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ABSTRACT Detecting anomaly of chest X-ray images by advanced technologies, such as deep learning,

is an urgent need to improve the work efficiency and diagnosis accuracy. Fine-tuning existing deep learning

networks for medical image processing suffers from over-fitting and low transfer efficiency. To overcome

such limitations, we design a hierarchical convolutional neural network (CNN) structure for ChestX-

ray14 and propose a new network CXNet-m1, which is much shorter, thinner but more powerful than

fine-tuning. We also raise a novel loss function sin-loss, which can learn discriminative information from

misclassified and indistinguishable images. Besides, we optimize the convolutional kernels of CXNet-m1 to

achieve better classification accuracy. The experimental results show that our light model CXNet-m1 with

sin-loss function achieves better accuracy rate, recall rate, F1-score, and AUC value. It illustrates that

designing a proper CNN is better than fine-tuning deep networks, and the increase of training data is vital to

enhance the performance of CNN.

INDEX TERMS Chest X-Rays image, anomaly detection, deep neural network, self-adapting loss function.

I. INTRODUCTION

The chest X-ray is one of the most commonly acces-

sible examinations for screening and diagnosis of many

lung diseases including Infiltration, Effusion, Atelectasis,

Nodule, Mass, Pneumothorax, Consolidation, Pleural Thick-

ening, Cardiomegaly, Emphysema, Edema, Fibrosis, Pneu-

monia and Hernia [1]. In the USA alone, over 35 million

chest X ray images are taken every year and radiologists have

to read more than 100 X-ray studies in a day [2]. In China,

there are much more patients and chest X-ray images due

to the large population and increasing health consciousness.

Advanced technologies and automated algorithms can assist

radiologists to diagnose disease effectively and efficiently.

Trained tools can classify normal and abnormal chest x-ray

images into two categories automatically and radiologists

could pay more attention to these abnormal images. Besides,

trained tools can classify chest x-ray images into more cate-

gories according to different diseases. What’s more, trained

tools can also help to localize disease and visualize them.

Theoretically, there are dozens of classical classification

algorithms and their improved versions. Naive Bayes [3]

is one of the most efficient inductive learning algorithms

for classification due to its simple structure and incremen-

tal construction [4], [5]. As an efficient paradigm, Sup-

port Vector Machine (SVM) has a strongest mathemati-

cal model for classification and regression [6], [7]. Various

improvements of SVM has appeared over the past few

decades, such as Lagrangian SVM, least square SVM and

twin SVM [6], [8]–[11]. Random Forests is one of the most

traditional ensemble learning methods and has been suc-

cessfully applied to various classification tasks [13]–[15].

Practically, these methods are not capable to process large

number of chest x-ray images. On the one hand, most of

them can only get good results on small datasets, such as

SVM and Naive Bayes. On the other hand, researchers have

to manually extract image features including Local Binary

Pattern, Histogram of Oriented Gradient and Haar-like before

classification, which is complex and difficult [16], [17].

Deep learning, especially convolutional neural networks

architecture classification approach, has gained popularity in

recent years due to their ability to learn representative image

features through automatic back propagation [18]. We have

conducted thorough research on CNN and show it solely

in the part of Related Work. Based on the background of
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big data, CNN is a powerful tool to train a robust classifier

for images. However, large training sets are generally not

available in the medical domain due to the privacy protection

of patients. ImageNet contains 1.3 million natural images to

train large deep CNN architectures, but most marked medical

image databases only contain at most less than 10 thousand

images in total [19]. The largest public dataset of chest

X-rays was OpenI, containing 3,955 radiology reports from

the Indiana Network for Patient Care and 7,470 associated

chest x-rays from the hospitals picture archiving and com-

munication system (PACS) [1], [20]. Reference [1] released

a much larger database ChestX-ray14 which contains more

than 30,000 patients, 112,120 labeled chest x-ray images last

year. Although imbalanced and flawed, ChestX-ray14 is large

to train and thus we choose ChestX-ray14 as our dataset.

For classification task, transfer learning, where the source

and target domains should be different but related, has been

the first choice of many papers to process medical images

including chest x-ray images [21]. Researchers train ChestX-

ray14 through fine-tuning existing deep networks trained

on ImageNet. The only peer-reviewed published work fine

tuned four standard CNN architectures (AlexNet, VGGNet

GoogLeNet and ResNet) and ResNet achieved the best

result [1], [22]–[24]. Others can be found on arXiv. Ref-

erence [25] utilized a 121-layer DenseNet architecture and

made little modification on this existing network. Refer-

ence [26] combined a variant of DenseNet and Longshort

TermMemory Networks (LSTM) to exploit the dependencies

between abnormalities.

However, fine-tuning existing deep networks is not always

the best choice for low transfer efficiency caused by the

dissimilarity between medical images and natural images.

