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ABSTRACT

Motivation: BigWig, a format to represent read density data, is one of

the most popular data types. They can represent the peak intensity in

ChIP-seq, the transcript expression in RNA-seq, the copy number

variation in whole genome sequencing, etc. UCSC Encode project

uses the bigWig format heavily for storage and visualization. Of 5.2

TB Encode hg19 database, 1.6 TB (31% of the total space) is used to

store bigWig files. BigWig format not only saves a lot of space but also

supports fast queries that are crucial for interactive analysis and

browsing. In our benchmark, bigWig often has similar size to the

gzipped raw data, while is still able to support �5000 random queries

per second.

Results: Although bigWig is good enough at the moment, both stor-

age space and query time are expected to become limited when

sequencing gets cheaper. This article describes a new method to

store density data named CWig. The format uses on average one-

third of the size of existing bigWig files and improves random query

speed up to 100 times.

Availability and implementation: http://genome.ddns.comp.nus.edu.

sg/�cwig

Contact: ksung@comp.nus.edu.sg

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

As the next-generation sequencing (NGS) cost reduces, huge
amount of reads can be generated nowadays. After aligning

the reads on a reference genome, we can generate the read dens-
ity, i.e. the number of NGS reads covering each base in the

genome. Density data are useful because it can be used to rep-
resent the transcript expression in RNA-seq (Hu et al., 2013), the

peak intensity in ChIP-seq (Liu et al., 2011), the copy number

variation in whole genome sequencing (Bock, 2012), etc. For
example, Figure 1 shows plots of density signals of a ChIP-seq

region and a RNA-seq region, respectively.
Currently, read density is often represented using the wiggle

(wig) format, the bedGraph format or the bigWig format. They
all store the densities of NGS reads along the whole reference

genome. Wig and bedGraph are uncompressed text formats,
thus, are usually huge. BigWig (Kent et al., 2010) is the com-

pressed form of wig and bedGraph. Its compression approach is
to sort and partition the density data into blocks and compress

them by gzip. BigWig also supports a few types of queries over

any selected region: coverage, max, min, average and standard

deviation. These queries facilitate efficient downstream analysis

and enable fast visualization of the data.
With bigWig format, UCSC genome browser (Karolchik et al.,

2014) can support interactive browsing of density data. In fact,

bigWig is one of the most popular track types. In the hg19 brow-

ser,�4400 tracks (10% of all hg19 tracks) are bigWig tracks, and

they use 1.6TB (it is equivalent to 31% of the total space for all

UCSC hg19 tracks). To reduce space and improve query speed,

the resolution of the density signals of some UCSC tracks has

been reduced, which affects the accuracy. In the future, it is im-

portant to reduce the storage space of density data and improve

their query speed while maintaining the accuracy of the data.
Our project aims to develop an alternative storage format for

density signal. Our design is based on careful observations of the

data and knowledge of succinct and compressed data structures.

For example, we observed that mapping locations of NGS are

usually overlapped. Regions with non-zero intensity are often

clustered. This fact enables us to reduce the space. Another ob-

servation is that the density values of adjacent regions are not

independent. Storing the differences between adjacent density

values can reduce the size of 80% of the datasets in UCSC

hg19. To enable fast queries, we use data structures like

SDArray (Okanohara and Sadakane, 2007) that can compress

data while still allowing random access. We also adopt a mod-

ified Cartesian tree (Fritz et al., 2011) that uses linear number of

bits and provides constant time min/max query.

Similar to UCSC bigWig tool, cWig tool also implements the

remote file access feature. In this feature, the program and the

data file can be placed in different computers. The program can

answer queries by accessing the data file through the HTTP/

HTTPS network protocol.
In our experiment using all UCSC hg19 database, the cWig

format uses on average one-third of the size of existing bigWig

files, and uses much lower space in high resolution data files.

In addition, it also improves query speed by 10–100 times

depending on the query types.

