 95.1, 123.9, respectively, SD = 9.0, 7.3, 9.6, respectively) were significantly

different than the large checkerboard and uniform stimulus groups (M = 58.6, 44.9, respec-

tively, and SD = 7.7, 8.5, respectively). Small checkerboard and medium checkerboard groups

were also different. All other comparisons were not statistically different.

Comparing separately the percent disruptive and percent uniform camouflage response,

there were also significant differences among groups of different bottom stimuli, χ2(4) = 47.10

and 70.47, respectively, and p<<0.001 for both. Similar post-hoc tests to those described

above indicated that the disruptive response to a large checkerboard bottom (M = 125.1,

SD = 7.0) was statistically significant from all other groups (all means� 89.2, SD� 8.7), and

the response to the medium checkerboard (M = 89.2, SD = 6.6) was distinct from the small

checkerboard group (M = 57.4, SD = 8.1; Fig 8b). All other comparisons were not significantly

different. The post-hoc test for the percent uniform response showed that the group exposed to

the uniform bottom (M = 144.4, SD = 7.9) was statistically significantly different from all other

groups (all means� 88.0, SD�8.9), and all other comparisons were not different (Fig 8c).

When we compared the average responses to each of the side stimuli, the mean values did

not differ significantly from one another (Fig 7b). All means were between ~50% and 65%mot-

tled, ~15% and 30% disruptive, and between ~15% and 30% uniform (Table 1). Therefore,

mottled made up the greatest percentage of the average response to each side stimulus pattern.

A Kruskal-Wallis test comparing percent mottled responses among groups of side stimuli

failed to reject the null hypothesis that there were no differences among responses to the side

stimulus patterns, χ2(4) = 2.81, p = 0.59. Separate comparisons of the percent disruptive and

percent uniform responses to different side stimuli also failed to reject the null hypothesis,

χ
2(4) = 3.09 and 1.70, respectively, p = 0.54 and 0.79, respectively.

Discussion

The cuttlefish S. officinalis responded differently to each of the five visual stimuli used in this

study. The average responses to the bottom stimuli are more distinct from one another than

Cuttlefish Response to Bottom and Side Stimuli
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Fig 8. Comparison of individual components of camouflage response to bottom stimulus patterns. (a) percent mottled, (b) percent disruptive, and (c)
percent uniform. The dots represent means and bars represent standard deviations. An overlap of the lines in each panel indicates that the groups were not
significantly different based on a post-hoc test using the Dunn-Sidak approach.

doi:10.1371/journal.pone.0138690.g008
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the camouflage patterns expressed for the different side stimuli (Figs 7 and 8). These results

indicate that, in our experimental configuration in which the animals are not allowed directly

adjacent to the tank walls, the cuttlefish camouflage responses are influenced more by the bot-

tom than the side stimuli. Because it is the bottom that elicits distinct results, we focus foremost

on the cuttlefish responses to those visual stimuli.

Previous work suggests that cuttlefish respond to high contrast patterns either with mottled

coloration for small, high-density patterns such as squares in a checkerboard pattern less than

40% of the animal’s White square component (a light, rectangular feature on the dorsal area of

the mantle (Hanlon and Messenger, 1988)), or with disruptive patterning for checkerboard

sizes between 40 and 120% of the animal’s White square [6]. In this study, we found corrobo-

rating results: as the checkerboard pattern size increases, the cuttlefish responses include

increasingly large colored patterns and components (Figs 5a–5c, 7a and 8b).

The cuttlefish response to the television static stimulus is similar to that for the small check-

erboard pattern when simultaneously considering all body patterning responses, (Figs 5a and

5d and 7a) and also when comparing the percent mottled, disruptive, and uniform separately

(Fig 8). That is, cuttlefish largely responded with a mottled pattern when exposed to the televi-

sion static pattern on the bottom of the tank. This result is not entirely anticipated given previ-

ous work. The television static stimulus pattern has lower contrast and different spatial

resolution of contrasting units compared to the checkerboard backgrounds and thus may be

expected to elicit uniform coloration [9,10]. However, the contrast in the television static pat-

tern was apparently high enough and spatial frequency low enough to elicit mottled coloration.

