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CWIKEL ESTIMATES AND NEGATIVE EIGENVALUES OF SCHRÖDINGER

OPERATORS ON NONCOMMUTATIVE TORI

EDWARD MCDONALD AND RAPHAËL PONGE

Abstract. In this paper, we establish Cwikel-type estimates for noncommutative tori for any
dimension n ≥ 2. We use them to derive Cwikel-Lieb-Rozenblum inequalities and Lieb-Thirring
inequalities for negative eigenvalues of fractional Schrödinger operators on noncommutative tori.
The latter leads to a Sobolev inequality for noncommutative tori. On the way we establish a
“borderline version” of the abstract Birman-Schwinger principle for the number of negative
eigenvalues of relatively compact form perturbations of a non-negative semi-bounded operator
with isolated 0-eigenvalue.

1. Introduction

The celebrated estimates of Cwikel [22] are a landmark application of trace-ideal techniques in
mathematical physics. They assert that if f ∈ Lp(R

n) and g is in the weak Lp-space Lp,∞(Rn)
with p > 2, then the operator f(X)g(−i∇) on L2(R

n) is in the weak Schatten class Lp,∞, and we
have ∥∥f(X)g(−i∇)

∥∥
Lp,∞

≤ cnp
∥∥f

∥∥
Lp

∥∥g
∥∥
Lp,∞

, (1.1)

where the constant cnp depends only on n and p. Here f(X) is the multiplication by f in position
space and g(−i∇) is the multiplication by g in momentum space. We refer to Section 4 for
background on Schatten classes and weak Schatten classes. Cwikel’s estimates were extended to
p ∈ (0, 2) by Birman-Solomyak [7] and to p = 2 by Birman-Karadzhov-Solomyak [5] (who also dealt
with more general Lorentz ideals Lp,q). Solomyak [93] substantially improved the understanding
of the p = 2 case in even dimension.

Cwikel’s estimates in the form stated above were conjectured by Simon [89]. He pointed out
that combining them with the Birman-Schwinger principle [4, 84] would give an upper-bound for
the number of negative eigenvalues (i.e., the number of bound states) of Schrödinger operators
∆ + V with V ∈ Ln

2
(Rn), n ≥ 3. Namely, there exists a constant Cn > 0 depending only on n

such that

N−(∆ + V ) ≤ Cn

∫
|V−(x)|

n
2 dx, (1.2)

where N−(∆ + V ) is the number of negative eigenvalues of ∆ + V counted with multiplicity and
V− = 1

2 (|V | − V ) is the negative part of V .
The main motivation for the inequality (1.2) is establishing a Weyl’s law for Schrödinger opera-

tors ~2∆+V with a non-smooth potential V under the semi-classical limit h → 0 (see [6, 11, 89]).
As it turns out, the inequality (1.2) was already established by Rozenblum [78, 79]. Another
independent proof was provided by Lieb [54, 56] (see [17, 28, 29, 38, 61] for further alternative
proofs). The equality (1.2) is now known as the Cwikel-Lieb-Rozenblum (CLR) inequality.

A related theme, initiated by Lieb-Thirring [59, 60] concerns bounds for γ-moments of negative
eigenvalues λ−

j (∆+V ), j ≥ 0. Namely, if γ > 0, then there is a constant Lγ,n > 0 depending only

n and γ such that, for any real-valued potential V ∈ Ln+γ(R
n), we have

∑

j

|λ−
j (∆ + V )|γ ≤ Lγ,n

∫
|V−(x)|

n
2 +γ dx. (1.3)
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The above inequality (1.3) is known as the Lieb–Thirring (LT) inequality. It was first established
for γ = 1 and n = 3 by Lieb-Thirring [59] as a key step toward proving the stability of matter in
quantum mechanics. They subsequently extended the inequality in [60] to all n ≥ 2 and γ > 0
and for n = 1 and γ > 1/2. The case n = 1 and γ = 1/2 was settled by Weidl [102].

A fundamental fact about the LT inequality for γ = 1 is its equivalence with Sobolev inequality
(see [59]). More generally, the LT inequalities have widespread applications in mathematical
physics (see, e.g., [55, 58]). They also play an important role in the study of Navier-Stokes
equations (see, e.g., [57, 100]).

There are versions of the CLR inequality and the LT inequalities for fractional Schrödinger
operators ∆n/2p+V (see, e.g., [23, 50, 49, 78, 79, 80, 93]). Such operators naturally appear in the
framework of fractional quantum mechanics [48]; for p = n we get the ultra-relativistic Schrödinger
operator |∇|+V (see [23]). We refer to the recent survey [30] and the book [31] (and the numerous
references therein) for a more thorough account on the CLR and LT inequalities and their various
applications and generalizations.

Recently, Cwikel estimates have been experiencing a revival of interest. A general abstract oper-
ator theoretic framework for Cwikel-type estimates has been emerging (see [29, 38, 53]). In a recent
article [38] Hundertmark et al. used a refinement of Cwikel’s estimates to get some of the best CLR
bounds to date. Furthermore, applications of Cwikel-type estimates to Connes’s noncommutative
geometry program were found [32, 51, 52, 53, 64, 66, 96, 98]. In particular, Cwikel-type estimates
for noncommutative Euclidean spaces were established by Levitina-Sukochev-Zanin [53].

The aim of this paper is to obtain general Cwikel-type estimates and establish CLR inequalities
on noncommutative tori (a.k.a. quantum tori). Noncommutative tori are arguably the most well
known examples of noncommutative spaces. In particular, they naturally appear in the noncom-
mutative geometry approach to the quantum Hall effect [2] and to topological insulators [14, 73].
In addition, noncommutative tori have been considered in the context of string theory (see, e.g.,
[20, 86]). Noncommutative 2-tori naturally arise from actions of Z on the circle S1 by irrational ro-
tations. More generally, a noncommutative n-tori Tn

θ is generated by unitaries U1, . . . , Un subject
to the relations,

UlUj = e2iπθjlUjUl, j, l = 1, . . . , n,

where θ = (θjl) is a given real anti-symmetric matrix. We refer to Section 2 for more background
on noncommutative tori.

We establish Cwikel-type estimates on Tn
θ for operators λ(x)g(−i∇), where x is in Lp(T

n
θ ) with

p ≥ 2. Here ∇ = (∂1, . . . , ∂n), where ∂1, . . . , ∂n are the canonical derivations of Tn
θ , and λ is

the extension to Lp-spaces of the left-regular representation of L∞(Tn
θ ) in L2(T

n
θ ) (see Section 3).

More precisely, we show that if x ∈ Lq(T
n
θ ) and g ∈ ℓp,∞(Zn), we have

‖λ(x)g(−i∇)‖Lp,∞ ≤ c(p, q)‖x‖Lq‖g‖ℓp,∞, (1.4)

where c(p, q) is some explicit constant independent of g and x. We establish those Cwikel-type
estimates for q = p > 2 (Theorem 4.4, part (2)), q = 2 < p (Theorem 4.8, part (2)), and for
p = 2 < q (Theorem 4.9). In each case, we obtain explicit bounds for the best constants in those
inequalities.

We also have Lp-estimates for p < 2. Namely, if x ∈ Lq(T
n
θ ) and g ∈ ℓp(Z

n), then

‖λ(x)g(−i∇)‖Lp ≤ ‖x‖L2‖g‖ℓp.
The inequalities hold for q = p ≥ 2 (Theorem 4.4, part (1)) and for q = 2 > p (Theorem 4.8).

Note that Lp,∞-estimates with p > 2 and Lp-estimate with p ≥ 2 were established in [66]
with unspecificed constantsas a special case of general results of Levitina-Sukochev-Zanin [53].
We further elaborate on the arguments of [53] to get explicit constants for these estimates.

The L2,∞-estimate is deduced from the estimates in the p > 2 case and p < 2 case by an
interpolation argument. The proof of the estimates in the p < 2 case essentially follows the
approach of [53] to the Cwikel-type estimates on NC Euclidean spaces. As it turns out, on
noncommutative tori some simplifications occur, which allows us to get much sharper results. In
fact, as far as Schatten and weak Schatten classes are concerned, the estimates of this papers are
as sharp as in the (commutative) Euclidean space setting.
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The general Cwikel estimates (1.4) specialize to estimates for operators of the form λ(x)∆−n/2p,
where ∆ = ∇∗∇ is the (positive) Laplacian on Tn

θ (Theorem 6.1). Set

ν0(n) := sup
λ≥1

λ−n
2 #

{
k ∈ Z

n \ 0; |k| ≤
√
λ
}
.

If x ∈ Lq(T
n
θ ), and either p 6= 2 and q = max(p, 2), or if p = 2 < q, then

∥∥λ(x)∆− n
2p

∥∥
Lp,∞

≤ c(p, q)ν0(n)
1
p ‖x‖Lq . (1.5)

For p 6= 2 the constant c(p, q) is the best constant from the corresponding Cwikel-type inequal-
ity (1.4). For p = 2 the inequality follows from the case p > 2 by using Hölder’s inequality, and so
we obtain a better constant.

This allows us to get estimates for operators of the form ∆−n/4pλ(x)∆−n/4p (Theorem 6.5).
More precisely, if x ∈ Lq(T

m
θ ), and either p 6= 1 and q = max(p, 1), or if p = 1 < q, then

∥∥∆− n
4pλ(x)∆− n

4p

∥∥
Lp,∞

≤ 2
1
p c(2p, 2q)ν0(n)

1
p ‖x‖Lq . (1.6)

This inequality holds without the extra 21/p-factor if x ≥ 0 (see Remark 6.6).
In the Euclidean space setting the CLR inequality (1.2) can be deduced from the Cwikel esti-

mates (1.1) by using the Birman-Schwinger principle [4, 84]. In its abstract form due to Birman-
Solomyak [13] (see also Proposition 7.5 and Corollary 7.7) the Birman-Schwinger principle implies
that if H is a (semi-bounded) non-negative selfadjoint operator on Hilbert space and V is a non-
positive relatively form-compact perturbation such that (H +1)−1/2V (H +1)−1/2 ∈ Lp,∞, p > 0,
then

N(H + V ;λ) ≤
∥∥(H + λ)−

1
2V (H + λ)−

1
2

∥∥p
Lp,∞

∀λ < 0. (1.7)

When H is the Laplacian on Rn, n ≥ 3, the inequality (1.7) continues to hold for λ = 0, thereby
providing an estimate for N−(H + V ). In various examples, including the Laplacians on NC tori,
the origin is in the discrete spectrum, and so the resolvent (H − λ)−1 has a pole singularity at
λ = 0. This prevents us from letting λ → 0− in (1.7). To remedy we derive a “borderline” Birman-
Schwinger principle (Theorem 7.9). In particular, we show that if 0 is in the discrete spectrum of
H and V is a non-positive relatively form-compact perturbation such that H−1/2V H−1/2 ∈ Lp,∞,
p > 0, then, we have

0 ≤ N−(H + V )−N−(Π0VΠ0) ≤
∥∥H− 1

2V H− 1
2

∥∥p
Lp,∞

. (1.8)

Here Π0 is the orthogonal projection onto the nullspace of H . This result seems to be new, at
least at this level of generality. Its scope of validity goes beyond the scope of this paper. For
instance, it also encompasses (fractional) Schrödinger operators on closed manifolds or compact
manifolds with boundary under Neumann boundary conditions, as well as Schrödinger operators
on hyperbolic manifolds with infinite volume.

Combining the specific Cwikel estimates (1.6) and the borderline Birman-Schwinger princi-
ple (1.8) allows us to get CLR-type inequalities for fractional Schrödinger operators ∆n/2p+λ(V )
on NC tori (Theorem 8.1). Namely, if V = V ∗ ∈ Lq(T

n
θ ) and, either p 6= 1 and q = max(p, 1), or

p = 1 < q, then

N−
(
∆

n
2p + λ(V )

)
− 1 ≤ c(2p, 2q)2pν0(n)τ

[
|V−|q

] p
q , (1.9)

where V− = 1
2 (|V |−V ) is the negative part of V and τ is the standard normalized trace of L∞(Tn

θ ).
This inequality is consistent with Lieb’s version of the CLR inequality for closed manifolds [54, 56].
For p = n/2 we get a CLR inequality for Schrödinger operators ∆+λ(V ) with V = V ∗ ∈ Ln/2(T

n
θ )

if n ≥ 3 or with V = V ∗ ∈ Lq(T
n
θ ), q > 1, if n = 2. The latter condition is consistent with the

CLR inequality for Schrödinger operators on bounded regions of R2 by Birman-Solomyak [6]
(see also [11]). In particular, unlike in the Euclidean space setting we do get an inequality in
dimension 2.

Under the semiclassical limit h → 0+ the CLR inequality (1.9) implies that

N−
(
h

n
p ∆

n
2p + λ(V )

)
≤ c(2p, 2q)2pν0(n)h

−nτ
[
|V−|q

] p
q +O(1). (1.10)
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This leads us to conjecture that if V = V ∗ ∈ Lq(T
n
θ ) and, either p 6= 1 and q = max(p, 1), or

p = 1 < q, then we have the semi-classical Weyl’s law,

N−
(
h

n
p ∆

n
2p + λ(V )

)
= Vol(Bn)h−nτ

[
|V−|p

]
+ o

(
h−n

)
. (1.11)

In the same way as in the Euclidean space setting, the semiclassical CLR inequality (1.10) allows
us to reduce the proof of (1.11) for Lq-potentials to that for smooth potentials. We believe a
semiclassical Weyl law for smooth potentials can be established by using semiclassical pseudodif-
ferential calculus on NC tori. However, such a pseudodifferential calculus has yet to be set up. As
this project falls out of the scope of this paper we leave (1.11) as a conjecture.

As is well known (see, e.g., [91]), in dimension ≥ 3 the simplest way to derive the Lieb-Thirring
inequalities (1.3) is to deduce them from the CLR inequality (1.2) (although this approach does
not lead to good bounds for the best LT constants Lγ,n). Lieb-Thirring inequalities on ordinary
tori (and spheres) have been established by Ilyin [39] in dimension 2 and by Laptev-Ilyin [40]
in dimension ≤ 19 (see also [41, 42, 43]). We establish Lieb-Thirring inequalities on NC tori by
following the CLR-route

As in [39], we restrict ourselves to the zero mean-value subspace {u; τ(u) = 0}, i.e., the

orthogonal complement of the nullspace ker∆ = C · 1. Denoting by ∆̇ and λ̇(V ) the relevant

restrictions of ∆ and λ(V ), we have CLR inequalities for the operators ∆̇
n
2p + λ̇(V ) for V = V ∗ ∈

Lq(T
n
θ ) with p and q as above (Theorem 8.12). Namely,

N−
(
∆̇

n
2p + λ̇(V )

)
≤ c(2p, 2q)2pν0(n)τ

[
|V−|q

] p
q .

This leads to LT inequalities for the operators ∆̇
n
2p + λ̇(V ) for p > 1 (Theorem 8.14). More

precisely, if γ > 0 and V = V ∗ ∈ Lp+γ(T
n
θ ), then∑

j

∣∣λ−
j (∆

n
2p + λ̇(V ))

∣∣γ ≤ Lp,γ,nτ
[
|V−|p+γ

]
,

where the best constant Lp,γ,n is such that

Lp,γ,n ≤ γ
Γ(p+ 1)Γ(γ)

Γ(p+ γ + 1)
c(2p, 2p)2pν0(n).

As with the original Lieb-Thiring inequalities (1.3) on Rn, for p = n/2 and γ = 1 with n ≥ 3, the
LT inequality (1) is equivalent to a Sobolev inequality on NC tori (Theorem 8.19). More precisely,
there is a constant Kn > 0, such that, for any orthonormal family {u0, . . . , uN} of zero-mean value
elements of the Sobolev space W 1

2 (T
n
θ ), we have

N∑

ℓ=0

τ
[
|∇uℓ|2

]
≥ Knτ

[( N∑

ℓ=1

|uℓ|2
)1+n/2

]
. (1.12)

Moreover, the best constant Kn is related to the best LT constant Ln = Ln
2 ,1,n by

Kn =
n

n+ 2

(
n+ 2

2
Ln

)−n
2

.

We refer to [65] for further applications of the Cwikel estimates (1.5)–(1.6) to curved noncom-
mutative tori, i.e., noncommutative tori equipped with a Riemannian metric. In this setting the
role of the flat Laplacian is played by the corresponding Laplace-Beltrami operator. In particular,
we get “curved” analogues of the CLR inequalities (1.9) and obtain L2-versions of the Connes’
integration formulas of [67, 70].

The paper is organized as follows. In Section 2, we review the main background on noncommu-
tative tori. Section 3 contains some technical preliminaries, including sufficient conditions for the
operators appearing in Cwikel-type estimates to be bounded. In Section 4, we present our main
Cwikel-type estimates for noncommutative tori and show how to deduce the p = 2 case from the
p < 2 case. The p < 2 case is proved in Section 5. In Section 6 we specialize the main Cwikel
estimates into the specific Cwikel estimates (1.5)–(1.6). In Section 7, we establish the borderline
Birman-Schwinger principle (1.8). In Section 8 we establish our CLR inequalities and LT for
fractional Schrödinger operators on NC tori and use them to derive the Sobolev inequality (1.12).
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In Appendix A, for reader’s convenience we reproduce Birman-Solomyak’s proof of the abstract
Birman-Schwinger principle.

Notation. Throughout the paper we make the convention that cabd and Cabd are positive con-
stants which depend only on the parameters a, b, d, etc., and may change from line to line. They
do not depend on the other variables that are floating around.

2. Noncommutative Tori

In this section, we review the main definitions and properties of noncommutative n-tori, n ≥ 2.
We refer to [19, 35, 77], and the references therein, for a more comprehensive account.

Throughout this paper, we let θ = (θjk) be a real anti-symmetric n × n-matrix, and denote
by θ1, . . . , θn its column vectors. We also let L2(T

n) be the Hilbert space of L2-functions on the
ordinary torus Tn = Rn/(2πZ)n equipped with the inner product,

〈ξ|η〉 = (2π)−n

∫

Tn

ξ(x)η(x)dx, ξ, η ∈ L2(T
n). (2.1)

For j = 1, . . . , n, let Uj : L2(T
n) → L2(T

n) be the unitary operator defined by

(Ujξ) (x) = eixjξ (x+ πθj) , ξ ∈ L2(T
n).

We then have the relations,

UkUj = e2iπθjkUjUk, j, k = 1, . . . , n. (2.2)

The noncommutative torus is the noncommutative space whose C∗-algebra C(Tn
θ ) and von

Neuman algebra L∞(Tn
θ ) are generated by the unitary operators U1, . . . , Un. For θ = 0 we obtain

the C∗-algebra C(Tn) of continuous functions on the ordinary n-torus Tn and the von Neuman
algebra L∞(Tn) of essentially bounded measurable functions on Tn. Note that (2.2) implies that
C(Tn

θ ) (resp., L∞(Tn
θ )) is the norm closure (resp., weak closure) in L (L2(T

n)) of the linear span
of the unitary operators,

Uk := Uk1
1 · · ·Ukn

n , k = (k1, . . . , kn) ∈ Z
n.

2.1. GNS representation. Let τ : L (L2(T
n)) → C be the state defined by the constant function

1, i.e.,

τ(T ) = 〈T 1|1〉 = (2π)−n

∫

Tn

(T 1)(x)dx, T ∈ L (L2(T
n)) .