In addition, excess parameters may cause over-fitting and

unnecessary space waste. ChestX-ray14 is large enough

for us to train a new smaller CNN without taking too

much time and memory. In this paper, we propose a new

CNN architecture CXNet-m1 and train it from scratch on

ChestX-ray14.

There are two main contributions in our paper. (1)After

designing a hierarchical CNN structure for ChestX-ray14

dataset, we propose light model CXNet-m1 to classify chest

X-ray images into normal and abnormal categories. CXNet-

m1 reduces unnecessary parameters, adjusts the order of

some layers, and takes some advantages of classic networks

to learn details. It is light and therefore easy to train and

store. (2) We also propose a loss function sin-loss used to

train CXNet-m1 to improve classification accuracy. Com-

pared with classic loss function, Sin-loss can learn more from

misclassified and indistinguishable images through multiply-

ing a self-adapting coefficient.

II. RELATED WORK

Deep learning is a sort of representation-learning method

which connects layers and non-linear module to obtain

multiple levels of representation. It is clever at cop-

ing with high-dimensional data and wisely used in many

FIGURE 1. Basic architecture of CNN.

domains such as image process, speech recognition and robot

manipulators [27]–[31]. Reference [27]made use of Bayesian

convolutional neural networks and active learning for hyper-

spectral image classification. Reference [28] described the

latest version of Microsoft’s conversational speech recogni-

tion system, which added a CNN-BLSTM acoustic model

to previous architectures. References [29]–[31] concentrated

on robot manipulators and reference [29] proposed a novel

robust zeroing neural-dynamics (RZND) model for solving

the inverse kinematics problem of mobile robot manipulators.

With the development of graphics processing units, deep

learning is more and more popular and successful to process

data in large amounts because it requires very little engineer-

ing by hand.

Convolutional neural networks are capable to process data

in the form of multiple arrays such as sequences (1D), images

(2D) and videos (3D) [32]–[35]. There are two main charac-

teristics of CNN, local connectivity and shared weights. The

two characteristics not only ensure the affine invariance of

CNN, but also reduce the number of parameters, which is the

reason that CNN is wisely used to learn from complex data,

such as images and videos. The basic architecture of CNN is

demonstrated as Fig. 1. The first few stages of CNN contain

convolutional layers and pooling layers. Convolutional layers

are used to detect local conjunctions of features from the

previous layer, and pooling layers behind are designed to

merge similar features and reduce computational complex-

ity. After extracting features, there are more convolutional

and fully-connected layers to classify data. In order to input

images on any scales, some scientists replace fully connected

layers with convolutional layers, called fully convolutional

networks (FCN). Traditional loss functions include 0-1 loss

function, square loss function, hinge loss function and log

loss function [36]–[39]. Among them, log loss function is

most common for its property of convex function, which can

avoids the local minimum. Loss function and backpropagat-

ing gradients allow all the weights in all filters to be trained

and could converge gradually [40], [41].

In recent years, many robust CNN frameworks have

been designed including VGGNet, ResNet, Inception-Resnet

and DenseNet [22]–[24], [42]. There are two versions

of VGGNet, VGGNet-16 and VGGNet-19, the difference

between which is the number of layers. In order to learn

details, the receptive fields of convolutional layer are very

small in VGGNet, such as 3*3 and even 1*1. After several

convolutions and poolings, there are three fully-connected
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layers. Besides, Relu is used in every hidden layer for the first

time and the result has improved because of it. Ideally, CNN

should be trained on much large data set to ensure reliability,

and thus be deeper to avoid under-fitting. In order to solve the

problem caused by deep and complex model, Resnet propose

a thought of residual block by adding an identity mapping.

The experiment result shows the 50-layer and deeper Resnet

can achieve better accuracy than VGGnet. Inception-Resnet

makes the network wider based on Resnet and also gets

better result. Inspired by Resnet, Densenet creates short paths

from early layers to later layers by concatenation to relieve

vanishing-gradient, which can be deeper till several hundred

layers. All of them are trained on Imagenet, which con-

tains 1.3 million train images and 1000 categories including

human, animals, plants, living goods and natural scene.

Training a deep convolutional neural network (CNN) from

scratch is not easy because of the property that requires

numerous labeled training data and a great deal of expertise to

ensure convergence [43]. A promising alternative is to fine-

tune networks pre-trained on Imagenet or other large-scale

datasets. Reference [44] fine-tuned all layers by backpropa-

gation through the whole FCN-AlexNet, FCN-VGG16, and

FCN-GoogLeNet for semantic segmentation. Reference [45]

performed category-specific object segmentation in weakly

labeled videos by a self-paced fine-tuning network (SPFTN)-

based framework. Reference [46] presented a fine-tuning

algorithm to update the network pre-trained on images of

urban scenes and it transfers semantic features to a differ-

ent environment successfully. As for medical images much

different from natural images, papers hold different ideas.