2 BACKGROUNDS

UCSC database stores and displays many types of genome-

related data. They can generally be divided into three groups

of formats. Sequence formats: store raw DNA sequences and

quality scores. Examples include SAM/BAM (Li et al., 2009),

FASTQ (Cock et al., 2010) formats. Annotation formats: store

information about some biological features (e.g. genes, variants)*To whom correspondence should be addressed.
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located in a genome. Some popular formats in UCSC are Bed,

BigBed (Kent et al., 2010) and VCF (Danecek et al., 2011). Some

annotation formats are designed to keep different types of fea-

tures, for example, (Hoffman et al., 2010) and (Gundersen et al.,

2011). Signal formats: store continuous numerical signal values

for each genome bases. Examples include Wiggle, BedGraph and

bigWig formats.
The sequence and annotation files can be big, but they only

require simple queries, i.e. list or count all sequences/annotations

in a given region. This query can be solved by adding some index

pointers on top of the existing formats. The signal files are struc-

turally simple; however, it requires fast summary operations over

some long regions.
This article focuses on improving the existing signal formats.

The raw density dataset is usually big (measured in Giga bytes

per file) and contains a lot of duplicated information. To reduce

size, bigWig applies the following compression scheme. It keeps a

set of non-overlapping intervals such that the bases in each inter-

val share the same signal value. Intervals with zero intensity or

missing values are usually omitted. All intervals are sorted by

their starting positions and they are partitioned into blocks of

512 by default. Each block of intervals and their corresponding

signal values are compressed using the gzip algorithm in zlib

library. To allow partial random access, bigWig stores the start-

ing locations of all blocks using an R-tree-based index (Guttman,

1984), which is commonly used for geographical data.

In addition to the original data, bigWig also stores extra tables

to provide fast computation of four summary operations over

any query interval. These operations are mean, min/max, cover-

age and standard deviation. They are crucial for UCSC genome

browser visualization function.

Before we formally define the four operations, we need some
additional notations. Let rk be the value at position k of the

genome. If there is no value at position k, we denote rk
as NaN. Operations that involve NaN are NaN+x=x,

NaN � x=x, 1=0=NaN, min ðNaN; xÞ=x, max ðNaN; xÞ=x,
where x is any value (including NaN). For any query range

p::q, let N be the number of positions k in p::q, where

rk 6¼ NaN. The four operations are defined as follows.

� coverageðp; qÞ: Proportion of positions k where rk 6¼ NaN,
that is, N=ðq� p+1Þ.

� meanðp; qÞ: The arithmetic mean of the non-NaN values in

p::q, that is, 1
N

Xq

k=p
rk.

� min valðp; qÞ and max valðp; qÞ: the minimum/maximum

value in p::q, that is, min k=p::qfrkg and maxk=p::qfrkg.

� stdevðp; qÞ: The standard deviation of the non-NaN values in

p::q, that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xq

k=p
r2k

� �
�meanðp; qÞ2

r
.

The extra tables in bigWig file stores precomputed answers

of the operations in different zoom levels. For example, zoom

level 1 stores answers for regions of length 50 000 bases and
zoom level 2 stores answers for regions of length 5000 bases.

The precomputed tables are also indexed using R-trees.

3 OBSERVATIONS

This section describes our observations on the bigWig data in

UCSC hg19 database. bigWig groups bases that have the same

values into intervals instead of storing signal values for each
individual base. The problem becomes storing a set of tuples,

i.e. ðsi; ei; viÞ where, si and ei are the start and the end positions

of the intervals in a genome; and vi is the signal value of the bases

in the interval si::ei. As the positions and the values are highly

independent across the database, we study them separately in the
next two subsections.

3.1 Observations on interval positions

This section discusses our observations on the characteristics of

the interval data si::ei stored in bigWig format. For high-density

regions, NGS reads are often overlapped. Once the reads are
piled up to generate the coverage data, each high-density

region is expected to form a set of consecutive intervals. To

illustrate, Figure 1 shows the density plots of a ChIP-seq

region and a RNA-seq region. In both data types, we observed
that the position intervals are usually consecutive (i.e. the start of

the next interval equals the end of the previous one).
To precisely measure this characteristic, we define a measure-

ment called consecutiveness, which is the percentage of intervals

in a signal data file that have their start positions equal the end

positions of their adjacent intervals. The consecutiveness is zero

when no interval stays next to another. It approaches one when
all intervals are chained together.