This induces a continuous tracial state on the von Neuman algebra L∞(Tn
θ ) such that τ(1) = 1 and

τ(Uk) = 0 for k 6= 0. The GNS construction then allows us to associate with τ a ∗-representation
of L∞(Tn

θ ) as follows.
Let 〈·|·〉 be the sesquilinear form on C(Tn

θ ) defined by

〈u|v〉 = τ (uv∗) , u, v ∈ C(Tn
θ ). (2.3)

Note that the family {Uk; k ∈ Zn} is orthonormal with respect to this sesquilinear form. We
let L2(T

n
θ ) be the Hilbert space arising from the completion of C(Tn

θ ) with respect to the pre-
inner product (2.3). The action of C(Tn

θ ) on itself by left-multiplication uniquely extends to a
∗-representation of L∞(Tn

θ ) in L2(T
n
θ ). When θ = 0 we recover the Hilbert space L2(T

n) with
the inner product (2.1) and the representation of L∞(Tn) by bounded multipliers. In addition, as
(Uk)k∈Zn is an orthonormal basis of L2(T

n
θ ), every u ∈ L2(T

n
θ ) can be uniquely written as

u =
∑

k∈Zn

ukU
k, uk :=

〈
u|Uk

〉
, (2.4)

where the series converges in L2(T
n
θ ). When θ = 0 we recover the Fourier series decomposition in

L2(T
n).

5



2.2. The smooth algebra C∞(Tn
θ ). The natural action of Rn on Tn by translation gives rise to

an action on L (L2(T
n)). This induces a ∗-action (s, u) → αs(u) on C(Tn

θ ) given by

αs(U
k) = eis·kUk, for all k ∈ Z

n and s ∈ R
n.

This action is strongly continuous, and so we obtain a C∗-dynamical system (C(Tn
θ ),R

n, α). We are
especially interested in the subalgebra C∞(Tn

θ ) of smooth elements of this C∗-dynamical system,
i.e., u ∈ C(Tn

θ ) such that αs(u) ∈ C∞(Rn;C(Tn
θ )).

The unitaries Uk, k ∈ Zn, are contained in C∞(Tn
θ ), and so C∞(Tn

θ ) is a dense subalgebra of
C(Tn

θ ). Denote by S (Zn) the space of rapid-decay sequences with complex entries. In terms of
the Fourier series decomposition (2.4) we have

C∞(Tn
θ ) =

{
u =

∑

k∈Zn

ukU
k; (uk)k∈Zn ∈ S (Zn)

}
.

When θ = 0 we recover the algebra C∞(Tn) of smooth functions on the ordinary torus Tn and
the Fourier-series description of this algebra.

For j = 1, . . . , n, let ∂j : C
∞(Tn

θ ) → C∞(Tn
θ ) be the derivation defined by

∂j(u) = ∂sjαs(u)|s=0, u ∈ C∞(Tn
θ ),

When θ = 0 it agrees with the derivation ∂xj on C∞(Tn). In general, we have

∂j(Ul) =

{
iUj if l = j,
0 if l 6= j.

2.3. Lp-Spaces. The Lp-spaces of T
n
θ are special instances of noncommutative Lp spaces associ-

ated with a semi-finite faithful normal trace on a von Neumann algebra [46, 85] (see also [26, 69]).
We refer to [26, 46] for the main background on noncommutative Lp-spaces needed in this paper.

By definition L∞(Tn
θ ) is a von Neuman algebra of bounded operators on L2(T

n). Thus, a closed
densely defined operator on L2(T

n) is L∞(Tn
θ )-affiliated when it commutes with the commutant

of L∞(Tn
θ ) in L (L2(T

n)). Furthermore, as τ is a finite faithful positive trace on L∞(Tn
θ ) every

such operator is τ -measurable in the sense of [26, 69]. Therefore, these operators form a ∗-algebra,
where the sum and product of such operators are meant as the closures of their usual sum and
product in the sense of unbounded operators (see [69]).

The space L1(T
n
θ ) consists of all L∞(Tn

θ )-affiliated operators x on L2(T
n) such that

τ (|x|) :=
∫ ∞

0

λd(τ∗Eλ) < ∞,

where Eλ = 1[0,λ](|x|) is the spectral measure of |x|. We obtain a Banach space upon equipping
L1(T

n
θ ) with the norm,

‖x‖L1 := τ
(
|x|

)
, x ∈ L1(T

n
θ ).

We have a continuous inclusion with dense range of L∞(Tn
θ ) into L1(T

n
θ ). The trace τ uniquely

extends to a continuous linear functional on L1(T
n
θ ) such that

|τ(x)| ≤ τ(|x|) = ‖x‖1 ∀x ∈ L1(T
n
θ ).

For p > 1, the space Lp(T
n
θ ) consists of all L∞(Tn

θ )-affiliated operators x on L2(T
n) such that

|x|p ∈ L1(T
n
θ ). This is a Banach space with respect to the norm,

‖x‖Lp := τ(|x|p)1/p =

(∫ ∞

0

λpd(τ∗Eλ)

) 1
p

, x ∈ Lp(T
n
θ ),

where as above Eλ, λ ≥ 0, is the spectral measure of |x|. We also have a continuous inclusion with
dense range of L∞(Tn

θ ) into Lp(T
n
θ ). In particular, for p = 2 the above definition is consistent

with the previous definition of L2(T
n
θ ), since in both cases we get the completion of L∞(Tn

θ ) with
respect to the same norm.

We have the following version of Hölder’s inequality.
6



Proposition 2.1 ([26, 46]). Suppose that p−1 + q−1 = r−1 ≤ 1. If x ∈ Lp(T
n
θ ) and y ∈ Lq(T

n
θ ),

then xy ∈ Lr(T
n
θ ) with norm inequality,

‖xy‖Lr ≤ ‖x‖Lp‖y‖Lq . (2.5)

This implies that, for every p ≥ 1, the multiplication of L∞(Tn
θ ) uniquely extends to continuous

bilinear maps,

L∞(Tn
θ )× Lp(T

n
θ ) −→ Lp(T

n
θ ), Lp(T

n
θ )× L∞(Tn

θ ) −→ Lp(T
n
θ ).

In particular, for p = 2 we recover the GNS representation of L∞(T2
θ) associated with τ .

If x is an L∞(Tn
θ )-affiliated operator on L (L2(T

n
θ )), its polar decomposition [74, Theorem

VIII.32] takes the form x = u|x|, where u is a partial isometry in L∞(Tn
θ ). Moreover, the equality

x∗ = u|x|u∗ (see, e.g., [12, Theorem 1.8.3]) and Hölder’s inequality show that

x ∈ Lp(T
n
θ ) =⇒ x∗ ∈ Lp(T

n
θ ) and ‖x∗‖Lp = ‖x‖Lp .

We may also define Lp-spaces on Tn
θ for 0 < p < 1 as above. In this case we obtain a quasi-

Banach spaces (see [16, 26]).

2.4. Sobolev spaces. Given any s ≥ 0, the Sobolev space W s
2 (T

n
θ ) is defined by

W s
2 (T

n
θ ) :=

{
u =

∑

k∈Zn

ukU
k ∈ L2(T

n
θ );

∑

k∈Zn

(1 + |k|2)s|uk|2 < ∞
}
. (2.6)

This is a Hilbert space with respect to the inner product and norm,

〈u|v〉s =
∑

k∈Zn

(1 + |k|2)sukvk, ‖u‖W s
2
=

( ∑

k∈Zn

(1 + |k|2)s|uk|2
) 1

2

.

Note that W 0
2 (T

n
θ ) = L2(T

n
θ ).

Equivalently, let ∆ = −(∂2
1+· · ·+∂2

n) be the Laplacian on Tn
θ . This is a non-negative selfadjoint

operator on L
(
2T

n
θ ) with domain W 2

2 (T
n
θ ). We have

∆
(
Uk) = |k|2Uk, k ∈ Z

n.

In particular, ∆ is isospectral to the Laplacian on the ordinary torus Tn. Set Λ = (1+∆)
1
2 . Given

any s ≥ 0, we have

W s
2 (T

n
θ ) :=

{
u ∈ L2(T

n
θ ); Λsu ∈ L2(T

n
θ )
}
, ‖u‖W s

2
= ‖Λsu‖W 0

2
.

Note also (see [94, 101]) that, given an integer p ≥ 0, we have

W p
2 (T

n
θ ) =

{
u ∈ L2(T

n
θ ); δαu ∈ L2(T

n
θ ) ∀α ∈ N

n
0 , |α| ≤ p

}
.

We mention the following versions of Sobolev’s embedding theorems.

Proposition 2.2 (see [101, Theorem 6.6]). Let p ∈ [2,∞). For every s ≥ n(1/2−p−1), we have a
continuous embedding W s

2 (T
n
θ ) ⊂ Lp(T

n
θ ). This embedding is compact when the inequality is strict.

Proposition 2.3. For any s > n/2, we have a compact embedding W s
2 (T

n
θ ) ⊂ C(Tn

θ ).

Remark 2.4. The continuity of the inclusion of the W s
2 (T

n
θ ) ⊂ C(Tn

θ ) for s > n/2 is established
in [36, p. 67] (see also Remark 3.10 below). We obtain compactness by factorizing it through any

inclusion W s
2 (T

n
θ ) ⊂ W s′

2 (Tn
θ ) with s > s′ > n/2.

3. Lp-Action and Boundedness of λ(x)g(−i∇) and (1 + ∆)−
p
4nλ(x)(1 + ∆)−

p
4n

In what follows, we denote by λ the left-regular representation of L∞(Tn
θ ) on L2(T

n
θ ). In this

section, we shall explain how to extend it to Lp(T
n
θ ), p ≥ 1. We shall then give sufficient conditions

for the boundedness of operators of the forms λ(x)g(−i∇) and (1 + ∆)−
p
4nλ(x)(1 + ∆)−

p
4n .
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3.1. Left-multipliers λ(x). First, we observe that Hölder’s inequality (Proposition 2.1) yields
the following extension result for the left-regular representation λ : L∞(Tn

θ ) → L (L2(T
n)).

Proposition 3.1 ([46]). Suppose that p−1 + q−1 = r−1 ≥ 1. Then the left-regular representation
uniquely extends to a continuous linear map,

λ : Lp(T
n
θ ) −→ L

(
Lq(T

n
θ ), Lr(T

n
θ )
)
.

In particular, if p ≥ 2 and p−1 + q−1 = 2, then we get a continuous linear map,

λ : Lp(T
n
θ ) −→ L

(
Lq(T

n
θ ), L2(T

n
θ )
)
.

Remark 3.2. The above linear maps are isometries (see [46]).

If x ∈ Lp(T
n
θ ) with p ≥ 2, the above corollary asserts that λ(x) a continuous linear operator

from Lq(T
n
θ ) to L2(T

n
θ ) with p−1+q−1 = 1/2. In particular, we may regard λ(x) as an unbounded

operator on L2(T
n
θ ) with domain Lq(T

n
θ ).

Given any q ≥ 1, we denote by Lq(T
n
θ )

∗ the anti-linear dual of Lq(T
n
θ ), i.e., the space of

continuous anti-linear forms on Lq(T
n
θ ). We observe that the left-regular regular representation

of L∞(Tn
θ ) can be regarded as a continuous linear map λ : L∞(Tn

θ ) → L (L2(T
n
θ ), L2(T

n
θ )

∗) such
that

〈λ(x)u, v〉 = 〈λ(x)u|v〉 = τ
[
v∗xu

]
, x ∈ L∞(Tn

θ ), u, v ∈ L2(T
n
θ ),

where 〈·, ·〉 : L2(T
n
θ )

∗ × L2(T
n
θ ) → C is the duality pairing.

Proposition 3.3. Suppose that p−1 + 2q−1 = 1. Then the left-regular representation uniquely
extends to a continuous linear map λ : Lp(T

n
θ ) → L (Lq(T

n
θ ), Lq(T

n
θ )

∗) such that

〈λ(x)u, v〉 = τ
[
v∗xu

]
∀x ∈ Lp(T

n
θ ) ∀u, v ∈ Lq(T

n
θ ). (3.1)

Proof. Let x ∈ Lp(T
n
θ ) and u, v ∈ Lq(T

n
θ ). By Hölder’s inequality xu ∈ Lr(T

n
θ ) with r−1 =

p−1 + q−1 = 1− q−1, and so v∗(xu) ∈ L1(T
n
θ ). Moreover, we have

|τ(v∗xu)| ≤ ‖v∗(xu)‖L1 ≤ ‖v∗‖Lq‖xu‖Lr ≤ ‖x‖Lp‖u‖Lq‖v‖Lq .

This gives the result. �

In particular, if x ∈ Lp(T
n
θ ) with 1 ≤ p < 2, then the above proposition shows that λ(x) makes

sense as a bounded operator from Lq(T
n
θ ) to Lq(T

n
θ )

∗, with p−1+2q−1 = 1, i.e., q−1 = 1
2 (1−p−1).

3.2. The operators (1 + ∆)−s/2λ(x)(1 + ∆)−s/2. Given any s > 0, we denote by W−s
2 (T2

θ)

the anti-linear dual of the Sobolev space W s
2 (T

n
θ ). Set Λ = (1 + ∆)1/2. As mentioned above

Λs : W s
2 (T

n
θ ) → L2(T

n
θ ) is an isometric isomorphism. By duality we get a continuous isomorphism

Λs : L2(T
n
θ ) → W−s

2 (Tn
θ ) such that

〈Λsu, v〉 = 〈u|Λsv〉 , u ∈ L2(T
n
θ ), v ∈ W s

2 (T
n
θ ),

where 〈·, ·〉 : W−s
2 (Tn

θ )×W s
2 (T

n
θ ) → C is the duality pairing. Its inverse Λ−s : W−s

2 (Tn
θ ) → L2(T

n
θ )

is given by 〈
Λ−su|v

〉
=

〈
u,Λ−sv

〉
, u ∈ W s

2 (T
n
θ ), v ∈ L2(T

n
θ ). (3.2)

Lemma 3.4. Let x ∈ Lp(T
n
θ ), p ≥ 1, and assume that, either s > n/2p, or s = n/2p and p > 1.

Then λ(x) uniquely extends to a bounded operator λ(x) : W s
2 (T

n
θ ) → W−s

2 (Tn
θ ).

Proof. Suppose that p−1 + 2q−1 = 1, i.e., q−1 = 1
2 (1 − p−1). We know by Proposition 3.3 that

λ(x) is a bounded operator from Lq(T
n
θ ) to Lq(T

n
θ )

∗.
Suppose that p > 1 and s ≥ n/2p. Then q ∈ [2,∞), and so by Proposition 2.2 we have a

continuous embedding of W s
2 (T

n
θ ) into Lq(T

n
θ ) since s ≥ n/2p = n

2 (1 − q−1). By duality we get

a continuous embedding of Lq(T
n
θ )

∗ into W−s
2 (Tn

θ ). It then follows that λ(x) induces a bonded
operator λ(x) : W s

2 (T
n
θ ) → W−s

2 (Tn
θ ).

Assume now that p = 1 and s > n/2. In this case q = ∞, and so λ(x) is a bounded operator
from L∞(Tn

θ ). As s > n/2, by Proposition 2.3 we have a continuous embedding of W s
2 (T

n
θ ) into

C(Tn
θ ), and hence we get a continuous embedding into L∞(Tn

θ ). By duality we get a continuous

embedding of L∞(Tn
θ )

∗ into W−s
2 (Tn

θ ). Thus, as above p > 1, λ(x) induces a bounded operator
λ(x) : W s

2 (T
n
θ ) → W−s

2 (Tn
θ ). The proof is complete. �
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Combining the above lemma with the boundedness of the operators Λ−s : L2(T
n
θ ) → W s

2 (T
n
θ )

and Λ−s : W−s
2 (Tn

θ ) → L2(T
n
θ ) we arrive at the following result.

Proposition 3.5. Let x ∈ Lp(T
n
θ ), p ≥ 1, and assume that either s > n/2p, or s = n/2p and

p > 1. Then the composition Λ−sλ(x)Λ−s makes sense as a bounded operator on L2(T
n
θ ).

Remark 3.6. The above result holds verbatim if we replace Λ by
√
∆.

3.3. The operators λ(x)g(−i∇). Recall that, given any p ∈ (0,∞), the quasi-Banach space
ℓp(Z

n) consists of p-summable sequences a = (ak)k∈Zn ⊂ C with quasi-norm,

‖a‖ℓp :=

( ∑

k∈Zn

|ak|p
)1/p

, a = (ak) ∈ ℓp(Z
n).

For p ≥ 1 this is a norm, and so in this case ℓp(Z
n) is a Banach space. In addition, we denote by

ℓ∞(Zn) the Banach space of bounded sequences with norm,

‖a‖ℓ∞ := sup
k∈Zn

|ak|, a = (ak) ∈ ℓ∞(Zn).

For p ∈ (0,∞), the weak ℓp-space ℓp,∞(Zn) is defined as follows. Given any sequence a =
(ak)k∈Zn ∈ ℓ∞(Zn), let µ(a) = (µj(a))j≥0 be its symmetric decreasing re-arrangement, i.e.,

µj(a) := sup
k0,...,kj∈Zn

min{|ak0 |, |ak1 |, . . . , |akj |}.

In other words, µ(a) = (µj(a))j≥0 is the non-increasing rearrangement of the sequence (|ak|)k∈Zn .
The space ℓp,∞(Zn) then consists of sequences a = (ak)k∈Zn ∈ ℓ∞(Zn) such that

µj(a) = O
(
j−

1
p
)

as j → ∞.

We equip it with the quasi-norm,

‖a‖ℓp,∞ := sup
j≥0

(j + 1)1/pµj(a), a ∈ ℓp,∞(Zn).

With this quasi-norm ℓp,∞(Zn) is a quasi-Banach space. In fact, for p > 1 the above quasi-norm
is equivalent to the norm,

‖a‖′ℓp,∞ := sup
N≥1

N−1+ 1
p

∑

j<N

µj(a), a ∈ ℓp,∞(Zn).

Therefore, for p > 1 we actually obtain a Banach space.
The canonical derivations ∂1, . . . , ∂n pairwise commute with each other. Their joint spectrum

is iZn. Given any g ∈ ℓ∞(Zn), the operator g(−i∇) is given by

g(−i∇)Uk = g(k)Uk, k ∈ Z
n.

This is a bounded operator on L2(T
n
θ ) with norm equal to ‖g‖ℓ∞. In fact, if we also denote by g

the operator of multiplication by g on ℓ2(Z
n), then µ(g(−i∇)) = µ(g). In particular, this implies

that

• If g ∈ ℓp, then g(−i∇) ∈ Lp and ‖g(−i∇)‖Lp = ‖g‖ℓp .
• If g ∈ ℓp,∞, then g(−i∇) ∈ Lp,∞ and ‖g(−i∇)‖Lp,∞ = ‖g‖ℓp,∞.

Let us now look at the mapping properties of the operators g(−i∇). To this end, given any

p ∈ [1, 2], it is convenient to introduce the space ℓ̂p(T
n
θ ) that consists of all x =

∑
x̂kU

k in L2(T
n
θ )

such that
∑ |x̂k|p < ∞. We equip it with the norm,

‖x‖ℓ̂p :=

( ∑

k∈Zn

|x̂k|p
) 1

p

, x ∈ ℓ̂p(T
n
θ )

In other words, ℓ̂p(T
n
θ ) is the inverse image of ℓp(Z

n) under the Fourier transform x → (x̂k).