Reference [47] demonstrated that fine-tuning clearly outper-

formed feature extraction from scratch in multi-class grade

assessment of knee osteoarthritis. However, [48] showed that

using a new CNN to extract features outperformed fine-

tuning in cytopathology image classification.

III. CNN METHOD

There are two parts in this section and the second part is

the main idea of this paper. In the first part, we suggest a

hierarchical structure to cope with ChestX-ray14 after ana-

lyzing the global distribution of it. Compared with designing

a classifier containing several parallel outputs, we believe

that hierarchical structure is more scientific for it holds more

specific and detailed categories and avoids low efficiency

caused by imbalance. In the second part, we design the first

classifier in the hierarchical structure, CXNet-m1, to cope

with the first problem, normal image or not. There are two

main contributions in this part, improving the loss function

and designing a lighter model architecture. Inspired by the

alternating current of electromagnetism, we design a self-

adapting factor to adjust the learning process to focus on the

features of indistinguishable and misclassified images. Then,

considering some disadvantages of fine tuning and the scale

of ChestX-ray14, we decide to design a new architecture,

which is thinner, lighter and better, and train it from scratch

to achieve binary classification. In the Experiment section,

we verified that no matter the sin-loss or the architecture of

CXNet-m1 or the combination of the loss and architecture

can obtain good results and the combination option is most

successful.

A. HIERARCHICAL STRUCTURE

It is difficult to access annotated large-scale medical image

database. ChestX-ray14 is largest and the most appropri-

ate database accessible at present to train a chest x-ray

image classifier. References [25] and [26] construct clas-

sifiers whose last layer has 14 parallel outputs to clas-

sify the different abnormal images. However, they did

not take normal images into consideration or differentiate

multi-label and single-label images. ChestX-ray14 contains

112,120 labeled chest x-ray images andmany kinds abnormal

images. As shown in Fig. 7, the chest x-ray image numbers

of each category in Chest X-ray14 is extremely imbalanced.

Besides, there are not only 15 categories (normal images and

14 kind abnormal images), but also many multi-label data.

For instance, if an image is labeled as Infiltration, Effusion

and Atelectasis, it belongs to a new category rather than any

of the three categories alone. According to the characteristics

of ChestX-ray14 shown in detail in Section IV, we design a

hierarchical structure to train images in this dataset. As shown

in Fig. 2, training images from chest X-ray14 are firstly

labeled as normal and abnormal to train a binary classifier

CXNet-m1. Then abnormal images are labeled as multi-label

and single-label to train a binary classifier CXNet-m2. After

that, CXNet-m3 and CXNet-m4 are trained on respective

training images and final results are obtained.

This hierarchical structure is scientific because it not only

takes more information of this dataset (normal images and

multi-label images), but also eases the problem of imbalance.

After all, it is not rational to train a parallel classifier with

more than 60 thousand normal images and around 200 hernia

images.

B. CXNET-M1

According to the hierarchical structure above, four classifiers

CXNet-m1, CXNet-m2, CXNet-m3 and CXNet-m4 should

be respectively designed. This paper focuses on the first clas-

sifier CXNet-m1, a binary classifier to differentiate normal

and abnormal chest x-ray images.

1) PROBLEM FORMULATION

The anomaly detection task of chest x-ray images is a binary

classification problem, where the input is a chest X-ray image

I and the output is a binary label y ∈ {0, 1} indicating

the absence or presence of disease respectively. For images

in Chest X-ray14, we use the softmax cross entropy loss

function to optimize:

C = −
1

n

∑

[yi ln pj + (1 − yi) ln(1 − pj)] (1)
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FIGURE 2. Hierarchical model structure to avoid the shortcomings of
Chest Xray14 database, there are 4 classifiers to finish different tasks
hierarchically.

Where n is the number of training images and pj ∈ [0, 1] is

defined as :

pj =
ezj

∑K
k=1 e

zk
(2)

Where Z is the input of softmax layer, K is the number of

categories and j ∈ [0,K − 1], here K=2. When processing

training image I, the output of the last layer Pi is mapped by

the network model as (3):

pi = M (I |θf ), pij ∈ Pj (3)

where M is the whole non-linear model and θf is the vector

of parameters of all layers. The aim of the training is to find

out the best parameter combinations through adjusting them

to make Ci(Pi, yi|θf ) minimal, as shown in (4):

argminθf ∈θF

1

n

∑

Ci(Pi, yi|θf ) (4)

FIGURE 3. The shape of it . (a) is the basic shape, (b) is a variant of (a) by
setting ω =

π
2

and ji0 = π , (c) is a variant of (b) by adding Im and
Im = 1.25.

Where θF is the parameter space and n is the number of

images.

