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Abstract This paper introduces the family of CVaR norms in R
n , based on the CVaR

concept. The CVaR norm is defined in two variations: scaled and non-scaled. The
well-known L1 and L∞ norms are limiting cases of the new family of norms. The
D-norm, used in robust optimization, is equivalent to the non-scaled CVaR norm.
We present two relatively simple definitions of the CVaR norm: (i) as the average or
the sum of some percentage of largest absolute values of components of vector; (ii)
as an optimal solution of a CVaR minimization problem suggested by Rockafellar
and Uryasev. CVaR norms are piece-wise linear functions on R

n and can be used
in various applications where the Euclidean norm is typically used. To illustrate, in
the computational experiments we consider the problem of projecting a point onto a
polyhedral set. The CVaR norm allows formulating this problem as a convex or linear
program for any level of conservativeness.

Keywords CVaR norm · L p norm · Projection

1 Introduction

The notion of norm is used in various mathematical applications. The great variety
of norms arises from the existence of various applications, requiring the choice of
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a specific norm. A well-known example of norms in R
n is the family of L p norms,

with popular cases p = 1, 2,∞. Other values of p, especially p > 2, are rarely used
because of the computational effort involving the calculation of norm values.

This paper introduces the family of CVaR norms in R
n space, which is based on

the notion of CVaR, thoroughly discussed in [7,8]. The CVaR norm has a parameter
α ∈ [0, 1] controlling the conservativeness of the norm. We consider scaled and non-
scaled CVaR norms, different by a multiplying coefficient, and denoted by C S

α and Cα ,
respectively. Despite this simple difference between the two families of CVaR norms,
they exhibit different properties with respect to parameter α. The non-scaled CVaR
norm spans the L1 and L∞ norms as the parameter α varies from 0 to 1. For every
value of α, optimization involving the CVaR norm is a convex problem, which can be
reduced to linear programming. In contrast, optimization of an L p norm, especially
with a large value p, can not easily be done using standard optimization solvers. For
instance, the numerical experiments in Sect. 4 address the problem of projection of a
point onto a polyhedral set using the CVaR norm, and show that the solution times of
this problem do not significantly depend on the value of α.

This paper shows that the CVaR norm is equivalent to the D-norm introduced in
[1] for robust optimization [1,2]. Robust optimization is a methodology dealing with
optimization problems where problem parameters are not known exactly. For instance,
a robust counterpart of a linear problem is a problem where column vectors in the matrix
of constraints belong to some convex set. Various norms can be used to define this
convex set. The robust counterpart of a linear problem with the uncertainty set defined
by the D-norm is a linear problem [1]. While the D-norm is defined in combinatorial
terms as a maximum over some subset of indices, the equivalent CVaR norm has a
simple and intuitive definition that can be widely used in various mathematical and
engineering areas.

The motivation for the definition of CVaR norms comes from the concept of the
Fundamental Risk Quadrangle, developed in [9], which deals with stochastic random
variables and relates Risk, Deviation, Error and Regret. Whereas Risk provides a sin-
gle numerical surrogate for a random variable (usually evaluating large outcomes) and
Regret has a strong connection to the utility function of outcomes of a random vari-
able, Deviation and Error are used to assess the stochastic nature of a random value,
namely “nonconstancy” and “nonzeroness”. For example, in regression analysis, the
error, measured by the L2 norm (corresponding to the Mean-Based Risk Quadran-
gle [9]) leads to the well-known simple least-squares linear regression. In statistics,
the error, measured by the supremum of absolute difference between two cumulative
distribution functions, or L∞ (corresponding to the Range-Based Quadrangle), leads
to the Kolmogorov-Smirnov distance between probability distributions and the cor-
responding goodness of fit test. In the process of evaluating the distances between
random variables, we have observed that the CVaR of the absolute value of a random
variable can serve as another example of Error measure and generates a norm in the
space of random variables. However, discussion of CVaR norms in the stochastic case
is beyond the scope of this paper, since the goal here is to explain the concept in the
simplest deterministic R

n case.
The paper is organized as follows. Section 2 defines the family of scaled CVaR

norms and discusses its properties. Section 3 introduces the family of non-scaled
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CVaR norms. Section 4 considers a case study with the projection problem of a point
onto a polyhedron using the scaled CVaR norm. Section 5 summarizes our results.

2 The scaled CVaR norm

By definition, a norm on R
n is a function ρ : R

n → R that satisfies the following
properties:

1. ρ(λx) = |λ|x, ∀x ∈ R
n, ∀λ ∈ R.

2. ρ(x + y) ≤ ρ(x) + ρ(y), ∀x, y ∈ R
n .

3. ρ(x) = 0 ⇒ x = 0.

This section introduces the scaled CVaR norm C S
α on R

n space and establishes con-
nection to the scaled L S

p norm of vector x = (x1, . . . , xn) ∈ R
n , defined by

‖x‖S
p =

(
1

n

n∑
i=1

|x |p
i

) 1
p

, p ≥ 1.

The class of scaled L S
p norms includes the least conservative L S

1 norm (scaled “Man-
hattan” norm):

‖x‖S
1 = 1

n

n∑
i=1

|xi |,

and the most conservative L∞ norm:

‖x‖S∞ = max
i

|xi |. (1)

We will denote the scaled CVaR norm for the vector x = (x1, . . . , xn) by 〈〈x〉〉S
α , where

α is parameter, in the range 0 ≤ α ≤ 1. The following definition of C S
α is inspired by

the CVaR definition in Portfolio Safeguard Package [5].