Thus, under the Fourier transform the spaces ℓ̂p(T
n
θ ) and ℓp(Z

n) are isometrically isomorphic. In

particular, ℓ̂p(T
n
θ ) is a Banach space.
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For p = 2 the spaces ℓ̂p(T
n
θ ) and L2(T

n) and their norms agree as well. Moreover, we have a

continuous inclusion ℓ̂1(T
n
θ ) ⊂ C(Tn

θ ), since, for every x =
∑

x̂kU
k in ℓ̂1(T

n
θ ), the Fourier series∑

x̂kU
k converges normally in C(Tn

θ ), and we have

‖x‖ ≤
∑

k∈Zn

|x̂k|‖Uk‖ =
∑

k∈Zn

|x̂k| = ‖x‖ℓ̂1 .

Lemma 3.7. Suppose that p−1 + q−1 = r−1 and g ∈ ℓp(Z
n) with p ≥ 2 and 1 ≤ q, r ≤ 2. Then

g(−i∇) induces a continuous linear operator g(−i∇) : ℓ̂q(T
n
θ ) → ℓ̂r(T

n
θ ) with norm inequality,

∥∥g(−i∇)x
∥∥
ℓ̂r

≤ ‖g‖ℓp‖x‖ℓ̂q ∀x ∈ ℓ̂q(T
n
θ ).

Proof. Let x ∈ ℓ̂q(T
n
θ ). We have g(−i∇)x =

∑
g(k)x̂(k)Uk. By assumption (g(k))k∈Zn ∈ ℓp(Z

n)
and x̂ := (x̂(k))k∈Zn ∈ ℓq(Z

n), and so by Hölder’s inequality (g(k)x̂(k))k∈Zn ∈ ℓr(Z
n), since

p−1 + q−1 = r−1. This means that g(−i∇)x ∈ ℓ̂r(T
n
θ ). Moreover, we have the inequalities,

∥∥g(−i∇)x
∥∥
ℓ̂r

= ‖(g(k)x̂(k))‖ℓr ≤ ‖g‖ℓp‖x̂‖ℓq = ‖g‖ℓp‖x‖ℓ̂q .

This proves the result. �

The following two lemmas give the relationships of the ℓ̂p-spaces with the Lp-spaces and Sobolev
spaces.

Lemma 3.8 (Hausdorff-Young Inequality). Suppose that q ≥ 2 and q−1+ r−1 = 1. Then we have

a continuous inclusion ℓ̂r(T
n
θ ) ⊆ Lq(T

n
θ ) with norm inequality,

‖x‖Lq ≤ ‖x‖ℓ̂r ∀x ∈ ℓ̂r(T
n
θ ). (3.3)

Proof. The proof uses complex interpolation theory essentially in the same way as in the proof of
the classical Hausdorff-Young inequality (see, e.g., [3]). For background on interpolation theory
we refer to the short survey of Connes [19, Appendix IV.B] and the references therein. The main
reference for complex interpolation theory there is the article of Calderón [15] (see also [3, 45]).

As mentioned above L2(T
n
θ ) and ℓ̂2(T

n
θ ) agree as Banach spaces and the inclusion of ℓ1(T

n
θ ) into

C(Tn
θ ) gives rise to a contraction into L∞(Tn

θ ). In particular, we have the inequalities,

‖x‖L2 = ‖x‖ℓ̂2 ∀x ∈ ℓ̂2(T
n
θ ), (3.4)

‖x‖L∞
≤ ‖x‖ℓ̂1 ∀x ∈ ℓ̂1(T

n
θ ). (3.5)

Suppose that q ∈ (2,∞). Then Lq(T
n
θ ) is a complex interpolation space for the pair of Banach

spaces (L2(T
n
θ ), L∞(Tn

θ )). Namely, in the notation of [19, Appendix IV.B] we have Lq(T
n
θ ) =

[L2(T
n
θ ), L∞(Tn

θ )]θ, where θ is such that q = (1 − θ)12 , i.e., θ = 1 − 2q−1 (see [24, Section 4]
and [46]). Note also that, as r ∈ (1, 2), the space ℓr(T

n
θ ) is an exact interpolation space for the

pair (ℓ2(T
n
θ ), ℓ1(T

n
θ )). Namely, ℓr(T

n
θ ) = [ℓ2(T

n
θ ), ℓ1(T

n
θ )]θ, since we have

(1− θ)
1

2
+ θ =

1

2
(1 + θ) =

1

2
(2− 2q−1) = 1− q−1 = r−1.

As the Fourier transform induces isometric isomorphisms between the spaces ℓp(Z
n) and ℓ̂p(T

n
θ ),

we see that ℓ̂r(T
n
θ ) = [ℓ̂2(T

n
θ ), ℓ̂1(T

n
θ )]θ. Combining all this with the inequalities (3.4)–(3.5) and

using complex interpolation theory (see [19, Theorem IV.B.1]) then shows we have a continuous

inclusion ℓ̂r(T
n
θ ) ⊆ Lq(T

n
θ ) with the norm inequality (3.3). The proof is complete. �

Lemma 3.9. Suppose that 1 ≤ p < 2 and s > n
2 (2p

−1 − 1). Then we have a continuous inclusion

W s
2 (T

n
θ ) ⊂ ℓ̂p(T

n
θ ).
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Proof. Let u ∈ ∑
ukU

k be in W s
2 (T

n
θ ). By Hölder’s inequality we have

∑

k∈Zn

|uk|p =
∑

k∈Zn

(
1 + |k|2

)− ps
2
[ (

1 + |k|2
)s |u|2k

] p
2

≤
[ ∑

k∈Zn

(
1 + |k|2

)− rps
2

] 1
r
[ ∑

k∈Zn

(
1 + |k|2

)s |u|2k
] p

2

(3.6)

≤
[ ∑

k∈Zn

(
1 + |k|2

)− 1
2psr

] 1
r

‖u‖pW s
2
.

Here r is such that r−1 + (2p−1)−1 = 1, i.e., r−1 = 1 − 1
2p. By assumption s > n

2 (2p
−1 − 1) =

n(1− 1
2p)p

−1 = n(rp)−1, and hence psr > n and
∑

(1+ |k|2)− 1
2psr < ∞. Combining this with (3.6)

shows that
∑

k∈Zn |uk|p < ∞, i.e., u ∈ ℓ̂p(Z
n), and there is a constant Cnps > 0 independent of u

such that

‖u‖ℓ̂p =

[ ∑

k∈Zn

|uk|p
] 1

p

≤ Cnps‖u‖W s
2
.

This proves the result. �

Remark 3.10. For p = 1 and s > n/2, we get a continuous inclusion of W s
2 (T

n
θ ) into ℓ̂1(T

n
θ ).

Combining it with the continuity of the inclusion of ℓ̂1(T
n
θ ) into C(Tn

θ ) mentioned above, we get
a continuous inclusion W s

2 (T
n
θ ) into C(Tn

θ ).

We are now in a position to prove the following result.

Proposition 3.11. Suppose that p−1 + q−1 = 1
2 .

(1) If g ∈ ℓp(Z
n), then g(−i∇) maps continuously L2(T

n
θ ) to Lq(T

n).
(2) If g ∈ ℓp,∞(Zn), then g(−i∇) maps continuously W s

2 (T
n
θ ) to Lq(T

n) for every s > 0.

Proof. Let g ∈ ℓp(Z
n). Lemma 3.7 ensures us that g(−i∇) maps continuously L2(T

n
θ ) to ℓ̂r(T

n
θ ),

where r−1 = 1
2 + p−1. Note that 1 − r−1 = 1

2 − p−1 = q−1, and so by Lemma 3.8 we have

a continuous inclusion of ℓ̂r(T
n
θ ) into Lq(T

n
θ ). It then follows that g(−i∇) maps continuously

L2(T
n
θ ) to Lq(T

n
θ ). This proves the first part.

To prove the 2nd part let g ∈ ℓp,∞(Zn) and s > 0. In addition, let t ∈ [1, 2) be such that

s > n
2 (2t

−1 − 1). Then by Lemma 3.9 we have continuous embedding of W s
2 (T

n
θ ) into ℓ̂t(T

n
θ ). Set

p1 = [p−1 − (t−1 − 1
2 )]

−1, i.e., p−1
1 = p−1 − (t−1 − 1

2 ). Note that p1 > p since t < 2. We also

observe that p−1
1 + t−1 = p−1 + 1

2 = 1 − (12 − p−1) = 1 − q−1. The fact p1 > p implies that

g ∈ ℓp1(Z
n), and so Lemma 3.7 ensures us that g(−i∇) maps continuously ℓ̂t(T

n
θ ) into ℓ̂r(T

n
θ ) with

r−1 = p−1
1 + t−1 = 1− q−1. Furthermore, by Lemma 3.8 we have a continuous inclusion of ℓ̂r(T

n
θ )

into Lq1(T
n
θ ). It then follows that g(−i∇) maps continuously W s

2 (T
n
θ ) to Lq(T

n
θ ). This proves the

2nd part and completes the proof. �

By combining Proposition 3.1 and Proposition 3.11 we arrive at the following result.

Proposition 3.12. Let p ∈ [2,∞).

(1) If x ∈ Lp(T
n
θ ) and g ∈ ℓp(Z

n), then the operator λ(x)g(−i∇) is bounded on L2(T
n
θ ).

(2) If x ∈ Lp(T
n
θ ) and g ∈ ℓp,∞(Zn), then the domain of λ(x)g(−i∇) contains ∪s>0W

s
2 (T

n
θ ).

In particular, λ(x)g(−i∇) is densely defined.

Remark 3.13. The inclusion ∪s>0W
s
2 (T

n
θ ) ⊂ L2(T

n
θ ) is strict. For instance, if u =

∑
ukU

k with
uk = (1 + |k|)−n

2 [log(1 + |k|)]−1, then u ∈ L2(T
n
θ ), but u 6∈ W s

2 (T
n
θ ) for any s > 0.

4. Cwikel Estimates on NC Tori

In this section, we establish Cwikel type estimates on NC tori for Schatten classes and their
weak versions.
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4.1. Schatten classes and weak Schatten classes. We briefly review the main definitions and
properties of Schatten classes and weak Schatten classes on Hilbert space. We refer to [34, 90] for
further details.

In what follows we let H be a (separable) Hilbert space with inner product 〈·|·〉. We also
denote by K the (closed) ideal of compact operators on H . Given any operator T ∈ K we let
µ = (µj(T ))j≥0 be its sequence of singular values, i.e., µj(T ) is the (j +1)-the eigenvalue counted

with multiplicity of the absolute value |T | =
√
T ∗T . By the min-max principle [34, 76] we have

µj(T ) = min
{
‖T|E⊥‖; dimE = j

}
, (4.1)

= min {‖T −R‖; rk(R) ≤ j} , j ≥ 0. (4.2)

This implies the following properties of singular values (see, e.g., [34, 90]),

µj(T ) = µj(T
∗) = µj(|T |), (4.3)

µj+k(S + T ) ≤ µj(S) + µk(T ), (4.4)

µj(ATB) ≤ ‖A‖µj(T )‖B‖, A,B ∈ L (H ). (4.5)

In addition, we have the monotonicity principle,

0 ≤ T ≤ S =⇒ µj(T ) ≤ µj(S) ∀j ≥ 0. (4.6)

In what follows, we denote by L1 the trace-class with norm,

‖T ‖L1 := Tr |T | =
∑

j≥0

µj(T ), T ∈ L1.

Recall that for p ∈ (0,∞) the Schatten class Lp consist of operators T ∈ K such that |T |p is
trace-class. It is equipped with the quasi-norm,

‖T ‖Lp :=
(
Tr |T |p

) 1
p =

(∑

j≥0

µj(T )
p

) 1
p

, T ∈ Lp.

We obtain a quasi-Banach ideal. For p ≥ 1 the Lp-quasi-norm is actually a norm, and so in this
case Lp is a Banach ideal.

For p ∈ (0,∞), the weak Schatten class Lp,∞ is defined by

Lp,∞ :=
{
T ∈ K ; µj(T ) = O

(
j−

1
p
)}

.

This is a two-sided ideal. We equip it with the quasi-norm,

‖T ‖Lp,∞ := sup
j≥0

(j + 1)
1
pµj(T ), T ∈ Lp,∞. (4.7)

Note that

T ∈ Lp,∞ ⇐⇒ |T |p ∈ L1,∞ and ‖T ‖Lp,∞ =
(
‖|T |p‖L1,∞

) 1
p . (4.8)

In addition, for p > 1, the quasi-norm ‖ · ‖p,∞ is equivalent to the norm,

‖T ‖′Lp,∞
:= sup

N≥1
N−1+ 1

p

∑

j<N

µj(T ), T ∈ Lp,∞.

More precisely (see, e.g., [90, §1.7]), we have

‖T ‖Lp,∞ ≤ ‖T ‖′Lp,∞
≤ p

p− 1
‖T ‖Lp,∞.

Therefore, in this case Lp,∞ is a Banach ideal with respect to the equivalent norm ‖ · ‖′p,∞.
We also have the following version of Hölder’s inequality for weak Schatten classes.

Proposition 4.1 ([34, 90, 99]). Suppose that p−1 + q−1 = r−1. If S ∈ Lp,∞ and T ∈ Lq,∞, then
ST ∈ Lr,∞ with norm inequality,

‖ST ‖Lr,∞ ≤ γ(p, q)‖S‖Lp,∞‖T ‖Lq,∞ , γ(p, q) := p−
1
q q−

1
p (p+ q)

1
p+

1
q .

Moreover, the constant γ(p, q) above is optimal.

Remark 4.2. The fact that the constant γ(p, q) is optimal is established in [99].
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Remark 4.3. In terms of p and r, we have γ(p, q) = p1/rr−1/p(p− r)1/p−1/r .

Recall that, given non-increasing sequences of non-negative numbers a = (aj)j≥0 and b =
(bj)j≥0, the Hardy-Littlewood-Pólya submajorization a ≺≺ b means that

N∑

j=0

aj ≤
N∑

j=0

bj ∀N ≥ 0 and

∞∑

j=0

aj =

∞∑

j=0

bj < ∞.

The Hardy-Littlewood-Pólya majorization a ≺ b means that

a ≺≺ b and
∞∑

j=0

aj =
∞∑

j=0

bj < ∞.

Given compact operators S and T on Hilbert space we shall write S ≺≺ T (resp., S ≺ T ) if
µ(S) ≺≺ µ(T ) (resp., µ(S) ≺ µ(T )).

The Schatten Lp-norms are monotone under submajorization

T ≺≺ S =⇒ ‖T ‖Lp ≤ ‖S‖Lp . (4.9)

Note that if T ≺≺ S, then ‖T ‖′
Lp,∞

≺≺ ‖S‖′
Lp,∞

. Therefore, for p > 1, we have

T ≺≺ S =⇒ ‖T ‖Lp,∞ ≤ p

p− 1
‖S‖Lp,∞ . (4.10)

4.2. Cwikel type estimates. We shall distinguish between the following cases:

• Case I: λ(x)g(−i∇) ∈ Lp with p ≥ 2 and λ(x)g(−i∇) ∈ Lp,∞ with p > 2.

• Case II: λ(x)g(−i∇) ∈ Lp and λ(x)g(−i∇) ∈ Lp,∞ with 0 < p < 2.

• Case III: λ(x)g(−i∇) ∈ L2,∞.

The first case is dealt with by the following result.

Theorem 4.4 (see also [53, 66]). The following holds.

(1) If x ∈ Lp(T
n
θ ) and g ∈ ℓp(Z

n) with p ≥ 2, then λ(x)g(−i∇) ∈ Lp, and we have

‖λ(x)g(−i∇)‖Lp ≤ ‖x‖Lp‖g‖ℓp . (4.11)

(2) Assume p > 2. There is c+(p) > 0 such that, if x ∈ Lp(T
n
θ ) and g ∈ ℓp,∞(Zn) with p > 2,

then λ(x)g(−i∇) ∈ Lp,∞, and we have

‖λ(x)g(−i∇)‖Lp,∞ ≤ c+(p)‖x‖Lp‖g‖ℓp,∞. (4.12)

Moreover, the best constant c+(p) satisfies

c+(p) ≤
(
130p

p− 2

) 1
2

.

Proof. The proof of the Cwikel estimate (4.11) for p = 2 is elementary and is presented in the
proof of [66, Theorem 3.1]. In fact, in this case we actually have an equality,

‖λ(x)g(−i∇)‖L2 = ‖x‖L2‖g‖ℓ2, x ∈ L2(T
n
θ ), g ∈ ℓ2(Z

n).

In particular, Hypothesis 3.1 of [53] is satisfied with a constant equal to 1.
It follows from [53, Lemma 3.3] that if x ∈ L2(T

n
θ ) and g ∈ ℓ∞(Zn), then

µ(λ(x)g(−i∇))2 ≺≺ 130µ(x⊗ g)2. (4.13)

Thus, if x ∈ L∞(Tn
θ ) and g ∈ ℓp(Z

n) are positive, then by using (4.9) we get
∥∥|λ(x)g(−i∇)|2

∥∥
L p

2

≤ 130
∥∥|x|2 ⊗ |g|2

∥∥
L p

2

(
L∞(Tn

θ )⊗ℓ∞(Zn)
) ≤ 130‖x‖2Lp

‖g‖2ℓp.

As ‖|λ(x)g(−i∇)|2‖L p
2

= ‖λ(x)g(−i∇)‖2Lp
we get

∥∥λ(x)g(−i∇)
∥∥
Lp

≤
√
130‖x‖Lp‖g‖ℓp.
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Let N ≥ 1, and let θ⊕N be the (Nn) × (Nn)-matrix given by the direct sum of N copies of θ.
Note that

‖x‖Lp(Tn
θ )

= ‖x⊗N‖
1
N

Lp

(
T
Nn

θ⊕N

), ‖g‖ℓp(Zn) = ‖g⊕N‖
1
N

ℓp(ZNn)
. (4.14)

Moreover, as L2(T
Nn
θ⊕N ) = L2(T

n
θ )

⊗N , where ⊗ is the Hilbert space tensor product, we also have

‖T ‖Lp(Tn
θ )

= ‖T ‖
1
N

Lp

(
L2

(
T
Nn

θ⊕N

)) ∀T ∈ Lp(L2(T
n
θ )). (4.15)

The inequality (4.2) holds on Tn
θ⊕N . Thus, if x ∈ Lp(T

n
θ ) and g ∈ ℓp(Z

n), then
∥∥ (λ(x)g(−i∇))⊗N

∥∥
Lp

(
L2

(
T
nN
θ

)) =
∥∥λ(x⊗N )g⊗N (−i∇)

∥∥
Lp(L2(TnN

θ ))

≤
√
130

∥∥x⊗N
∥∥
Lp

(
T
Nn

θ⊕N

)∥∥g⊕N
∥∥
ℓp(ZNn)

.

Combining this with (4.14)–(4.15) gives
∥∥λ(x)g(−i∇)

∥∥
Lp

≤ 130
1

2N ‖x‖Lp‖g‖ℓp.
Letting N → ∞ then yields ∥∥λ(x)g(−i∇)

∥∥
Lp

≤ ‖x‖Lp‖g‖ℓp.
This is the inequality (4.11).