It is not easy to differentiate normal and abnormal chest x-

ray images especially when the normal images are noisy and

disease area of abnormal images are inconspicuous. There-

fore, we try to multiply loss by a self-adapting coefficient βi
when processing training image I , as shown in (5):

Ci(I , yi|θf ) = βi[yi ln pij + (1 − yi) ln(1 − pij)] (5)

What we want is a proper βi whose basic shape is mono-

tone decreasing and convex in the interval of [0,1] and we

are inspired by alternating current function. In electromag-

netism [49], the instantaneous value of the alternating current

is sinusoidal, as shown in

it = Im sin(ωt + ji0) (6)

Where Im is amplitude,ω is angular frequency and ji0 is initial

phase. Given ω = 1 and ji0 = 0, the function is shown

in Fig. 3(a); Given ω = π
2
and ji0 = π , the shape of it

is shown as Fig. 3(b). It can be found that the convex curve

decreases from 0 to −1 when t ∈ [0, 1].

Inspired by alternating current it , the curve in Fig. 3(b) can

be moved up by stride 1 to get βi to learn much more from

indistinguishable and misclassified chest x-ray images. βi is

defined as (7):

βi1 = Im sin(
π

2
pij + π ) + Im (7)

Where pij ∈ [0, 1] and Im = 1.25 in our paper, and the

shape of βi1 is shown in Fig. 3(c). In this interval, the curve is

convex function. According to the principle that the product

of two convex functions is still a convex function, the new

cross entropy loss function multiplied by βi is convex and

can avoid local optimum.

The βi can be further improved according to the compar-

ison of loss shape in Fig. 4. Fig. 4(a) is basic cross entropy
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FIGURE 4. Loss curve based on different value of βi , (a) is the basic cross
entropy loss when βi =1, (b) is a variants of (a) when βi is set as formula
(7), (c) is a kind of focal loss proposed by literature [50], in (d), the blue
curve is a variants of (a) when βi is set as formula (8) and the red one is
the one that in (b).

loss when βi = 1 and blue curve in Fig. 4(b) is a variant of

Fig. 4(a) when βi is set as formula (7). It can be found that the

blue curve in Fig. 4(b) decreases more sharply than Fig. 4(a)

when pij < 0.5, which means loss value is larger when pij
is small. And this is the reason why blue curve in Fig. 4(b)

can focus on misclassified images to learn. Fig. 4(c) shows a

kind of focal loss proposed by literature [50] and the shape of

it is similar with the blue curve in Fig. 4(b), which indicates

the rationality of our thinking. When pij > 0.5, the value of

blue curve in Fig. 4(b) is very small and decreases slowly.

However, we also want to learn more from indistinguishable

images and the loss value should be larger when pij is around

0.5. The blue curve in Fig. 4(d), where βi is defined as

formula (8), is eligible because it is larger than the blue curve

in Fig. 4(b) when pij is around 0.5 and smaller than the curve

in Fig. 4(a) when pij > 0.75.

βi2 = 1 − Inpij (8)

Two curves in Fig. 4 (d) cross at point C, where the red

curve is the one that in Fig. 4 (b) and In = 0.65. The optimal

combination is the blue curve when pij is small and the red

curve when pij is large. Therefore, βi is redefined as formula

(9):

βi =

{

Im sin(
π

2
pij + π ) + Im, pij ≤ pc.

1 − Inpij, otherwise.
(9)

As the result, the sin-loss function is as (10):

Cnew(Pi, yi|θf ) = −
1

n

∑

βiCi(Pi, yi|θf ) (10)

The parameters θf can be updated and converged by opti-

mizing Cnew with backpropagation as (11):

θf = θf − µ
∂Cnew

∂θf
(11)

After θf initialized randomly, ∂Cnew
∂θf

is acquired through

back propagation and then θf is updated using gradient

descent method, where µ is the learning rate and ∂Cnew
∂θf

is the

gradient ofCnew(Pi, yi|θf ). In order to find out the best param-

eters θf to make Cnew(Pi, yi|θf ) minimal, (11) is repeated

automatically and both the value of θf and Cnew(Pi, yi|θf )

keep changing till Cnew(Pi, yi|θf ) converges to the minimum.

We use back propagation to train our networks in this

paper. Compared with some classic search algorithms such

as PSO [51], ACO [52] and BAS [53] for optimization, back-

propagation based algorithm is more proper when training

deep learning networks. To get proper weights and biases,

back propagation provides approximate partial derivatives of

the error related to them while search algorithms lead to the

increase of computation by a factor of the population size.

There are some novel algorithms taking advantages of both

back propagation and search algorithms [54], [55], which

we would like to discuss in future works. Running updates

(11) makes the network pay more attention to misclassified

and indistinguishable images and leads to the emergence of

more discriminative features to improve the accuracy rate of

classification.

