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Abstract

We develop an integrated simulation and optimization framework for multicurrency asset

allocation problems. The simulation applies principal component analysis to generate scenarios

depicting the discrete joint distributions of uncertain asset returns and exchange rates. We then

develop and implement models that optimize the conditional-value-at-risk (CVaR) metric. The

scenario-based optimization models encompass alternative hedging strategies, including selec-

tive hedging that incorporates currency hedging decisions within the portfolio selection prob-

lem. Thus, the selective hedging model determines jointly the portfolio composition and the

level of currency hedging for each market via forward exchanges. We examine empirically

the benefits of international diversification and the impact of hedging policies on risk–return

profiles of portfolios. We assess the effectiveness of the scenario generation procedure and

the stability of the model’s results by means of out-of-sample simulations. We also compare

the performance of the CVaR model against that of a model that employs the mean absolute

deviation (MAD) risk measure. We investigate empirically the ex post performance of the mod-

els on international portfolios of stock and bond indices using historical market data. Selective

hedging proves to be the superior hedging strategy that improves the risk–return profile of port-

folios regardless of the risk measurement metric. Although in static tests the MAD and CVaR

models often select portfolios that trace practically indistinguishable ex ante risk–return effi-

cient frontiers, in successive applications over several consecutive time periods the CVaRmodel

attains superior ex post results in terms of both higher returns and lower volatility.
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1. Introduction

Asset managers aim to select investment portfolios that yield the maximum pos-
sible return, while at the same time ensuring an acceptable level of risk exposure.
Risk derives from potential losses in portfolio value due to possible reductions in
the market value of financial assets resulting from changes in equity prices, interest
rates, foreign exchange rates, credit ratings of security issuers, etc. Diversification
into multiple securities can practically eliminate idiosyncratic risk, that is, potential
severe losses from any individual security. However, domestic diversification cannot
mitigate systematic market risk. This is the risk associated with concurrent losses in
most domestic securities due to high correlations between their returns. Since market
risk differs from country to country, international diversification can reduce the
overall risk exposure of investment portfolios.
International diversification is practiced by institutional investors to improve the

risk–return profiles of their portfolios. The inclusion of securities denominated in
foreign currencies in the asset holdings can provide dual benefits: (1) The prospect
for higher profit in the event of favorable performance of foreign markets and (2)
the potential reduction in the portfolio’s exposure to market risk. However, interna-
tional investments introduce a new element of risk (currency risk). The volatility of
return from a foreign asset depends not only on the differential change of its price
within any given period (domestic return) but also on the variation of the foreign ex-
change rate to the reference currency, as well as on the correlation between the two.
Exchange rates between currencies are correlated with domestic returns of assets in
the respective countries – in particular with the returns of interest-sensitive securities
(e.g. bonds). The effects of exchange rate changes on the overall risk profile of inter-
national portfolios are discussed in Eun and Resnick (1988). As fluctuating exchange
rates can mitigate the potential gains from international diversification, holistic risk
management approaches are needed that account for all risk factors affecting the
performance of international portfolios.
Currency risk is typically hedged via forward contracts. However, the portfolio

selection and hedging decisions are often considered separately. An extensive body
of literature has studied the merits of hedging exchange rate risk. (See, for exam-
ple, Perold and Schulman, 1988; Eun and Resnick, 1988; Jorion, 1989; Black, 1990;
Filatov and Rappoport, 1992; Glen and Jorion, 1993; Abken and Shrikhande,
1997; Solnik, 1998; Beltratti et al., in press.) This literature presents somewhat dif-
ferent views as to the optimal course of action for international portfolio manage-
ment depending on the focus of each study with regard to factors such as the
investment opportunity set, the risk aversion preference and time horizon of the
decision maker, the reference currency of the investor, the investment strategy (pas-
sive vs active), the distribution of asset returns and exchange rates in the time
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frame of the study (i.e., the historical data used in calibrating the distributions),
and the hedging strategies that were compared. The overall conclusions from these
studies are: (a) the relative merits of hedging strategies remain mostly an empirical
issue and depend on the factors mentioned above, (b) currency hedging becomes
more important for foreign investments whose domestic returns exhibit consider-
able correlation with the exchange rate to the reference currency. These observa-
tions point to the need for integrated simulation and optimization approaches
that determine jointly portfolio structures and flexible hedging policies. Our models
move exactly in this direction.
With the exception of Beltratti et al. (in press) who internalized selective hedging

decisions within a portfolio optimization model, in all the other studies cited above
the hedging policy was prespecified at the portfolio selection stage. Hedging policies
were then contrasted by comparing ex post the performance of portfolio selections
made with alternative policies. Three major hedging policies are discussed in the lit-
erature: unitary, partial, and selective hedging. Unitary hedging concerns the selec-
tion of either no hedging or complete hedging of the currency risk associated with
all foreign asset holdings. In partial hedging, the hedge ratio can be different from
zero or one, but it is common across all foreign markets. This approach follows from
the theory proposed by Black (1990) that suggests the existence of a universal hedge
ratio that is optimal for all investors. Selective hedging is the more general approach
as it permits the hedge ratio to be different across markets and to take any value be-
tween zero and one.
In this study we adopt the approach of Beltratti et al. (in press) as we apply sce-

nario-based optimization models that simultaneously determine the portfolio com-
position and the appropriate hedging level for each position in a foreign asset.
The models prescribe optimal selective hedging policies by means of forward cur-
rency exchanges. Our models encompass all three hedging strategies mentioned
above. They can yield as a special case solutions that imply a uniform hedge ratio
across markets. Any value of the hedge ratio between zero and one is allowable, in-
cluding the two extreme values that correspond to no hedging and complete hedging,
respectively. Our aim is to assess the performance of the optimization models as risk
management tools in selecting internationally diversified portfolios.
Risk management entails the exercise of control over some statistical characteris-

tic(s) of the uncertain portfolio return. The aim is to avoid portfolios that may likely
be susceptible to severe losses. We focus on the development, implementation, and
testing of a model that employs the conditional value-at-risk (CVaR) metric (Rock-
afellar and Uryasev, 2000, 2002). By optimizing CVaR we maximize the conditional
expectation of portfolio returns below a prespecified low percentile of the distribu-
tion, thus we minimize the expected losses in severe circumstances. Our motivation
for applying a CVaR model stems from the observation that returns of international
assets and proportional changes of exchange rates exhibit asymmetric distributions;
empirical evidence supporting this assertion is given in Section 4.2.
This study extends the work of Beltratti et al. (in press) in several directions. We