To estimate the weak Schatten norms we can do a similar argument using (4.10) in place of
(4.9). Let p > 2. By using (4.10) and (4.13) and arguing as above shows that if x ∈ L∞(Tn

θ ) and
g ∈ ℓp,∞(Zn) are positive, then

∥∥λ(x)g(−i∇)
∥∥

Lp,∞
≤

(
130p

p− 2

) 1
2

‖x‖Lp‖g‖ℓp,∞. (4.16)

As above the inequality continues to hold if x and g are not positive. Thanks to the density of
L∞(Tn

θ ) in Lp(T
n
θ ), it follows that, if x ∈ Lp(T

n
θ ) and g ∈ ℓp,∞(Zn), then λ(x)g(−i∇) ∈ Lp,∞ and

the inequality (4.16) holds. This gives the 2nd part of Theorem 4.4. The proof is complete. �

Remark 4.5. The estimates (4.11)–(4.12) are established in [66, Theorem 3.1] up to unspecified
constants depending on p. This is a consequence of the results of [53]. More generally, the results
of [53] allows us to get Cwikel-type estimates for any interpolation space between L2 and K

(see [66]).

Remark 4.6. The analogue of (4.11) on Rn is known as the Kato-Seiler-Simon inequality [87].

Combining Theorem 4.4 with Proposition 2.2 we immediately obtain the following statement.

Corollary 4.7. Let s ∈ (2,∞) and set s = n(1/2− p−1). The following holds.

(1) If x ∈ W s
2 (T

n
θ ) and g ∈ ℓp(Z

n), then λ(x)g(−i∇) ∈ Lp, and we have

‖λ(x)g(−i∇)‖Lp ≤ cp‖x‖W s
2
‖g‖ℓp.

(2) If x ∈ W s
2 (T

n
θ ) and g ∈ ℓp,∞(Zn), then λ(x)g(−i∇) ∈ Lp,∞, and we have

‖λ(x)g(−i∇)‖Lp,∞ ≤ cp‖x‖W s
2
‖g‖ℓp,∞.

Case II is dealt with by the following result, the proof of which is postponed to next section.

Theorem 4.8. Suppose that 0 < p < 2. The following holds.

(1) Let x ∈ L2(T
n
θ ) and g ∈ ℓp(Z

n). Then λ(x)g(−i∇) ∈ Lp, and we have

‖λ(x)g(−i∇)‖Lp ≤ ‖x‖L2‖g‖ℓp.
(2) There is c−(p) > 0 such that, if x ∈ L2(T

n
θ ) and g ∈ ℓp,∞(Zn), then λ(x)g(−i∇) ∈ Lp,∞,

and we have
‖λ(x)g(−i∇)‖Lp,∞ ≤ c−(p)‖x‖L2‖g‖ℓp,∞. (4.17)

Moreover, the best constant c−(p) satisfies

c−(p) ≤ 2
1
p (2− p)−

1
p .
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Finally, for Case III we shall prove the following result.

Theorem 4.9. For any x ∈ Lp(Tθ) with p > 2 and g ∈ ℓ2,∞(Zn), the operator λ(x)g(−i∇) is in
L2,∞, and we have

‖λ(x)g(−i∇)‖L2,∞ ≤ cp‖x‖Lp‖g‖ℓ2,∞ . (4.18)

Moreover, the best constant in the inequality is less than or equal to

inf
1<q<2

{
γ1(p, q)γ2(p, q)c+(p)

p(2−q)
2(p−q) c−(q)

q(p−2)
2(p−q)

}
, (4.19)

where c+(p) and c+(q) are the best constants in the inequalities (4.12) and (4.17), respectively,
and the constants γ1(p, q) and γ2(p, q) arise from real interpolation (see Eqs. (4.22)–(4.23) below).

Proof. The proof uses real interpolation theory. Once again, for background on interpolation
theory we refer to the survey of Connes [19, Appendix IV.B] and the references therein. The main
reference for real interpolation theory there is the article of Lions-Peetre [62] (see also [3, 45]).

Let x ∈ Lp(T
n
θ ), p > 2. By Theorem 4.4, for every g ∈ ℓp,∞(Zn), the operator λ(x)g(−i∇) is

in Lp,∞. Thus, we have a linear operator Φx : ℓp,∞(Zn) → Lp,∞ given by

Φx(g) = λ(x)g(−i∇), g ∈ ℓp,∞.

Furthermore, the Cwikel-type estimate (4.12) gives

‖Φx(g)‖Lp,∞ ≤ c+(p)‖x‖Lp‖g‖ℓp,∞ ∀g ∈ ℓp,∞. (4.20)

In addition, as Lp(T
n
θ ) ⊂ L2(T

n
θ ), it follows from Theorem 4.8 that, given any q ∈ (1, 2), if

g ∈ ℓq,∞(Zn), then Φx(g) ∈ Lq,∞, and we have
∥∥Φx(g)

∥∥
Lq,∞

≤ c−(q)‖x‖L2‖g‖ℓq,∞ ≤ c−(q)‖x‖Lp‖g‖ℓq,∞ . (4.21)

As 2 ∈ (q, p), the spaces ℓ2,∞(Zn) and L2,∞ are real interpolation spaces for the pairs of Banach
spaces (ℓq,∞(Zn), ℓp,∞(Zn)) and (Lq,∞,Lp,∞) with the exact same exponents. Namely, in the
notation of [19, Appendix IV.B], and with the same norm equivalences (see e.g. [90, Theorem 2.10]),
we have ℓ2,∞(Zn) = [ℓq,∞(Zn), ℓp,∞(Zn)]θ,∞ and L2,∞ = [Lq,∞,Lp,∞]θ,∞, with θ ∈ (0, 1) such
that 1/2 = (1 − θ)q−1 + θp−1 (see [19, §IV.2.α & Appendix IV.B] and [24, Section 4]). That is,
there are constants γ1(p, q) > 0 and γ2(p, q) > 0 such that

γ2(p, q)
−1‖g‖ℓ2,∞ ≤ ‖g‖[ℓq,∞,ℓp,∞]θ,∞ ≤ γ1(p, q)‖g‖ℓ2,∞ ∀g ∈ ℓ2,∞(Zn), (4.22)

γ2(p, q)
−1‖T ‖L2,∞ ≤ ‖T ‖[Lq,∞,Lp,∞]θ,∞ ≤ γ1(p, q)‖T ‖L2,∞ ∀T ∈ L2,∞. (4.23)

We assume that γ1(p, q) and γ2(p, q) are the best constants in the above inequalities.
By combining the estimates (4.20)–(4.21) with real interpolation theory (see [19, Theorem IV.B.2])

and by using the inequalities (4.22)–(4.23) shows that Φx induces a continuous linear map from
ℓ2,∞(Zn) to L2,∞, and, for all g ∈ ℓ2,∞(Zn), we have

∥∥λ(x)g(−i∇)
∥∥

L2,∞
=

∥∥Φx(g)
∥∥

L2,∞
≤ γ1(p, q)γ2(p, q)(c−(q)‖x‖Lp)

1−θ(c+(p)‖x‖Lp)
θ‖g‖ℓ2,∞

≤ γ1(p, q)γ2(p, q)c+(p)
θc−(q)

1−θ‖x‖Lp‖g‖ℓ2,∞ .

This gives the inequality (4.18).
Here θ is such that 1/2 = (1− θ)q−1 + θp−1. That is,

θ =

(
1

2
− 1

q

)(
1

p
− 1

q

)−1

=
p(2− q)

2(p− q)
, 1− θ =

q(p− 2)

2(p− q)
.

Thus, if we denote by c(p) the best constant in (4.18), then

c(p) ≤ γ1(p, q)γ2(p, q)c+(p)
p(2−q)
2(p−q) c−(q)

q(p−2)
2(p−q) ∀q ∈ (1, 2).

Taking the infimum over q ∈ (1, 2) shows that (4.19) is an upper bound for c(p). The proof is
complete. �

Remark 4.10. Theorem 4.9 does not hold for x ∈ L2(T
n
θ ) (see Remark 6.7).
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Corollary 4.11. For any x ∈ W s
2 (Tθ) with s > 0 and g ∈ ℓ2,∞(Zn), the operator λ(x)g(−i∇) is

in L2,∞, and we have

‖λ(x)g(−i∇)‖L2,∞ ≤ cs‖x‖W s
2
‖g‖ℓ2,∞ .

Proof. Let x ∈ W s
2 (Tθ) with s > 0 and g ∈ ℓ2,∞(Zn). Let p > 2 be such that s ≥ n(1/2− p−1).

By Proposition 2.2 this ensures us that W s
2 (T

n
θ ) embeds continuously into Lp(T

n
θ ). Combining

this with Theorem 4.9 then gives the result. �

5. Proof of Theorem 4.8

In this section, we prove Theorem 4.8. The proof attempts to follow the approach to the proof
of Cwikel-type estimates for noncommutative Euclidean spaces in [53]. However, some significant
simplification occurs thanks to Proposition 5.3 below.

Lemma 5.1 ([53]). Suppose that 0 < p < 2, and let S, T ∈ L2 be such that |S|2 ≺ |T |2.
(i) If S ∈ Lp, then T ∈ Lp, and ‖T ‖Lp ≤ ‖S‖Lp.

(ii) If S ∈ Lp,∞, then T ∈ Lp,∞, and ‖T ‖Lp,∞ ≤ 2
1
p (2 − p)−

1
p ‖S‖Lp,∞.

Proof. The first part is the contents of the first part of [53, Proposition 2.7]. The 2nd part of [53,
Proposition 2.7] gives the 2nd part of the lemma with an upper bound ‖T ‖Lp,∞ ≤ cp‖S‖Lp,∞ for
an unspecified constant cp. We can get the required constant by a slight modification of the proof
in [53].

Suppose that S ∈ Lp,∞. For t ≥ 0, set f(t) = µ[t](S) and g(t) = µ[t](T ), where [·] is the floor

function. Note that supt≥0 t
1/pf(t) = supj≥0(j + 1)

1
pµj(S) = ‖S‖Lp,∞. Likewise, ‖T ‖Lp,∞ =

supt≥0 t
1/pg(t). Moreover, as pointed out in the proof of [53, Proposition 2.7], the fact that

T 2 ≺ S2 implies that ∫ 2

t

g(s)2ds ≤
∫ 2

t

f(s)2ds, t ≥ 0. (5.1)

We also observe that in Eq. (14) of [53] the constant is equal to p(2− p)−1. Thus, we have
∫ ∞

t

f(s)2ds ≤
(

p

2− p

)
‖S‖2Lp,∞

t1−
2
p , t > 0. (5.2)

Given any a > 1 the fact that g(t) is non-increasing ensures that

t(a− 1)g(at)2 ≤
∫ at

t

g(s)2ds ≤
∫ ∞

t

g(s)2ds, t > 0.

Combining this with (5.1)–(5.2) gives

tg(at)2 ≤ (a− 1)−1

(
p

2− p

)
‖S‖2Lp,∞

t1−
2
p , t > 0.

Thus,

t
1
p g(at) ≤ (a− 1)−

1
2

(
p

2− p

) 1
2

‖S‖Lp,∞ , t ≥ 0

It follows that

sup
t≥0

t
1
p g(t) = a

1
p sup

t≥0
t
1
p g(t) ≤ a

1
p (a− 1)−

1
2

(
p

2− p

) 1
2

‖S‖Lp,∞ .

This shows that T ∈ Lp,∞, and we have

‖T ‖Lp,∞ ≤ a
1
p (a− 1)−

1
2

(
p

2− p

) 1
2

‖S‖Lp,∞ ∀a > 1.

The function a → a
1
p (a− 1)−

1
2 reaches its minimum on (1,∞) at a = 2(2 − p)−1. The minimum

value is 21/pp−1/2(2 − p)1/2−1/p. This yields the inequality ‖T ‖Lp,∞ ≤ 21/p(2 − p)−1/p‖S‖Lp,∞ .
The proof is complete. �
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Recall that a sequence of bounded operators (Tj)j≥0 on Hilbert space is called right-disjoint
(resp., left-disjoint) when TjT

∗
l = 0 (resp., T ∗

j Tl = 0) when j 6= l. When all the operators Tj are
selfadjoint notions of left-disjointness and right-disjointness are both equivalent to the condition
TjTl = 0 when j 6= 0. In that case we simply that say that we have a disjoint sequence.

Lemma 5.2 ([53, Lemma 2.9]). Let (Tj)j≥0 be a sequence in L2 such that
∑ ‖Tj‖2L2

< ∞.
Assume further that the sequence (Tj)j≥0 is left-disjoint or right-disjoint. Then, we have

µ2

(⊕

j≥0

Tj

)
≺ µ2

(∑

j≥0

Tj

)
.

The operator-theoretic underpinning of Theorem 4.8 is the following majorization estimate.

Proposition 5.3. Let x ∈ L2(T
n
θ ) and g ∈ ℓ2(Z

n). Then, we have

‖x‖2L2
µ2

(
g(−i∇)

)
≺ µ2

(
λ(x)g(−i∇)

)
. (5.3)

Proof. The fact that g ∈ ℓ2(Z
n) ensures us that g(−i∇) ∈ L2. Furthermore, as x ∈ L2(T

n
θ ) we

know by Theorem 4.4 that λ(x)g(−i∇) is in L2 as well.
Bearing this in mind, given any k ∈ Z

n, we denote by Πk the orthogonal projection onto CUk.
Thus, for all u =

∑
ûkU

k in L2(T
n
θ ), we have

Πku =
〈
Uk|u

〉
Uk = ûkU

k.

Note that (Πk)k∈Zn is a disjoint family of rank 1 projections.
For k ∈ Zn, we also set

Tk := λ(x)g(−i∇)Πk.

Each operator Tk has rank ≤ 1, and so this is a Hilbert-Schmidt operator. Moreover, if k 6= l, then
TkT

∗
l = (λ(x)g(−i∇))ΠkΠl(λ(x)g(−i∇))∗ = 0. Thus, the sequence (Tk)k∈Zn is right-disjoint. We

also note that, as Uk is in the domain of λ(x), for all u =
∑

ûkU
k in L2(T

n
θ ), we have

Tku = λ(x)g(−i∇)Πku = ûkλ(x)g(−∇)Uk = ûkg(k)λ(x)U
k.

Claim. For all k ∈ Zn, we have

|Tk| = ‖x‖L2|g(k)|Πk.

Proof of the claim. Let k ∈ Z
n, and set A = λ(x)g(−i∇). Note that A is a bounded operator by

Proposition 3.12. We have

T ∗
kTk = (AΠk)

∗(AΠk) = ΠkA
∗AΠk.

We observe that

ΠkA
∗AUk =

〈
Uk|A∗AUk

〉
Uk =

〈
AUk|AUk

〉
Uk.

As AUk = λ(x)g(−∇)Uk = g(k)λ(x)Uk, we get
〈
AUk|AUk

〉
= |g(k)|2

〈
λ(x)Uk|λ(x)Uk

〉
= |g(k)|2τ

[
xUk(xUk)∗

]
= |g(k)|2τ [xx∗] = |g(k)|2‖x‖2L2

.

Thus,

ΠkA
∗AUk =

〈
AUk|AUk

〉
Uk = |g(k)|2‖x‖2L2

Uk.

It then follows that, for all u =
∑

ûkU
k, we have

T ∗
k Tk = ΠkA

∗AΠku = ûkΠkA
∗AUk = ûk|g(k)|2‖x‖2L2

Uk = |g(k)|2‖x‖2L2
Πku.

That is, T ∗
kTk = |g(k)|2‖x‖2L2

Πk. Thus,

|Tk| =
√
T ∗
kTk = |g(k)|‖x‖L2

√
Πk = |g(k)|‖x‖L2Πk.

This proves the claim. �
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Combining the claim above with the fact that g ∈ ℓ2(Z
n) gives

∑

k∈Zn

‖Tk‖2L2
=

∑

k∈Zn

‖|Tk|‖2L2
=

∑

k∈Zn

|g(k)|2‖x‖2L2
‖Πk‖L2 = ‖x‖2L2

‖g‖2ℓ2 < ∞.

All this allows us to apply Lemma 5.2 to get

µ2

( ⊕

k∈Zn

Tk

)
≺ µ2

( ∑

k∈Zn

Tk

)
= µ2

(
λ(x)g(−i∇)

)
. (5.4)

Set S =
⊕

k∈Zn Tk. The claim above implies that |S| = ⊕
k∈Zn |Tk| =

⊕
k∈Zn ‖x‖L2 |g(k)|Πk.

Therefore, we have

µ(S) = µ

( ⊕

k∈Zn

‖x‖L2 |g(k)|Πk

)
= ‖x‖L2µ

(
|g(−i∇)|

)
= ‖x‖L2µ

(
g(−i∇)

)
.

Combining this with (5.4) then gives the majorization ‖x‖2L2
µ2(g(−i∇)) ≺ µ2(λ(x)g(−i∇)). The

proof is complete. �

We are now in a position to prove Theorem 4.8.

Proof of Theorem 4.8. Let x ∈ L2(T
n
θ ) and g ∈ ℓp,∞, p < 2. Recall that g(−i∇) ∈ Lp,∞ and

‖g(−i∇)‖Lp,∞ = ‖g‖ℓp,∞. Note also that g ∈ ℓ2(Z
n), since p < 2. Thus, combining the majoriza-

tion (5.3) with Lemma 5.1 shows that λ(x)g(−i∇) ∈ Lp,∞, and we have
∥∥λ(x)g(−i∇)

∥∥
Lp,∞

≤ 2
1
p (2 − p)−

1
p ‖x‖L2‖g(−i∇)‖Lp,∞ ≤ 2

1
p (2− p)−

1
p ‖x‖L2‖g‖ℓp,∞.

If g ∈ ℓp(Z
n), then g(−i∇) ∈ Lp and ‖g(−i∇)‖Lp = ‖g‖ℓp. Therefore, in the same way as

above, we deduce that λ(x)g(−i∇) ∈ Lp, and we have
∥∥λ(x)g(−i∇)

∥∥
Lp

≤ ‖x‖L2‖g(−i∇)‖Lp ≤ ‖x‖L2‖g‖ℓp.

This completes the proof of Theorem 4.8. �

6. Specific Cwikel Estimates

It is worth specializing the Cwikel estimates of Section 4 to operators of the forms λ(x)∆−n/2p

and ∆−n/4pλ(x)∆−n/4p, since these estimates are used in the derivation of the CLR inequalities
on NC tori in Section 8. In the terminology of [98] these Cwikel-type estimates are called specific
Cwikel estimates.

In what follows we set

ν0(n) := sup
λ≥1

λ−n
2 #

{
k ∈ Z

n \ 0; |k| ≤
√
λ
}
.

Theorem 6.1. The following holds.

(1) If p > 2 and x ∈ Lp(T
n
θ ), then λ(x)∆−n/2p ∈ Lp,∞, and we have
∥∥λ(x)∆− n

2p

∥∥
Lp,∞

≤ c+(p)νo(n)
1
p ‖x‖Lp . (6.1)

(2) If 0 < p < 2 and x ∈ L2(T
n
θ ), then λ(x)∆−n/2p ∈ Lp,∞, and we have

∥∥λ(x)∆− n
2p

∥∥
Lp,∞

≤ c−(p)νo(n)
1
p ‖x‖L2 .