2) MODEL ARCHITECTURE

To train medical images, most papers have tried to fine

tune existing CNN networks, such as VGGNet, ResNet and

DenseNet [22], [23], [42]. However, transfer learning is not

an optimal idea when source domain and target domain

are dissimilar with each other. Chest x-ray images in Chest

X-ray14 are 1024*1024 gray images, which are totally differ-

ent from natural images in Imagenet. With the development

of computer performance, training a targeted classifier for

specific domain or database from scratch is implementable.

In this paper, we therefore design a new CNN architecture

called CXNet-m1 (Chest X-ray Network-model 1) to train.

As shown in Fig. 5, there are only three cascaded blocks

(a convolutional layer and a pooling layer after that in each

block) to extract image features. The numbers of convolution

kernels are 32, 64, 128, respectively. In order to focus on

small lesion area and learn much more details, the size of

convolution kernels should be small and we set as 3*3. After

that, there are a convolutional layer conv-4, a dropout layer

drop-1, a batchnorm layer bn-1, a global pooling layer glpool-

1 and a convolutional layer conv-5 as the output layer. conv-4,

glpool-1 and conv-5 are designed instead of fully connected

layer to construct less parameters, and drop-1 and bn-1 are

designed to overcome overfitting.

Different from most popular networks, CXNet-m1 con-

sists of only 5 convolutional layers (3 of them extract

image features), which is far less than Vgg-net(16 layers),

Resnet (50 layers) and Densenet (121 layers) [22], [23], [42].

Besides, it cascades a dropout layer, a batchnorm layer bn-

1 and a global pooling between the last 2 convolutional layers

in order to overcome overfitting, which is not used in other

networks. During the training phase, training images are input
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FIGURE 5. CXNet-m1 architecture, there are three convolutional layers to
extract image feature and 2 convolutional layers to classify images,
between which a dropout layer, a batchnorm layer and a global pooling
are cascaded; Yellow arrows and black arrows show the forward
propagation and back propagation respectively, optimizing sin-loss
function.

FIGURE 6. Image numbers of 15 categories in ChestX-ray14, from left to
right are 60361, 19894, 13317, 11559, 6331, 5782, 5302, 4667, 3385, 2776,
2516, 2303, 1686, 1431 and 227 in turn.

into CXNet-m1 and parameters are updated through back

propagation to minimize the sin-loss function value.

IV. EXPERIMENTS

There are five parts in this section to show the experiment

result and demonstrate the experiment analysis. The first part

is the deep analysis of ChestX-ray14’s scale and distribution.

The result shown in Fig. 6 and Fig. 7 motivates us to design

the hierarchical structure in section III. In the second part,

we introduce the metrics to compare experimental results

including accuracy rate, precision rate, recall rate, F-measure

FIGURE 7. Numbers of single-label and multi-label images in
ChestX-ray14, in (a), blue bar shows number of single-label images in
each category and orange bar shows that of multi-label images; in (b),
the pie chart demonstrate the proportion of normal images (blue part),
single-label abnormal images (orange part) and multi-label images (gray
part) and their corresponding numbers.

value and AUC score. F-measure value is very important

because it combines precision rate and recall rate. F-measure

value would be high only when both precision rate and recall

rate are high. Then we list some CNN settings to show

our experiment details. In the forth part, we conduct several

experiments to verify the performance of CXNet-m1. Firstly,

following the official patient-wise split, we compare the value

of above metrics between VGGNet-16, VGGNet-16-DCNN,

ResNet-50, ResNet-50-DCNN, Inception-ResNet, Inception-

ResNet-DCNN and CXNet-m1. Secondly, after making some

cross validations, we decide to adjust the proportion of

training data and test data, the input images size and

some corresponding modification of CXNet-m1 architecture.

CXNet-m1(v0) is the combination of original CXNet-

m1 architecture and standard cross entropy loss function,

CXNet-m1(v1) is the combination of original CXNet-

m1 architecture and sin-loss loss function, CXNet-m1(v2)

is the combination of new CXNet-m1 architecture and sin-

loss loss function. Then, we analyze the reason of the

experiment results in detail in the fifth part. We find that

ResNet-50-DCNN achieves the best results among the fine-

tuning models, but still worse than CXNet-m1. The experi-

ment results also show the capacity of CXNet-m1 architecture

and sin-loss loss function and the importance of more details

to learn.

A. DATASET

ChestX-ray14 is the most appropriate database accessible

at present to train a chest x-ray image classifier. It con-

tains more than 30,000 patients, 297,541 labeled chest x-ray

images and 14 kinds abnormal images including Infiltration,

Effusion, Atelectasis, Nodule, Mass, Pneumothorax, Con-

solidation, Pleural Thickening, Cardiomegaly, Emphysema,

Edema, Fibrosis, Pneumonia and Hernia.
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TABLE 1. ChestX-ray14 characteristics and corresponding operation to
utilize advantages and avoid disadvantages.

TABLE 2. 4 Evaluation results and corresponding symbols.