employ the CVaR risk metric that accounts for asymmetric return distributions. Due
to the observed asymmetry of asset returns in the international asset allocation
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problem, CVaR should be a more appropriate metric than alternative risk measures
that are geared towards symmetric distributions (see, for example, Jobst and Zenios,
2001). We also apply a more rigorous scenario generation method than Beltratti et al.
(in press) who relied on bootstrapping of historical data. We test the effectiveness of
the scenario generation procedure and the stability of the model’s results in out-
of-sample simulations. Moreover, we contrast the performance of the CVaR model
against that of a mean absolute deviation (MAD) model. We conduct backtests
using historical market data to investigate empirically the ex post performance of
the models in selecting international portfolios of stock and bond indices.
Essential to the application of the optimization models is an effective representa-

tion of the random returns of the assets. We devise a sampling procedure based on
principal component analysis (PCA) to jointly generate scenarios of domestic hold-
ing period returns for international assets, as well as spot exchange rates at the end of
the holding period. On the basis of these – and the currently quoted spot and for-
ward exchange rates – we compute corresponding scenarios of returns, in terms of
a reference currency, for hedged and unhedged positions in each asset. Our sampling
procedure is superior to random sampling in terms of approximating the statistical
properties of historical data sets. It also leads to more stable risk–return efficient
frontiers as we demonstrate with out-of-sample simulations.
The scenarios of asset returns and their associated probabilities constitute the nec-

essary inputs to the optimization models that determine portfolio compositions. The
parametric optimization models trade off expected portfolio return against the rele-
vant risk measure. We thus trace the efficient risk–return frontiers for the respective
risk measures. Comparisons of these frontiers enable a relative assessment of alter-
native models. These static evaluations compare potential performance profiles at
a single point in time.
We also carried out backtesting experiments, whereby the models were repeatedly

applied in several successive time periods and the ex post returns of their selected
portfolios were determined on the basis of observed market data. The results of
backtests provide a more reliable basis for comparative assessment of the models
as they reflect realized performance over longer time periods. Although in static tests
the MAD and CVaR models often select portfolios that trace almost indistinguish-
able ex ante risk–return frontiers, in backtests the CVaR model attains superior per-
formance, and the CVaR-optimized portfolios yield higher growth rates and lower
volatility than the MAD-optimized portfolios.
The rest of the paper is organized as follows. In Section 2 we discuss the formu-

lation of the optimization models with selective hedging for international portfolio
selection. In Section 3 we present our scenario generation method based on PCA.
In Section 4 we examine the statistical characteristics of the historical data set, we
describe our computational tests, and we discuss the empirical results. Finally, Sec-
tion 5 concludes the paper.
The contributions of our study are: the development of a CVaR model for opti-

mal selection of international portfolios incorporating currency hedging decisions
within the portfolio selection model; the empirical comparison, using historical mar-
ket data, of the CVaR model with a MAD model; the development of a scenario gen-
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eration method based on PCA for depicting hedged and unhedged returns for inter-
national securities. The empirical results indicate that this integrated simulation and
optimization framework can provide an effective decision support tool in interna-
tional investment management.

2. Risk management models

Consider a set of investment opportunities indexed by i ¼ 1; 2; . . . ; n. At the end
of a certain holding period the assets generate returns ~rr ¼ ð~rr1; ~rr2; . . . ; ~rrnÞT. The re-
turns are unknown at the beginning of the holding period – i.e., at the time of the
portfolio selection – and are treated as random variables. Denote their mean value
by �rr ¼ Eð~rrÞ ¼ ð�rr1;�rr2; . . . ;�rrnÞT. At the beginning of the holding period the investor
wishes to apportion his budget to these assets by deciding on a specific allocation
x ¼ ðx1; x2; . . . ; xnÞT, such that xi P 0 (i.e., short sales are disallowed) and

Pn
i¼1 xi ¼

1 (budget constraint). Using the vector 1 ¼ ð1; 1; . . . ; 1ÞT of ones, we express the
basic portfolio constraints in vector notation as

X ¼ fx : xT1 ¼ 1; xP 0g:

Throughout the paper we use boldface characters to denote vectors.
For portfolios that involve both hedged and unhedged international positions the

investment opportunity set is partitioned into these two categories. This implies a
corresponding partitioning of the vectors ~rr, �rr, x. Thus, these vectors are composed
of a concatenation of two subvectors corresponding to the hedged and unhedged as-
set positions, respectively. Assets denominated in the investor’s base currency can be
assigned to either of the two subvectors. Total asset returns are expressed in terms
of the base currency.
The uncertain return of the portfolio at the end of the holding period is

Rðx;~rrÞ ¼ xT~rr ¼
Pn

i¼1 xi~rri. This is a random variable with a distribution function,
say F, i.e., F ðx; uÞ ¼ PfRðx;~rrÞ6 ug. Of course the distribution function F depends
on the portfolio composition x. The expected return of the portfolio is E�
ðRðx;~rrÞÞ ¼ Rðx;�rrÞ ¼ xT�rr. Suppose the uncertain returns of the assets, ~rr, are repre-
sented by a finite set of discrete scenarios X ¼ fs : s ¼ 1; 2; . . . ; Sg, whereby the re-
turns under a particular scenario s 2 X take the values rs ¼ ðr1s; r2s; . . . ; rnsÞT with
associated probability ps > 0,

PS
s¼1 ps ¼ 1. The mean return of the assets is

�rr ¼
PS

s¼1 psrs. The portfolio return under a particular realization of asset returns rs
(i.e., scenarios s 2 X) is denoted Rðx; rsÞ ¼ xTrs ¼

Pn
i¼1 xiris. The expected portfolio

return is expressed as Rðx;�rrÞ ¼
PS

s¼1 psRðx; rsÞ ¼ xT�rr ¼
Pn

i¼1 xi�rri.
Suppose u is some risk measure. Then for a certain minimal expected portfolio re-

turn l, theu-efficient portfolio is obtained from the solution of the following problem:

minx2X uðxT~rrÞ
s:t: xT�rrP l:

ð1Þ

The curve that depicts the dependence of the optimal value of this parametric pro-
gram on the required minimal expected portfolio return l is the u-efficient frontier.
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This is a generalization of the classical concept of the mean–variance efficient frontier
to an arbitrary risk measure u. The choice of the risk measure generally depends on
the preferences of the decision maker or, in some cases, on regulatory specifications.
Matters of computational tractability also affect this choice.
Value-at-risk (VaR) is a percentile based metric that has become an industry stan-

dard for risk measurement purposes (Riskmetrics, 1996). It is usually defined as the
maximal allowable loss with a certain confidence level a � 100%. Here we define
VaR equivalently, in terms of returns, as the minimal portfolio return for a prespec-
ified confidence level a � 100%. Thus,