Figure 2a plots the proportion of bigWig files in UCSC hg19
database based on consecutiveness. We found that 81% of the

files have the consecutiveness 40.5. To have a clear picture,

Figure 2b further shows the relationship between the consecu-

tiveness and the coverage. (Recall that the coverage is the

Fig. 1. (a) A zoom region in ChIP-seq file. (b) A zoomed region in a

RNA-seq file. The dotted lines indicate boundaries of two consecutive

intervals
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percentage of bases of the genome that have signal data.)

Intuitively, we expect high coverage files have high consecutive-

ness. This is actually true as shown in the figure. Most of the

Chip-seq data files (highlighted in red oval) are high in both

coverage and consecutiveness. However, many RNA-seq files

only have high consecutiveness. That means high consecutiveness

may be a characteristic of RNA-seq data. Section 4.2 will use this

property to reduce the space consumption for storing the pos-

itions of the intervals.

3.2 Observations on signal values

This section discusses our observations on signal values in

bigWig files. Let vi be the signal value of an interval si::ei.
Figure 1 shows that signal values of adjacent intervals are similar

for most cases. We suspect that storing the differences (i.e.

vi+1 � vi) may be better than storing the raw signal values

(i.e. vi). To validate this observation, we compare the entropy

of raw signals and the entropy of signal differences of adjacent

intervals. [Under certain conditions, entropy (Cover and

Thomas, 1991) is the minimum number of bits required to
store each element in a sequence of values.]

Figure 3 shows that, among all UCSC bigWig files, the aver-
age entropy of raw signals is �4.9 bits, whereas the entropy of
differences is around 3.2 bits. This means that, with a suitable

compression scheme, storing differences uses less space than stor-
ing raw signal values on average.
To be more precise, we try to find the list of bigWig tracks,

where storing differences is better by computing the discrepancy
between the two entropies for each bigWig track. Figure 3b

shows the histogram plot of the results. We found that 81% of
the bigWig tracks (represented by the area under the curve on the
right side of the zero line) give smaller entropy when the differ-

ences of the adjacent signals values are stored. In other words, we
can classify the files into two classes. The first class is smaller by
storing differences of the signals. The second class is smaller by

storing raw signal values.
Our second observation is that certain signal (or difference)

values occur more frequently in the bigWig file. To be precise, we

define the number of frequent signal (or difference) values in a
bigWig file as the minimum number of distinct values whose sum
of occurrences makes up 75% of the total number of values in

that file. Figure 4 shows the number of bigWig files that have x
frequent signal (or difference) values for all x. Of 4400 bigWig
files in UCSC hg19, about 1500 files have less than six frequent

raw signal values, and �2500 files have less than six frequent
differences values. Most of the files have560 differences values.
We further investigate the distributions of the values in each

file. After studying many examples, we found that the frequent

Fig. 2. (a) Histogram of the datasets based on consecutiveness.

(b) Coverage versus consecutiveness in UCSC hg19 bigWig files. The

big dotted oval highlights most Chip-seq datasets. The small oval high-

lights low coverage, but high consecutive datasets

Fig. 3. (a) Average entropy of raw signals and their differences in UCSC

files. (b) Histogram of the entropy of the values minus the entropy of the

differences in each file
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values are usually close to zero. For integer signal files, Figure 5a

and b show the typical distributions of signal differences. They

usually contain one or two peaks in the center. For floating point

signal files, Figure 5c shows the typical distribution of the sig-

nal differences. They often have dense values near zero. We ran

a simple classifier on the database and found that of 2627 inte-

ger signal files, 1851 files have two peak shape that look like

Figure 5b, whereas 813 files have shape that are similar to

Figure 5a.
In summary, we have three observations for the signal values.

More than half of the data is better stored by differences. Most

data files have a small set of frequent values. The frequent values

are usually small and close to zero. We will use these observa-

tions to design schemes for storing signal values.

4 METHODS

Using the knowledge from the observations of all bigWig files in UCSC

hg19 database, this section presents our storage scheme.

4.1 SDArray

One of the frequently used components in our design is SDArray pro-

posed by (Okanohara and Sadakane, 2007). It can be seen as a

compressed array of increasing integers. We use this data structure

for storing both data and index pointers. The advantages of this data

structure over the traditional search tree is that, it uses nearly optimal

number of bits while still provides O(1) time to access and less than Oð

log2mÞ time to search (where m is the number of elements). There are a

few alternative compressed structures, which have similar properties as

described by Raman et al., 2002 and Patrascu, 2008. SDArray is used

because of its speed and simplicity. In addition, it has good compression

ratio when the values are not dense, which is commonly observed in

our data.