However, the chest x-ray image numbers of each cate-

gory in Chest X-ray14 is extremely imbalanced, as shown

in Fig. 6. The numbers of images from left to right are 60361,

19894, 13317, 11559, 6331, 5782, 5302, 4667, 3385, 2776,

2516, 2303, 1686, 1431 and 227. The number of normal

images, namely ‘No finding’, is almost as 260 times as the

‘hernia’ images. What’s more, some images are multi-label

data, which means there are much more than 15 categories

(normal images and 14 kind abnormal images). Figure 7(a)

shows the number of single-label and multi-label images

in different categories. Figure 7(b) shows the proportion of

normal images, single-label images (abnormal) and multi-

label images where the number of labels ranges from 2 to

14. Pointing at the drawbacks of ChestX-ray14, we design a

hierarchical structure to classify images and CXNet-m1 is the

first important part of it to recognize abnormal images.

As summarized in Table 1, The biggest advantage of

ChestX-ray14 is that the large scale can support us to train our

own model from scratch instead of fine tuning from networks

pre-trained by natural images, which are dissimilar with

X-ray images. The serious disadvantage of ChestX-ray14 is

that the imbalanced sample may lead to wrong learning

and bad classifier. Apart from improving loss function and

expanding database, our designed hierarchical structure can

help to ease the problem. Another Characteristics of ChestX-

ray14, multiple labels, is not watched by researchers. This can

also be solved by designed hierarchical structure.

B. METRICS

There are 4 kind results of test images and the specific defi-

nitions are shown in Table 2. The accuracy rate A is defined

as (12) [56]:

A =
TP+ TN

TP+ TN + FP+ FN
(12)

The precision rate P is defined as (13) [56]:

P =
TP

TP+ FP
(13)

The recall rate R is defined as (14) [56]:

R =
TP

TP+ FN
(14)

In most cases, the higher the recall rate, the lower the

accuracy rate and vice versa. F-measure value is defined to

take both P and R into consideration (15) [56]:

F =
(α2 + 1) ∗ P ∗ R

α2(P+ R)
(15)

Where α2 is weight factor, and when α2 = 1, P and R are

equally-weighted.

The AUC is defined as the Area Under the ROC Curve.

Obviously, the value of this Area will not be greater than 1.

Since ROC curve is generally above the line y=x, the value

range of AUC is between 0.5 and 1. Using the AUC value

as the evaluation standard is more clear and direct than ROC

Curve. As a numeric value, if the AUC is larger, the classifier

is better.

C. TRAINING

We trained our network four times on 80458 of 112120 train-

ing images (setting aside 6056 for validation and 25596 for

test) and 84090 of 112120 training images (setting aside

11212 for validation and 16818 for test) on Chest x-ray14

dataset in the first time and the last three times, respectively.

The size of input images were set as 224*224 and 512*512 in

the first three times and the last time, respectively. Theoreti-

cally, our model can handle images of any size because they

are all full convolutional networks. However, the input size

is constrained by the scale of GPU memory used to store the

outputs of intermediary layers.

The experimental environment was an ubuntu linux server

with 2 GeForce GTX 1080 Ti GPUs and the models were

implemented using Tensorflow (GPU and ubuntu version)

slim framework [57]. We firstly converted the images as

TFRecord format, the unique format to input into the slim

framework. Then we ignored the preprocessing step, such

as clipping, which may cause bad training samples. The

networks were trained end-to-end using stochastic gradient

descent (SGD) with standard cross entropy loss and our sin-

loss. Due to the limit of GPU memory, the batch size = 32 is

set as a constant. According to experience and the validation

results, we finally chose a proper initial learning rate of 0.01,

decayed by a factor of 2 or 5 or 10 manually through moni-

toring the loss curve in TensorBoard. The networks were val-

idated against the validation set after every 3000 iterations to

monitor convergence and overfitting. If the validation results

are on the increase and then go down, the inflection point is

exactly the timing of early stop. Some CNN settings above

are listed in TABLE 3.

D. BINARY CLASSIFICATION RESULTS

To classify images in Chest Xray14, DCNN [1] takes the

weights from pre-trained models, replacing fully-connected

layers and final classification layers with transition layers and

prediction layers. transition layers are for localization and

prediction layers are for classification, and both of them are

trained from scratch. In order to compare our model CXNet-

m1 with DCNN, we perform the same network surgery

4472 VOLUME 7, 2019



S. Xu et al.: CXNet-m1: Anomaly Detection on Chest X-Rays With Image-Based Deep Learning

TABLE 3. Some detailed settings.

on the pre-trained models except adding transition layers.