Definition 1 Let us order absolute values of components of vector x ∈ R
n , as follows

|x(1)| ≤ |x(2)| ≤ · · · ≤ |x(n)|.
For α j = j

n , j = 0, . . . , n−1, the scaled CVaR norm 〈〈x〉〉S
α j

of vector x with parameter
α j equals:

〈〈x〉〉S
α j

= 1

n − j

n∑
i= j+1

|x(i)|. (2)

For α, such that α j < α < α j+1, j = 0, . . . , n − 2, the scaled CVaR norm 〈〈x〉〉S
α

equals the weighted average of 〈〈x〉〉S
α j

and 〈〈x〉〉S
α j+1

:

〈〈x〉〉S
α = μ〈〈x〉〉S

α j
+ (1 − μ)〈〈x〉〉S

α j+1
, (3)
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where

μ = (α j+1 − α)(1 − α j )

(α j+1 − α j )(1 − α)
.

For α, such that n−1
n < α ≤ 1,

〈〈x〉〉S
α = max

i
|xi |. (4)

The fact that Definition 1 defines a norm follows from Propositions 2.2 and 2.3. To
build some intuition about C S

α , we provide the following examples.

Example 1 Figure 1 compares unit disks (balls) for C S
α and L S

p norms in R
2 space.

A unit disk (ball) for a norm is a set of vectors with norm less or equal than 1,
i.e., U S

α = {x = (x1, x2) | 〈〈x〉〉S
α ≤ 1} for the scaled CVaR norm with parameter

α. The following values of parameter α are considered: 0, 0.1, 1 − 1√
2
, 0.4, 1. The

corresponding values of the parameter p of L S
p norm are obtained using transformation

p(α) = 1
(1−α)2 .

The following example illustrates the C S
α norm numerically.

Example 2 Let x ∈ R
5, x = (2, 1, 7, 10,−12). The vector of ordered absolute values

of components, (|x(1)|, |x(2)|, . . . , |x(5)|), equals (1, 2, 7, 10, 12). Then, the C S
α norm

equals

〈〈x〉〉S
0 = 1 + 2 + 7 + 10 + 12

5
= 6.4, for α = 0

5
= 0,

〈〈x〉〉S
0.2 = 2 + 7 + 10 + 12

4
= 7.75, for α = 1

5
= 0.2,

〈〈x〉〉S
0.4 = 7 + 10 + 12

3
∼= 9.67, for α = 2

5
= 0.4,

〈〈x〉〉S
0.6 = 10 + 12

2
= 11, for α = 3

5
= 0.6,

〈〈x〉〉S
0.8 = max

i
(|xi |) = 12, for α = 4

5
= 0.8.

For α = 0.05, which is between α0 = 0 and α1 = 0.2, 〈〈x〉〉S
0.05 equals the weighted

average of 〈〈x〉〉S
0 and 〈〈x〉〉S

0.2 ,

μ = 0.15 · 1

0.2 · 0.95
∼= 0.79,

〈〈x〉〉S
0.05 = μ〈〈x〉〉S

0 + (1 − μ)〈〈x〉〉S
0.2

∼= 0.79 · 6.4 + 0.21 · 7.75 ∼= 6.68.

For α > 0.8,

〈〈x〉〉S
α = 〈〈x〉〉S

0.8 = 12.
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Fig. 1 a Unit disks for C S
α in R

2 with α = 0, 0.1, 1− 1√
2
, 0.4, 1. A unit disk is a set of vectors x = (x1, x2)

in R
2, such that 〈〈x〉〉S

α ≤ 1. The scaled CVaR norm with α = 0 corresponds to the scaled L S
1 , and the scaled

CVaR norm with α ≥ 0.5 corresponds to L∞, according to (4). Observe that U S
1 ⊂ U S

0.4 ⊂ U S
1− 1√

2

⊂

U S
0.1 ⊂ U S

0 , which is a corollary of Proposition 2.1. b Unit disks for the L S
p norm in R

2 with parameter

p = 1, 1.23, 2, 2.78,∞ , where p values are obtained from α using transformation p(α) = 1
(1−α)2
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Fig. 2 The graph of C S
α for the vector x = (2, 1, 7, 10, −12). The graph of the L S

p norm ‖x‖S
p with

p(α) = 1
(1−α)2 is included for comparison purpose. Parameter p is set to make 〈〈x〉〉S

α and ‖x‖S
p visible on

the same scale. For instance, when α = 0.6, p(α) = 6.25 ; when α = 0.8, p(α) = 25. All levels p > 25
of the L S

p norm correspond to the most conservative parameter α = 1 of C S
α norm

Figure 2 compares C S
α and L S

p norms numerically. Parameter α of C S
α is in the range

0 ≤ α ≤ 1 and parameter p of L S
p is in the range 1 ≤ p ≤ ∞. We set parameter

p so that α = 0 corresponds to p = 1 and α = 1 corresponds to p = ∞ and both
norms can be presented on the same figure. We use the following mapping function,
p(α) = 1

(1−α)2 , even though it is not the only possible choice.
Below, we provide an alternative definition of the scaled CVaR norm. Let us denote

[t]+ = max(t, 0) . This alternative definition comes from the concept of CVaR for ran-
dom variables, discussed in [7,8]. The CVaR of a random variable X with confidence
level α is defined as follows:

CVaRα(X) = min
c

(
c + 1

1 − α
E[X − c]+

)
, (5)

where E(·) denotes the expectation of a random variable. If X is a discrete random
variable, distributed on {x1, . . . , xn}, such that the probability P(X = xi ) = pi , the
CVaR of X is expressed as follows:

CVaRα(X) = min
c

(
c + 1

1 − α

n∑
i=1

pi [xi − c]+
)

. (6)

The scaled CVaR norm of vector x = (x1, . . . , xn) defined by Definition 1, is the CVaR
of a random variable X , uniformly distributed on the set of outcomes {|x1|, . . . , |xn|},
i.e., the probability P(X = |xi |) = 1

n , if every outcome |xi | is unique. If some outcomes
coincide, say |xi | = |x j |, for some i �= j , then probability P(X = |xi |) = 2

n . Thus,
the following alternative definition of the C S

α norm is valid.

123



CVaR norm and applications in optimization

Definition 2 For x ∈ R
n , the scaled CVaR norm C S

α is defined as follows:

〈〈x〉〉S
α = min

c

(
c + 1

n(1 − α)

n∑
i=1

[|xi | − c]+
)

, for 0 ≤ α < 1, (7)

〈〈x〉〉S
1 = max

i
|xi |. (8)

We proceed as follows. First, we show that C S
α defined by (7), (8) is a nondecreasing

function of parameter α. Second, we prove that Definition 2 defines a norm. Then, we
prove that Definitions 1 and 2 are equivalent.

Proposition 2.1 For x ∈ R
n, 〈〈x〉〉S

α is a nondecreasing function of the parameter α,
i.e.,

〈〈x〉〉S
α1

≤ 〈〈x〉〉S
α2

, for 0 ≤ α1 ≤ α2 ≤ 1, x ∈ R
n .

Proof For α1 ≤ α2 < 1 ,

〈〈x〉〉S
α2

= min
c

(
c+ 1

n(1 − α2)

n∑
i=1

[|xi | − c]+
)

= min
c

(
c+ 1

n(1 − α1)

n∑
i=1

[|xi |−c]++
(

1

n(1−α2)
− 1

n(1 − α1)

) n∑
i=1

[|xi | − c]+
)

≥ min
c

(
c+ 1

n(1−α1)

n∑
i=1

[|xi |−c]+
)

+min
c

1

n

(
1

1−α2
− 1

1−α1

) n∑
i=1

[|xi |−c]+ .

Since 1
1−α2

− 1
1−α1

= 1−α1−1+α2
(1−α2)(1−α1)

= α2−α1
(1−α2)(1−α1)

≥ 0, then

minc
1
n

(
1

1−α2
− 1

1−α1

) ∑n
i=1 [|xi | − c]+ = 1

n

(
1

1−α2
− 1

1−α1

)
minc

∑n
i=1 [|xi | − c]+

= 0.

Therefore,

〈〈x〉〉S
α2

≥ min
c

(
c + 1

n(1 − α1)

n∑
i=1

[|xi | − c]+
)

= 〈〈x〉〉S
α1

.

For α1 < α2 = 1 ,

〈〈x〉〉S
α1

= min
c

(
c+ 1

n(1 − α1)

n∑
i=1

[|xi | − c]+
)

≤ |x(n)|+ 1

n(1 − α1)

n∑
i=1

[|xi | − |x(n)|
]+

= |x(n)| = 〈〈x〉〉S
1 = 〈〈x〉〉S

α2
.

Thus, for any α1, α2, 0 ≤ α1 ≤ α2 ≤ 1, we have 〈〈x〉〉S
α1

≤ 〈〈x〉〉S
α2

, which completes
the proof. ��
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Proposition 2.2 Definition 2 defines a norm, i.e., the following properties of a norm
are satisfied:

1. 〈〈λ · x〉〉S
α = |λ| · 〈〈x〉〉S

α, λ ∈ R, x ∈ R
n .

2. 〈〈x + y〉〉S
α ≤ 〈〈x〉〉S

α + 〈〈y〉〉S
α, x ∈ R

n, y ∈ R
n .

3. 〈〈x〉〉S
α = 0 ⇒ x = 0, x ∈ R

n .

Proof Property 1. If λ = 0, then 〈〈0 · x〉〉S
α = 0 = 0 · 〈〈x〉〉S

α . If λ �= 0 ,

〈〈λ · x〉〉S
α = min

c

(
c + 1

n(1 − α)

n∑
i=1

[|λ||xi | − c
]+)

= min
c

|λ|
(

c

|λ| + 1

n(1 − α)

n∑
i=1

[
|xi | − c

|λ|
]+)

= min
c

|λ|
(

c + 1

n(1 − α)

n∑
i=1

[|xi | − c
]+)

= |λ| · 〈〈x〉〉S
α.

Property 2. A similar property is proved for a more general case in [7, Theorem 2],
and in [4]. Here we provide the proof for this special case for the convenience of the
reader. The scaled CVaR norm of x equals:

〈〈x〉〉S
α = min

c

(
c + 1

n(1 − α)

n∑
i=1

[|xi | − c]+
)

= cx + 1

n(1 − α)

n∑
i=1

[|xi | − cx]+ ,

where cx denotes argminimum of c in expression (7). Similarly,

〈〈y〉〉S
α = min

c

(
c + 1

n(1 − α)

n∑
i=1

[|yi | − c]+
)

= cy + 1

n(1 − α)

n∑
i=1

[|yi | − cy
]+

.