The details of SDArray are as follows. Consider an array of non-

decreasing nonnegative integers P½1::m�. Storing P½1::m� explicitly costs

mdlog2ne bits (where n is the biggest number). SDArray is a com-

pressed data structure storing the array P½1::m� and enables constant

time access of any element P½i�. It also provides an operation called

rankðP; xÞ to find the first element P½i� that is greater than or equal

to x, i.e. rankðP;xÞ=min fi jP½i� � x; i 2 1::mg. Let n=P½m�.

The SDArray for the array P uses 1:56m+mlog 2ðn=mÞ+oðmÞ bits

and computes rank operation in Oðlog 2ðmin ðn=m;mÞÞÞ time.

This data structure is better than explicit storage when n� m and

m44.

4.2 Compression schemes for interval positions

Consider a set of m position intervals fsi::eiji=1::mg. Without loss of

generality, assume the intervals are sorted in increasing order of si. This

section describes two alternative schemes (basic scheme and space saving

scheme) to store the position intervals. Our two schemes also support

random access of the values si and ei. To implement compatible bigWig

operations, our schemes require an operation called find intervalðpÞ that

finds the maximal index i, such that si 	 p, and an operation called

cover lenðkÞ that reports the total length of the first k intervals (i.e.Xk

i=1
ðei � si+1Þ).

The basic scheme has better access time for the queries, whereas the

space saving scheme is more compact when there are many consecutive

intervals. CWig uses the space saving scheme, if the consecutiveness

(defined in the observation section) is40.5; otherwise, it uses the basic

scheme.

Basic scheme: The basic scheme stores the starting positions and inter-

val lengths in two SDArrays: S½1::m� and L½1::m+1�, respectively, such

that S½i�=si, L½0�=0 and L½i�=
Xi�1

k=1
ðek � skÞ. Given S and L, si and ei

equal S½i� and S½i�+L½i+1� � L½i�, respectively. Operation find_inter-

val(p) equals rankðS; pÞ. Operation cover_len(k) equals the value of the

k-th entry of L plus k. Hence, all operations take Oðlog2ðn=mÞÞ time.

The space complexity for this scheme is mð3:12+log2ðn=mÞ+

log2ðl=mÞÞ+oðmÞ bits, where n=sm, and l is the total length of all

intervals (i.e. L½m�). This scheme enables efficient query. It also has

good space usage when the intervals are sparse (e.g. in RNA-seq

datasets).

Space saving scheme: By the observations in the previous section, the

space saving scheme groups the consecutive intervals into segments to

save space. Precisely, we group consecutive intervals ðsi; eiÞ; . . . ; ðsj; ejÞ

into one segment, if ek=sk+1 for k=i; ::; j� 1. The space saving

scheme stores the starting positions of segments, the numbers of intervals

in each segment and the lengths of all intervals. Assume that there are g

segments, we store:

� G½1::g� is a length-g array, where G½j� is the start position of the j-th

segment.

� Ic½1::g+1� is an array such that (Ic½i+1� � Ic½i�) equals the number

of intervals in the i-th segment.

� L½1::m+1� contains the prefix sum of the lengths (same as the one in

basic scheme).

Fig. 4. Histogram of frequent values

Fig. 5. Histogram of signal differences. (a) and (b) are two common

histograms observed in integer value signal files. (c) is a common histo-

gram observed in floating point value signal files. In these subfigures, the

X-axes are the difference between adjacent signal values shown from –10

to 10. Y-axes show the frequencies of these signal differences. The max-

imal frequencies shown in (a), (b) and (c) are 0.4, 0.5 and 0.016,

respectively
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To find the start of the interval i (i.e. the value of si), we first compute

the segment j that contains the interval i by calculating j=rankðIc; iÞ, then

si=G½j�+L½i� � L½Ic½j��. The end of the interval, ei=si+L½i+1� � L½i�.

function find_interval p

j=rankðG; pÞ
i=rankðL; ðp� G½j�Þ+L½Ic½j��Þ

if (i5Ic½j+1�) then return i

else return L½Ic½j+1��

The operation find_interval(p) can be computed using a two-step al-

gorithm. The first step finds the segment nearest to p. Because the inter-

vals inside each segment are consecutive, the second step finds the index

of the interval that contains p, using the distance between p and the start

of the segment. The operation cover_len(k) equals the value of the k-th

entry of L plus k.