(3) If x ∈ Lp(T
n
θ ), p > 2, then λ(x)∆−n/4 ∈ L2,∞, and we have

∥∥λ(x)∆− n
4

∥∥
L2,∞

≤ c2(p)νo(n)
1
2 ‖x‖Lp‖x‖Lp ,

where we have set

c2(p) = 2−
1
p p−

1
2 (p− 2)

1
p−

1
2 c+(p). (6.2)

Here c+(p) and c−(p) are the best constants in the Lp,∞-Cwikel estimates (4.12) and (4.17),
respectively.
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Proof. Suppose that p > 2, and let x ∈ Lp(T
n
θ ). Observe that ∆−n/2p = λ(x)gp(−i∇), where

gp(k) = |k|−n/p for k 6= 0 and gp(0) = 0. In particular, gp ∈ ℓp,∞(Zn). Thus, by specializing

Theorem 4.4 to g = gp we see that λ(x)∆−n/2p ∈ Lp,∞, and we have
∥∥λ(x)∆− n

2p

∥∥
Lp,∞

≤ c+(p)‖gp‖ℓp,∞‖x‖Lp . (6.3)

Let us arrange the family {|k|2; k ∈ Zn \ 0} as a non-decreasing sequence 1 = λ1 ≤ λ2 ≤ · · · ≤
λj ≤ · · · . We have µj(gp) = λ

−n/2p
j+1 for all j ≥ 0, and hence

‖gp‖ℓp,∞ = sup
j≥0

(j + 1)
1
pµj(gp) = sup

j≥0
(j + 1)

1
pλ

− n
2p

j+1 =
(
sup
j≥1

jλ
−n/2
j

) 1
p . (6.4)

Set N0(λ) = #{j ≥ 1;λj ≤ λ}, λ ≥ 1. In view of the definition of ν0(n) we have

N0(λ) = #
{
k ∈ Z

n \ 0; |k|2 ≤ λ
}
= #

{
k ∈ Z

n \ 0; |k| ≤
√
λ
}
≤ ν0(n)λ

n
2 . (6.5)

It follows that j ≤ N0(λj) ≤ ν0(n)λ
−n/2
j for all j ≥ 1. Together with (6.4) this implies that

‖gp‖ℓp,∞ ≤ ν0(n)
1/p. Combining this with (6.3) then gives (6.1). This gives the 1st part.

If p < 2, then we can similarly prove the 2nd part by using Theorem 4.8 instead of Theorem 4.4.
It remains to prove the 3rd part. Let x ∈ Lp(T

n
θ ), p > 2, and let q be such that 2−1 = p−1+q−1.

In particular, λ(x)∆−n/4 = λ(x)∆−n/2p ·∆−n/2q. As p > 2 the operator λ(x)∆−n/2p is in Lp,∞

by the 1st part. Note also that ∆−n/2q = gq(−∇) ∈ Lq,∞. Therefore, by the version of Hölder’s

inequality provided by Proposition 4.1 the operator λ(x)∆−n/4 is in L2,∞, and we have
∥∥λ(x)∆− n

4

∥∥
L2,∞

≤ γ(p, q)
∥∥λ(x)∆− n

2p

∥∥
Lp,∞

∥∥∆− n
2q

∥∥
Lq,∞

,

where γ(p, q) = p−
1
q q−

1
p (p + q)

1
p+

1
q . Here ‖∆− n

2q ‖Lq,∞ = ‖gq(−∇)‖Lq,∞ = ‖gq‖ℓq,∞ ≤ ν0(n)
1/q.

Thus, by using (6.1) we get
∥∥λ(x)∆− n

4

∥∥
L2,∞

≤ γ(p, q)
(
c+(p)ν0(n)

1
p (n)‖x‖Lp

)
ν0(n)

1/q

≤ c2(p)ν0(n)
1
2 ‖x‖Lp ,

where we have set c2(p) = γ(p, q)c+(p). In fact, as p−1 + q−1 = 2−1, by Remark 4.3 we have
γ(p, q) = 2−1/pp−1/2(p − 2)1/p−1/2, and so c2(p) is given by (6.2). This proves the 3rd part. The
proof is complete. �

Remark 6.2. As (6.5) shows, N0(λ) is the number of non-zero integer points in the ball centered

at the origin of radius
√
λ. This ball is contained in the cube [−

√
λ,

√
λ]n. There are at most

2
√
λ+ 1 integers in the interval [−

√
λ,

√
λ]. Thus,

N0(λ) ≤
(
2
√
λ+ 1

)n − 1 = λ
n
2

((
2 + 1/

√
λ
)n − λ− n

2

)
≤ λ

n
2 (3n − 1).

It then follows that

ν0(n) = sup
λ≥1

λ−n
2 N0(λ) ≤ 3n − 1.

For n = 2 it can be shown that N0(λ) ≤ 4λ for λ ≥ 1 (see [41, §2]). Thus, in this case we get
ν0(2) ≤ 4.

Let us now turn to the Cwikel operators ∆−n/4pλ(x)∆−n/4p. Suppose that p−1+2q−1 = 1. As
mentioned in Section 2, if x ∈ Lp(T

n
θ ), then λ(x) makes sense as a bounded operator from Lq(T

n
θ )

to its anti-linear dual Lq(T
n
θ )

∗. Moreover, by Lemma 3.4, if s > n/2p, or if s = n/2p and p > 1,
then λ(x) induces a bounded operator λ(x) : W s

2 (T
n
θ ) → W−s

2 (Tn
θ ). This allows us to makes sense

of the composition ∆−s/2λ(x)∆−s/2 as a bounded operator on L2(T
n
θ ) (cf. Proposition 3.5).

Let y ∈ L2p(T
n
θ ). As (2p)−1 + q−1 = 1

2 (p
−1 + 2q−1) = 1

2 , we know from Proposition 3.1 that
λ(y) makes sense as a bounded operator from Lq(T

n
θ ) to L2(T

n
θ ). By duality we get a bounded

operator λ(y)∗ : L2(T
n
θ ) → Lq(T

n
θ )

∗ such that

〈λ(y)∗u, v〉 = 〈u|λ(y)v〉 , u ∈ L2(T
n
θ ), v ∈ Lq(T

n
θ ). (6.6)
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In addition, if s > n/2p, or if s = n/2p and p > 1, then we have a continuous embedding of
W s

2 (T
n
θ ) into Lq(T

n
θ ), and so the operator λ(x)∆−s/2 is bounded on L2(T

n
θ ).

Lemma 6.3. Let x ∈ Lp(T
n
θ ), p ≥ 1, be of the form x = yz with y, z ∈ L2p(T

n
θ ). In addition,

assume that either s > n/2p, or s = n/2p and p > 1. Then

λ(x) = λ(y∗)∗λ(z), ∆− s
2λ(x)∆− s

2 =
[
λ(y∗)∆− s

2

]∗
λ(z)∆− s

2 .

Proof. Let u, v ∈ Lq(T
n
θ ), p+ 2q−1 = 1. In view of (3.1) we have

〈λ(x)u, v〉 = τ
[
v∗xu

]
= τ

[
v∗yzu

]
.

As zu = λ(z)u ∈ L2(T
n
θ ) and v∗y = (λ(y∗)v)∗ ∈ L2(T

n
θ ), we get

〈λ(x)u, v〉 = τ
[
(λ(y∗)v)

∗
λ(z)u

]
=

〈
λ(z)u|λ(y∗)v

〉
. (6.7)

Combining this with (6.6) gives

〈λ(x)u, v〉 =
〈
λ(y∗)∗λ(z)u, v

〉
∀u, v ∈ Lq(T

n
θ ).

That is, λ(x) = λ(y∗)∗λ(z).
Suppose that, either s > n/2p, or s = n/2p and p > 1. Using (3.2) and (6.7) shows that, for all

u, v ∈ L2(T
n
θ ), we have

〈
∆− s

2λ(x)∆− s
2u|v

〉
=

〈
λ(x)∆− s

2u,∆− s
2 v

〉

=
〈
λ(z)∆− s

2 u|λ(y∗)∆− s
2 v

〉

=
〈[
λ(y∗)∆− s

2

]∗
λ(z)∆− s

2u|v
〉
.

It then follows that ∆−s/2λ(x)∆−s/2 = [λ(y∗)∆−s/2]∗λ(z)∆−s/2. The proof is complete. �

Lemma 6.4. Any x ∈ Lp(T
n
θ ), p ≥ 1, can be written in the form x = yz with y, z ∈ L2p(T

n
θ ) such

that ‖y‖L2p = ‖z‖L2p = (‖x‖Lp)
1/2.

Proof. Let x = u|x| be the polar decomposition of x. As mentioned in Section 2 the phase u is
a partial isometry in L∞(Tn

θ ), and hence ‖u‖L∞
≤ 1. Thus, if we set y = u|x|1/2 and z = |x|1/2,

then x = yz and z ∈ L2p(T
n
θ ) with ‖z‖L2p = (‖x‖Lp)

1/2. In addition, Hölder’s inequality (see

Proposition 2.1) ensures that y = u|x|1/2 ∈ L2p(T
n
θ ), and we have

‖y‖L2p ≤ ‖u‖L∞
‖|x|1/2‖L2p ≤ (‖x‖Lp)

1/2.

As Hölder’s inequality also gives

‖x‖Lp = ‖yz‖Lp ≤ ‖y‖L2p‖z‖L2p ≤ ‖y‖L2p

(
‖x‖Lp

)1/2
,

we deduce that ‖y‖L2p = (‖x‖Lp)
1/2. The proof is complete. �

We are now in a position to establish Cwikel estimates for the operators ∆−n/4pλ(x)∆−n/4p.

Theorem 6.5. The following hold.

(1) If x ∈ Lp(T
n
θ ), p > 1, then ∆−n/4pλ(x)∆−n/4p ∈ Lp,∞, and we have

∥∥∆− n
4pλ(x)∆− n

4p

∥∥
Lp,∞

≤ 2
1
p c+(2p)

2ν0(n)
1
p ‖x‖Lp . (6.8)

(2) If x ∈ Lp(T
n
θ ), p > 1, then ∆−n/4λ(x)∆−n/4 ∈ L1,∞, and we have

∥∥∆−n
4 λ(x)∆− n

4

∥∥
L1,∞

≤ 2c2(2p)
2ν0(n)‖x‖Lp . (6.9)

(3) If x ∈ L1(T
n
θ ) and p < 1, then ∆−n/4pλ(x)∆−n/4p ∈ Lp,∞, and we have

∥∥∆− n
4pλ(x)∆− n

4p

∥∥
Lp,∞

≤ 2
1
p c−(2p)

2ν0(n)
1
p ‖x‖L1. (6.10)

Here c+(2p) and c−(2p) are the best constants in the L2p,∞-Cwikel estimates (4.12) and (4.17),
respectively, and c2(2p) is given by (6.2).
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Proof. Let p > 0, and suppose that q = max(p, 1) if p 6= 1 or q > 1 if p = 1. Note that q ≥ 1. Set
c(p, q) to be equal to c+(2p) (resp., c−(2p), c2(2q)) if p > 1 (resp., p < 1, p = 1). We need to show
that if x ∈ Lq(T

n
θ ), then ∆−n/4pλ(x)∆−n/4p ∈ Lp,∞, and we have

∥∥∆− n
4pλ(x)∆− n

4p

∥∥
Lp,∞

≤ 2
1
p c(p, q)2ν0(n)

1
p ‖x‖Lq . (6.11)

Let x ∈ Lq(T
n
θ ). By Lemma 6.4 we may write x = yz, with y, z ∈ L2q(T

n
θ ) such that ‖y‖L2q =

‖z‖L2q = (‖x‖Lq)
1/2. By Lemma 6.3 we have

∆− n
4p λ(x)∆− n

4p =
[
λ(y∗)∆− n

4p
]∗
λ(z)∆− n

4p .

It follows from Theorem 6.1 that [λ(y∗)∆− n
4p ]∗ and λ(z)∆− n

4p are both in the weak Schatten class
L2p,∞, and we have

∥∥λ(z)∆− n
24

∥∥
L2p,∞

≤ c(p, q)ν0(n)
1
2p ‖z‖L2q = c(p, q)ν0(n)

1
2p ‖x‖

1
2

L2q
, (6.12)

∥∥[λ(y∗)∆− n
4p
]∗∥∥

L2p,∞
=

∥∥λ(y∗)∆− n
2p

∥∥
L2p,∞

≤ c(p, q)ν0(n)
1
2p ‖y∗‖L2p = c(p, q)ν0(n)

1
2p ‖x‖

1
2

L2q
.

(6.13)

The Hölder’s inequality for weak Schatten classes provided by Proposition 4.1 then implies that
∆− n

4pλ(x)∆− n
4p ∈ Lp,∞, and we have
∥∥∆− n

4pλ(x)∆− n
4p ‖Lp,∞ ≤ 2

1
p

∥∥[λ(y∗)∆− n
4p
]∗∥∥

L2p,∞

∥∥λ(z)∆− n
4p

∥∥
L2p,∞

≤ 2
1
p c(p, q)2ν0(n)

1
p ‖x‖Lq .

This proves (6.11). The proof is complete. �

Remark 6.6. If x ≥ 0, then the inequalities (6.8)–(6.10) hold without the extra 2
1
p -factor. Indeed,

if p and q are as in the proof of Theorem 6.5 and 0 ≤ x ∈ Lq(T
n
θ ), then we may take y = z =

√
x.

In this case ∆−n/4pλ(x)∆−n/4p =
[
λ(
√
x)∆−n/4p

]∗
λ(
√
x)∆−n/4p = |λ(√x)∆−n/4p|2. Thus,

∥∥∆− n
4pλ(x)∆− n

4p

∥∥
Lp,∞

=
∥∥∥
∣∣λ(

√
x)∆−n/4p

∣∣2
∥∥∥

Lp,∞

=
∥∥λ(

√
x)∆− n

4p

∥∥2
L2p,∞

Combining this with the inequality (6.12) for y =
√
x then gives

∥∥∆− n
4pλ(x)∆− n

4p

∥∥
Lp,∞

≤ c(p, q)2ν0(n)
1
p ‖x‖Lq ,

which proves our claim.

Remark 6.7. The estimate (6.9) does not hold for x ∈ L1(T
n
θ ) (see [63, Lemma 5.7]).

Remark 6.8. For the ordinary torus Tn, i.e., θ = 0, by a recent result of Sukochev-Zanin [98]
the estimate (6.9) still holds if x is in the Orlicz space LlogL(Tn) (see also [93]). It would be
interesting to have an analogue of this result for θ 6= 0.

7. Borderline Birman-Schwinger Principle

In this section, we establish a “borderline” version of the abstract Birman-Schwinger principle
for the number of negative values of relatively form-compact perturbations of non-negative semi-
bounded operators on Hilbert space.

To a large extent we follow the original approach of Birman-Solomyak [13], which we recast
in the framework of [92]. However, our ultimate result (Theorem 7.9) seems to be new, at least
at the level of generality it is stated. In particular, it can be applied to Schrödinger operators
∆g+V , and more generally fractional Schrödinger operators ∆α

g +V , in the following setups: closed
Riemannian manifolds, compact manifolds with boundary with suitable boundary condition, or
even hyperbolic manifolds with infinite volume.

Throughout this section we let H be a (separable) Hilbert space.
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7.1. Glazman’s Lemma. The proof of the abstract Birman-Schwinger principle by Birman-
Solomyak [13] relies on Glazman’s lemma. We shall now briefly recall this result and set some
notation along the way.

Let A be a selfadjoint operator on H which is bounded or semi-bounded. We denote by QA

its quadratic form. If A is bounded, then QA is the quadratic form on H defined by

QA(ξ, η) := 〈Aξ|η〉 ∀ξ, η ∈ H .

If A is semi-bounded, then QA has domain dom(A−λ)1/2 with µ ∈ R \ Sp(A). We also denote by
Spess(A) the essential spectrum of A, i.e., the complement of the discrete spectrum (which consists
of isolated eigenvalues with finite multiplicity).

Given any λ ∈ R we set

N+(A;λ) = dim
(
ran1(λ,∞)(A)

)
, N−(A;λ) = dim

(
ran1(−∞,λ)(A)

)
. (7.1)

Thus, if [λ,∞) (resp., (−∞, λ]) does not meet the essential spectrum of A, then N+(A;λ) (resp.,
N−(A;λ)) is the number of eigenvalues of A counted with multiplicity that are > λ (resp., < λ).

In what follows, we denote by F±(A;λ) (resp., F
±
0 (A;λ)) the collection of all subspaces F ⊂

dom(QA) such that ±QA(ξ, ξ) > ±λ‖ξ‖2 (resp., ±QA(ξ, ξ) ≥ ±λ‖ξ‖2) on F \ 0. We have the
following variational principles.

Lemma 7.1 (Glazman’s Lemma [12, 33]). For all λ ∈ R, we have

N±(A;λ) =max
{
dimF ; F ∈ F

±(A;λ)
}
, (7.2)

=min
{
dimF⊥; F ∈ F

∓
0 (A;λ)

}
. (7.3)

Remark 7.2. The variational principle (7.3) is due to Glazman [33]. A proof of (7.2) is given in [12]
(see Theorem 10.2.3; see also Theorem 9.2.6 for the compact case).

In what follows given selfadjoint operators A and B we shall write A ≤ B if dom(QA) =
dom(QB) and QA(ξ, ξ) ≤ QB(ξ, ξ) for all ξ in dom(QA) = dom(QB). Recall that Glazman’s
Lemma implies the following monotonicity principle.

Corollary 7.3. Let A and B be selfadjoint operators on H such that A ≤ B. Then, for all
λ ∈ R, we have

N+(A;λ) ≤ N+(B;λ), N−(A;λ) ≥ N−(B;λ).

7.2. The Abstract Birman-Schwinger principle. From now on we let H be a (densely de-
fined) selfadjoint operator on H with non-negative spectrum containing 0. Its quadratic form QH

has domain dom(QH) = dom(H+1)
1
2 . We denote by H+ the Hilbert space obtained by endowing

dom(QH) with the Hilbert space norm,

‖ξ‖+ =
(
QH(ξ, ξ) + ‖ξ‖2

) 1
2 =

∥∥(1 +H)1/2ξ
∥∥, ξ ∈ dom(QH).

We also let H− be the Hilbert space of continuous anti-linear functionals on H+. Note that we
have a continuous embedding ι : H →֒ H− with dense range given by

〈ι(ξ), η〉 = 〈ξ|η〉 , ξ ∈ H , η ∈ H+.

The operator (H + 1)1/2 : H+ → H is a unitary isomorphism. By selfadjointness it extends
to a unitary isomorphism (H + 1)1/2 : H → H− such that

〈
(H + 1)1/2ξ, η

〉
=

〈
ξ
∣∣(H + 1)1/2η

〉
, ξ ∈ H , η ∈ H+, (7.4)

where 〈·, ·〉 : H−×H+ → C is the natural duality pairing. In particular, we have bounded inverses
(H + 1)−1/2 : H → H+ and (H + 1)−1/2 : H− → H such that

〈
(H + 1)−1/2ξ|η

〉
=

〈
ξ, (H + 1)−1/2η

〉
, ξ ∈ H−, η ∈ H . (7.5)

More generally, for any λ < 0, we have bounded operators (H−λ)1/2 : H+ → H and (H−λ)1/2 :
H → H− with bounded inverses (H − λ)−1/2 : H → H+ and (H − λ)−1/2 : H− → H .