Firstly, we split the dataset into 86524 training samples and

25596 test samples, following the previous work on ChestX-

ray14. Among training samples, 6056 images are selected

as validation set to help monitor the training process, select

proper hyper-parameters and determine the timing of early

stop. Thus, the proportion of training set, validation set and

test set is 70%:7%:23%. Then we train our model CXNet-m1

and compare it with VGGNet-16, ResNet-50, Inception-

ResNet and corresponding DCNN versions [1], which are

used for binary classificaion here. In order to achieve con-

vergence, we train not only the last prediction layer of

ResNet-50-DCNN. Table 4 demonstrates the accuracy rate,

precision rate, recall rate, F-measure value and AUC score of

different models. The performance varies greatly, in which

CXNet-m1 achieves the best results.

Although the performance of CXNet-m1 is much better,

it is still not satisfactory because the value of accuracy rate,

precision rate, recall rate, F-measure and AUC score are all

less than 75%. Reference [58] redistributes training data and

test data and could get better results than following the official

patient-wise split. In order to check if it is the problem of

data split, we randomly split test data into 4 parts on average

and then randomly choose 2 parts of them as training data to

train several iterations when the training accuracy is already

more than 90% and the loss is close to 0. ensuring the data

chosen random, we repeat the above operation for 24 times

using four models including VGGNet-16-DCNN, ResNet-

50-DCNN, Inception-resnet-DCNN and CXNet-m1. Fig. 8 is

the result of one of the 6 experiments on VGGNet-16-DCNN

and it can be representative because the similar experimental

phenomenon happened in other 23 experiments. As shown

in Figure 8, training accuracy and loss value are decreased and

increased sharply when above models are trained on images

from test dataset. It can be inferred from Fig. 8 and other

23 cross validations that CNN models need learn more fea-

tures frommore varied training samples. As a result, Original

test images are redistributed randomly and the proportion

of training data, validation data and test data is now about

75% : 10%:15%. CXNet-m1 and DCNN-Resnet-50 whose

performance in Table 4 are top two are trained again on the

new dataset.

Furthermore, in order to learn more information, we adjust

the input image size into 512*512 instead of 224*224 and

reset corresponding convolution kernels. As shown in 9, the

basic architecture is unaltered, the size of convolution kernels

are larger and a convolutional layer is added in block 3.

Except for Chest X-ray14, OpenI is currently the largest

public database that we can access. Testing on both OpenI

and Chest X-ray14 is more convincing than testing on a single

one. As what Wang [1] did, we use 2,435 chest x-ray images

FIGURE 8. Training accuracy and loss curve, in (a), the accuracy is
decreased to 0.6 when train the images from test dataset; in (b),
the corresponding loss value rise to 2.0, which is much far from 0.

FIGURE 9. CXNet-m1(v2) architecture, there are larger convolution
kernels and one more convolutional layer, the size of convolution kernels
in block 1 is large in order to learn lower-dimensional feature from
higher resolution (512*512) images.

(1379 are normal images and others are abnormal) in OpenI to

test CXNet-m1(v1), CXNet-m1(v0) and ResNet-50-DCNN.

We did not test CXNet-m1(v2) due to the image sizes in

OpenI are not large enough to input into CXNet-m1(v2).

As shown in Table 5, CXNet-m1(v1) is a standard model

in Fig. 5, CXNet-m1(v0) has the same architecture of CXNet-

m1(v1) but replaces the loss function with standard cross

entropy, CXNet-m1(v2) has the same loss function of CXNet-

m1(v1) but uses a new architecture of CXNet-m1, as shown

in Fig. 9. Table 6 shows the evaluation of binary classification

results on redistributed Chest X-ray14. Table 7 shows the

evaluation of binary classification results on OpenI.

To further prove the rationality of data split and validity

of our model, we check the patient ID of test and training

images. Chest X-ray 14 ensures that there is no patient over-

lap between the splits, but there is a little overlap in our new
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TABLE 4. Result evaluation using A, P, R, F1-score and AUC on published data split.

TABLE 5. Three versions of CXNet-m1.

FIGURE 10. The redistribution of training data and test data on Chest
X-ray14.

split because we randomly select some test images to train,

as shown in Fig. 10. In Fig. 10(a), 77% images are used

for training and validation (70%+7%) and 23% images are

used for test. In Fig. 10(b), part 1© 2© 3© are new training and

validation images and 4© 5© are new test images. 2© and 4©

are chest x-ray images that from the same patients. We select

images from 1© 3© to train and test the model on images

from 4©. The average test accuracy rate is 90% (>84.4%),

which means that the good result owes to proper data split

and powerful model, rather than patient overlap.

E. DISCUSSION

Table 4 compares accuracy rate, precision rate, recall

rate, F-value and AUC value between VGGNet-16, VGGNet-

16-DCNN,ResNet-50, ResNet-50-DCNN, Inception-ResNet,

Inception-ResNet-DCNN and CXNet-m1. Among them,

VGGNet-16, ResNet-50 and Inception-resnet are pre-trained

models on Imagenet and not trained again using chest x-ray

image. The performance of these three models are all ter-

rible, which means transfer learning from natural images

to chest x-ray images without any surgery is not a good

choice. The recall rate of Inception-resnet is only 0.5%,

where only 76 abnormal images are classified correctly, other

15663 abnormal images are considered as normal images.