When the animals were exposed to a uniform grey bottom, they preferentially showed a uni-

form pattern, albeit with some variability (Figs 5e and 7a). When focusing solely on the percent

uniform in cuttlefish responses to the different stimulus patterns, the uniform stimulus group is

distinct from all others (Fig 8c). These findings are in agreement with previous studies reporting

uniform coloration for cuttlefish shown low-contrast and uniformly colored stimuli [3,4,18].

For each of the five side stimulus patterns, the camouflage display was often highly mottled

(Figs 6 and 7b). The lack of distinct patterns when varying the side stimulus compared to the

distinct patterns when changing the bottom stimulus (Fig 7) supports the idea that animals are

responding predominantly to the bottom of the tank. The greater sensitivity to the bottom

stimulus can also help explain the average responses to the side stimuli (Fig 7b). Three of the

five stimulus patterns—the small and medium checkerboard pattern and television static—typ-

ically elicit highly mottled coloration when placed on the bottom of the tank (Fig 7a). The static

stimulus group is also not statistically significantly different from the small and medium check

stimulus groups when comparing separately the percent mottled, disruptive, and uniform in

cuttlefish responses (Fig 8). Therefore, if the animals respond more to the bottom than the

sides of the tank, regardless of the stimulus on the side of the tank, the majority of camouflage

responses should be highly mottled, which is what is shown in Fig 7b.

Several previous studies, examined the response of cuttlefish to side stimuli [1,18–20]. In all

studies, with the exception of Hanlon and Messenger [1], cuttlefish were found to respond to

these side stimuli. Barbosa et al. [18] found cuttlefish to respond to both bottom and side sti-

muli. Most importantly in the context of this study, checkerboard patterns displayed on the

side were sufficient to elicit a disruptive response. Furthermore, Ulmer et al. [20] found that

checkerboard patterns on 3-dimensional objects or walls were more influential than bottom

stimuli in eliciting a disruptive pattern. In this study, however, cuttlefish of the same species

responded more strongly to the bottom substrate.

We attribute the variation in responses to the proximity of the animal to the side stimulus.

For instance, Barbosa et al. [18] note that in the majority of their experimental treatments, the

animals showed a unilateral or asymmetrical response of at least one coloration component

Cuttlefish Response to Bottom and Side Stimuli
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that constitutes disruptive camouflage. They attribute such results to the “wall effect” because

the animals were most often found against the wall of the tank. Also, the strongest response to

vertical plane stimuli described by Ulmer et al. [20] occurred when the checkerboard pattern

was close to the tank bottom rather than placed higher up. Although Ulmer et al. [20] also

found cuttlefish to preferentially respond to the sides rather than the bottom of the arena when

they were completely covered in checkerboard patterning, they note that their own previous

experiments showed bottom checkerboard patterns to elicit disruptive patterns, as have many

others (e.g., [4,6,9,22]). In the study by Buresch et al. [19] in which animals were found to mas-

querade as high contrast 3D objects, the object was always placed in the center of the arena,

within reach of the cuttlefish.

In contrast to these studies, the animals in these experiments were restricted from settling

near the tank walls. Thus, we suggest that when cuttlefish are allowed next to tank walls or 3D

objects, they background match to or masquerade as these lateral visual stimuli. However,

when these animals are kept away from the stimulus walls or objects, they preferentially

respond to the bottom stimulus. While currently not possible in the Sub Sea Holodeck, future

experiments could further examine whether or not proximity to the visual stimulus helps drive

cuttlefish response by allowing the animal to be next to the tank wall and on top of a glass bot-

tom with a pattern further below or by varying the combinations of distances from the bottom

and sides of the tank. The cuttlefish could then be examined to see if they respond to the sides

instead of the distanced bottom stimulus pattern.

It is currently possible in the Sub Sea Holodeck to examine the influence of the magnifica-

tion of the side stimulus patterns on the cuttlefish responses. Proximity to the stimulus patterns

influences the size of the patterns and thus initially could be considered an important factor.

However, in light of the lack of response of cuttlefish to the side stimulus patterns already pre-

sented, these results were not statistically significant and thus are presented in the supporting

information (S1 Supporting Information).