Similarly, the operator H extends to a bounded operator H : H+ → H− such that

〈Hξ, η〉 = QH(ξ, η) ξ, η ∈ H+. (7.6)
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More generally, for any λ < 0, the operator H − λ = (H − λ)1/2(H − λ)1/2 extends to a bounded
operator from H+ to H− with bounded inverse (H − λ)−1 : H− −→ H+.

In what follows, we let V : H+ → H− be a bounded operator. We denote by QV the corre-
sponding quadratic form with domain H+ and given by

QV (ξ, η) := 〈V ξ, η〉 , ξ, η ∈ H+.

We assume that QV is symmetric and H-form compact. The latter condition means that the
operator V : H+ → H− is compact, or equivalently, (H + 1)−1/2V (H + 1)−1/2 is a compact
operator on H .

Our main focus is the operator HV := H + V . It makes sense as a bounded operator HV :
H+ → H−. Furthermore, as the symmetric quadratic form QV is H-form compact, it is H-form
bounded with zero H-bound (see [92, §7.8]). Therefore, by the KLMN theorem (see, e.g., [75, 83])
the restriction of HV to dom(HV ) := H−1

V (H ) is a bounded from below selfadjoint operator on
H whose quadratic form is precisely QH +QV .

Lemma 7.4 (see [92, Theorem 7.8.4]). The following holds.

(i) For all λ 6∈ Sp(H) ∪ Sp(HV ), the operator (HV − λ)−1 − (H − λ)−1 is compact.
(ii) The operators H and HV have the same essential spectrum.
(iii) If H has compact resolvent, then so does HV .

As HV is bounded from below, we define the counting function N−(HV ;λ) as in (7.1). If
λ < inf Spess(H), then N−(HV ;λ) this is the number of eigenvalues of HV which are < λ. We
also set N−(HV ) := N(HV ; 0); this is the number of “bound states” of HV .

Given operators Vj : H+ → H−, j = 1, 2, we shall write V1 ≤ V2 when QV1 ≤ QV2 , i.e., QV1

and QV2 are both symmetric and QV1(ξ, ξ) ≤ QV2(ξ, ξ) for all ξ ∈ H+. In this case QHV1
(ξ, ξ) ≤

QHV2
(ξ, ξ) for all ξ ∈ H+, and so by using Corollary 7.3 we get

V1 ≤ V2 =⇒ N(HV2 ;λ) ≤ N(HV1 ;λ) ∀λ ∈ R. (7.7)

The Birman-Schwinger principle was established by Birman [4] and Schwinger [84] for Schrödinger
operators ∆+ V on Rn, n ≥ 3. It is the main impetus for using Cwikel estimates to establish the
Cwikel-Lieb-Rozenblum inequality (see [22, 89]). In our setting it relates the counting function
N(HV ;λ) to the eigenvalues of the Birman-Schwinger operators,

KV (λ) = −(H − λ)−
1
2V (H − λ)−

1
2 , λ < 0.

The compactness of V ensures us that KV (λ) is a compact operator on H .
Note also that KV (λ) is related to the quadratic form QV by

〈KV (λ)ξ|η〉 = −
〈
V (H − λ)−1/2ξ, (H − λ)−1/2η

〉

= −QV

(
(H − λ)−1/2ξ, (H − λ)−1/2η

)
, ξ, η ∈ H . (7.8)

Thus, the fact that QV is symmetric ensures us that KV (λ) is a selfadjoint compact operator.
We then define the counting function N+(KV (λ);µ), µ > 0, as above. If in addition V ≤ 0, then
KV (λ) ≥ 0, and so in this case the eigenvalues of KV (λ) agree with its singular values.

Proposition 7.5 (Abstract Birman-Schwinger Principle [13, Lemma 1.4]). For all λ < 0, we have

N(HV ;λ) = N+ (KV (λ); 1) . (7.9)

Remark 7.6. For reader’s convenience a proof of Proposition 7.5 is given in Appendix A.

The following is a well known consequence of the Birman-Schwinger principle (see [22, 89]). For
reader’s convenience, a proof has been included in Appendix A.

Corollary 7.7. Assume V ≤ 0 and (H+1)−1/2V (H+1)−1/2 ∈ Lp,∞ for some q ∈ (0,∞). Then,
for all λ < 0, the operator KV (λ) is in the weak Schatten class Lp,∞, and we have

N(HV ;λ) ≤ ‖KV (λ)‖pLp,∞
. (7.10)
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7.3. Borderline Birman-Schwinger principle. The proofs of the standard CLR inequality for
Schrödinger operators on Rn, n ≥ 3, uses the fact that for the Laplacian on Rn with n ≥ 3 the
essential spectrum contains 0 and the resolvent (∆−λ)−1 has a weak limit as λ → 0−. This allows
us to take λ = 0 in (7.10) and get an upper bound for N−(HV ) (see [90, Theorem 7.9.11]).

However, on closed manifolds and NC tori, 0 is in the discrete spectrum of the Laplacian, and
so the resolvent has a pole singularity at λ = 0. This prevents us from letting λ → 0− in (7.10).
This stresses out the need for a “borderline” version of the Birman-Schwinger (7.10) when 0 is the
discrete spectrum.

Assume that 0 lies in the discrete spectrum of H , i.e., 0 is an isolated eigenvalue of H . Thus,
the essential spectrum of H is contained in some interval [a,∞) with a > 0. As H and HV have
same essential spectrum by Lemma 7.4, it follows that HV has at most finitely many non-positive
eigenvalues.

We denote by H−1 the partial inverse of H . That is, H−1 vanishes on kerH and inverts
H on (kerH)⊥ = ranH . This is a selfadjoint bounded operator with non-negative spectrum.
We then define H−1/2 to be (H−1)1/2. Equivalently, H−1 = f(H) and H−1/2 = g(H), where
f(t) = 1[ǫ,∞)(t)t

−1 and g(t) = 1[ǫ,∞)(t)t
−1/2, with ǫ > 0 small enough so that Sp(H) ∩ (0, ǫ] = ∅.

We then set
We shall need the following abstract version of Lemma 6.3.

Lemma 7.8. Suppose that V ≤ 0. Then there is a compact operator W : H+ → H such that
V = −W ∗W , where W ∗ : H → H− is the adjoint map.

Proof. Set K = KV (−1). As V ≤ 0, we know that K is a positive compact operator. Set
W = K1/2(H +1)1/2. Then W is a compact operator from H+ to H . By duality we get a linear
operator W ∗ : H → H− such that

〈W ∗ξ, η〉 = 〈ξ|Wη〉 , ξ ∈ H , η ∈ H+. (7.11)

In particular, for ξ, η ∈ H , we have

〈W ∗Wξ, η〉 = 〈Wξ|Wη〉 =
〈
K

1
2 (H + 1)

1
2 ξ|K 1

2 (H + 1)
1
2 η

〉

=
〈
K(H + 1)

1
2 ξ|(H + 1)

1
2 η

〉

=
〈
(H + 1)

1
2K(H + 1)

1
2 ξ, η

〉

= −〈V ξ, η〉 .
This shows that V = −W ∗W . The proof is complete. �

In what follows we denote by Π0 the orthogonal projection on kerH . This is a selfadjoint
finite rank operator whose range is contained in H+, and hence we get a bounded operator
Π0 : H → H+. By duality we obtain a bounded operator Π0 : H− → H such that

〈Π0ξ|η〉 = 〈ξ,Π0η〉 , ξ ∈ H−, η ∈ H .

The composition Π0VΠ0 then is a selfadjoint finite-rank operator on H . As above, we denote by
N−(Π0VΠ0) its number of negative eigenvalues counted with multiplicity.

Theorem 7.9 (Borderline Birman-Schwinger Principle). Suppose that 0 is in the discrete spectrum
of H. Set KV = −H−1/2VH−1/2. Then, the following hold.

(1) We have

N+(KV ; 1) ≤ N−(HV ) ≤ N+(KV ; 1) + dimkerH. (7.12)

(2) Assume further that V ≤ 0 and KV ∈ Lp,∞ for some p ∈ (0,∞). Then

0 ≤ N−(HV )−N−(Π0VΠ0) ≤
∥∥KV

∥∥p
Lp,∞

. (7.13)

In particular, if V (kerH) ⊂ ranH, then

N−(HV ) ≤
∥∥KV

∥∥p
Lp,∞

. (7.14)
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Proof. Set H1 = ranH and V1 = (1 − Π0)V (1 − Π0). We also denote by HV |H1
and KV |H1

the
operators on H1 induced by (1 − Π0)HV (1 − Π0) = HV1 and KV , respectively. By applying the
Birman-Schwinger principle (7.9) to HV |H1

on H1 we get

N−
(
HV |H1

)
= N+

(
KV |H1

; 1
)
= N+

(
KV ; 1

)
. (7.15)

Moreover, as F−(HV |H1
; 0) ⊂ F−(HV ; 0) by using the variational principles (7.2)–(7.3) we get

N−
(
HV |H1

)
≤ N−

(
HV

)
≤ N−

(
HV |H1

)
+ dim kerH. (7.16)

Combining this with (7.15) gives the inequalities (7.12).
From now on we assume that V ≤ 0 and KV ∈ Lp,∞, p > 0. Set A = H1/2(H + 1)−1/2. Then

(H + 1)−1/2 = H−1/2A+Π0, and so in the same way as in (A.2) we have

(H + 1)−1/2V (H + 1)−1/2 = A∗KV A+R,

where R is a finite rank operator. This implies that (H + 1)−1/2V (H + 1)−1/2 is in the weak
Schatten class Lp,∞. In particular, this is a compact operator. Likewise, the Birman-Schwinger
operators KV (λ), λ < 0, are in Lp,∞ as well.

Bearing this in mind, set N = N−(HV ) and N0 = N−(Π0VΠ0). As Π0VΠ0 = Π0HV Π0, we
see that F−(Π0VΠ0; 0) ⊂ F−(HV ; 0), and so it follows from (7.2) that N0 ≤ N .

It remains to show the 2nd inequality in (7.13). We may assume N −N0 ≥ 1, since otherwise
the inequality is trivially satisfied. Note that N = N(HV ;λ) as soon as λ < 0 is small enough.
The Birman-Schwinger principle (7.9) then asserts that N = N+(KV (λ); 1). As KV (λ) ≥ 0, in
the same way as in the proof of Corollary 7.7 this ensures that KV (λ) has exactly N singular
values > 1, and hence µN−1(KV (λ)) ≥ 1.

By Lemma 7.8 we can find a compact operator W : H+ → H such that V = −W ∗W . Set

T (λ) = W (H − λ)−
1
2 . This is a compact operator on H . Moreover, by using (7.5) and (7.11) we

see that, for all ξ, η ∈ H , we have
〈
(H − λ)−

1
2W ∗ξ|η

〉
=

〈
W ∗ξ, (H − λ)−

1
2 η

〉
=

〈
ξ|W (H − λ)−

1
2 η

〉
= 〈ξ|T (λ)η〉 .

This shows that T (λ)∗ = (H − λ)−1/2W ∗. Thus,

KV (λ) = (H − λ)−
1
2W ∗W (H − λ)−

1
2 = T (λ)∗T (λ) = |T (λ)|2.

Set K̃V (λ) = T (λ)T (λ)∗ = W (H − λ)−1W ∗. By using (4.3) we get

µj (KV (λ)) = µj (T (λ))
2 = µj (T (λ)

∗)2 = µj

(
K̃V (λ)

)
, j ≥ 0. (7.17)

Observe that K̃V (λ) = T (λ)(1 −Π0)T (λ)
∗ + T (λ)Π0T (λ)

∗. By using (4.4) we get

µN−1

(
K̃V (λ)

)
≤ µN−N0−1

(
T (λ)(1 −Π0)T (λ)

∗
)
+ µN0

(
T (λ)Π0T (λ)

∗
)
.

As rkT (λ)Π0T (λ)
∗ ≤ rkΠ0 = N0, it follows from (4.2) that µN0(T (λ)Π0T (λ)

∗) = 0. Thus,

µN−1

(
K̃V (λ)

)
≤ µN−N0−1

(
T (λ)(1−Π0)T (λ)

∗
)
. (7.18)

We also have

T (λ)(1−Π0)T (λ)
∗ = W (H − λ)−1/2(1−Π0)(H − λ)−1/2W ∗,

= W (H + 1)−1/2 · (1−Π0)(H + 1)(H − λ)−1 · (H + 1)−1/2W ∗,

= T (−1)(1−Π0)(H + 1)(H − λ)−1T (−1)∗.

As (1−Π0)(H + 1)(H − λ)−1 ≤ (H + 1)H−1, it follows that

T (λ)(1 −Π0)T (λ)
∗ ≤ T (−1)(H + 1)H−1T (−1)∗ = WH−1W ∗.

Therefore, by using (7.18) and the monotonicity principle (4.6) we get

µN−1

(
K̃V (λ)

)
≤ µN−N0−1

(
T (λ)(1 −Π0)T (λ)

∗
)
≤ µN−N0−1

(
WH−1W ∗

)
. (7.19)

As in (7.17) we have µj(WH−1W ∗) = µj(H
−1/2V H−1/2) = µj(KV ) for all j ≥ 0. Combining

this with (7.19) and the fact that µN−1(K̃V (λ)) ≥ 1 gives

1 ≤ µN−1

(
K̃V (λ)

)
≤ µN−N0−1

(
KV

)
. (7.20)
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In the same way as in (A.3) this implies that

N −N0 ≤ (N −N0)µN−N0−1

(
KV

)p ≤
∥∥KV

∥∥p
Lp,∞

.

This gives the 2nd inequality in (7.13). The proof is complete. �

Remark 7.10. By using (7.12) and arguing along similar lines as that of the proof of Corollary 7.7
in Appendix A it is easier to get the inequality,

N−(HV )− dim kerH ≤
∥∥KV

∥∥p
Lp,∞

. (7.21)

We also recover this inequality from (7.13). This inequality and the inequalities (7.12) are known
already. They appear in various forms in the work of Birman and Solomyak, in particular for
dealing with Schrödinger operators on bounded domains under Neuman’s boundary condition
(see, e.g., [6, 11, 93]). In most of the instances where it has been used by Birman and Solomyak,
the inequality (7.21) is relevant, since in those situations kerH = 1 and Π0VΠ0 has a negative
eigenvalue is V ≤ 0 and V 6= 0. However, in general we might have N−(HV ) − dimkerH < 0
(e.g., if V (kerH) ⊂ ranH), and so in such a case (7.21) is not sharp (see Example 7.11 below).

Example 7.11. Let (Mn, g) be a closed Riemannian manifold, and take H to be the (positive)
Laplacian ∆g on H = L2(M ; g) with domain the Sobolev space W 2

2 (M). In this case, ker∆g is
spanned by the characteristic functions of the connected components of M , and so dimker∆g =
dimH0(M), where H0(M) is the zero-th degree de Rham cohomology space of M . Let V ∈
L∞(M). Then, ∆

−1/2
g V∆

−1/2
g ∈ Ln/2,∞, and so from (7.21) we get

N−(∆g + V )− dimH0(M) ≤
∥∥∆− 1

2
g V∆

− 1
2

g

∥∥n
2

Ln
2

,∞
. (7.22)

Suppose now that M has at least two connected components, and let M1 be such a component.
If V = −α1M1 with α > 0, then Π0VΠ0 = −αΠ1, where Π1 is the orthogonal projection onto
1M1 , and hence N−(Π0VΠ0) = 1. Furthermore, if α is small enough, then

N−(∆g − α1M1 ) = N−(∆g|M1
− α) +N−(∆g|M\M1

) = N−(∆g|M1
;α) = 1 < dimH0(M).

Thus, in this case the l.h.s. of (7.22) is < 0.

8. Cwikel-Lieb-Rozenblum Inequalities and Lieb-Thirring Inequalities

In this section, we combine the result of the previous two sections to establish Cwikel-Lieb-
Rozenblum (CLR) inequalities and Lieb-Thirring (LT) inequalities for (fractional) Schrödinger
operators on NC tori. As we shall see, this will lead us to a Sobolev inequality for NC tori.

8.1. CLR inequalities. In the notation of the previous section we let H = L2(T
n
θ ) and let H

be the fractional Laplacian ∆n/2p, p > 0, with domain W
n/2p
2 (Tn

θ ). Note that ∆n/2p has compact
resolvent and its nullspace is C·1. In particular, 0 is an isolated eigenvalue. Up to equivalent norms,

the Hilbert spaces H+ and H− are the Sobolev spaces W
n/4p
2 (Tn

θ ) and W
−n/4p
2 (Tn

θ ), respectively
Suppose that, either s > n/2q and q ≥ 1, or s = n/2q and q ≥ 1. In this case, if V ∈ Lq(T

n
θ ),

then we know by Lemma 3.4 that λ(V ) induces a bounded operator λ(V ) : W s
2 (T

n
θ ) → W−s

2 (Tn
θ ).

Thus, it defines a quadratic form on W s
2 (T

n
θ ) by

Qλ(V )(u, v) = 〈λ(V )u, v〉 = τ
[
v∗V u

]
, u, v ∈ W s

2 (T
n
θ ).

In particular, if V ∗ = V , then

Qλ(V )(u, v) = τ
[
u∗V v

]
= Qλ(V )(v, u).

That is, Qλ(V ) is symmetric. If in addition V ≥ 0, then

Qλ(V )(u, u) = τ
[
u∗V u] = τ

[
(V 1/2u)∗V 1/2u

]
≥ 0.

Thus, Qλ(V ) ≥ 0. In particular, in the notation of Section 7 we have

V1 ≤ V2 =⇒ λ(V1) ≤ λ(V2). (8.1)
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Bearing this in mind, Theorem 6.5 implies that the operator λ(V ) : W
n/2p
2 (Tn

θ ) → W
−n/2p
2 (Tn

θ )
is compact under any of the following conditions:

(i) p > 1 and V ∈ Lp(T
n
θ ).

(ii) p = 1 and V ∈ Lq(T
n
θ ), q > 1.

(iii) p < 1 and V ∈ L1(T
n
θ ).

It follows that, if V is selfadjoint and any of the above conditions (i)–(iii) holds, then the pair
(∆n/2p, λ(V )) fits into the framework of the previous section. Thus, we may define the fractional

Schrödinger operator ∆
n
2p + λ(V ) as a form sum. We obtain a bounded from below selfadjoint

operator on L2(T
n
θ ) with compact resolvent. In particular, it has no essential spectrum. As above

we denote by N−(∆n/2p + λ(V )) the number of negative eigenvalues counted with multiplicity.
In what follows, given any selfadjoint element V ∈ Lp(T

n
θ ), we let V± = 1

2 (|V | ± V ) be the
positive and negative parts of V . Note that V+ and V− are positive elements of Lp(T

n
θ ).

We are now in a position to establish CLR inequalities on NC tori in the following form.

Theorem 8.1 (CLR Inequalities on NC Tori). Let n ≥ 2. The following holds.

(i) If p > 1 and V = V ∗ ∈ Lp(T
n
θ ), then

N−
(
∆

n
2p + λ(V )

)
− 1 ≤ c+(2p)

2pν0(n)sτ
[
|V−|p

]
. (8.2)

(ii) If V = V ∗ ∈ Lp(T
n
θ ), p > 1, then

N−
(
∆

n
2 + λ(V )

)
− 1 ≤ c2(2p)

2pν0(n)τ
[
|V−|p

] 1
p . (8.3)

(iii) If p < 1 and V = V ∗ ∈ L1(T
n
θ ), then

N−
(
∆

n
2p + λ(V )

)
− 1 ≤ c−(2p)

2pν0(n)τ
[
|V−|

]p
. (8.4)

Here c+(2p) and c−(2p) are the best constants in the Lp,∞-Cwikel estimates (4.12) and (4.17),
respectively, and c2(2p) is given by (6.2).