VaRðx; aÞ ¼ minfu : F ðx; uÞP 1� ag ¼ minfu : PfRðx;~rrÞ6 ugP 1� ag:
ð2Þ

VaR(x; a) is the ð1� aÞ � 100% percentile of the distribution of portfolio return.
Despite its popular use in risk measurement, VaR is not typically used in mathe-

matical models for optimal portfolio selection. While its calculation for a certain
portfolio x reveals that the portfolio return will be below VaR(x; a) with likelihood
ð1� aÞ � 100%, it provides no information on the extent of the distribution’s tail
which may be quite long; in such cases, the portfolio return may take substantially
lower values than VaR and result in severe losses. VaR lacks a theoretical property
for coherent risk measures (Artzner et al., 1999), namely, subadditivity. Moreover,
VaR is difficult to optimize. When the asset returns are specified in terms of scenarios
the VaR function is non-smooth and non-convex with respect to the portfolio posi-
tions x and exhibits multiple local extrema. Efficient algorithms for solving problems
with such objective functions are lacking.
CVaR is a related risk measure. It is usually defined as the conditional expectation

of losses exceeding VaR at a given confidence level (VaR is also defined as a percen-
tile of a loss function in this case). Here, we define CVaR equivalently as the condi-
tional expectation of portfolio returns below the VaR return. As introduced by
Rockafellar and Uryasev (2000), for continuous distributions, CVaR is defined as

CVaRðx; aÞ ¼ E½Rðx;~rrÞ jRðx;~rrÞ6VaRðx; aÞ�: ð3Þ

Hence, this definition of CVaR that is applicable to continuous distributions mea-
sures the expected value of the ð1� aÞ � 100% lowest returns for portfolio x (i.e., the
conditional expectation of portfolio returns below VaR(x; a)).
For discrete distributions, the formula in (3) gives a non-convex function in port-

folio positions x, and is not a subadditive risk measure. A definition of CVaR for
general distributions (including discrete distributions) has been introduced by Rock-
afellar and Uryasev (2002):

CVaRðx; aÞ ¼ 1

�
�
P

fs2X j Rðx;rsÞ6 zg ps
1� a

�
zþ 1

1� a

X
fs2X j Rðx;rsÞ6 zg

psRðx; rsÞ; ð4Þ

where z ¼ VaRðx; aÞ. As we consider discrete distributions (i.e., scenarios) in this
paper, we will utilize this alternative definition of CVaR. Note that CVaR as defined
for discrete distributions in (4) may not be equal to the conditional expectation of

1540 N. Topaloglou et al. / Journal of Banking & Finance 26 (2002) 1535–1561



portfolio returns below VaR(x; a). This definition of CVaR for discrete distributions
measures only approximately the conditional portfolio returns below the respective
VaR(x; a) value.
As indicated by Pflug (2001) and Rockafellar and Uryasev (2002), unlike VaR,

CVaR is a coherent risk measure in the sense of Artzner et al. (1999). CVaR quan-
tifies the expected portfolio return in a low percentile of the distribution. Hence, it
can be used to exercise some control on the lower tail of the return distribution
and thus, it is a suitable risk measure for skewed distributions. As it was shown
by Rockafellar and Uryasev (2002), when the uncertain asset returns are represented
by a discrete distribution CVaR can be optimized by linear programming (LP). We
follow their approach in the derivation below.
Let us define for every scenario s 2 X an auxiliary variable

yþs ¼ max½0; z� Rðx; rsÞ�;

which is equal to zero when the portfolio return for the particular scenario exceeds
VaR(x; a), and is equal to the return shortfall in relation to VaR when the portfolio
return is below VaR(x; a). Using these auxiliary variables we haveX

s2X

psyþs ¼
X

fs2X j Rðx;rsÞ6 zg
psyþs þ

X
fs2X j Rðx;rsÞ>zg

psyþs

¼
X

fs2X j Rðx;rsÞ6 zg
psðz� Rðx; rsÞÞ

¼ z
X

fs2X j Rðx;rsÞ6 zg
ps �

X
fs2X j Rðx;rsÞ6 zg

psRðx; rsÞ

¼ zð1� aÞ � 1

  
� a �

X
fs2X j Rðx;rsÞ6 zg

ps

!
zþ

X
fs2X j Rðx;rsÞ6 zg

psRðx; rsÞ
!
:

Dividing both sides of the equation by (1� a) and rearranging terms we get

z�
P

s2X psyþs
1� a

¼ 1

�
�
P

fs2X j Rðx;rsÞ6 zg ps
1� a

�
zþ 1

1� a

X
fs2X j Rðx;rsÞ6 zg

psRðx; rsÞ: ð5Þ

From Eqs. (4) and (5) we observe that the right hand side term of (5) is CVaR(x; a).
Therefore, the CVaR of portfolio return can be optimized using a linear program
with the left hand side expression of (5) as the objective function. The resulting LP
that trades off the optimal CVaR-measure of portfolio return at a prespecified
confidence level a � 100% against the expected portfolio return l is written as

max z� 1
1�a

PS
s¼1 psy

þ
s ;

s:t: x 2 X ; z 2 R;
xT�rrP l;
yþs P z� xTrs; s ¼ 1; 2; . . . ; S;
yþs P 0; s ¼ 1; 2; . . . ; S:

ð6Þ

Solving the parametric program (6) for different values of the expected portfolio
return l yields the CVAR-efficient frontier. For each expected return target l, the
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optimal value of program (6) is the corresponding CVaR(x; a). The value of the
free variable z at the optimal solution of (6) is the corresponding VaR(x; a)
value. A formal proof is provided in Rockafellar and Uryasev (2002, Theorem 14
and Corollary 15).
Efficient LP solvers for large-scale programs make possible the optimization of

CVaR in a variety of portfolio management problems. Program (6) optimizes the
CVaR risk measure for portfolio return and simultaneously determines the corre-
sponding VaR value (z). As defined in (4), in terms of portfolio return, CVaR is a
lower bound for VaR ði.e., CVaRðx; aÞ6VaRðx; aÞÞ. Hence, by maximizing CVaR
program (6) should be expected to yield larger values for VaR as well. As we illus-
trate in the empirical results of Section 4 the bound of CVaR on VaR is not neces-
sarily tight. Still, the extent to which optimizing CVaR also yields near-optimal
results from the VaR perspective in practical settings remains an unresolved empir-
ical question due to the computational complexity of optimizing VaR in such cases.
Computational issues aside, there is an ongoing debate among academics and

practitioners whether VaR or CVaR is the most appropriate metric for risk manage-
ment. VaR is the industry standard for risk measurement. On the other hand, CVaR
has achieved popularity as a suitable risk measure in the insurance industry and is
gradually gaining acceptance in the financial community. Its appeal lies not only
in its theoretical properties of coherence, but also in its ease of implementation in
portfolio optimization models and its ability to reduce the tail of the distribution,
thus exercising risk management control (Jobst and Zenios, 2001). Several recent
studies have applied CVaR for portfolio selection in various applications (for exam-
ple, Anderson et al., 2001; Rockafellar and Uryasev, 2000, 2002).
In the MAD framework of Konno and Yamazaki (1991) risk is defined as the

mean absolute deviation of portfolio return from its expected value:

MADðxÞ ¼ E½jRðx;~rrÞ � Rðx;�rrÞj�:

When the uncertain asset returns are represented in terms of a discrete scenario set
the MAD metric becomes:

MADðxÞ ¼
XS
s¼1

psjxTrs � xT�rrj:

In this case MAD can be optimized by the following linear program:

min
PS

s¼1 psys;
s:t: x 2 X ;

xT�rrP l;
ys P xTðrs � �rrÞ; s ¼ 1; 2; . . . ; S;
ys P xTð�rr� rsÞ; s ¼ 1; 2; . . . ; S;
ys P 0; s ¼ 1; 2; . . . ; S:

ð7Þ

The auxiliary variables ys are introduced to linearize the absolute value expression,
akin to the approach followed earlier to linearize the non-smooth function
max½0; z� Rðx; rsÞ� in the CVaR case. Again, by solving the parametric program (7)
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for various values of expected portfolio return l we can construct the MAD-efficient
frontier. MAD models have been applied to various portfolio optimization prob-
lems. (See, for example, Beltratti et al., in press; Kang and Zenios, 1993; Konno and
Yamazaki, 1991; Kouwenberg and Zenios, in press.)

3. Scenario generation

A central issue in any portfolio selection model is a depiction of the uncertain re-
turns of the investment alternatives. Usually this issue is addressed by defining either
the expected returns and the covariance matrix of the assets, or a set of possible re-
alizations (scenarios) of the random returns. In the latter case, the scenarios of plau-
sible asset returns can be generated by a model, can be obtained from experts’
opinions, or by bootstrapping observed past returns (see the review by Kouwenberg
and Zenios, in press).
We use past observations of asset returns and exchange rates in our scenario gen-

eration. However, as we demonstrate in Section 4, empirical evidence indicates that
these random variables do not follow a multinormal, or log-normal, distribution;
they, in fact, exhibit asymmetries. As the distribution of asset returns is unknown,
we make no assumption regarding either their joint or their marginal distributions.
We resort to a sampling procedure based on PCA. Thus we derive a relatively small
number of uncorrelated factors that capture to a great degree the overall variability
exhibited in past observations of the random variables. By combining samples from
empirical distributions of these uncorrelated random factors we can obtain scenarios
of asset returns and exchange rates through a simple transformation. In this manner,
we generate the required scenarios of exchange rates and domestic returns for the
assets with statistical properties similar to those of the historical observations. Our
scenario generation procedure is described next.

3.1. Principal component analysis

PCA is geared to reduce the dimensionality of a multivariate forecasting problem
and to overcome the difficulty posed by the correlation of the random variables,
while it preserves the covariation structure in the derived samples. This is achieved
with a linear transformation to a new set of variables (principal components, PCs)
which are uncorrelated and ordered so that a reduced set of them captures most
of the variability exhibited by all the original variables. The theory of PCA is covered
in Jollife (1986).
Let the relevant random variables be ~uu ¼ ð~uu1; ~uu2; . . . ; ~uumÞT. Their mean values are

�uu ¼ ð�uu1; �uu2; . . . ; �uumÞT and their covariance matrix is Q. In our case, the random vari-
ables are the domestic returns of the assets and the proportional changes of spot
exchange rates to the base currency over a certain time horizon. Consider a linear
transformation

~vvj ¼ cTj ~uu; j ¼ 1; 2; . . . ;m; ~vv ¼ C~uu; ð8Þ
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where C is an (m� m) matrix with rows cTj . The mean of random variable ~vvj is
�vvj ¼ cTj �uu, while its variance is given by

r2j ¼ varðcTj ~uuÞ ¼ cTj Qcj: ð9Þ

Similarly, the covariance rij of the random variables ~vvi, ~vvj is given by

rij ¼ covarðcTi ~uu; cTj ~uuÞ ¼ cTi Qcj:

The aim is to derive random variables ~vv which are uncorrelated. We want rij ¼ 0, for
i 6¼ j; thus, ci, cj must be Q-orthogonal. The eigenvectors of the covariance matrix Q
satisfy the orthogonality requirement. Therefore, the coefficient vectors cTj in (8) are
the eigenvectors from the normalized solutions of the eigenproblems

Qcj ¼ kjcj; j ¼ 1; 2; . . . ;m; ð10Þ

where kj is the jth eigenvalue of Q. The resulting PCs ~vv obtained by (8) are uncor-
related. In view of (9) and (10) the variance of ~vvj is r2j ¼ cTj Qcj ¼ kj; the last equation
follows from the normalization of the eigenvectors (i.e., cTj cj ¼ 1, j ¼ 1; 2; . . . ;m).
Additionally, we want to capture as much of the variability in the original random

variables ~uu as possible with few principal components. The explanatory power of
each PC is associated with its variance. Consequently, the PCs ~vvj are sorted in de-
scending order of variance (eigenvalue kj). A measure of the original variables’ vari-
ability explained by the set of first k PCs (k < m) is given by the ratio

Pk
j¼1 kj=Pm

j¼1 kj. Hence, the degree of variability in the original variables captured by a
retained set of the first k PCs is controlled by selecting k ¼ minfj:

Pj
j¼1 kj=Pm

j¼1 kj P dg; d � 1 is a desired accuracy level.
Once we determine the set of PCs to retain alternative sampling techniques can be

applied. If the initial random variables ~uu follow a multinormal distribution then the
PCs, ~vv, will be univariate normal with the parameters indicated above. If one as-
sumes that the PCs have approximately normal distributions then random samples
can be drawn independently from the assumed distribution of each PC and can be
combined to construct a set of scenarios for the PCs. Applying the inverse transfor-
mation of (8) on each PC scenario yields a corresponding scenario for the initial ran-
dom variables. A scenario us for the initial random variables ~uu is typically computed
by

us ¼ C�1
k vks ; ð11Þ

where C�1
k is the matrix of the first k columns of C�1, and vks denotes the vector of

values for the k retained PCs under scenario s. So, in (11) only the subset of retained
PCs is used, while the remaining PCs are ignored.