We also acknowledge that the responses of cuttlefish to the bottom rather than the sides of

the tank may be due to the different media used (see also the Experimental Setup in the Materi-

als and Methods section below). That is, the bottom stimuli were produced using laminated

paper printouts, while the side stimuli were displayed on plasma screens. These different media

may have led to the preferential response of the cuttlefish to the bottom rather than side sti-

muli. However, there is no reason to believe that the stimulus patterns themselves, and thus the

cuttlefish camouflage patterns, vary with the media used to display the stimuli. For example,

the cuttlefish visual acuity is approximately 8 cycles per degree [23]. The pixel width in our

screens is ~0.0485 cm. Because the animals were in the center of the tank, the viewing distance

was ~50 cm. Thus, one pixel is about 0.06 degrees, which is about 18 cycles per degree. There-

fore, the animals would require more than twice the visual resolution they have to distinguish

one pixel. Even if the animal were on the edge of the acrylic tube rather than the exact center of

the tank, the viewing distance would be 28 cm. This viewing distance would result in ~10 cycles

per degree, which is again higher than what the animal can see. While there may be a slight

magnification of the plasma screens due to the tank, water, and acrylic tube, we still argue that

the images in the screens are indistinguishable from those in the printed poster. Furthermore,

the radiance of the sides and bottom are roughly equal, and while the spectral quality may be

slightly different, the effect is likely negligible, especially because cuttlefish are colorblind.

Another possible concern is the flicker frequency of the plasma screens. The plasma screens

used in the Sub Sea Holodeck refresh with a frequency of 600 Hz. Cuttlefish have a fusion fre-

quency of 30 Hz [24] and thus are not aware of the plasma screen flicker.

Given these reasons, we believe that the most reliable behavior with the least amount of

human disturbance resulted from our use of the chosen media on the bottom and the sides of
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the tank. Future studies could include a more thorough investigation of cuttlefish responses to

different media, as well as the orientation of the stimulus patterns and a greater variety of dis-

tances of the specimen to the stimuli.

While this and other related experiments were done in a laboratory setting, it is important

to think of these responses in the context of the natural environment. Cuttlefish, particularly

young ones, are largely benthic. In an open area, a cuttlefish’s best defense against predators

may be to camouflage with the bottom substrate. Once vertical structures become closer, it

may be more advantageous to masquerade or resemble vertical structures to avoid predator

detection from both a top-down and side view [20].

Future studies could examine, both in the laboratory and in the wild, the distance between cut-

tlefish and side stimuli to see if there is some threshold distance inside of which cuttlefish prefer-

entially respond to the vertical plane stimuli, and how plastic this response may be with different

ages and species of cuttlefish. With such knowledge, we will have a better understanding of what

visual cues drive the dynamic adaptive coloration of cuttlefish in their diverse environments.

Materials and Methods

Sub Sea Holodeck

Our study was conducted using a novel aquarium environment called the Sub Sea Holodeck

(Fig 2 in [21]), referred to hereafter as the Holodeck. The Holodeck is an aquarium tank that is

mounted inside a fiberglass frame with plasma or DLP displays behind all surfaces (side and

bottom, respectively) that can display visual content. The tank itself is made of acrylic and mea-

sures 101 x 101 x 66 cm to accommodate commercially available screens. The Holodeck also

contains 4 high-speed, waterproof USB cameras that allow the activities of the residents inside

the tank to be recorded without disruption. While the video screens have the capability of

being controlled with custom software (see [21] for additional information]), in this study they

were manipulated via Matlab version R2013a.

Cuttlefish husbandry

The cuttlefish Sepia officinalis used in this study are not an endangered or protected species.

Fisherman collected their eggs per request in the wild off the lines of fish pots. There was no

need for permission for collection because it occurred in open fishing grounds, and the eggs

were otherwise going to be discarded upon fish pot retrieval. The retrieved eggs were hatched

at a facility in New York. Approximately one month after hatching, the animals were shipped

to and reared at Duke University. The ethics committee that approved the work was the Insti-

tutional Animal Care and Use Committee at Duke University. The protocol number for this

study is A173-11-07. This work was carried out in strict accordance of all essential ethical

requirements and care was taken to minimize any animal discomfort. Specifically, the cuttlefish

were housed in a ~ 950L recirculating, artificial seawater system maintained at 18°C and 32 ppt

salinity. Temperature and salinity were monitored and adjusted daily and other water parame-

ters including ammonia, nitrite, nitrate, and pH were monitored and adjusted twice per week

to ensure water quality. Cuttlefish were fed one to two times daily using a mixed diet of live

shrimp, frozen shrimp, frozen scallops, and frozen silversides.