The space complexity for this scheme is 1:56m+mlog2ðl=mÞ+gð3:12+

log2ðn=gÞ+log2ðm=gÞÞ+oðg+mÞ where l is the total length of the inter-

vals, g is the number of groups and m is the number of intervals. The

estimated space requirement is better than the basic scheme when 2g5m.

That is when each group on average has more than two intervals (i.e. the

consecutiveness is40.5).

4.3 Compression schemes for signal values

By the observations in Section 3.2, we design our compression scheme for

storing values and the auxiliary data structure to support the required

query.

The compression has two main stages. The first stage converts the

signals into integers and decides whether we need to store the raw

signal values or the differences based on the entropy. It also applies

some common transformations to make numbers easier for compression.

The second stage uses a mixture of methods to compress the integers.

Transformations: Let V=fv1; v2; . . . ; vmg denote the signal values. For

floating point datasets, we convert all signal values into integers by multi-

plying with a scale factor. Precisely, we scan all values in V and identify

the maximum number of digits � after the decimal point; then, every

value is multiplied by the same scaling factor f=10�. For practical pur-

pose, we keep at most seven fractional decimal digits of precision, which

is compatible to the precision level in bigWig format. It is similar to use

IEEE’s 32-bit floating point numbers for storing signal values.

The next step is to decide whether we store the signal values or differ-

ences. To make the decision, we compute the entropy of the values and

the differences. If the entropy of the values is smaller, we will store the set

B=fbig such that bi=vif for i=1::n where, f is the scaling factor.

Otherwise, we store the set B=fbig such that bi=ðvi+1 � viÞf for

i=1::n� 1. To avoid the gaps between the numbers introduced by the

scaling, we convert B into C such that ci equals the rank of the values of bi
in sorted order.

Compression: The previous section showed that only a few signal dif-

ferences have high frequency. Furthermore, many signal differences with

high frequency are scattered around zero. To capture this type of distri-

butions, we use two compression methods: Huffman code and Elias delta

code. Each method has its own strength and weakness.

Elias delta code (Elias, 1975) is a variable length encoding scheme for

positive integers. It represents an integer x in blog xc+2blog2blog2x+1c

c+1 bits. This compression scheme is asymptotically optimal when the

numbers are uniformly random in a large range.

Huffman code (Huffman, 1952) is a variable length encoding scheme

for a set of symbols (i.e. characters). It encodes each symbol by a new

sequence of bits. This compression wastes at most 1 bit per symbol when

the probability distribution is known. However, because it needs to store

a symbol mapping table, the method is not practical when the number of

symbols is large.

To encode the set of numbers C from the transformation stage, we use

Huffman code to capture the small set of frequent numbers and use Elias

delta code for the rest. The details are as follows. We construct a

Huffman code with 128 symbols. The most frequent 127 values in C

are encoded by 127 Huffman symbols. The remaining values share the

128th Huffman symbol as their prefix and use the delta code values as

suffixes. The weights used to build the Huffman symbols are the frequen-

cies of the values. Note that we choose 128 symbols because Figure 4

showed that most of the files have5100 frequent values.

The signal values V is, therefore, represented by storing the value C,

and necessary information to reverse transform from values C to values V

(e.g. the factor f, the scheme is raw values or differences, the ranks, the

Huffman code table).

Auxiliary data structures for queries: We also require a few additional

auxiliary data structures and intermediate operations to implement the

summary operations defined in Section 2 (i.e. min/max, average and SD).

To support the min and max operations, we use Cartesian tree from

(Fritz et al., 2011). This structure uses 2m+oðmÞ bits. It supports

computation of the minimum/maximum values in any range using O(1)

time. Formally, the data structure provides two operations min idxði; jÞ

=arg mink2i::jfvkg and max idxði; jÞ=arg maxk2i::jfvkg.

