
 Open access  Proceedings Article  DOI:10.1109/IROS.2005.1545443

CV-SLAM: a new ceiling vision-based SLAM technique — Source link 

WooYeon Jeong, Kyoung Mu Lee

Institutions: Hongik University, Seoul National University

Published on: 05 Dec 2005 - Intelligent Robots and Systems

Topics: Machine vision, Simultaneous localization and mapping, Affine transformation, Feature (computer vision) and
Robustness (computer science)

Related papers:

 Distinctive Image Features from Scale-Invariant Keypoints

 Real-time simultaneous localisation and mapping with a single camera

 A solution to the simultaneous localization and map building (SLAM) problem

 Probabilistic Robotics

 FastSLAM: a factored solution to the simultaneous localization and mapping problem

Share this paper:    

View more about this paper here: https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-
3w62b837rx

https://typeset.io/
https://www.doi.org/10.1109/IROS.2005.1545443
https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-3w62b837rx
https://typeset.io/authors/wooyeon-jeong-301zwpd42x
https://typeset.io/authors/kyoung-mu-lee-589lcxjotv
https://typeset.io/institutions/hongik-university-190ewrql
https://typeset.io/institutions/seoul-national-university-3ejiwrzr
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/machine-vision-2mqlecl7
https://typeset.io/topics/simultaneous-localization-and-mapping-18kh1d0h
https://typeset.io/topics/affine-transformation-1soc8sl1
https://typeset.io/topics/feature-computer-vision-itcxcxet
https://typeset.io/topics/robustness-computer-science-gkpqgcat
https://typeset.io/papers/distinctive-image-features-from-scale-invariant-keypoints-3waurjqzke
https://typeset.io/papers/real-time-simultaneous-localisation-and-mapping-with-a-15tf3exidx
https://typeset.io/papers/a-solution-to-the-simultaneous-localization-and-map-building-2pp3i7uhdj
https://typeset.io/papers/probabilistic-robotics-263ucbh6lg
https://typeset.io/papers/fastslam-a-factored-solution-to-the-simultaneous-43xhz4h5bm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-3w62b837rx
https://twitter.com/intent/tweet?text=CV-SLAM:%20a%20new%20ceiling%20vision-based%20SLAM%20technique&url=https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-3w62b837rx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-3w62b837rx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-3w62b837rx
https://typeset.io/papers/cv-slam-a-new-ceiling-vision-based-slam-technique-3w62b837rx


CV-SLAM: A new Ceiling Vision-based SLAM technique 
 

 

WooYeon Jeong Kyoung Mu Lee 

School of Radio Science and Communications School of Electrical Engineering and Computer Science 

Hongik University Seoul National University 

72-1, Sangsu-dong, Mapo-gu Seoul, 121-791, Korea San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea 

wota@cvlab.snu.ac.kr kyoungmu@snu.ac.kr 

 
 Abstract - We propose a fast and robust CV-SLAM (Ceiling 

Vision –based Simultaneous Localization and Mapping) 

technique using a single ceiling vision sensor. The proposed 

algorithm is suitable for system that demands very high 

localization accuracy such as an intelligent robot vacuum cleaner. 

A single camera looking upward direction (called ceiling vision 

system) is mounted on the robot, and salient image features are 

detected and tracked through the image sequence. Compared 

with the conventional frontal view systems, the ceiling vision has 

advantage in tracking, since it involves only rotation and affine 

transform without scale change. And, in this paper, we solve the 

rotation and affine transform problems using 3D gradient 

orientation estimation method and multi-view description of 

landmarks. By applying these methods to the solution for data 

association, we can reconstruct the 3D landmark map in real-

time through the Extend Kalman filter based SLAM framework. 

Furthermore, relocation problem is solved efficiently by using a 

wide base line matching between the reconstructed 3D map and a 

2D ceiling image. Experimental results demonstrate the accuracy 

and robustness of the proposed algorithm in real environments. 