Prior to our experiments, the animals were monitored daily for behavioral anomalies, signs

of stress or injury, and normal feeding habits. Immediately before testing, the animals were

observed to ensure activity level, respiration rate, and stress levels were within the acceptable

range of normal observed behavior. In all cases, extra care was taken while transferring animals

into the experimental tank and extra time was allowed for acclimation prior to beginning the

experimental run. During experiments, the animals were continually observed via a live web
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cam feed for signs of stress and agitation. The only adverse effects observed were that, occa-

sionally, an animal would ink during transfer into the experimental tank, during the acclima-

tion process, or during the experimental runs. Following experiments, the cuttlefish were again

observed for signs of stress, injury, and resumption of normal behavior.

Experimental set up

The experiments were conducted when the animals were approximately 6.5 months old and

about 10 cm mantle length. Seven individuals of the species Sepia officinalis were used for our

study. The number of individuals utilized during the experiments was based on the availability

of healthy, stress-free animals at the time the experiments were performed.

Cuttlefish were exposed to 5 different stimulus patterns: uniform grey, television static, as

well as small, medium, and large checkerboard patterns (Fig 1). The squares in the small check-

erboard patterns were 2 cm, the medium checkerboard 4 cm, and the large checkerboard 7 cm,

which had an angular size of 2.3, 4.6, and 8 degrees, respectively, when viewed from the correct

distance (the center of the aquarium). The television static pattern was included to expand the

repertoire of stimulus patterns beyond those commonly used in previous work (e.g.,

[14,15,20]). In total, there were 25 different combinations (5 bottom x 5 side) of bottom and

side patterns. Of the 7 cuttlefish used, 4 were exposed to all 25 different combinations of bot-

tom and side patterns. The other 3 cuttlefish were only exposed to between 5 and 20 of the

stimulus combinations because they died before we could expose them to all the combinations.

Laminated paper printouts of the background patterns were used on the bottom of the tank.

42-inch high-definition 1920 by 1080 Panasonic plasma screens were used to present the side

stimuli. While different media may differentially affect cuttlefish responses, preliminary experi-

ments indicated that the light emitting from the bottom, but not the side, screens disturbed the

animals, which were subsequently incapable of eliciting a systematic response. Therefore, while

not ideal, we believe more reliable behavior resulted from the use of laminated paper printouts

on the bottom of the tank, while the plasma side screens lessened human interference with the

animals as much as possible. (See the Discussion section for further information on the differ-

ent display media.)

After filling the aquarium with artificial seawater, a bottom pattern, chosen with a random

number generator, was put in place. The tank was connected to a closed-loop, recirculating

artificial seawater system. Once the bottom pattern was in place, a circular acrylic tube (45 cm

in diameter) was placed in the center of the tank. A circular enclosure was chosen to lessen

shadows and prevent settling in corners. Subsequently, one cuttlefish specimen was placed in

the middle of the arena, and the stimulus, one of the five patterns again chosen with a random

number generator, gradually appeared simultaneously on each side screen, going from zero to

maximum intensity in 5 seconds, following an s-shaped curve. For each new visual environ-

ment, the animal was allowed approximately 10 minutes to acclimate, which was determined

by a cessation of swimming and staying in one location for at least two minutes. After the set-

tling period, the animal was photographed with a Nikon D700 camera with a Nikon AF-S 24–

120 mm f/4G ED VR lens. Other cameras were used for ancillary information, which was not

used in this study. Two diffuse halogen spotlights reduced shading artifacts in the images and

allowed the bottom pattern’s luminescence to be similar to that of the plasma screens. The

camera settings were retained and identical throughout all runs.

Each animal was photographed a minimum of 17 times but typically 25 times for a particu-

lar bottom and side stimulus combination. Each photograph was taken ~10 seconds apart.

After photographing, the side displays faded back to black, a new stimulus was randomly cho-

sen, and the process was repeated.
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Image analysis

To mitigate the likelihood of autocorrelation, we used the two usable (i.e., non-blurry) images

that were furthest apart in time among the replicate images for each individual in a given treat-

ment. Each cuttlefish image was segmented into a standardized oval template with no back-

ground stimulus visible. Only images that had the background completely removed were used.