For the average and SD operations, we need auxiliary data structures

to compute two intermediate operations: sum and square sum of

the values. The intermediate operations are defined as follows: cover val

ðkÞ=
Xk

j=1
ðej � sj+1Þvj and cover val sqrðkÞ=

Xk

j=1
ðej � sj+1Þv2j for

k=1; . . . ;m. To implement operations cover val and cover val sqr, we

keep one sampled value in every 64 values of the functions. The sampled

values are stored in SDArray for fast access. To compute the values that

are not sampled, we jump to the nearest sampled value and sequentially

extract ðsj; ej; vjÞ to compute the exact sum.

4.4 Query

Previous subsections have outlined our storing scheme for the positions

and values of the intervals. This section shows how to use these compo-

nents to support the four summary query operations defined in Section 2.

In general, given a query region p::q, the query asks for some summary

values (e.g. average, min/max, SD, coverage) of the signal values of the

genome positions from p to q. The details are as follows.

Coverage query: Given the input region p::q, the coverage query

coverage(p,q) computes the proportion of non-NaN bases. Note

that the number of non-NaN bases, which equals
1

ðq�p+1Þ ðq � coverageð0; qÞ � ðp� 1Þcoverageð0; p� 1ÞÞ. Let j be the largest

index such that sj is less than or equal to q (i.e. j=find intervalðqÞ). We

have q � coverageð0; qÞ=cover lenðjÞ �min fej � sj; q� sjg+1. Similarly,

we can compute ðp� 1Þ � coverageð0; p� 1Þ using find intervalðp� 1Þ

and the interval values.

Min/max query: The minimum/maximum of signal values in a query

region p::q can be computed in three steps. First, we find the set of

intervals fðsi; eiÞ; . . . ; ðsj; ejÞg that overlap with the query region p::q.

This can be done by computing find intervalðpÞ and find intervalðqÞ.

The second step uses operations min idxði; jÞ or max idxði; jÞ to find

the index of the minimal/maximal value in constant time. The last step

extracts the actual signal values.

Mean query: meanðp; qÞ=1
n

Xq

k=p
rk where ri is the value of the i-th

base, and n is the number of non-NaN bases, i.e.

n=ðq� p+1Þcoverageðp; qÞ. Note that
Xq

k=p
rk=

Xq

k=0
rk�Xp�1

k=0
rk. The value of

Xq

k=0
rk can be computed by (1) let j=find

intervalðqÞ and (2)
Xq

k=0
rk=cover valðjÞ+vjðmin fej � sj; q� sig+1Þ.

Similarly, we can compute
Xp�1

k=0
rk.

Standard deviation query: stdevðp; qÞ can be computed using the

formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xq

i=p
r2i �

1
n2
meanðp; qÞ2

q
, where, ri and n are defined same

as above. Using similar approach as the mean query, the sum of squared
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signal values 1
n

Xq

i=p
r2i can be computed from the intermediate queries

cover_sum_sqr and find_interval.

4.5 Remote file access

Our solution for remote access feature is to use a simple network layer

that handles HTTP 1.1 byte ranges and keep-alive protocols. Once a data

file is placed under a web server that supports the HTTP protocol (e.g.

Apache, Microsoft IIS and nginx), it can be queried from different com-

puter to get any block of data. The implementation also supports HTTPS

protocol if OpenSSL library is available.

To avoid duplicated data transfer and network protocol overhead, a

simple file caching scheme is implemented. Any data requested over the

network is read in blocks of 16 KB and stored in a cache file. An add-

itional bit-map file is kept to mark down blocks that have been saved

locally. Multiple queries to some close locations are likely to access the

same data block, hence, do not incur new network request. In addition,

the overhead to start transferring data over the network is high (e.g. in

milliseconds). It is more beneficial to transfer data in blocks.

To enhance the performance of block transferring and file caching,

cWig reorganizes the component data structures to make data access

localized. It groups small, fixed size and frequently accessed fields of

different data structures into a consecutive segment called ‘control seg-

ment’. (The segment usually stores the length, counter and metadata of

the data structures.) The large and variable length data are stored in

another segment of the file. When the data structure is loaded remotely,

the data in the control segment is more likely to be transferred in one

request and cached; therefore, it helps to reduce the delay between

queries.