Proof. Suppose that q = max(p, 1) if p 6= 1, or q > 1 if p = 1. Set c(p, q) to be equal to
c+(2p) (resp., c−(2p), c2(2q)) if p > 1 (resp., p < 1, p = 1). The proof amounts to show that if
V = V ∗ ∈ Lq(T

n
θ ), then

N−
(
∆

n
2p + λ(V )

)
− 1 ≤ c(p, q)2pν0(n)τ

[
|V−|q

] p
q . (8.5)

Note also that if V− = 0, then V = V+ ≥ 0 and Qλ(V ) ≥ 0, and hence ∆n/2p + λ(V ) ≥ 0. Thus,

in this case N−(∆n/2p +λ(V )) = 0, and so the inequality (8.5) is trivially satisfied. Therefore, we
may assume V− 6= 0.

As V = V+ − V− ≥ −V−, by (8.1) we have λ(V ) ≥ −λ(V−), and so the monotonicity princi-
ple (7.7) implies that

N−
(
∆

n
2p + λ(V )

)
≤ N−

(
∆

n
2p − λ(V−)

)
. (8.6)

Let Π0 be the orthogonal projection onto ker∆n/2p = C · 1. It is a rank 1 projection given by

Π0u = τ(u)1, u ∈ L2(T
n
θ ).

The formula continues to make sense for any u ∈ L1(T
n
θ ). We have

−Π0λ(V−)Π01 = −τ(1)Π0V− = −τ(V−) < 0.

Thus, −τ(V−) is a negative eigenvalue of −Π0λ(V−)Π0. As −Π0λ(V−)Π0 has rank 1 this is the
unique negative eigenvalue, and hence N−(−Π0λ(V−)Π0) = 1. Combining this with (8.6) gives

N−
(
∆

n
2p + λ(V )

)
− 1 ≤ N−

(
∆

n
2p − λ(V−)

)
−N−(−Π0λ(V−)Π0). (8.7)

Moreover, as 0 ≤ V− ∈ Lq(T
n
θ ), Theorem 6.5 and Remark 6.6 ensure us that ∆−n/4pλ(V−)∆

−n/4p ∈
Lp,∞ with norm estimate,

∥∥∆− n
4pλ(V )∆− n

4p

∥∥
Lp,∞

≤ c(p, q)2ν0(n)
1
p ‖V−‖Lq = c(p, q)2ν0(n)

1
p τ

[
|V−|q

] 1
q . (8.8)

This allows us to apply the borderline Birman-Schwinger principle (Theorem 7.9) to get

N−
(
∆

n
2p − λ(V−)

)
−N−(−Π0λ(V−)Π0) ≤

∥∥∆− n
4pλ(V−)∆

− n
4p

∥∥p
Lp,∞

.
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Combining this with (8.7) and (8.8) gives the inequality (8.5). The proof is complete. �

Remark 8.2. For the ordinary torus Tn, i.e., θ = 0, the critical CLR inequality (8.3) actually hold
for potentials V in the Orlicz class LlogL(Tn) (see [72, 81, 82]).

Remark 8.3. Suppose that either q = max(p, 1) and p 6= 1, or q > 1 = p. The CLR inequali-
ties (8.2)–(8.4) are consistent with Lieb’s version of the CLR inequality for Schrödinger operators
on closed manifolds (see [54, 56]). Note that we cannot expect estimates of the form,

N−
(
∆

n
2p + λ(V )

)
≤ cnpqτ

[
|V−|q

] p
q . (8.9)

To see this take V = −ǫ with ǫ > 0. In that case the right-hand side of (8.9) is cnpqτ [ǫ
q]p/q = cnpqǫ

p.

In addition (∆n/2p − ǫ)1 = −ǫ1, and hence −ǫ is always a negative eigenvalue of ∆n/2p − ǫ. Thus,
N−(∆n/2p − ǫ) ≥ 1. Therefore, if we had the inequality (8.9), then we would have

1 ≤ N−
(
∆

n
2p − ǫ

)
≤ cnpqǫ

p ∀ǫ > 0,

which does not hold as soon as ǫ is small enough.

Remark 8.4. The most interesting case of the above CLR inequalities is for the Schrödinger
operator ∆ + λ(V ), i.e., p = n/2. In this case Theorem 8.1 specializes to the following:

(i) If n ≥ 3 and V = V ∗ ∈ Ln/2(T
n
θ ), then

N−
(
∆+ λ(V )

)
− 1 ≤ c+(n)

nν0(n)τ
[
|V−|

n
2

]
. (8.10)

(ii) If n = 2 and V = V ∗ ∈ Lp(T
2
θ), p > 1, then

N−
(
∆+ λ(V )

)
− 1 ≤ c2(2p)

2pν0(2)τ
[
|V−|p

] 1
p . (8.11)

Remark 8.5. The 2-dimensional case (8.11) shows a stark contrast with the Euclidean space case,
since on R2 the Birman-Schwinger principle and the CLR inequality for Schrödinger operators
∆ + V do not hold. In particular, recent results of Hoang et al. [37, Theorem 3.1] show that if
V ∈ L1(R

2) \ 0 is such that
∫
V (x)dx ≤ 0, then ∆+V always has at least one negative eigenvalue

(see also Simon [88]).

Remark 8.6. The cases p 6= n/2 are also of interest, since fractional Schrödinger operators naturally
appear in the framework of fractional quantum mechanics [48]. For p = n we get the hyper-
relativistic Schrödinger operator |∇|+ V (see, e.g., [23]).

8.2. Semiclassical Weyl’s laws. Although the inequality (8.9) does not hold, it holds semiclas-
sically. Namely, we have the following result.

Corollary 8.7 (Semiclassical CLR Inequality). Assume that, either q = max(p, 1) with p 6= 1, or
q > p = 1. Let V = V ∗ ∈ Lq(T

n
θ ). Then, as h → 0+ we have

N−
(
h

n
p ∆

n
2p + λ(V )

)
≤ c(p, q)2pν0(n)h

−nτ
[
|V−|q

] p
q +O(1). (8.12)

Here, c(p, q) is the same as in the proof of Theorem 8.1.

Proof. As hn/p∆n/2p + λ(V ) = hn/p(∆ + λ(h−n/pV )), the operators hn/p∆n/2p + λ(V ) and ∆ +
λ(h−n/pV ) have the same number of negative eigenvalues counted with multiplicity. Therefore,
the CLR inequality (8.5) for h−n/pV gives

N−
(
h

n
p ∆

n
2p + λ(V )

)
= N−

(
∆

n
2p + λ

(
h−n

p V
))

≤ c(p, q)2pν0(n)τ
[∣∣h−n

p V−

∣∣q] p
q + 1

≤ c(p, q)2pν0(n)h
−nτ

[
|V−|q

] p
q +O(1).

The proof is complete. �

The semiclassical CLR inequality on R
n, n ≥ 3, is the main tool to extend the semi-classical

Weyl’s law for Schrödinger operators h2∆+V with smooth potentials V to Schrödinger operators
with potentials in Ln/2(R

n) (see [89, Proposition 5.2]). This result can be traced back to the work
of Birman and his collaborators in the late 60s and early 70s (see [6, 11]). Likewise, we can extend
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the semiclassical Weyl’s law for fractional Schrödinger operators h
n
p ∆

n
2p +V for smooth potentials

to potentials in a suitable Lq-class (see [93] and the references therein).
Similarly, the semiclassical CLR inequality (8.12) for NC tori would enable us to extend the

semiclassical Weyl law on NC tori for smooth potentials to non-smooth potentials. However, to
date the semiclassical Weyl law for smooth potentials has still not been established. We believe
it can be established in a similar fashion as in the Euclidean case by setting up a semi-classical
pseudodifferential calculus on NC tori. However, this falls out of the scope of this paper. Therefore,
we only state the semiclassical Weyl’s law on NC tori as a conjecture.

Conjecture 8.8 (Semiclassical Weyl Law on NC Tori). Let n ≥ 2. Suppose that, either p 6= 1
and q = max(p, 1), or p = 1 < q. If V = V ∗ ∈ Lq(T

n
θ ), then as h → 0+ we have

N−
(
h

n
p ∆

n
2p + λ(V )

)
= c(n)h−nτ

[
|V−|p

]
+ o

(
h−n

)
, where c(n) = |Bn|. (8.13)

In particular, if n ≥ 3 and V = V ∗ ∈ Ln/2(T
n
θ ), or if n = 2 and V = V ∗ ∈ Lq(T

n
θ ) with q > 1,

then

N−
(
h2∆+ λ(V )

)
= cnh

−nτ
[
|V−|

n
2

]
+ o

(
h−n

)
.

Remark 8.9. In the critical case p = 1 we may hope that the semiclassical Weyl’s law (8.13) further
hold for potentials in the NC Orlicz class LlogL(Tn

θ ). Establishing this would require extending
the Cwikel estimate (6.9) and the CLR inequality (8.3) to this class of potentials. However, at
this point it is still unclear how to do this.

Remark 8.10. An alternative route to establish the semiclassical Weyl’s law (8.13) for Lq-potentials
is outlined in the sequel article [65]. It is based on the (borderline) Birman-Schwinger princi-
ple (7.12) and a (conjectural) version for NC tori of the celebrated Weyl’s law for negative order
pseudodifferential operators of Birman-Solomyak [8, 9, 10] (see also [71]). Note that the conjecture
in [65] extends Conjecture 8.8 to curved NC tori.

Remark 8.11. After earlier versions of this article and the sequel [65] were posted on arXiv, the
semiclassical Weyl’s law (8.13) was established for n ≥ 3 and p = n/2 by the first named author
in a joint preprint with F. Sukochev and D. Zanin (see [68]). The cases n = 2 or p 6= n/2, as well
as the curved version conjectured in [65], still remain open to date.

8.3. Lieb-Thirring Inequalities. We may also consider the action of the Schrödinger operators
∆n/2p +λ(V ) on the orthogonal complement of the nullspace ker∆ = C · 1. Set L̇2(T

n
θ ) = (C · 1)⊥

and Ẇ s
2 (T

n
θ ) = W s

2 (T
n
θ ) ∩ L̇2(T

n
θ ). The orthogonal projection Π0 : L2(T

n
θ ) → L2(T

n
θ ) onto C · 1 is

given by

Π0u = τ(u)1, u ∈ L2(T
n
θ ).

Thus, L̇2(T
n
θ ) consists of all u ∈ L2(T

n
θ ) with zero mean value τ(u) = 0. If s > 0, the Ẇ s

2 (T
n
θ )

is a closed subspace of W s
2 (T

n
θ ) and Π0 induces a selfadjoint bounded projection on W s

2 (T
n
θ ). By

duality it extends to a bounded projection on the anti-linear dual W−s
2 (Tn

θ ).

Let ∆̇ be the restriction of ∆ to L̇2(T
n
θ ). Its domain is Ẇ s

2 (T
n
θ ). This is a selfadjoint operator

with same spectrum as ∆ at the exception of the 0-eigenvalue. Moreover, for any s ∈ R, the power
∆̇s/2 agrees with the operator ∆s/2 on Ẇ s

2 (T
n
θ ).

Suppose that p > 0 and either q = max(p, 1) if p 6= 1 or q > 1 if p = 1. For V ∈ Lq(T
n
θ ), we let

λ̇(V ) : Ẇ
n/2p
2 (Tn

θ ) → Ẇ
−n/2p
2 (Tn

θ ) the operator defined by

〈
λ̇(V )u, v

〉
= 〈λ(V )u, v〉 , u, v ∈ Ẇ

n
2p

2 (Tn
θ ).

In other words, the corresponding quadratic formQλ̇(V ) is just the restriction ofQλ(V ) to Ẇ
n/2p
2 (Tn

θ ).

In particular, if V ∗ = V , then the quadratic form Qλ̇(V ) is symmetric,s and if V1 ≤ V2, then

λ̇(V1) ≤ λ̇(V2) in the sense used in Section 7.

With respect to the orthogonal splitting L2(T
n
θ ) = L̇(Tn

θ )⊕ (C · 1) we have

∆− n
4pλ(V )∆− n

4p =

(
∆̇− n

4p λ̇(V )∆̇− n
4p 0

0 0

)
. (8.14)
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It follows that the operator ∆̇−n/4pλ̇(V )∆̇−n/4p is in the weak Schatten class Lp,∞ and has

same Lp,∞-norm as ∆−n/4pλ(V )∆−n/4p. Therefore, if V ∗ = V , then we may define the operator

∆̇n/2p+λ̇(V ) as a form sum on L̇2(T
n
θ ) with domain Ẇ

n/p
2 (Tn

θ ). Equivalently, this is the selfadjoint

operator whose quadratic form is the restriction to Ẇ
n/2p
2 (Tn

θ ) of Q∆n/2p + Qλ(V ). As above we
obtain a bounded from below selfadjoint operator with compact resolvent.

Theorem 8.12 (CLR Inequalities on NC Tori; 2nd Version). Let n ≥ 2. Keeping on using the
notation of Theorem 8.1, the following hold.

(1) If p > 1 and V = V ∗ ∈ Lp(T
n
θ ), then

N−
(
∆̇

n
2p + λ̇(V )

)
≤ c+(2p)

2pν0(n)τ
[
|V−|p

]
. (8.15)

(2) If V = V ∗ ∈ Lp(T
n
θ ), p > 1, then

N−
(
∆̇

n
2 + λ̇(V )

)
≤ c2(2p)

2pν0(n)τ
[
|V−|p

] 1
p . (8.16)

(3) If p < 1 and V = V ∗ ∈ L1(T
n
θ ), then

N−
(
∆̇

n
2p + λ̇(V )

)
≤ c−(2p)

2pν0(n)τ
[
|V−|

]p
. (8.17)

Proof. The proof follows the same outline as that of the proof of Theorem 8.1. Suppose that
q = max(p, 1) if p 6= 1, or q > 1 if p = 1, and let V = V ∗ ∈ Lq(T

n
θ ). As −λ̇(V−) ≤ λ̇(V ) in the

same way as in (8.6) we have

N−
(
∆̇

n
2p + λ̇(V )

)
≤ N−

(
∆̇

n
2p − λ̇(V−)

)
.

Here ∆̇ is a selfadjoint operator with compact resolvent and positive spectrum. Therefore, we may
apply Corollary 7.7 and use (8.14) to get

N−
(
∆̇

n
2p − λ̇(V−)

)
≤

∥∥∆̇− n
4p λ̇(V )∆̇− n

4p

∥∥p
Lp,∞

=
∥∥∆− n

4pλ(V )∆− n
4p

∥∥p

Lp,∞
.

In the same way as in the proof of Theorem 8.1, combining the above inequalities with the Cwikel
estimates provided by Theorem 6.5 yields the result. �

Remark 8.13. We can recover the inequalities (8.2)–(8.4) from the inequalities (8.15)–(8.17), since
in this setup (7.16) gives

N−
(
∆

n
2p + λ(V )

)
≤ N−

(
∆̇

n
2p + λ̇(V )

)
+ 1.

In what follows given any selfadjoint operator A on a Hilbert space H which is bounded
from below operator and has discrete negative spectrum we arrange its negative eigenvalues as a
non-decreasing sequence,

λ−
0 (A) ≤ λ−

1 (A) ≤ · · · ≤ 0.

Here each eigenvalue is repeated according to multiplicity and we make the convention that
λ−
j (A) = 0 for j ≥ N−(A). In other words, λ−

j (A) = −µj(A−), where A− = 1
2 (|A| − A) is

the negative part of A.
It is well known that the CLR inequality implies the Lieb-Thirring inequalities [59, 60] for

the Riesz means of negative eigenvalues of Schrödinger operators (see, e.g., [91, Proposition 6.17]),
although this does not lead to the best bounds for the best constants of these inequalities. Likewise,
as a consequence of the CLR inequalities provided by Theorem 8.12 we shall obtain the following
version of the Lieb-Thirring inequalities for NC tori.

Theorem 8.14 (Lieb-Thirring Inequalities on NC Tori). Let γ > 0 and p > 1. There is a constant
Lp,γ,n > 0 such that, for all V = V ∗ ∈ Lp+γ(T

n
θ ), we have

∑

j≥0

∣∣∣λ−
j

(
∆̇

n
2p + λ̇(V )

)∣∣∣
γ

≤ Lp,γ,nτ
[
|V−|p+γ

]
. (8.18)

Moreover, the best constant Lp,γ,n is such that

Lp,γ,n ≤ γ
Γ(p+ 1)Γ(γ)

Γ(p+ γ + 1)
c+(2p)

2pν0(n).
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Proof. Given any V ∗ = V ∈ Lp+γ(T
n
θ ), set ḢV = ∆̇

n
2p + λ̇(V ). We have the usual formula (see,

e.g., [58, 91]),

∑

j≥0

∣∣∣λ−
j

(
ḢV

)∣∣∣
γ

=

∫ 0

−∞

(−t)γdN−
(
ḢV ; t

)
= γ

∫ ∞

0

tγ−1N−
(
ḢV ;−t

)
dt.

By the CLR inequality (8.15) we have

N−
(
ḢV ;−t

)
= N−

(
ḢV +t

)
≤ c+(2p)

2pν0(n)τ
[
(V + t)p−

]
.

Thus,
∑

j

∣∣∣λ−
j

(
ḢV

)∣∣∣
γ

≤ γc+(2p)
2pν0(n)

∫ ∞

0

tγ−1τ
[
|(V + t)−|p

]
dt. (8.19)

Let Ev = 1(−∞,v](−V ), v ∈ R, be the spectral measure of −V . The spectral measure of
(V + t)− = (−V − t)+, t ≥ 0, is 1[0,∞)(v)Ev+t, and hence

τ
[
(V + t)p−

]
=

∫ ∞

0

vpd(τ∗Ev+t) =

∫ ∞

t

(v − t)pd(τ∗Ev).

Therefore, we have
∫ ∞

0

tγ−1τ
[
(V + t)p−

]
dt =

∫ ∞

0

(∫ ∞

t

tγ−1(v − t)pd(τ∗Ev)

)
dt

=

∫ ∞

0

(∫ λ

0

tγ−1(v − t)pdt

)
d(τ∗Ev).

Note that ∫ λ

0

tγ−1(v − t)pdt = vp+γ

∫ 1

0

tγ(1− t)pdt = vp+γB(γ, p+ 1),

where B(x, y) = Γ(x+ y)−1Γ(x)Γ(y) is the beta function. Thus,
∫ ∞

0

tγ−1τ
[
(V + t)p−

]
dt = B(γ, p+ 1)

∫ ∞

0

vp+γd(τ∗Ev) = B(γ, p+ 1)τ
[
|V−|p+γ

]
.

Combining this with (8.19) gives the result. �

Remark 8.15. For γ = 1 and p = n/2 with n ≥ 3 the LT inequality (8.18) asserts that if
V = V ∗ ∈ Ln/2(T

n
θ ), then

∑

j

∣∣∣λ−
j

(
∆̇ + λ̇(V )

)∣∣∣ ≤ Lnτ
[
|V−|

n
2 +1

]
,

where the best constant Ln = Ln
2 ,1,n satisfies

Ln ≤ 2

n+ 2
Γ
(n
2
+ 1

)
c+(n)

nν0(n)

Remark 8.16. For the ordinary torus Tn, i.e., θ = 0, Lieb-Thirring inequalities were obtained by
Ilyin [39] for γ = 1, n = 2 and p = 1 (see also [41, 42, 43]) and by Ilyin-Laptev [40] for γ ≥ 1,
2 ≤ n ≤ 19, and p = n/2. Even for the ordinary torus Tn the Lieb-Thirring inequalities for
0 < γ < 1 or p 6= n/2 seem to be new.