3.2. Sampling procedure

We make no distributional assumptions, as empirical evidence indicates that the
random variables we consider in this study cannot be well approximated by normal
distributions. Instead, we devise an alternative empirical sampling procedure. We
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substitute the values of past observations of the random variables ~uu in the definition
of PCs (Eq. (8)) and obtain corresponding values for the PCs; these are termed prin-
cipal component scores and reflect the historical implied values of the PCs. We as-
sume that the distribution of each PC is completely described by its historical
scores; hence, an empirical distribution is constructed for each PC. We sample from
the empirical distribution of each retained PC and combine these samples to generate
representative joint scenarios vks of the PCs, which can then be applied in (11) to ob-
tain corresponding scenarios us for the random variables ~uu. When a sufficient number
of PCs is retained and representative samples per PC are taken, the resulting scenario
set for ~uu has very similar statistical characteristics with those of the historical obser-
vations of these random variables.
Because only a small number of samples per PC can be afforded – so as to limit

the size of the joint scenario set for computational tractability – we do not sample
randomly the PC values. Instead, we obtain representative sample sets of small size.
The procedure works as follows. First, we determine for each PC the minimum, the
maximum, and the mean value from its principal component scores. For the jth PC
let us denote these values as vminj , vmaxj and �vvj, respectively. We specify for each of the
retained PCs a required number of samples; say that for the jth PC this number is nj.
Next, for each of the retained PCs we divide the range [vminj , �vvj] into nj/2 intervals of
equal width; similarly, we partition the range [�vvj, vmaxj ] into nj/2 equal segments. In
both cases the positioning of the segments starts from the extreme points vminj and
vmaxj , respectively, and proceeds towards the mean. We assign to the midpoint of each
of the nj segments the entire probability mass associated with its respective interval,
as determined from the empirical distribution of the principal component scores.
Note that when nj is even, the mean value �vvj of the PC is at the boundary of the
two adjacent intervals in the middle of the distribution. When nj is odd, �vvj lies in
the middle interval which, in this case, is composed of two subintervals, of poten-
tially unequal width.
Each scenario of PC values, vks , is constructed from a specific combination of sam-

ples from the k retained PCs. As the PCs are independent, the probability of a
scenario is simply the product of the marginal probabilities of its constituent PC
samples. The total number of scenarios is S ¼

Qk
j¼1 nj, arising from all possible com-

binations of PC samples.
This sampling procedure has some clear advantages. The number of samples per

PC can be directly controlled. We take more samples for the first PCs that have high-
er explanatory power and reduce the number of samples for subsequent PCs. The
differential partitioning scheme of the PC’s empirical distributions aims at a more ef-
fective approximation of potentially skewed distributions; note also that the samples
for each PC are not equiprobable. With a small number of samples we are able to
obtain a representative approximation of each PC’s distribution.
Another novelty in our scenario generation procedure is that we do not com-

pletely ignore the PCs with low variance from which we do not sample. Instead of
(11), we compute the corresponding scenario us for the initial random variables by

us ¼ C�1
k vks þ C�1

m�k�vv
m�k: ð12Þ
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C�1
k is again the matrix of the first k columns of C�1 that correspond to the retained

PCs, while C�1
m�k is the matrix of the remaining (m� k) columns of C�1. Similarly, vks

denotes the values of the k retained PCs in scenario s, while �vvm�k denotes the mean
values of the remaining (m� k) PCs, as computed from their historical scores. The
second term in the right hand side of (12) is a constant. However, we have found that
its inclusion in the generation of the scenarios us yields an estimate of the mean in the
resulting scenario set (i.e.,

PS
s¼1 psus) that approximates more closely the mean ob-

tained directly from historical observations.
Through empirical tests we validated that our selective sampling procedure leads

to superior approximations of the statistical properties of historical data sets for
variables ~uu in comparison to random sampling. In turn, as we illustrate in Section
4, scenario sets generated with this sampling procedure lead to more stable and
reliable identification of risk–return efficient frontiers in contrast to random
samples.
Ideally one wishes to associate some economic interpretation with the PCs, such

as the aggregate effect of identifiable economic factors on individual market vari-
ables. However, identifying an economic interpretation for the PCs is not always
possible. Here we employ PCs only to reduce the dimensionality of the random vari-
ables so as to facilitate the scenario generation procedure, without attempting to de-
duct economic interpretations.

3.3. Hedged and unhedged asset returns

This study considers an asset allocation problem concerned with hedged and un-
hedged investments in stock and bond indices denominated in multiple currencies.
The observable market data are the asset values (index levels) and the currency ex-
change rates, both spot and forward. From past observations of the index levels we
compute domestic returns for the indices over specific time intervals; in this study we
use monthly time periods. So, the monthly returns of the indices, expressed in their
respective domestic terms, and the monthly proportional changes in the spot ex-
change rates of the foreign currencies to a base currency, are the relevant random
variables. These constitute the random vector ~uu in the earlier discussion of the
PCA approach. Applying PCA on historical values of these variables we obtain sce-
narios for the following quantities:

rsid : estimated monthly return for asset i, in domestic terms, under scenario s,
esi : estimated spot exchange rate of the denomination currency of asset i to the base

currency at the end of the monthly holding period under scenario s.

At any point in time we also know:

ei : the currently quoted spot exchange rate of the denomination currency of asset i
to the base currency,

fi : the currently quoted one-month forward exchange rate of the denomination cur-
rency of asset i to the base currency.
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Using these data we compute the monthly return of an unhedged position in asset
i, in terms of the base currency, for each scenario s 2 X as follows:

rsiu ¼
ei
esi
ð1þ rsidÞ � 1: ð13Þ

This computation takes into account the equivalent foreign value of a base currency
transfer at the current spot exchange rate ei, the growth factor (1þ rsid) of the in-
vestment in the foreign asset, and the conversion of the final proceeds back to the
base currency at the end of the holding period using the spot exchange rate esi ap-
plicable at that time. Similarly, the monthly return of a hedged position in asset i,
in base-currency terms, for each scenario s 2 X is computed by

rsih ¼
ei
fi
ð1þ rsidÞ � 1: ð14Þ

The difference in (14) is that the final proceeds from a foreign investment i are
converted back to the base currency using the known forward exchange rate fi. The
scenarios of hedged and unhedged returns are fed as inputs to the optimization
models discussed in Section 2.
Here we assume that the total proceeds at the end of the holding period from an

allocation in a ‘‘completely hedged’’ foreign investment, which are uncertain (sce-
nario dependent), can be converted back to the base currency with the known for-
ward exchange rate fi. In fact, a scenario-invariant amount (say the expected
value of such proceeds) should be specified in a forward exchange contract, while
the residual amounts from the scenario dependent proceeds are converted back
with the spot exchange rates esi prevailing at the end of the period. To accurately cap-
ture the value of variable forward transfers of foreign currency to the base currency
we could resort to the use of quantos, but that would complicate the model. The sim-
plifying approximation we use here is rather commonplace in the literature. As dis-
cussed in Eun and Resnick (1988) the error from this approximation should be very
small, especially if we assume that forward exchange rates are a fair estimate of the
future spot exchange rates.
Modeling extensions to handle accurately the forward exchange contracts are pos-

sible with the use of more advanced optimization models. In a companion paper
(Topaloglou et al., 2002) we develop stochastic programs to capture decision dyna-
mics and we generalize the models so as to account for transaction costs in a multi-
period portfolio management setting.