5 EXPERIMENT RESULTS

In this section, we present three sets of experiments. The first set

of experiments compares the sizes of bigWig and cWig files.

It also compares different alternatives of our design to support

our final choice. The second set of experiments compares the

speed between bigWig and cWig in one machine. The last set

of experiments compares the remote query speed of cWig’s and

bigWig’s tools.
We use three datasets for the experiments: full dataset for size

measurement, sampled dataset for the speed measurement on

one computer and a few selected files for the remote access

experiments.
The full dataset consists of all bigWig files in UCSC hg19

database (�4400 files). The UCSC bigWig files use a total of

1.6 Terabytes. To have a clear picture, we categorize the files

in UCSC into groups by value types (i.e. integer signal versus

floating point signal) and by data types (i.e. ChIP-seq, RNA-seq,

DNAse, FAIRE and Other). This dataset is used in the section

on file size comparison.
The sampled dataset is a subset of the full dataset. The files are

grouped similarly as the full dataset. However, each group only

contains 5–10 sampled files. (The detailed list of files can be

found in the Supplementary C.) The sampled datasets are used

for running time comparison.
Furthermore, three files from UCSC hg19 of different sizes are

selected for the remote query speed experiments.
Note that the name bigWig, cWig or gzip is used to refer to

both the file format and tool/program to access the format. For

bigWig, there are a few tools that can create, extract and

randomly access the format. We use the latest version of the

tool provided by the original authors (in Kent et al., 2010).

5.1 File sizes comparison

Compare different methods: Figure 6 shows results that compare

different storage formats for different data types. The methods
used in this experiment are (i) bedGraph is the raw text format of

the input file, (ii) gzip_bg is the gzip compressed bedGraph for-

mat, (iii) bigWig is the method from UCSC, (iv) val_delta is our
method that stores the raw signal values using delta code, (v)

diff_delta is our method that stores signals by their differences

using delta code only and (vi) huff128 and (vii) huff1024 are our
methods that store signals by their differences using a mix of

Huffman code and delta code. huff128 encodes the most frequent

127 values by unique Huffman symbols, whereas the rest of the
values are encoded by delta code. huff1024 is similar to huff128;

but the number of Huffman symbols are 1023.
For clarity, Figure 6 shows only four types of data: ChIP-seq,

RNA-seq FAIRE and Other. (For full result, please refer to

Supplementary B.) The bars in the background show the relative
ratios between the compression schemes. Among our methods,

huff128 and huff1024 are consistently better than val-delta and

diff-delta. huff128 and huff1024 give similar size. This supports
the observations in Section 3.2 that, higher number of Huffman

symbols does not improve compression. Based on this experi-

ment, we choose huff128 as our default compression method

for cWig format.
Compared with bigWig and gzip, our methods use at most half

of their sizes. In most of the files, the file sizes of bigWig and gzip

are similar because the bigWig uses gzip to compress their main

data. However, for high-resolution files, e.g. FAIRE data type,

bigWig uses considerably more space than gzip. We found that
this space is usually accounted for its indexing structures to sup-

port random access and queries.
Compare ours and bigWig: Figure 7 compares the file sizes

between cWig and bigWig formats. Figure 7a plots the original

Fig. 6. This table indicates the mean file sizes for storing ChIP-seq,

RNA-seq and Other data types using the raw text format (bedGraph)

and six different compression schemes. The bars in the background show

the relative ratios between the compression schemes
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bigWig size versus the reduction that we can achieve. Figure 7b is

a table that summarizes the ratios based on the data types. It

shows that our format is (in average) 3.6 times smaller than

bigWig. In particular, cWig is more compressible for high reso-

lution datasets, e.g. FAIRE and DNase.
We noticed some users truncate the significant digits of the

values to reduce the file sizes of bigWig. We conducted an ex-

periment to investigate its effect on both formats. The detail is

included in the Supplementary D.

5.2 Running time comparison

Linear compression and extraction: Figure 8 shows the average

compression/decompression speed for different methods.