Remark 8.17. We can get LT inequalities in the critical case p = 1 and get better bounds for the
best LT constants Ln,γ,p. For p ≥ 1, as (Uk)k∈Zn is an orthonormal basis of L2(T

n
θ ) consisting

of unitaries in L∞(Tn
θ ), we may proceed along the lines of the proof of the LT inequalities for T2

in [39] to get LT inequalities (8.18) with the bounds,

Lp,γ,n ≤ γ2γ
Γ
(
γ
2

)
Γ
(
p+ γ

2 + 1
)

Γ(p+ γ + 1)
Z
(
n, p, γ

)
,

where we have set

Z
(
n, p, γ

)
:= sup

µ>0
µ

γ
2 Tr

[(
∆̇

n
2p + µ

)p+ γ
2

]
= sup

µ>0
µ

γ
2

∑

k∈Zn\0

(
|k|np + µ

)p+ γ
2 .
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For n = 2 and p = γ = 1 Ilyin [39] found that Z(2, 1, 1) < 2π. In general, by using Melin’s
transform arguments it can be shown that

Z
(
n, p, γ

)
≤ Γ

(
γ
2

)
Γ(p+ 1)

Γ
(
p+ γ

2

) ν0(n).

This gives the upper bound,

Lp,γ,n ≤ γ2γ
(
p+

γ

2

) Γ
(
γ
2

)2
Γ(p+ 1)

Γ(p+ γ + 1)
ν0(n).

Remark 8.18. In [40] Ilyin-Laptev used the dimension lifting approach of Laptev-Weidl [47] to get
a better bound for the LT constant Ln = Ln

2
,1,n on the ordinary torus Tn for 2 ≤ n ≤ 19. It seems

likely that similar approach can be used on NC tori, since the Laplacian ∆ on Tn
θ is isospectral to

the Laplacian ∆ on the ordinary torus Tn.

As is well known the LT inequality for γ = 1 and p = n/2 is equivalent to a Sobolev inequality
(see [60, Theorem 4]; see also [30, 91]). Likewise, as a consequence of the above LT inequalities
we shall obtain the following Sobolev’s inequality.

Theorem 8.19 (Sobolev Inequality on NC Tori). Assume n ≥ 3. There is a constant Kn ≥ 0

such that, for every family {u0, . . . , uN} in Ẇ 1
2 (T

n
θ ) which is orthonormal in L2(T

n
θ ), we have

N∑

ℓ=0

τ
[
|∇uℓ|2

]
≥ Knτ

[( N∑

ℓ=0

|uℓ|2
)n+2

n

]
. (8.20)

Moreover, the best constant Kn is related to the best LT constant Ln = Ln
2
,1,n by

Kn =
n

n+ 2

(
n+ 2

2
Ln

)−n
2

. (8.21)

Proof. The proof essentially follows the outline of the proof in [58, §4.2] for Schrödinger operators

on Rn (see also [30, §3.1]). Let 0 ≤ V ∈ Ln/2(T
n
θ ), and set A = ∆̇ − λ̇(V ). Let {u0, . . . , uN} ⊆

Ẇ 1
2 (T

n
θ ) be an orthonormal family in L2(T

n
θ ). Note that the uℓ are in the domain of the quadratic

form QA, since QA is the restriction to Ẇ 1
2 (T

n
θ ) of Q∆ + Q−V . Let Π =

∑
ℓ〈uℓ|uℓ〉 be the

orthogonal projection onto Span{u0, . . . , uN}. We have

N∑

ℓ=0

QA(uℓ, uℓ) ≥
N∑

ℓ=0

−QA−
(uℓ, uℓ) = Tr

[
ΠA−Π

]
= −

∑

j≥0

µj(ΠA−Π).

As µj(ΠA−Π) ≤ µj(A−) = |λ−
j (A)|, we get

N∑

ℓ=0

QA(uℓ, uℓ) ≥ −
∑

j≥0

|λ−
j (A)|. (8.22)

This inequality is an instance of the variational principle for sums of eigenvalues (see, e.g., [27]).
We also have

QA(uℓ, uℓ) = 〈∆uℓ, uℓ〉 − 〈λ(V )uℓ, uℓ〉

= −
n∑

j=1

〈
∂2
j uℓ, uℓ

〉
− τ

[
V |uℓ|2

]

= τ
[
|∇uℓ|2

]
− τ

[
V |uℓ|2

]
.

Here |∇uℓ|2 =
∑ |∂juℓ|2 ∈ L1(T

n
θ ). Moreover, as W 1

2 (T
n
θ ) ⊆ L 2n

n−2
(Tn

θ ) by Proposition 2.2, we see

that |uℓ|2 ∈ L n
n−2

(Tn
θ ), and hence V |uℓ|2 ∈ L1(T

n
θ ). Thus, if we set ρ =

∑ |uℓ|2 ∈ L n
n−2

(Tn
θ ), then

we obtain
N∑

ℓ=0

QA(uℓ, uℓ) =

N∑

ℓ=0

τ
[
|∇uℓ|2

]
− τ

[
ρV

]
. (8.23)
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If we further assume that V ∈ Ln
2 +1(T

n
θ ), then the LT inequality (8.18) for p = n/2 and γ = 1

delivers ∑

j≥0

|λ−
j (A)| ≤ Lnτ

[
V

n
2 +1

]
.

Combining this with (8.22) and (8.23) shows that, for all 0 ≤ V ∈ L1+n/2(T
n
θ ), we have

N∑

ℓ=0

τ
[
|∇uℓ|2

]
≥ τ

[
ρV − LnV

n
2 +1

]
. (8.24)

The original argument of Lieb-Thirring relies on the following observation. Given a, b, α > 0,
the function ϕ(t) = at − btα+1, t > 0, reaches its maximum at t0 = [(α + 1)b]−1/αa1/α and the
maximum value then is equal to

ϕ(t0) = t0(a− btα0 ) = at0
(
1− 1

α+ 1

)
=

α

α+ 1

[
(α+ 1)b

]− 1
α a1+

1
α > 0.

Likewise, for α = n/2, a = ρ and b = Ln, by taking V = (12 (n + 2)Ln)
−2/nρ2/n ∈ L n2

2(n−2)

(Tn
θ ) ⊆

Ln
2
+1(T

n
θ ), we have ρV − LnV

n
2 +1 = n

n+2 (
1
2 (n+ 2)Ln)

−2/nρ(n+2)/n. In this case (8.24) gives

N∑

ℓ=0

τ
[
|∇uℓ|2

]
≥ n

n+ 2

(
n+ 2

2
Ln

)− 2
n

τ
[
ρ

n+2
n

]
.

This shows that the Sobolev inequality (8.20) holds with a best constant Kn such that

Kn ≥ n

n+ 2

(
n+ 2

2
Ln

)− 2
n

. (8.25)

Conversely, let V = V ∗ ∈ Ln
2 +1(T

n
θ ), and set ḢV = ∆̇ + λ̇(V ). Set N = N−(HV )− 1, and let

{u0, . . . , uN} ⊆ Ẇ 1
2 (T

n
θ ) be an orthonormal family such that ḢV uℓ = λ−

ℓ (HV )uℓ for ℓ = 0, . . . , N .
We have

N∑

ℓ=0

∣∣∣λ−
(
ḢV

)∣∣∣ = −
N∑

ℓ=0

QḢV
(uℓ, uℓ) ≤ −

N∑

ℓ=0

QḢ−V−

(uℓ, uℓ).

As above, set ρ =
∑ |uℓ|2 ∈ L n

n−2
(Tn

θ ). By using (8.23) and the Sobolev inequality (8.20) we get

N∑

ℓ=0

∣∣∣λ−
(
ḢV

)∣∣∣ ≤ −
N∑

ℓ=0

τ
[
|∇uℓ|2

]
+ τ

[
ρV−

]
≤ −Knτ

[
ρ

n+2
n

]
+ τ

[
ρV

]
. (8.26)

Set q = 1 + n/2 and r = 1 + 2/n, so that q−1 + r−1 = 1. Recall that V ∈ Lq(T
n
θ ) and

ρ ∈ L n
n−2

(Tn
θ ) ⊆ Lr(T

n
θ ). Thus, by Hölder’s inequality,

τ
[
ρV−

]
≤ τ

[
|V−|q

] 1
q τ

[
ρr
] 1

r .

Recall the inequality ab ≤ q−1aq+r−1br for a, b > 0 (this is a convexity inequality for the function

t → a1−tbt). Applying it to a = ǫτ
[
|V−|q

] 1
q and b = ǫ−1τ

[
ρr
] 1

r with ǫ > 0 gives

τ
[
ρV−

]
≤ 1

p
ǫqτ

[
|V−|q

]
+

1

r
ǫ−rτ

[
ρr
]
.

Combining this with (8.26) gives

N∑

ℓ=0

∣∣∣λ−
(
ḢV

)∣∣∣ ≤
(
1

r
ǫ−r −Kn

)
τ
[
ρr
]
+

1

q
ǫqτ

[
|V−|q

]
.

If we choose ǫ so that r−1ǫ−r = Kn, i.e., ǫ = (rKn)
−1/r, then we get

N∑

ℓ=0

∣∣∣λ−
(
ḢV

)∣∣∣ ≤ 1

q
ǫqτ

[
|V−|q

]
for all V = V ∗ ∈ Ln

2 +1(T
n
θ ).
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This reproves the LT inequality (8.18) for p = n/2 and γ = 1 and shows that the best LT constant
Ln satisfies

Ln ≤ 1

q
ǫq =

1

q
(rKn)

− q
r =

2

n+ 2

(
n

n+ 2
Kn

)−n
2

.

Combining this with (8.25) gives (8.21). The proof is complete. �

Remark 8.20. For n = 2 and θ = 0 Ilyin-Laptev-Zelik [43] got the lower bound K2 ≥ 32/(3π). It
would be interesting to see if we could get a similar bound for NC 2-tori.

Appendix A. Proof of the Birman-Schwinger Principle

In this appendix, for reader’s convenience, we include proofs of Proposition 7.5 and Corol-
lary 7.7.

Proof of Proposition 7.5. Given λ < 0, let ξ ∈ H+ \ 0 and set η = (H − λ)1/2ξ ∈ H , i.e.,
ξ = (H − λ)−1/2η. By using (7.6) we get

QHV (ξ, ξ) < λ 〈ξ|ξ〉 ⇐⇒ QH(ξ, ξ)− λ 〈ξ|ξ〉 < −QV (ξ, ξ),

⇐⇒ 〈(H − λ)ξ, ξ〉 < −〈V ξ, ξ〉 .
In the same way as in (7.4) we have

〈(H − λ)ξ, ξ〉 =
〈
(H − λ)

1
2 η, (H − λ)−

1
2 η

〉
= 〈η|η〉 .

Moreover, by using (7.8) we get

−〈V ξ, ξ〉 = −
〈
V (H − λ)−

1
2 η, (H − λ)−

1
2 η

〉
= 〈KV (λ)η|η〉 = QKV (λ)(η, η).

Thus,

QHV (ξ, ξ) < λ 〈ξ|ξ〉 ⇐⇒ QKV (λ)(η, η) > 〈η|η〉 . (A.1)

As (H − λ)1/2 is a linear isomorphism from H+ onto H , it follows from (A.1) that it induces
a one-to-one correspondence between the subspaces in F−(HV ;λ) and those in F+(KV (λ); 1).
This correspondence preserves the dimension. Thus, by using (7.2)–(7.3) we get

N−(HV ;λ) = max{dimF ; F ∈ F
−(HV ;λ)},

= max{dimF+; F+ ∈ F
+(KV (λ); 1)} = N+ (KV (λ); 1) .

This completes the proof of Proposition 7.5. �

Remark A.1. The above proof of the abstract Birman-Schwinger principle is due to Birman-
Solomyak [13]. It is much simpler than various other known proofs of the Birman-Schwinger
principle, even in the case of Schrödinger operators on Rn. In fact, we have merely recasted the
proof of [13] into the framework of [92, §7.9].

Proof of Corollary 7.7. Let λ < 0 and set A = (H +1)1/2(H −λ)−1/2. The fact that the operator
(H+1)−1/2V (H+1)−1/2 is in Lq,∞ ensures us that KV (λ) ∈ Lq,∞, since A is a bounded operator
on H , and we have

KV (λ) = −A∗(H + 1)−1/2V (H + 1)−1/2A. (A.2)

Bearing this in mind, set N = N−(HV ;λ). We may assume N ≥ 1, since otherwise the inequal-
ity (7.10) is trivially satisfied. The Birman-Schwinger principle (7.9) asserts that N+(KV (λ); 1) =
N . As V ≤ 0, and hence KV ≥ 0, we note that N+(KV (λ); 1) is the number of singular values
of KV (λ) that are > 1. Thus, KV (λ) has exactly N singular values > 1. In particular, we have
µN−1(KV (λ)) ≥ 1. Therefore, in view of the definition (4.7) of the quasi-norm of Lp,∞, we get

N ≤ NµN−1

(
KV (λ)

)p ≤
(
sup
j≥0

(j + 1)
1
pµj

(
KV (λ)

))p

=
∥∥KV (λ)

∥∥p

Lp,∞
. (A.3)

This proves Corollary 7.7. �
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[49] Levin, D.: On an analogue of the Rozenblum-Lieb-Cwikel inequality for the biharmonic operator on a Rie-

mannian manifold. Math. Res. Lett. 4 (1997), no. 6, 855–869.
[50] Levin, D.; Solomyak, M.: The Rozenblum-Lieb-Cwikel inequality for Markov generators. J. Anal. Math. 71

(1997), 173–193.
[51] Levitina, G.; Sukochev, F.; Vella, D.; Zanin, D.: Schatten class estimates for the Riesz map of massless Dirac

operators. Integral Equations Operator Theory 90 (2018), no. 2, Paper No. 19, 36 pp..
[52] Levitina, G.; Sukochev, F.; Zanin, D.: Sign of a perturbed massive Dirac operator and associated Fredholm

module. J. Geom. Phys. 136 (2019), 244–267.
[53] Levitina, G; Sukochev, F.; Zanin, D.: Cwikel estimates revisited. Proc. London Math. Soc. 120 (2020), 265–304.
[54] Lieb, E.H.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Amer. Math. Soc. 82

(1976), 751–752.
[55] Lieb, E.H.: The stability of matter. Rev. Modern Phys. 48 (1976), no. 4, 553–569.
[56] Lieb, E.H.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proceedings

of Symposia in Pure Mathematics XXXVI. American Mathematical Society, Providence, RI, 1980. 241–252.
[57] Lieb, E.H.: On characteristic exponents in turbulence. Comm. Math. Phys. 92 (1984), 473–480.
[58] Lieb, E.H.; Seiringer, R.: The stability of matter in quantum mechanics. Cambridge University Press, Cam-

bridge, 2010.
[59] Lieb, E.H.; Thirring, W.E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev.

Lett. 35 (1975), 687–689.
[60] Lieb, E.H.; Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian

and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Princeton University Press,
1976, 269–303.

[61] Li, P.; Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys. 88 (1983),
no. 3, 309–318.

[62] Lions, J.-L.; Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math. 19

(1964), 5–68.

36



[63] Lord, S.; Potapov, D.; Sukochev, F.: Measures from Dixmier traces and zeta functions. J. Funct. Anal. 259
(2010), no. 8, 1915–1949.

[64] Lord, S.; Sukochev, F.; Zanin, D.: A last theorem of Kalton and finiteness of Connes’s integral. J. Funct.
Anal. 279 (2020), 108664.

[65] McDonald, E.; Ponge: Dixmier trace formulas and negative eigenvalues of Schrödinger operators on curved

noncommutative tor. Preprint arXiv:2103.16869, 32 pp..
[66] McDonald, E; Sukochev, F.; Xiong, X.: Quantum differentiability on quantum tori. Comm. Math. Phys. 371

(2019), 1231–1260.
[67] McDonald, E.; Sukochev, F.; Zanin, D.: A C∗-algebraic approach to the principal symbol II. Math. Ann. 374

(2019), 273–322.
[68] McDonald, E.; Sukochev, F.; Zanin, D.: Semiclassical Weyl law and exact spectral asymptotics in noncommu-

tative geometry. Preprint arXiv:2106.02235, 31 pp..
[69] Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15 (1974), 103–116.
[70] Ponge, R.: Connes’s trace Theorem for curved noncommutative tori. Application to scalar curvature. J. Math.

Phys. 61 (2020), 042301, 27 pp..
[71] Ponge, R.: Connes’ integration and Weyl’s laws. Preprint, arXiv:2107.01242, 29pp..
[72] Ponge, R.: Weyl’s laws and Connes’ integration formulas for matrix-valued LlogL-Orlicz potentials. Preprint

arXiv:2107.13605, 23 pp..
[73] Prodan, E.; Schulz-Baldes, H.: Bulk and boundary invariants for complex topological insulators: from K-theory

to physics. Mathematical Physics Studies. Springer, 2016.
[74] Reed, M.; Simon, B.: Methods of modern mathematical physics. I. Functional analysis. Second edition. Aca-

demic Press, Inc., New York, 1980. xv+400 pp..
[75] Reed, M.; Simon, B.: Methods of modern mathematical physics. II. Fourier Analysis, Selfadjointness. Aca-

demic Press, Inc., New York, 1975. xv+361 pp..
[76] Reed, M.; Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press,

Inc., New York-London, 1978. xv+396 pp..
[77] Rieffel, M.A.: Noncommutative tori-A case study of non-commuative differentiable manifolds. Geometric and

topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp. Math. 105, Amer. Math. Soc.;
Providence, RI, 1990, pp. 191–211.

[78] Rozenbljum, G. V.: Distribution of the discrete spectrum of singular differential operators. Dokl. Akad. Nauk
SSSR 202 (1972), 1012–1015. English transl. Soviet Math. Dokl. 13 (1972), 245–249.

[79] Rozenbljum, G. V.: Distribution of the discrete spectrum of singular differential operators. Izv. Vyss̆. Uc̆ebn.
Zaved. Matematika 1976, no. 1(164), 75–86. English transl. Soviet Math. (Iz. VUZ) 20 (1976), 63–71.

[80] Rozenblyum, G.; Solomyak, M. The Cwikel-Lieb-Rozenblyum estimator for generators of positive semigroups

and semigroups dominated by positive semigroups. St. Petersburg Math. J. 9 (1998), no. 6 1195–1211.
[81] Rozenblum, G.: Eigenvalues of singular measures and Connes noncommutative integration. Preprint

arXiv:2103.02067, 33 pp.. To appear in J. Spectr. Theory.
[82] Rozenblum, G; Shargorodsky, E.: Eigenvalue estimates and asymptotics for weighted pseudodifferential opera-

tors with singular measures in the critical case. Partial differential equations, spectral theory, and mathematical
Physics. The Ari Laptev anniversary volume, EMS Series of Congress Reports, Vol. 18, EMS Publishing, 2021,
pp. 331–353.
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