3.4. Bayes–Stein estimation corrections

As the PCA procedure is calibrated based on a limited number of recent market
observations, the statistical characteristics of a scenario set carry a residual estima-
tion risk. Particularly, as indicated by Jorion (1985) and Eun and Resnick (1988), the
mean-return vector of international assets exhibits intertemporal instability, while
the variance–covariance matrix of international asset returns demonstrates greater
stability through time. Thus, the expected-return vector is more prone to estimation
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error. The mean-return vector has a major influence on the results of portfolio op-
timization models and, consequently, its accurate estimation is of primary impor-
tance. The Bayes–Stein approach for determining the expected asset returns aims
to mitigate the effects of estimation risk. It yields a uniform improvement on the clas-
sical sample mean as it relies on a more general estimation model. The approach was
formalized by Jorion (1985, 1986) (see also Eun and Resnick, 1988).
A revised estimate r̂r for the mean-return vector is computed from

r̂r ¼ ð1� #Þ�qq þ #1q0; ð15Þ
where �qq is the sample mean-return vector, determined from historical observations of
asset returns, q0 denotes the mean return of the minimum-variance portfolio based
on the same historical observations, 1 is the vector of ones, and # represents the
estimated shrinkage factor for shrinking the elements of �qq toward q0. The shrinkage
parameter is estimated by

# ¼ ðN þ 2ÞðT � 1Þ
ðN þ 2ÞðT � 1Þ þ ð�qq � q01Þ

TTV�1ðT � N � 2Þð�qq � q01Þ
; ð16Þ

where T is the length of the time series of sample observations, N is the number of
random variables (i.e., hedged and unhedged asset returns), and V is their sample
variance–covariance matrix computed on the basis of the historical observations.
In order to attain the revised mean-return estimate r̂r of Eq. (15) the asset returns

under each scenario s 2 X must be modified by adding to their initial values rs the
correction term (̂rr� �rr). This results in an update of the scenarios of returns for
the unhedged as well as the hedged asset positions.
We apply the Bayes–Stein procedure in all subsequent experiments to revise the

values of asset returns in the postulated scenarios before we solve the portfolio op-
timization models. We first solve the minimum-variance problem – calibrated on the
basis of market observations over a prespecified historical period – to determine the
shrinkage target return q0. We then apply Eqs. (15) and (16) to determine the revised
estimate of the mean-return vector on the basis of which we update the values of as-
set returns under all scenarios. We then proceed to solve the portfolio optimization
model using the revised scenarios.

4. Empirical analysis

4.1. Data sources

We consider portfolios composed of positions in stock indices and bond indices of
short-term (1–3 years) and long-term (7–10 years) maturity ranges in the United
States (US), United Kingdom (UK), Germany (GR) and Japan (JPN). The follow-
ing investment instruments are considered:

USS: US stock index,
UKS: UK stock index,
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GRS: German stock index,
JPS: Japanese stock index,
US1: US government bond index (1–3 years maturity),
US7: US government bond index (7–10 years maturity),
UK1: UK government bond index (1–3 years maturity),
UK7: UK government bond index (7–10 years maturity),
GR1: German government bond index (1–3 years maturity),
GR7: German government bond index (7–10 years maturity),
JP1: Japanese government bond index (1–3 years maturity),
JP7: Japanese government bond index (7–10 years maturity).

The values of the stock indices were obtained from the Morgan Stanley Capital
International database. The values of the bond indices and the exchange rates were
obtained from Datastream. The collected time series involve monthly data for the
period from April 1988 through May 2001.

4.2. Statistical characteristics of historical data

First we analyze the statistical characteristics of the data covering the period 01/
1990–08/2000 that were used in static tests for the determination of risk–return effi-
cient frontiers on September 2000. As we can see from Table 1, both the domestic
returns of the indices and the proportional changes of exchange rates exhibit skewed
distributions; they also exhibit considerable variance in comparison to their mean.

Table 1

Statistical characteristics of historical monthly data for domestic returns of assets and proportional

changes of spot exchange rates over the period 01/1990–08/2000

Asset class Mean (%) Std. dev. (%) Skewness Kurtosis Jarque–Bera statistic

Statistical characteristics of monthly domestic returns of assets

USS 1.519 3.900 �0.465 4.271 11.769

UKS 1.164 4.166 �0.233 3.285 1.391

GRS 1.213 5.773 �0.511 4.503 15.738

JPS �0.133 6.336 0.022 3.609 1.546

US1 0.537 0.473 �0.144 2.801 0.727

US7 0.688 1.646 �0.047 3.276 0.299

UK1 0.723 0.710 1.330 7.209 121.156

UK7 0.913 1.932 0.108 3.482 1.157

GR1 0.537 0.458 0.655 5.319 34.052

GR7 0.670 1.390 �0.863 4.482 25.421

JP1 0.327 0.522 0.492 4.147 10.891

JP7 0.608 1.731 �0.514 5.149 27.039

Statistical characteristics of monthly proportional spot exchange rate changes

Exchange rate Mean Std. dev. Skewness Kurtosis Jarque–Bera statistic

US to UK �0.074% 0.081% �1.084 6.790 189.330

US to GR �0.167% 0.088% �0.398 3.908 18.842

US to JP 0.303% 0.133% 1.123 6.904 35.966
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Jarque–Bera tests on these data indicated that normality and log-normality hypoth-
eses cannot be accepted for the majority of them. 1 This clearly influenced our choice
of the scenario generation procedure; it was also a primary motivation for our deci-
sion to consider the CVaR risk metric that is suitable for skewed distributions. Even
though the skewness and kurtosis values approach somewhat those of the normal
distribution when the asset returns are expressed in terms of the base currency, still
the normality hypothesis does not hold.
We applied PCA using the 128 monthly observations over the period 01/1990–08/

2000. We retained seven PCs that explain about 97% of the total variability. We took
4, 4, 4, 3, 3, 3, 3 samples, respectively, for the retained PCs for a total of 5184 sce-
narios. Using this scenario set we considered the asset allocation problem in the be-
ginning of September 2000. We generated the efficient risk–return frontiers with the
CVaR and the MAD models for different combinations of the investment opportu-
nity set: US assets only, all assets without hedging, all assets with complete hedging,
and all assets with selective hedging. Based on the results of these tests we are able to
address several questions relating to the management of international portfolios.

4.3. Investigation issues

4.3.1. International diversification benefits
We examine the effects of international diversification from the perspective of

a US investor. Fig. 1 contrasts the efficient frontiers of portfolios composed of US
assets only against those of internationally diversified portfolios. We observe that
international diversification improves the risk–return profiles of the portfolios
regardless of the risk metric and regardless of whether hedging is employed or
not, although the selective hedging strategy clearly exhibits the best performance.
The risk–return efficient frontiers of international portfolios clearly dominate the
efficient frontiers of portfolios composed solely of US assets. The same behavior is
observed whether we use the CVaR or the MAD risk metric. The benefits of inter-
national diversification are verified through backtests discussed later in this section.