Thus,

〈〈x + y〉〉S
α = min

c

(
c + 1

n(1 − α)

n∑
i=1

[|xi + yi | − c]+
)

(9)

≤ cx + cy + 1

n(1 − α)

n∑
i=1

[|xi + yi | − cx − cy
]+

.

Since [·]+ is a nondecreasing function, we can write

cx + cy + 1

n(1 − α)

n∑
i=1

[|xi + yi | − cx − cy
]+

≤ cx + cy + 1

n(1 − α)

n∑
i=1

[|xi | + |yi | − cx − cy
]+

. (10)
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The function [·]+ satisfies the inequality:

[a + b]+ ≤ [a]+ + [b]+, a, b ∈ R. (11)

Therefore, (10), (11) imply

cx + cy + 1

n(1 − α)

n∑
i=1

[|xi | + |yi | − cx − cy
]+ (12)

≤ cx + cy + 1

n(1 − α)

n∑
i=1

(
[|xi | − cx]+ + [|yi | − cy

]+)
(13)

= cx + 1

n(1 − α)

n∑
i=1

[|xi | − cx]+ + cy + 1

n(1 − α)

n∑
i=1

[|yi | − cy
]+

= 〈〈x〉〉S
α + 〈〈y〉〉S

α. (14)

Thus, 〈〈x + y〉〉S
α ≤ 〈〈x〉〉S

α + 〈〈y〉〉S
α , which completes the proof of Property 2.

Property 3. Since 〈〈x〉〉S
α = 0 and parameter α ≥ 0, then 〈〈x〉〉S

α ≥ 〈〈x〉〉S
0 by the

monotonicity property in Proposition 2.1. Thus

0 = 〈〈x〉〉S
α ≥ 〈〈x〉〉S

0 = 1

n

n∑
i=1

|xi | ≥ 0.

Consequently,
∑n

i=1 |xi | = 0, and xi = 0, i = 1, . . . , n. ��
Proposition 2.3 Definitions 1 and 2 are equivalent.

Proof Let us consider an α < 1 and corresponding α j , α j+1 , such that

α j = j

n
, j ∈ {0, . . . , n}, (15)

α j ≤ α < α j+1. (16)

Let us denote, f (c) = c + 1
n(1−α)

∑n
i=1 [|xi | − c]+. First, we show that |x( j+1)| ∈

argminc f (c), i.e.,

min
c

f (c) = |x( j+1)| + 1

n(1 − α)

n∑
i=1

[|xi | − |x( j+1)|
]+

.

The function f (c) is a convex function because it is a linear combination of convex
functions c and [|xi | − c]+ [6]. To show that |x( j+1)| ∈ argminc f (c), it is sufficient to
prove that zero belongs to the generalized gradient ∂ f (|x( j+1)|) of the convex function
f (·) at point |x( j+1)| ,

0 ∈ ∂ f
(|x( j+1)|

)
.
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Let us find ∂ f
(|x( j+1)|

)
,

∂ f
(|x( j+1)|

) = {1} + 1

n(1 − α)
∂

(
n∑

i=1

(
[|xi | − c]+

)) ∣∣∣∣
c=|x( j+1)|

= {1} + 1

n(1 − α)

n∑
i=1

∂
([|x(i)| − c

]+) ∣∣∣∣
c=|x( j+1)|

.

The generalized gradient of the function [−t]+ can be expressed as follows:

∂
[ − t

]+ =
⎧⎨
⎩

{0} , if t > 0 ,

[ − 1, 0] , if t = 0 ,

{−1} , otherwise.
(17)

If j = n − 1 , then

∂ f
(|x(n)|

) = {1} + 1

n(1 − α)

n∑
i=1

∂
([|x(i)| − c

]+) ∣∣∣∣
c=|x(n)|

= {1} + 1

n(1 − α)

n−1∑
i=1

{0} +
[
− 1

n(1 − α)
, 0

]

=
[

1 − 1

n(1 − α)
, 1

]
=

[
n − nα − 1

n(1 − α)
, 1

]
.

Since j = n − 1 and (16), we know that nα ≥ n − 1, therefore n − nα − 1 ≤ 0. Thus,

0 ∈ ∂ f
(|x(n)|

)
.

If 1 ≤ j ≤ n − 2 , then

∂ f
(|x( j+1)|

) = {1} + 1

n(1 − α)

n∑
i=1

∂
([|x(i)| − c

]+) ∣∣∣
c=|x( j+1)|

= {1} + 1

n(1 − α)

j∑
i=1

{0} +
[
− 1

n(1 − α)
, 0

]
+ 1

n(1 − α)

n∑
i= j+2

{−1}

= {1} +
[
− 1

n(1 − α)
, 0

]
+

{
−n − j − 1

n(1 − α)

}

= {1} +
[
− n − j

n(1 − α)
,−n − j − 1

n(1 − α)

]

=
[

1 − n − j

n(1 − α)
, 1 − n − j − 1

n(1 − α)

]

=
[

n − nα − n + j

n(1 − α)
,

n − nα − n + j + 1

n(1 − α)

]

=
[−nα + j

n(1 − α)
,
−nα + j + 1

n(1 − α)

]
.

123



CVaR norm and applications in optimization

Since α j = j
n ≤ α by (16), then −nα + j ≤ 0. Since α <

j+1
n by (16), then

j + 1 − nα > 0. Therefore,

0 ∈
[−nα + j

n(1 − α)
,
−nα + j + 1

n(1 − α)

]
.