That is, during the image analysis, the classifier had no knowledge of what the bottom nor side

stimuli were. Some sets of images were blurry or could not be fit properly to the template with-

out significant distortion; such images were not used in our analyses. In all, 175 images were

used. Each image was randomly displayed and manually categorized as a percentage of mot-

tled, disruptive, and/or uniform. To simplify the classification process, cuttlefish were classified

into at most 2 of the 3 general camouflage types of mottled, disruptive, and uniform. Camou-

flage classification was done in 25% increments (i.e., 0, 25, 50, 75, or 100%). That is, images

could be classified as 100% mottled, 75% mottled and 25% disruptive, 50% mottled and 50%

disruptive, etc. In all there are 12 categories, which we refer to as camouflage categories. The

classification into each camouflage category was based both on the intensity of body patterning

displayed and on the surface area of cuttlefish covered with a general camouflage type.

Because of the importance of consistency in classification, the original observer re-classified

a subset of 69 images over a year after the original scoring. Cohen’s κ was calculated to deter-

mine the level of agreement in classification at these different time periods. κ was 0.6350 (95%

CI, 0.50, 0.77), p<<0.001, which, according to the benchmarks provided in Landis and Koch

[25], indicates a substantial agreement in classification.

In this classification scheme, we have compromised between completeness and simplicity.

We have attempted to include enough categories to encapsulate the diversity of cuttlefish body

patterning but also avoided too many categories, which may make the classification process

cumbersome, complicated, and potentially inaccurate. Each image was categorized using a clas-

sification guide with examples of the possible camouflage category (Fig 3). This method, while

subjective, has similarities to the manual grading methods of Chiao et al. [9] and Mäthger et al.

[14] and the method of creating a lab manual mentioned by Mäthger et al. [3]. This classifica-

tion technique also has the advantage of allowing an investigation of the mottled, disruptive,

and uniform responses, rather than just the extent of disruptiveness as has often previously

been done (e.g., [3,7,18]). Furthermore, any biases resulting from the classification scheme

used in this study are consistent across all classifications, despite the bottom or side stimulus,

as indicated above. Therefore, a relative comparison of the cuttlefish responses to either the

bottom and side stimuli can still be made.

Comparing the effect of bottom versus side stimuli

After each cuttlefish response was classified into one of the twelve camouflage categories, all

the responses were divided into five groups based on the five bottom stimulus patterns (Fig 1).

Within each group, we calculated the proportion of cuttlefish responses in each of the twelve

categories. For example, out of all the cuttlefish responses to the television static bottom, we

calculated the proportion of those responses in the 50% mottled, 50% disruptive camouflage

category. We followed this same methodology for the side stimulus patterns. That is, using all

of the cuttlefish responses, we calculated the proportion of responses in each of the twelve cam-

ouflage categories for each of the five side stimulus groups. Comparisons of the proportion of

responses in each of the camouflage categories were then made within and across each of the

groups.

To more easily compare responses to stimulus patterns, we calculated the center of mass for

the responses to each of the bottom and side stimuli (see Fig 7 and also the Results section).
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That is, using the proportion of responses in each of the twelve categories for each stimulus, we

calculated the average response. To quantify the error, we calculated 95% bootstrap confidence

intervals. That is, out of all the responses to a given bottom or side stimulus, we resampled with

replacement from those responses to obtain a subsample of the same size as the original sam-

ple. We repeated this process 10,000 times to obtain 10,000 subsamples of the responses to

each of the bottom stimuli and each of the side stimuli. We then calculated the average

response for each of those subsamples, and the 95% of average responses that were closest to

the original sample mean were used to delineate the bootstrapped confidence intervals shown

in Fig 7.

Due to the nature of the data (compositional with structural zeros), we used a separate Krus-

kal-Wallis test for the percent mottled, disruptive, and uniform in camouflage responses to test

if there were significant differences among bottom stimuli groups and side stimuli groups.

When appropriate, we used a post-hoc test with a Dunn-Sidak correction to investigate which

groups were significantly different.

Supporting Information

S1 Supporting Information. Cuttlefish responses to side stimulus magnifications.
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