4.3.2. Appropriateness of hedging strategies
Fig. 1 depicts efficient frontiers of international stock and bond portfolios on Sep-

tember 2000 constructed with the CVAR and MAD models, respectively, using three
alternative hedging policies (no-, complete- and selective-hedging). Both models in-
dicate that at the low-risk end of the spectrum completely hedged portfolios are pref-
erable to unhedged portfolios as they yield dominant risk–return profiles over the
overlapping range of their efficient frontiers. However, completely hedged portfolios
can reach only a limited range of expected return. The efficient frontiers of the no-
hedging strategy extend into a range of higher expected returns (and risk) than are

1 The Jarque–Bera statistic has a v2 distribution with two degrees of freedom. Its critical values at the
5% and 1% confidence levels are 5.991 and 9.210, respectively. Therefore, the normality hypothesis is

rejected when the Jarque–Bera statistic has a higher value than the corresponding critical value at the

respective confidence level.
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attainable by complete hedging. Hence, more aggressive return targets are reached
only with riskier unhedged investments; increasing target returns necessitate increas-
ing exposure to currency risk.
In these static tests, selective hedging is the superior strategy as it leads to efficient

frontiers that envelope those of the other two hedging strategies. This observation
obviously holds for both optimization models as the selective hedging strategy en-
compasses both of the other two hedging alternatives. We note that in these tests
both the CVaR and the MAD models lead to consistent assessments regarding the
order of preference of the alternative hedging strategies at any level of target return.
Fig. 2 illustrates the compositions of several selectively hedged international port-

folios corresponding to different points of the CVaR-efficient frontier (for confidence
level a ¼ 95%) on September 2000. The postfix u or h is used on the asset symbols
listed in the legend of the graph to denote unhedged, respectively hedged, positions
in the corresponding assets. In the risk neutral case the expected return of the

Fig. 1. Efficient frontiers of CVaR and MAD optimization models for US and internationally diversified

portfolios of stocks and bonds (with alternative hedging strategies).
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portfolio is maximized without any consideration on risk. Hence, the entire budget is
allocated to the asset with the highest expected return (in this case the unhedged po-
sition in the German stock index). In the minimum risk case, the risk measure is op-
timized without any constraint on the target expected return. The minimum risk
portfolio involves almost exclusively a hedged allocation in the short-term Japanese
bond index (JP1 h). Greater levels of diversification are exhibited in efficient portfo-
lios with intermediate levels of expected return (and risk) which include both hedged
and unhedged positions in multiple international assets. Note that the hedge ratio
varies across countries (e.g., Japanese assets are hedged while German assets are un-
hedged). The hedged proportions also vary between points on the efficient frontier
that correspond to different levels of expected return and risk. This points to the ad-
vantageous flexibility of the selective hedging approach in comparison to the more
restrictive unitary and partial hedging policies.

4.3.3. Effectiveness of scenario generation and model stability
We carried out several tests to validate the effectiveness of our scenario generation

procedure and the stability of the models’ results. Using the PCA results from the
data of the period 01/1990–08/2000, and following our selective sampling approach,
we generated a larger set of 33,075 scenarios by taking 7, 7, 5, 5, 3, 3, 3 samples from
the seven retained PCs, respectively. We also generated sets of 5184 scenarios by
taking random samples from the PCs. In each of these scenario sets we took 4, 4,
4, 3, 3, 3, 3 samples from the corresponding PCs, similar to the scenario set that
we had constructed initially. However, in these sets we took random samples rather
than employing our selective sampling procedure. We produced the efficient frontiers
by employing each of these scenario sets in the two optimization models.

Fig. 2. Compositions of selectively hedged international portfolios from the CVaR-efficient frontier of

September 2000 (at confidence level a ¼ 95%).
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The efficient frontiers for the corresponding scenario sets are plotted in the upper
graphs of Figs. 3 and 4 for the CVaR and MAD models, respectively. We note that
the efficient frontiers for the 5184-scenario set and the 33,075-scenario set that were
generated with the selective sampling procedure are very close for both risk metrics.
This illustrates the consistency of the selective sampling approach. We also observe
that the random scenario sets imply dominant efficient frontiers in both models.
This, however, is misleading as we demonstrate in the middle graphs of Figs. 3
and 4. We took the ‘‘efficient’’ portfolios obtained with the various scenario sets
and simulated their performance over the large set of 33,075 scenarios which played
the role of an out-of-sample scenario set. For each portfolio we determined the ex-
pected return and risk measure (95%-CVaR or MAD) over the out-of-sample simu-
lation. The results of these simulations are plotted in the middle graphs of Figs. 3
and 4 for the CVaR and the MAD metric, respectively. Again, we observe that
the simulated frontiers of the initial 5184-scenario set practically retrace the efficient
(optimal) frontiers of the 33,075-scenario set in both the CVaR and the MAD mod-
els. This is a strong indication of the effectiveness and consistency of our selective
sampling procedure, as the resulting frontiers remain quite stable. On the contrary,
the simulated frontiers for the random scenario sets are far from efficient with respect
to the out-of-sample scenarios.
Finally, we generated 18 different scenario sets ranging in size from 25,000 to

60,000 scenarios. These scenario sets were produced on the basis of the selective
sampling procedure by varying the number of samples for each PC. The optimal
portfolios of the 33,075-scenario models were then simulated on each of these out-
of-sample scenario sets and their corresponding risk–return characteristics were
recorded. The results of these simulations are depicted in the bottom graphs of Figs.
3 and 4. Again we observe that the resulting risk–return curves of the simulations
remain rather stable; they remain within a narrow band around the efficient frontiers
optimized on the 33,075-scenario set, both in the CVaR and in the MAD model. The
width of this band collapses at the minimum risk end of the frontiers, indicating that
the minimum risk portfolio is practically invariant with respect to sample. All out-
of-sample tests indicate that the selective sampling procedure is effective and the re-
sults of the models are stable.

4.3.4. Tightness of CVaR bound on VaR
We now examine empirically the relation between CVaR and VaR. In Fig. 5 we

plot the efficient frontiers for the CVaR-optimal solutions at two different confidence
levels, a ¼ 95% and 99%. In the same figure we also plot the corresponding VaR es-
timates for these solutions, denoted as VaR(CVaR*); these curves depict the VaR
values of the CVaR-optimized portfolios at the respective confidence levels. As ex-
pected, CVaR provides a lower bound for VaR (recall that they are both expressed
in terms of portfolio return) at the corresponding confidence level a. However, note
that this bound is not tight, although the difference between CVaR and VaR is re-
duced at increasing confidence levels. It should be kept in mind that the frontiers
of VaR against expected return for the CVaR-optimal portfolios need not be efficient
from the VaR perspective; the exact VaR-efficient frontiers are not available.
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Fig. 3. Risk–return frontiers of portfolios generated with the CVaR model for several in-sample and out-

of-sample test cases.
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Similar results are reported by Jobst and Zenios (2001) for portfolios of corporate
bonds. In fact, the differences of their CVaR-efficient frontiers from the VaR-
(CVaR*) curves are more pronounced because the returns of corporate-bond

Fig. 4. Risk–return frontiers of portfolios generated with the MAD model for several in-sample and out-

of-sample test cases.
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portfolios are more skewed (due to credit and default risk) than those of interna-
tional indices and foreign exchange rates.