If j = 0 , then

∂ f
(|x(1)|

) = {1} + 1

n(1 − α)

n∑
i=1

∂
([|x(i)| − c

]+) ∣∣∣∣
c=|x(1)|

= {1} +
[
− 1

n(1 − α)
, 0

]
+ 1

n(1 − α)

n∑
i=2

{−1}

=
[

1 − n

n(1 − α)
, 1 − n − 1

n(1 − α)

]

=
[
− nα

n(1 − α)
,

1 − nα

n(1 − α)

]
. (18)

Since 0 ≤ α < 1
n by (16), then 1 − nα > 0 . Therefore,

0 ∈ ∂ f
(|x(1)|

)
.

Thus, we have proven that

|x( j+1)| ∈ argmin
c

f (c).

Therefore, Definition 2 can be rewritten as follows:

〈〈x〉〉α = |x( j+1)| + 1

n(1 − α)

n∑
i=1

[|xi | − |x( j+1)|
]+

. (19)

Let α = α j = j
n , j = 0, . . . , n − 1, then

〈〈x〉〉S
α = |x( j+1)| + 1

n − j

n∑
i= j+1

(|x(i)| − |x( j+1)|
)

= |x( j+1)| + 1

n − j

n∑
i= j+1

|x(i)| − 1

n − j

n∑
i= j+1

|x( j+1)| = 1

n − j

n∑
i= j+1

|x(i)| .

(20)

Therefore, equality (20) is identical to (2), which proves the equivalence of Defini-
tions 1 and 2 for the case α = α j . Let us consider α, such that j

n = α j < α < α j+1 =
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j+1
n , j = 0, . . . , n − 2. Since 1

1−α j
< 1

1−α
< 1

1−α j+1
, we can represent 1

1−α
as a

convex combination of 1
1−α j

and 1
1−α j+1

:

1

1 − α
= μ

1 − α j
+ 1 − μ

1 − α j+1
,

where

μ =
1

1−α
− 1

1−α j+1

1
1−α j

− 1
1−α j+1

=
(1−α j )(1−α j+1)

1−α
− (1 − α j )

α j − α j+1

= (1 − α j )(α − α j+1)

(α j − α j+1)(1 − α)
= (1 − α j )(α j+1 − α)

(α j+1 − α j )(1 − α)
.

According to Definition 2, C S
α is represented as follows:

〈〈x〉〉S
α = |x( j+1)| + 1

n(1 − α)

n∑
i=1

[|xi | − |x( j+1)|
]+

= |x( j+1)| + 1

n(1 − α)

n∑
i=1

[|x(i)| − |x( j+1)|
]+

= |x( j+1)| +
(

μ

n(1 − α j )
+ 1 − μ

n(1 − α j+1)

) n∑
i=1

[|x(i)| − |x( j+1)|
]+

= |x( j+1)| + μ

n(1 − α j )

n∑
i= j+1

(|x(i)| − |x( j+1)|
)

+ 1 − μ

n(1 − α j+1)

n∑
i= j+2

(|x(i)| − |x( j+1)|
)

= |x( j+1)| + μ

n(1 − α j )

n∑
i= j+1

|x(i)| − μ(n − j)

n(1 − α j )
|x( j+1)|

+ 1 − μ

n(1 − α j+1)

n∑
i= j+2

|x(i)| − (1 − μ)(n − j − 1)

n(1 − α j+1)
|x( j+1)|.

Since n − j = n(1 − α j ) and n − j − 1 = n(1 − α j+1), we obtain

〈〈x〉〉S
α = μ

n(1 − α j )

n∑
i= j+1

|x(i)| + 1 − μ

n(1 − α j+1)

n∑
i= j+2

|x(i)|

= μ〈〈x〉〉S
α j

+ (1 − μ)〈〈x〉〉S
α j+1

.
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Finally, let us consider α, such that n−1
n < α < 1. With (19), C S

α can be expressed as

〈〈x〉〉S
α = |x(n)| + 1

n(1 − α)

n∑
i=1

[|xi | − |x(n)|
]+ = |x(n)|,

which corresponds to (4), and the proof is complete. ��
Remark 1 The scaled L S

1 norm is a special case of the scaled CVaR norm defined by
Definition 2, when α = 0 , i.e.,

‖x‖S
1 = 〈〈x〉〉S

0 .

Proof From representation (19) of C S
α ,

〈〈x〉〉S
0 = |x(1)| + 1

n

n∑
i=1

(|x(i)| − |x(1)|
) = 1

n

n∑
i=1

|x(i)| = ‖x‖S
1 .

��
Remark 2 The L∞ norm is a special case of the CVaR norm defined by Definition 2,
when n−1

n ≤ α ≤ 1 , i.e.,

‖x‖S∞ = 〈〈x〉〉S
α, for

n − 1

n
≤ α ≤ 1.

Proof Follows from definitions (1) and (4). ��
Finally, note that 〈〈x〉〉S

α, x ∈ R
n can be obtained by solving the following optimiza-

tion problem:

〈〈x〉〉S
α = min

zi ,c

(
c + 1

n(1 − α)

n∑
i=1

zi

)
(21)

subject to

zi ≥ |xi | − c, i = 1, . . . , n, (22)

zi ≥ 0, i = 1, . . . , n. (23)

The set of constraints (22)–(23) follows from the definition of [|xi | − c]+.

3 The non-scaled CVaR norm

This section defines the non-scaled CVaR norm in R
n and studies its properties. We

will call the non-scaled CVaR norm by just CVaR norm.