Because the compression/decompression speed is consistent

with the input file size, we only show the average processing

time in terms of megabytes per second. The figure shows that

bigWig and gzip have similar compression speed. Our program is

about two times faster. For decompression speed, our program is

�150% faster than bigWig, but slower than gzip.
Random queries: This set of experiments measure the query

speed of operations coverage, minimum and average for both

our tool and bigWig tool. We tested three sets of queries: (i)

each query is a random interval. The order of queries is also

random. (ii) Each query is a random interval. But the list of

queries is arranged in increasing order of the start positions.

(iii) The query intervals are the confirmed human gene regions.

We call this set ‘real queries’ set. (It contains 76969 intervals.

This set is intended to simulate the actual list of queries made by

the bioinformaticians).

Because the speed of both programs for query types (i) and (ii)

are not significantly different, we only summarize the speed for

query types (i) and (iii). In addition, because the query speed for

the three operations in bigWig is similar, we only report the

average query speed of bigWig.
Figure 9 shows that the query speed of our program is �10–

100 times faster than that of bigWig, depending on query type. In

our program, coverage queries are much faster than the min-

imum and the average queries because coverage queries only

use the interval position component. The minimum queries are

faster than the average queries in sparse files where there are a lot

of regions without values.

We noticed that there is a big difference in bigWig speed be-

tween random queries and real queries. After some investiga-

tions, we found that bigWig query speed may be affected by

the query interval length. It is slower for shorter intervals. We

create a query file that has the same starting positions as the real

query file, but increased in the interval lengths. bigWig is much

faster when the interval lengths are larger than 1 million bases.

Note that the average interval length of the random query in

Figure 9 is around half the chromosome length, whereas the

average interval length of the genes is only 54 783.

Fig. 7. Ratio between bigWig file sizes and our file sizes. (a) The com-

pression ratio for all UCSC files whose sizes are56GB. (The files that are

excluded are three FAIRE files and the liver cancer file). (b) The mean of

the compression ratio between bigWig and our format for each file type.

(The last column represents both integer-value and floating-point-value

files. ‘All UCSC’ row represents all the files types in UCSC. The light

scale of the cells of the table is in proportion to the value inside)

Fig. 8. Average compression and decompression speed in Megabytes per

second (higher is better) with SDs for each method

Fig. 9. Average query time in nanoseconds (lower is better) for randomly

generated queries and gene region queries
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5.3 Remote file access speed

In this experiment, we measure the query speed in different net-
work conditions. We select three input files of different sizes from

UCSC hg19 database. They are called ‘small’, ‘medium’ and
‘big’. The sizes of the corresponding bigWig files are 824 KB,
98 MB and 5.5 GB, respectively. The sizes of the corresponding
cWig files are 414 KB, 35 MB and 1.4 GB, respectively.

The query speed is measured in two different network condi-
tions: ‘SG’ and ‘US’. ‘SG’: the files and the programs are both
hosted in Singapore and connected through the Internet. The

average round trip time is �100ms; the bandwidth is �5–10
MB/s. ‘US’: the programs are in Singapore, and the files are
hosted in California, USA. The round trip time is �210ms,

the bandwidth is �300–850 KB/s.
Similar to the previous experiment, we use the human genes

regions as the query set.

Figure 10 compares the running times of bigWig and cWig
under different network conditions and using different input
files. (Note that, there is no measurement for big file under
‘US’ network condition owing to our resource limitation.) In

these experiments, the CPU times of both programs are ac-
counted for510% of the total running times for medium and
big input files. The programs spend most of their time waiting for

network responses.
Our file size significantly helps in the experiments on the

medium file. Because cWig file is smaller, the queries on this

file get cached in fewer iterations. For small file, the time differ-
ence is not significant. Both programs can cache the small file
after a few queries. For big file, both programs fail to cache the
file, and hence, both methods spend similar amount of time to

wait for the network to respond.

6 CONCLUSION

This article proposed the file format for cWig to store signal

data. Comparing with bigWig, cWig not only uses lesser space

but also provides faster queries. This format should be useful

for visualization applications like UCSC genome browser

(Karolchik et al., 2014) and Broad Institute Integrative

Genome Viewer (Robinson et al., 2011) and for Biologists to

analyze and discover features in their data. In the future, we

would like to extend our idea to represent other types of data

[like bigBed (Kent et al., 2010) and BAM (Li et al., 2009)]. We

also want to consider lossy compression methods to gain better

compression over noisy data.

Conflicts of Interest: none declared.
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