4.3.5. Dynamic tests: Comparative performance of risk management metrics
So far we have observed that in the static tests the CVaR and the MAD models

exhibit practically the same behavior. For example, in the asset allocation problem
of September 2000 they rank the same way, in order of relative preference, the alter-
native hedging strategies at all levels of target return. Moreover, the two models yield
almost indistinguishable frontiers for the asset selection problem of September 2000.
That is, the frontier of CVaR for the MAD-optimized portfolios is almost indistin-
guishable from the CVaR-efficient frontier for the same scenario set. Conversely, the
frontier of MAD for the CVaR-optimized portfolios is almost identical to the MAD-
efficient frontier. The results of the two models also exhibit quite similar stability in
out-of-sample simulations. However, a definitive comparison between the CVaR and
the MAD models cannot be reliably made based on static tests alone.
Thus, we resort to backtesting experiments on a rolling horizon basis for a more

substantive comparison between the two models. The rolling horizon simulations
cover the 37-month period from 04/1998 to 04/2001. At each month, we use the his-
torical data from the previous 10 years (120 monthly observations) to calibrate the
PCA procedure and to generate 5184 scenarios by the selective sampling procedure
described in Sections 3.1–3.3. The asset returns of these scenarios are updated ac-
cording to the Bayes–Stein approach of Section 3.4. We then solve the resulting op-
timization model and record the optimal portfolio. The clock is advanced and the
realized return of the portfolio is determined from the actual market values of the

Fig. 5. Comparison of CVaR*-optimal and VaR frontiers at confidence levels a ¼ 95% and 99%.
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assets and the observed exchange rates. The same procedure is then repeated for the
next time period and the ex post realized returns are compounded. We ran such
backtesting experiments for both the CVaR and the MAD models using various val-
ues of target monthly return l.
The results for the CVaR model are depicted in Fig. 6. The minimum risk port-

folio (l ¼ 0:0%) attains a stable growth path representing a 0.6% geometric mean
of monthly returns (7.2% annual) over the test period. Increasing ex post returns
are achieved with increasing levels of target return l, obviously at the expense of in-
creasing volatility. The MAD model generates growth paths with similar patterns to
those of the CVaR model. However, as illustrated in Fig. 7, its ex post performance
is somewhat less successful in comparison to that of the CVaR model. The CVaR
model consistently outperforms the MAD model, especially for the low risk strate-
gies. As the value of the target return parameter l is increased the two models behave
more similarly. This is due to the fact that as l increases, meeting the requested tar-
get return level becomes the governing factor over the minimization of the respective
risk metric.
The superiority of the CVaR model over the MADmodel is evident in Fig. 8. This

figure depicts the geometric mean against the standard deviation of ex post realized
monthly returns over the 37-month test period for all simulation experiments.
Clearly, the CVaR model outperforms the MAD model at all levels of target return
l by generating steeper and more stable growth paths (i.e., higher returns with lower
volatility). The difference in the performance of the two models is gradually reduced
with increasing values of the parameter l. On the same graph we also plot the ex
post performance of individual assets over the same test period. Both optimization

Fig. 6. Ex post realized returns with the selective hedging CVaR model (at confidence level a ¼ 95%) over

the period 04/1998–04/2001 for different values of target monthly return (l).
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models outperform all individual assets, with the CVaR model being the most suc-
cessful in realizing effective growth performance while limiting risk (as evidenced
by the volatility levels).

Fig. 8. Comparative ex post performance – in terms of the realized geometric mean and standard devia-

tion of monthly returns – of individual assets, and international portfolios selected by the CVaR and

MAD models over the period 04/1998–04/2001.

Fig. 7. Ex post realized return paths with the selective hedging CVaR and MAD models over the period

04/1998–04/2001 (for target monthly return values l ¼ 0:0% and 0.8%).
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Finally, we revisit the question regarding the potential of international diversifica-
tion. We conducted backtesting experiments with the CVaR model (at confidence
level a ¼ 95%) allowing portfolios of US assets only and contrasted the results with
corresponding experiments that allow selectively hedged international portfolios.
The results are summarized in Fig. 9 for the minimum risk case (i.e., l ¼ 0:0%).
While the selected US and international portfolios perform similarly for the first year
of the simulation, after that the international portfolios clearly outperform the US
portfolios.

5. Conclusions

We developed an integrated simulation and optimization framework for interna-
tional asset allocation and we demonstrated its effectiveness as a decision support
tool through a series of empirical tests. This framework involves both a scenario gen-
eration approach for depicting the uncertainty in asset returns and exchange rates,
and suitable portfolio optimization models for risk management.
The scenario generation procedure employs a selective sampling approach with

PCA to capture the joint variation of domestic asset returns and exchange rates
(i.e., market and currency risk). It is combined with the Bayes–Stein estimation
correction to counter estimation risk for the mean returns. The consistency and
effectiveness of the scenario generation method, and its superiority over random
sampling, were established by means of out-of-sample simulations. For sufficiently

Fig. 9. Ex post realized return paths for US and selectively hedged international portfolios of stocks and

bonds obtained with the CVaR model (with parameters a ¼ 95% and l ¼ 0:0%) over the backtest period

04/1998–04/2001.
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large scenario sets the efficient portfolios at any level of target return and, conse-
quently, the risk–return efficient frontiers, remain quite stable with respect to sample.
The risk management optimization model uses the CVaR metric that is suitable

for asymmetric return distributions. This choice is consistent with the asymmetric
distributions exhibited in the data of multicurrency stock and bond indices. Our
model internalizes selective hedging decisions within the portfolio selection context
to yield flexible investment recommendations. We verified empirically earlier findings
regarding the value of the selective hedging strategy and we demonstrated the ben-
efits of international diversification in improving the risk–return performance of in-
vestment portfolios.
We compared the CVaR model with the MAD model both in static tests as well as

in dynamic backtesting experiments. We observe that in static tests both models be-
have quite similarly; they exhibit similar stability with respect to scenario samples
and they trace almost indistinguishable risk–return profiles. However, when the
models were repeatedly applied over successive time periods in the context of back-
testing experiments with real market data, the CVaR model clearly outperformed the
MAD model especially for low-risk portfolios. In the backtesting simulations the
CVaR model produced more effective ex post realized return paths, both in terms
of higher growth rates and lower volatility.
The next step in our research is the extension of the optimization models in a mul-

tiperiod decision framework. This involves the development and implementation of
stochastic programming models that allow portfolio rebalancing decisions within a
longer time horizon. The stochastic programming models capture decision dynamics,
include an operational treatment of hedging decisions by means of implementable
forward exhange contracts, and they account for the effect of transaction costs.
The development of these models and empirical findings are reported in Topaloglou
et al. (2002).
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