Definition 3 The CVaR norm 〈〈·〉〉α with parameter α, such that 0 ≤ α < 1 , is defined
by:

〈〈x〉〉α = n(1 − α) · 〈〈x〉〉S
α. (24)
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The family of standard L p norms, ‖ · ‖p , for a vector x is defined by

‖x‖p =
(

n∑
i=1

|x |p
i

) 1
p

.

Notice that the scaled L S
p norm ‖ · ‖S

p, considered in the previous section, is obtained

by multiplying ‖ · ‖p by n− 1
p :

‖x‖S
p = n− 1

p · ‖x‖p.

The boundary cases of L p norms are the L1 and L∞ norms:

‖x‖1 =
n∑

i=1

|xi |, (25)

‖x‖∞ = max
i

|xi |. (26)

Remark 3 The L1 norm is a special case of Cα for α = 0, i.e.,

‖x‖1 = 〈〈x〉〉0.

Proof

〈〈x〉〉0 = n(1 − 0)〈〈x〉〉S
α=0 = n

1

n

n∑
i=1

|xi | = ‖x‖1.

��
Remark 4 The L∞ norm is a special case of Cα for α = n−1

n , i.e.,

‖x‖∞ = 〈〈x〉〉 n−1
n

.

Proof Follows from definitions (24) and the fact that 〈〈x〉〉S
α = maxi |xi | and n(1−α) =

1 for α = n−1
n . ��

Let us order the absolute values of components of the vector x ∈ R
n , as follows

|x(1)| ≤ |x(2)| ≤ · · · ≤ |x(n)|. The CVaR norm Cα can be written similar to Definition 1
for the scaled CVaR norm C S

α .

Proposition 3.1 For α j = j
n , j = 0, . . . , n − 1, the CVaR norm 〈〈x〉〉α j

of the vector
x with parameter α j equals:

〈〈x〉〉α j
=

n∑
i= j+1

|x(i)|. (27)

For α, such that α j < α < α j+1, j = 0, . . . , n − 2, the CVaR norm 〈〈x〉〉α equals the
weighted average of 〈〈x〉〉α j

and 〈〈x〉〉α j+1
:

〈〈x〉〉α = λ〈〈x〉〉α j
+ (1 − λ)〈〈x〉〉α j+1

, (28)
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where

λ = α j+1 − α

α j+1 − α j
.

For α, such that n−1
n < α < 1, the CVaR norm 〈〈x〉〉α equals

〈〈x〉〉α = n(1 − α)〈〈x〉〉αn−1
= n(1 − α) max

i
|xi |.

Proof Representation (27) directly follows from the representation (2) by noticing
that n(1 − α) = n(1 − α j ) = n − j . Then, (28) follows from the multiplication of (3)
by n(1 − α). ��

The following proposition was proved for a more general stochastic case in [3].
Here we provide a simplified proof in the deterministic case.

Proposition 3.2 For x ∈ R
n, the CVaR norm 〈〈x〉〉α is a non-increasing, concave,

piecewise-linear function of the parameter α.

Proof First, we show that Cα is a non-increasing function at discrete points α j =
j
n , j = 0, . . . , n − 1. Let α j1 < α j2 , then

〈〈x〉〉α j1
=

n∑
i= j1+1

|x(i)|=
j2∑

i= j1+1

|x(i)|+
n∑

i= j2+1

|x(i)| ≥
n∑

i= j2+1

|x(i)|=〈〈x〉〉α j2
. (29)

Using (28) for α �= j
n , j = 0, . . . , n − 2 and α < n−1

n , we observe that 〈〈x〉〉α is a

convex combination of corresponding 〈〈x〉〉α j
and 〈〈x〉〉α j+1

with λ = α j+1−α

α j+1−α j
, linear

with respect to α. Since 〈〈x〉〉α j
≥ 〈〈x〉〉α j1+1

by (29), the proposition is proved for α ∈
[0, n−1

n ]. To finish the proof, it suffices to note that for α ∈ ( n−1
n , 1), the CVaR norm

〈〈x〉〉α = n(1−α)·maxi |xi | , which is a linear non-increasing function of parameter α .
To prove concavity, we need to show that for every α j−1, α j , α j+1 , j = 1, . . . , n−2

〈〈x〉〉α j
≥ 1

2

(
〈〈x〉〉α j−1

+ 〈〈x〉〉α j+1

)
.

Indeed, using (27), we obtain

〈〈x〉〉α j−1
+ 〈〈x〉〉α j+1

=
n∑

i= j

|x(i)| +
n∑

i= j+2

|x(i)|

= 2
n∑

i= j+1

|x(i)| + |x( j)| − |x( j+1)| ≤ 2
n∑

i= j+1

|x(i)| = 2〈〈x〉〉α j
.

(30)

��
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Similar to the scaled CVaR norm C S
α , we provide the minimization formula for Cα .