 

 Index Terms – SLAM, Ceiling Vision, data association 

 

I.  INTRODUCTION 

Self-localization and map building are the most important 

problems in mobile robot system, and have been the central 

research topics in the robotic society for several decades. In 

most recent works, it is argued that the self localization and 

mapping problems could not be separated and have to be dealt 

simultaneously [1][2][3][8][9]. This is called SLAM 

(Simultaneous Localization and Mapping) problem. The 

purpose of SLAM is to minimize the localization and mapping 

error simultaneously, and it has been proved that the only 

constrain for the SLAM convergence is the perfect data 

association [2]. Conventionally, most SLAM algorithms have 

employed active range sensors such as laser scanner or sonar 

for data association. Especially laser range finder (Lidar) 

based SLAM has been applied for very wide range of robot 

applications in indoor [9] and outdoor [8] environment. 

However, due to the high cost, speed, accuracy and safety 

problem, these active sensors-based SLAM systems have 

limitations in practical applications. Moreover, since these 

sensors usually provide not enough unary information of 

landmarks, lots of multiple measurements should be combined 

to solve the relocation problem.  

Recently, in order to overcome the drawbacks of using 

active range finders, some works have been proposed to use 

vision sensors for localization and mapping [1][3][10][11][12] 

[14]. 

Jogan et al. [10] proposed an appearance based localization 

method using omni-directional camera. Appearance matching 

was carried out in the eigen-space of trained images, and to 

cope with occlusions robust- PCA technique was employed. 

Lowe [3] introduced triclops-vision system that used their 

own wide baseline matching technique; SIFT (Scale Invariant 

Feature Transform) [4]. It maintains robot pose and landmark 

position separately. 

Similarly, Kosecka et. al. [11] built a topological map by 

tracking SIFT features of frontal view images, and enhanced 

the localization performance using Hidden Markov Model. 

Wolf et. al. [12] suggested image retrieval based 

localization technique by using Monte-Carlo localization 

method. This method could retrieve target image in spite of 

large camera motion, and minimize the location uncertainty 

using multi-hypothesis. 

More recently, Davison [1] proposed a vision-based real-

time SLAM, called Mono-SLAM, which employs only a 

single camera without odometry information. It increases 

localization accuracy by integrating camera velocity into 

optimization variables. However, it needs an initial manual 

calibration process to obtain the scale information. 

In this paper, we propose a very fast and accurate SLAM 

system called CV-SLAM that uses a ceiling vision system that 

consists of a single camera pointing upward direction. We 

suggest an efficient data association method using view-

invariant feature matching technique appropriate for ceiling 

vision, and we also develop a fast robot relocation technique. 

 

II.  EKF BASED SLAM 

The solution to SLAM problem always converges if 

successful data association is guaranteed [2], and a lot of 

research over the last decade has shown that SLAM is indeed 

possible without any priori knowledge of a map. The basic 

EK-based SLAM can be formulated by following equations. 
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Equation (1) is the state transition model, where F(⋅) 

models robot kinematics, u(⋅) is the control input, and v(⋅) is 

the motion noise. Equation (2) is the observation model, where 

hi(⋅) is an observation function that projects the i-th landmark 

to the observed measurement zi(k), and wi(⋅) is the 



measurement noise. x(k) is the state vector to be optimized. By 

placing both robot and landmark position on the state vector at 

the same time as follows, we can minimize localization and 

mapping error simultaneously [2].  
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A. Kinematics model 

In this paper, we consider a two wheel based robot system 

on which a ceiling vision camera is mounted. So, its 

kinematics model can be described as follows. 
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where the control input u(k) = [u
r
(k) uθ(k)]

T
, and where u

r
(k) is 

the radial distance and uθ(k) is the angle. 
 

B. Observation Model 

Observation model is the projection function that projects 

a 3D landmark to the sensor observation. Our ceiling vision 

system has a camera positioned at the center of the robot, 

aligned with the robot orientation. Thus, as shown in Fig. 1 3D 

landmarks are projected onto the 2D image plane by the 

following observation model.  
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where f denotes the focal length of the camera.  