The performance of ResNet-50 is better than VGGNet-16 and

Inception-resnet, which means ResNet-50 is more suitable

here for transfer learning. Compared with them, the accu-

racy rate, F-value and AUC value of VGGNet-16-DCNN,

ResNet-50-DCNN and Inception-resnet-DCNN are much

higher, which means discriminatory features can be learned

from chest x-ray images through fine tuning pre-trained

models. Among them, ResNet-50-DCNN has the best per-

formance. However, CXNet-m1 achieves better results than

ResNet-50-DCNN with only 5 convolutional layers, indi-

cating the effectiveness of CXNet-m1. The numeric value

in Table 4 demonstrates that CXNet-m1 is more appropriate

than fine tuning from existing networks. It is thinner, lighter

but more capable than classic networks. Although getting

the second high value in Table 4, ResNet-50-DCNN holds

far more layers and weights, resulting in the waste of time

and space.

Training data and test data are redistributed to learn more

information and Table 6 is formed to show the performance

of ResNet-50-DCNN, CXNet-m1(v0), CXNet-m1(v1) and

CXNet-m1(v2), which are trained and tested again on the

new data split. Although achieving the highest precision

rate, the accuracy rate, recall rate and F-value of ResNet-

50-DCNN is much lower than the other three models. The

recall rate, accuracy rate and F-value of CXNet-m1(v1) are

higher than those of CXNet-m1(v0), whichmeans the sin-loss

function is better than standard cross entropy loss function

based on the samemodel architecture. Using the self-adapting

factor β, sin-loss function guides the training process to

learn more indistinguishable information from misclassi-

fied images and it improves the performance of CXNet-m1.

CXNet-m1(v2) gets the highest accuracy rate, recall rate,

F value and AUC score. Compared with CXNet-m1(v1),

it keeps the highest recall rate and improves the precision rate

and other metrics value, which means learning more details

really benefits the final classification results. In a word,

the performance of CXNet-m1(v1) illustrates the capacity of

sin-loss function, the performance of CXNet-m1(v2) demon-

strates the importance of learning details and the performance

of CXNet-m1(v0), CXNet-m1(v1) and CXNet-m1(v2) shows

that CXNet-m1 can achieve the best performance with less

parameters and less layers.

To make the conclusion more convincing, we test CXNet-

m1(v1), CXNet-m1(v0) and ResNet-50-DCNNonOpenI and

Table 7 is therefore formed. The performance of both versions

of CXNet-m1 are better than ResNet-50-DCNN in general

and CXNet-m1(v1) achieves higher accuracy rate, recall rate,

F-value and AUC. The results further prove that CXNet-m1 is

good at classifying chest x-ray images and sin-loss improves

the performance of CXNet-m1(v0).
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TABLE 6. Result evaluation using A, P, R, F1-score and AUC on new data split.

TABLE 7. Result evaluation using A, P, R, F1-score and AUC on OpenI.

V. CONCLUSION

Chest X-ray is the most popular mean to detect lung lesion

and deep learning is a good tool to assist the diagnosis. For

classification tasks of chest X-ray images, it is promising to

fine tune existing deep networks due to limits of data size,

labeling and computer hardware. However, it may lead to

low transfer efficiency, overfitting and other problems when

chest X-ray dataset and source dataset are totally different.

To avoid these problems, we analyze chest X-ray14 database,

design a hierarchical classification structure and present a

newly-designed convolutional neural network CXNet-m1 to

detect anomaly of chest X-ray images. In addition, we also

propose a novel loss function sin-loss to promote the per-

formance of CXNet-m1. Furthermore, we slightly adjust the

CXNet-m1 architecture to learnmore details and extract more

discriminative information. The experiment result shows

that CXNet-m1, which contains less layers and parame-

ters, can achieve better accuracy than fine-tuning, no matter

with or without sin-loss. It also demonstrates that CXNet-

m1 with sin-loss can learn more useful information and there-

fore acquires better performance. Besides, it indicates that

training images with higher resolution and larger number can

promote the classification performance. In a word, the key of

good result is making every effort to learn more useful and

accurate features, no matter through designing a more proper

CNN or utilizing more data.

In the future, we will continue to explore other

three models, CXNet-m2, CXNet-m3 and CXNet-m4.

According to different classification tasks, models and loss

functions should be designed respectively. For instance,

CXNet-m3 may use LSTM to learn the relationship between

multiple labels and CXNet-m3 should learn more features for

14 categories. CNN is a promising method of image process

and the loss function and architecture are still the emphasis

of our further research.
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