Proposition 3.3 The CVaR norm Cα can be obtained by solving the following mini-
mization problem:

〈〈x〉〉α = min
c

(
n(1 − α)c +

n∑
i=1

[|xi | − c]+
)

, for 0 ≤ α < 1. (31)

Proof The statement follows from Definitions 2 and 3. ��
Definition 4 The D-norm with parameter p ∈ [1, n], introduced in [1] and denoted
by |||x|||p, is defined as follows:

|||x|||p = max
S,t

(∑
i∈S

|xi | + (p − �p�)|xt |
)

, (32)

where

�p� = max
i≤p, i∈{1,...,n} i, (33)

S ⊆ {1, . . . , n}, (34)

|S| ≤ �p� , (35)

t ∈ {1, . . . , n}. (36)

Proposition 3.4 For x ∈ R
n, the CVaR norm 〈〈x〉〉α with parameter α ∈ [0, n−1

n ]
coincides with the D-norm |||x|||p with parameter p = n(1 − α):

〈〈x〉〉α = |||x|||p. (37)

Proof The proposition follows from the dual representation of the D-norm presented
in the proof of Proposition 2 in [1]. It is the linearized version of optimization problem
(31), which is the alternative definition of the CVaR norm. ��
Remark 5 The CVaR norm 〈〈x〉〉α with parameter α is in correspondence with the D-
norm only when α ∈ [0, n−1

n ]; in this case 〈〈x〉〉α ≥ maxi |xi |. For n−1
n < α ≤ 1

the parameter p = n(1 − α) > n and the D-norm is not defined, since p ∈ [1, n]
according to the definition of D-norm. When parameter α varies from n−1

n to 1, the
norm Cα linearly decreases from maxi |xi | to zero.

To provide some intuition about Cα , we consider the following examples:

Example 3 Figure 3 compares unit disks (balls) for the Cα and L p norms in R
2

space. A unit disk for a norm is a set of vectors with norm less or equal than 1; i.e.,
Uα = {x = (x1, x2) | 〈〈x〉〉α ≤ 1} for the CVaR norm with parameter α. The following
values of α are considered: 0, 0.1, 1 − 1√

2
, 0.4, 0.5 . The corresponding values of

parameter p for the L S
p norm are obtained by the transformation p(α) = 1

(1−α)2 .

The following example illustrates the Cα norm numerically.
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Fig. 3 a Unit disks for Cα in R
2 with parameter α = 0, 0.1, 1− 1√

2
, 0.4, 0.5 . A unit disk is a set of vectors

x = (x1, x2) in R
2, such that 〈〈x〉〉α ≤ 1 . The CVaR norm with α = 0 corresponds to L1, and the CVaR

norm with α = 0.5 corresponds to L∞, according to Remark 4. Observe that U0 ⊂ U0.1 ⊂ U1− 1√
2

⊂
U0.4 ⊂ U0.5 , which is a corollary of Proposition 3.2. b Unit disks for the L p norm in R

2 with parameter
p = 1, 1.23, 2, 2.78,∞ , where parameter p values were obtained from parameter α using the mapping
function p(α) = 1

(1−α)2 for α < 0.5 and p(0.5) = ∞ according to the Remark 4
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Fig. 4 The graph of Cα for the vector x = (2, 1, 7, 10, −12). The graph of the L p norm ‖x‖p with

p(α) = 1
(1−α)2 is included for comparison purpose. Parameter p is set to make 〈〈x〉〉α and ‖x‖p visible on

the same scale. For instance, when α = 0.6, p(α) = 6.25 ; when α = 0.8, p(α) = 25. Cα of x equals L∞
norm of x when α = 0.8

Example 4 Let x ∈ R
5, x = (2, 1, 7, 10,−12). The vector of ordered absolute values

of components, (|x(1)|, |x(2)|, . . . , |x(5)|), equals (1, 2, 7, 10, 12). Then, Cα equals

〈〈x〉〉0 = 1 + 2 + 7 + 10 + 12 = 32, for α = 0

5
= 0,

〈〈x〉〉0.2 = 2 + 7 + 10 + 12 = 31, for α = 1

5
= 0.2,

〈〈x〉〉0.4 = 7 + 10 + 12 = 29, for α = 2

5
= 0.4,

〈〈x〉〉0.6 = 10 + 12 = 22, for α = 3

5
= 0.6,

〈〈x〉〉0.8 = max
i

(|xi |) = 12, for α = 4

5
= 0.8.

For α = 0.05 , which is between α0 = 0 and α1 = 0.2, 〈〈x〉〉0.05 equals the weighted
average of 〈〈x〉〉0 and 〈〈x〉〉0.2 ,

λ = 0.2 − 0.05

0.2
= 0.75,

〈〈x〉〉0.05 = λ〈〈x〉〉0 + (1 − λ)〈〈x〉〉0.2 = 0.75 · 32 + 0.25 · 31 = 31.75.

Figure 4 compares the Cα and L p norms numerically. Parameter α of Cα is in the
range 0 ≤ α < 1 and parameter p of L p is in the range 1 ≤ p ≤ ∞. In this graph,
α = 0 corresponds to p = 1 and α = n−1

n = 4
5 corresponds to p = 25 , and both

norms can be presented on the same figure. We use the following mapping function,
p(α) = 1

(1−α)2 .
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4 Numerical experiments

This section considers a projection problem using the C S
α norm. Let P be a convex

polyhedron P ⊂ R
n and let w /∈ P . The projection problem finds a point wp ∈ P

(called a projection of w on P), such that the distance between w and wp is minimized
over all points in P . The projection problem using C S

α can be done efficiently with
convex and linear programming techniques.

Let w = (w1, . . . , wn) ∈ R
n and P be defined by a set of m hyperplanes. Each

hyperplane j, j = 1, . . . , m is defined by a vector (a j
1 , . . . , a j

n , b j ), j = 1, . . . , m.