 

III. VISUAL DATA ASSOCIATION USING CEILING VISION 

As mentioned in previous section, the only constrain of 

SLAM solution is the validity of data association. From the 

vision sensor’s point of view, successful data association 

means successful correspondence establishment across multi 

view images, which is called view-invariant or wide base line 

matching. 

 

A. Ceiling Vision 

When comparing two images acquired from quite 

different view points, the perspective distortion usually makes 

the correspondence problem extremely difficult.  There have 

been a lot of research on view-invariant matching under the 

rotation, scale and affine transformations [3][5][6]. Note that 

one of the special characteristics of ceiling vision compared to 

the general camera setting is that no scale change occurs 

between ceiling images, but only rotation and sheer 

deformation exist for planar landmark patches. Fig. 2 shows 

an example of this scale invariant property of ceiling vision. 

Patch A is a ceiling region that has only rotation change 

between views, while B that includes a wall area exhibits both 

rotation and sheer transformations.  By this scale invariant 

property, we can not only save a lot of searching time for 

finding the scale of each landmark, but also achieve matching 

with high localization accuracy.  

 

B. POI (Point of Interest) Selection 
Most of view-invariant feature matching techniques try to 

find POI first, and then compare its local regions through 

image correlation or their own invariant descriptor-based 

matching methods. The purpose of this POI detector is to 

reduce the searching space by comparing only selected 

candidate region instead of full image search. SIFT (Scale 

Invariant Feature Transform) [4] is known to be the state-of-

the-art for the wide-base line matching. However, although it 

establishes very robust correspondences under scale and affine 

variations, the localization accuracy of each POI is relatively 

low. And, especially for the case of no scale change between 

views as in the ceiling images, it is not appropriate to use 

SIFT. Thus, in this paper, in order to achieve very accurate 

landmark association between ceiling views, we employ 

Harris corner detector for POI detection. [7] 
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Fig. 1 Observation Model: 3D to 2D projection
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Fig. 2 Scale invariant property of ceiling image; A has rotation variation ; 

B has  rotation and  sheer deformation  



 

C. Estimation of Landmark Orientation 
1) 2D Gradient Orientation Estimation: If there exists 

only 2D rotation variation between corresponding landmarks 

in different views, matching can be done easily after finding 

and aligning their own orientations. The orientation of a 

landmark can be determined effectively by the gradient 

estimation technique similar to SIFT [4], in which the local 

gradient orientation histogram is used for finding the 

orientation of a patch. The gradient magnitude m and the 

orientation θ  of each pixel in the landmark region (local 

neighborhood of the POI) is calculated by 
 

( )xy

yx

dIdI

dIdIm

/tan 1

22

−=

+=

θ

    

1,1,

,1,1

−+

−+

−=

−=

yxyxy

yxyxx

IIdI

IIdI
    ,            (5) 

 

where, Ixy is the intensity value at (x, y) position. Then the 

orientation histogram weighted by both its magnitude and a 

weighting mask can be constructed. In SIFT, the Gaussian 

mask is used to make the orientations around the center to be 

highly weighted. However, since we are using the corner 

points as POIs, around which the gradient orientations usually 

become unstable, applying the Gaussian mask is not 

appropriate in our case. Therefore, instead we attenuate the 

unreliable central part by using a donut like Gaussian mask as 

follows. 
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Now, the unique orientation of a POI can be determined 

by selecting multiple peaks in the histogram that satisfy some 

constraints [4]. Fig. 3 shows the detected corner points and 

their estimated orientations, and this orientation information 

can be used for 2-D rotation-invariant feature matching. 

 

 
Fig. 3 Corner points and their estimated orientations in views with rotation 

only 

 

2) 3D Gradient Orientation Estimation: Note that if the 

robot moves, the landmarks on the region parallel to the image 

plane undergo Euclidian transform, while those on the other 

planes are deformed by affine (shear) transform. Thus the 2D 

gradient orientation estimation technique can be applied only 

to the landmarks on the ceiling, but not on walls. Fig. 4 shows 

the view variations of a landmark on a wall while the robot 

was in translational motion. Fig. 4(b) shows the estimated 

gradient orientations of the first and the last landmarks in Fig. 

4(c). We can observe that the gradient orientation vector (β) 

becomes different even though there is no rotational 

movement. Note that we can not recover the corresponding 3D 

gradient vector using the projected 2D gradient orientation 

vectors uniquely. However, it is possible to reconstruct its 

normal vector (the tangential orientation vector) in 3D space 

by back projecting the 2D measurements as in Fig. 4(γ). By 

simply adding right angle to the 2D gradient orientation we 

can obtain 2D tangential vector. Now the remained problem is 

how to reconstruct 3D tangential vector from multiple 

measurement of 2D tangential vectors.  As shown in Fig. 5, 

the 3D to 2D vector projection function is non-linear, so we 

use EKF again to solve this problem using (1) and (2). In this 

case, the state transition function F(⋅) becomes an identity 

matrix, and the state vector is x(k) = [La, Lb]
T
, where La and Lb 

are the azimuth and elevation of the 3D orientation vector. 

And, the observation function hi(⋅) is given by 
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where zO is the 2D gradient orientation angle and AO is the 

angle of 2D tangential vector. Overall process of 3D tangential 

vector reconstruction is shown in Fig. 6. When landmark is 

initially registered, its 3D tangential vector is roughly 

estimated first with appropriate covariance, and then gradually 

updated. As the sequential update proceeds, its covariance 

3D tangential orientation on 
landmark 

2D orientation on POI

x
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[ ]zyx LLL

Fig. 5 Observation Model of projecting 3D orientation to 2D 
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Fig. 4 Gradient orientation variation by the robot movement 



decreases and the state vector converges. The estimated 3D 

orientation information of each landmark can be used for the 

landmark matching between views and more effectively for 

the robot relocation problem as described in section in IV. 

 

E. Multi-view description of Landmarks 

As the landmark tracking progress, its image pattern 

becomes more and more differ from the initial one that was 

trained at the registration time. Molton [13] solved this 

problem by estimating the surface normal using the inverse 

compositional image alignment technique, but it was not 

robust in noisy environment. We solve this problem by 

training all image patches acquired from all possible view 

positions into a finite number of classes. The flow chart of the 

landmark multi-view description scheme is shown in Fig. 7.  

Simultaneous matching and training process is done by a 

double thresholding technique. The first threshold is used to 

determine whether the current landmark is similar to the 

previous one or not, and the second threshold is used for 

making decision whether the current landmark have to be 

trained as a new pattern or not. This multi-view description 

scheme can cope with any kind of deformation even if 

landmark is not locally planner, and works very fast and 

robustly in real environment. This method is similar to [14], 

but our method is different in that it trains not only the image 

patterns but also their corresponding robot positions. 

 

IV. ROBOT RELOCATION  

Relocation can be performed by matching the current 

image features to the map of the reconstructed 3D landmarks. 

Note that given one correspondence between an image feature  

iẑ  and a landmark Li, we can deduce the possible current 

robot positions by the observation model in (4) as follows. 
 

 













+

+
=








i

yr

i

xr

y

x

LGG

LGG

R

R

θ

θ

sin

cos
        fLzG i

z

i

rr /ˆ ×=         (8) 

Fig. 8 Correspondence matching between 3D Map and 2D Image 

 

where Gr and Gθ are the distance and angle between the robot 
center and the projected landmark position onto the ground 

plane. Since we can not determine Gθ  from this 
correspondence, the solution will be the locus of circle with 

radius Gr. However, with multiple correspondence pairs, we 

can estimate the true robot position using the Hough clustering 

technique. Since each correspondence provides a circle in the 
Hough domain, we can determine the robot position by 

finding the majority vote. Fig. 9 shows an example of Hough 

clustering, in which the solid circles represent the correct 

correspondences and the dashed ones show wrong matches. 
However, due to the speed and memory problem, the naïve 