By introducing the matrix A = (a j
i ), j = 1, . . . , m; i = 1, . . . , n and vector bT =

(b1, . . . , bm), the polyhedron P is represented by the set of m linear constraints:
Ax ≤ b and x ≥ 0. The problem of projecting a point w onto P with the scaled CVaR
norm is formulated as follows:

min
x

〈〈w − x〉〉S
α (38)

subject to

Ax ≤ b, (39)

x ≥ 0. (40)

The problem (38)–(40) with representation (21)–(23) can be reformulated as the fol-
lowing convex optimization problem.

min
x1,...,xn ,c

c + 1

n(1 − α)

n∑
i=1

zi (41)

subject to

zi ≥ |xi − wi | − c, i = 1, . . . , n, (42)
n∑

i=1

a j
i xi ≤ b j , j = 1, . . . , m, (43)

zi ≥ 0, xi ≥ 0, i = 1, . . . , n. (44)

Constraint (42) can be represented by two linear constraints:

xi − wi ≤ zi + c, i = 1, . . . , n, (45)

xi − wi ≥ −zi − c, i = 1, . . . , n, (46)

which gives the linear problem formulation:

min
x1,...,xn ,c

c + 1

n(1 − α)

n∑
i=1

zi (47)

subject to

xi − zi − c ≤ wi , i = 1, . . . , n, (48)

xi + zi + c ≥ wi , i = 1, . . . , n, (49)
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n∑
i=1

a j
i xi ≤ b j , j = 1, . . . , m, (50)

zi ≥ 0, xi ≥ 0, i = 1, . . . , n. (51)

For the numerical experiments, we generated the matrix A = (a j
i ), j = 1, . . . , m ; i =

1, . . . , n and the vector bT = (b1, . . . , bm) randomly. We sampled the matrix A and
the vector b assuming that a j

i and b j are realizations of the uniformly distributed
random variable on [0, 1]. Therefore, 0 /∈ P = {x : Ax ≤ b, x ≥ 0}. We consider
the problem of projecting w = 0 on P using the scaled CVaR norm with parameter
α = 0.1, . . . , 0.9 .

Computational results presented in Tables 1 and 2 were performed on a machine
equipped with Windows 7x64 operating system, AMD Opteron(tm) Processor 6128
(CPU 2.0GHz), RAM 12GB, using XPress-MP software [10], XPRS_BAR solver
with 1 thread. Table 2 shows that the projection problem can be solved efficiently for
various values of parameter α, dimension n, and the number of constraints m defining
the polyhedron. In particular, we want to emphasize that setting various conservative-
ness levels α for the CVaR norm does not dramatically impact the efficiency of the
optimization. This is in contrast to using the L p norm, which leads to computational
difficulties, especially for large p > 2 .

Another advantage of the CVaR norm is that it is a convex piece-wise linear func-
tion, which can be precoded in software packages. In particular, Portfolio Safeguard [5]
has a precoded CVaR norm function, which can be easily used in mathematical pro-
gramming. A case study solving projection problems with Portfolio Safeguard is pre-

Table 1 Projection in R
n space

i n m Objective function (×10−2)

α =
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 100 10,000 2.23 2.26 2.28 2.29 2.30 2.30 2.30 2.30 2.30

2 20,000 2.28 2.33 2.38 2.43 2.49 2.55 2.55 2.55 2.55

3 50,000 2.32 2.36 2.39 2.40 2.42 2.43 2.43 2.43 2.43

4 100,000 2.33 2.35 2.37 2.38 2.40 2.41 2.41 2.41 2.41

5 500 10,000 0.410 0.414 0.416 0.417 0.418 0.418 0.418 0.418 0.418

6 20,000 0.414 0.418 0.420 0.421 0.422 0.422 0.422 0.422 0.422

7 50,000 0.418 0.422 0.424 0.426 0.427 0.427 0.427 0.427 0.427

8 100,000 0.424 0.429 0.433 0.437 0.442 0.445 0.445 0.445 0.445

9 1,000 10,000 0.203 0.205 0.206 0.207 0.208 0.208 0.208 0.208 0.208

10 20,000 0.204 0.206 0.208 0.209 0.210 0.210 0.210 0.210 0.210

11 50,000 0.204 0.207 0.208 0.208 0.209 0.209 0.209 0.209 0.209

12 100,000 0.206 0.208 0.209 0.210 0.210 0.210 0.210 0.210 0.210

Polyhedron Pi in R
n is defined by m hyperplanes, specified in the third column of the table. Formulation

(47)–(51) solves the problem of projection of 0 onto Pi using the scaled CVaR norm with parameter
α = 0.1, . . . , 0.9. The table shows the optimal objective values of the optimization problems
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sented in the following link: http://www.ise.ufl.edu/uryasev/research/testproblems
/advanced-statistics/case-study-projection-on-polyhedron-with-cvar-absolute-norm-
4/. The case study at this link investigates projection problems with various norms.

5 Conclusion

This paper introduces the two families (scaled and non-scaled) of CVaR norms with
parameter α controlling the level of conservativeness. The family of non-scaled CVaR
norms spans the L1 and L∞ norms. We provide two equivalent definitions of the CVaR
norm: as the sum or the average of the specified percentage of the largest absolute values
of the vector components, and as the solution of the CVaR minimization problem. The
non-scaled CVaR norm is equivalent to the D-norm employed in robust optimization.
We show that the CVaR norm can be efficiently used in optimization problems. In the
numerical experiments, we consider the projection problems with various levels of the
conservativeness parameter α and observe that the solution time is not significantly
affected by the value of this parameter.
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