Hough clustering technique can not be used for real-time 
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processing. Thus, we modified it by dividing 3D landmarks 

into two groups according to their orientations. The first group 

is for the landmarks with horizontal orientation direction, i.e., 
parallel to the image plane, and the other one is for ones with 

non-horizontal orientation directions. If we know a certain 

correspondence of a landmark that has horizontal orientation 

vector, we can obtain Gθ   and the robot orientation angle Rθ  
by 

 

( )( )oii

a

i zLzG 90ˆˆ
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                           (9) 
 

and by placing Li
b to zero in (7), we can also determine the 

robot orientation angle by 
 

( )oii

b zLR 90ˆ
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.                                    (10) 
 

 From this equation, one correspondence can be mapped 

to one unique robot pose. Thus, a finite number of initial pose 

candidates can be obtained using the first group. And then, a 
verification procedure is followed by the other group. The 

proposed relocation process is summarized in the following: 

 Find all possible correspondences with high correlation 

 Draw all possible robot pose using the correspondences 
of horizontal direction landmarks, and find some pose 

candidates by the majority vote rule. 

 As the final robot pose, select the pose among the 

candidates that are maximally supported by the other 
correspondences with non-horizontal directions as the 

final robot pose.  

The speed of the proposed relocation method depends on 

the map size (the number of landmarks). For about 100 
landmarks, the processing time is less than 300 msec. 

 

V. EXPERIMENTAL RESULTS 

The proposed algorithm was applied to a robot vacuum 
cleaner.  Maximum speed of the robot was 15cm/sec. We used 

an NTSC 1/3 inch CCD camera, wide angle lens of 150 

degree, and a Pentium III 1 GHz CPU. 320×320 resolution for 
each view was used after lens calibration, and the size of each 

landmark patch was set to be 20×20. We have tested our 
system in many different real indoor environments including 

laboratory, corridor, lobby, and apartment living rooms. The 
test was carried out in two steps. The first test was for the real 

time 3D landmark map-building by the proposed CV-SLAM, 

and the second test was the zigzag motion test and floor-map 

building for vacuum cleaning using the ready made 3D 
landmark map. All experiment was accomplished in real time 

and all procedures were performed automatically except the 

motion command for the 3D map-building step. Fig. 10 shows 

an example of real time map convergence. As the robot moved 
on, the uncertainties of landmarks monotonically decreased. 

Note that due to the multi-view description, landmarks on the 

walls also have converged quickly. Fig. 11 shows the 

constructed 3D landmark map and the partial floor sweeping 
result by the robot’s zigzag motion. The green blocks 

represent the space that robot has passed and the red block 

denote the obstacles, and each block size is 20×20 cm2. Table 
1 shows the elapsed time of each stage of the proposed 

algorithm for 201 landmarks. Note that all stage run in 
constant time except the EKF observation stage. Since it uses 

Fig. 10 Real time sequential map building experiment: corridor 
Video is available from http://cv.snu.ac.kr/cvslam/ 

Robot position of 

max probability 

Right correspondence

Wrong correspondence 

Fig. 9 Example of Hough clustering 



full-covariance EKF, observation time increases in proportion 

to the order of N2.  
 

Stage Elapsed Time (ms) 

Preprocessing 72.0332 

Data Association 89.8094 

Prediction 0.0042 

Update 5.0009 EKF 

Observe 305.2380 

Total 472.0857 

Table 1. Elapsed time table: (201 landmarks) 

 

VI. CONCLUSION & FUTURE WORKS 

We have proposed a new CV-SLAM that uses a single 

upward camera for visual correspondence of natural 

landmarks. The scale-invariant property of the ceiling vision 

made the visual data association problem to be rather simple 
so that only rotation and shear deformation need to be 

considered. 2D/3D gradient orientations estimation and multi-

view description technique are used for efficient view-

invariant landmark matching. Experimental results in various 
real environments showed that the proposed CV-SLAM 

technique was very fast, stable and accurate. Our further 

works will include the solutions to the very large closing loop 

and repeated landmark problems. 
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Fig.11 Map building result: Lobby 
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