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Abstract: The competence of machine learning approaches to carry out clinical expertise tasks has
recently gained a lot of attention, particularly in the field of medical-imaging examination. Among
the most frequently used clinical-imaging modalities in the healthcare profession is chest radiography,
which calls for prompt reporting of the existence of potential anomalies and illness diagnostics
in images. Automated frameworks for the recognition of chest abnormalities employing X-rays
are being introduced in health departments. However, the reliable detection and classification of
particular illnesses in chest X-ray samples is still a complicated issue because of the complex structure
of radiographs, e.g., the large exposure dynamic range. Moreover, the incidence of various image
artifacts and extensive inter- and intra-category resemblances further increases the difficulty of chest
disease recognition procedures. The aim of this study was to resolve these existing problems. We
propose a deep learning (DL) approach to the detection of chest abnormalities with the X-ray modality
using the EfficientDet (CXray-EffDet) model. More clearly, we employed the EfficientNet-B0-based
EfficientDet-D0 model to compute a reliable set of sample features and accomplish the detection
and classification task by categorizing eight categories of chest abnormalities using X-ray images.
The effective feature computation power of the CXray-EffDet model enhances the power of chest
abnormality recognition due to its high recall rate, and it presents a lightweight and computationally
robust approach. A large test of the model employing a standard database from the National Institutes
of Health (NIH) was conducted to demonstrate the chest disease localization and categorization
performance of the CXray-EffDet model. We attained an AUC score of 0.9080, along with an IOU of
0.834, which clearly determines the competency of the introduced model.

Keywords: deep learning; EfficientDet; X-ray; chest diseases; classification; localization

1. Introduction

Easier accessibility to multimodel content, i.e., digital samples and audiovisual data,
has boosted the development of jobs in the area of computer vision (CV). Some famous
areas of CV include object identification and tracking [1] and computer-aided analysis of
several medical imaging techniques [2]. Professionals are being aided by the use of CV
techniques in the analysis of medical images to complete tasks rapidly and correctly. Chest
X-ray (CXR) examinations are one of these applications [3]. In order to diagnose various
respiratory anomalies, including pneumonia, COVID-19, bronchiectasis, lung lesions, etc.,
chest X-ray imaging is the modality that is most frequently used worldwide [4]. Important
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clinical inspections are performed daily as a result of the chest X-ray modality’s simpler
and more practical approach [5]. However, the accessibility of the subject matter to experts
is crucial for the manual review of these samples. Additionally, manual inspection of
chest CXR research is a time-consuming, challenging task with a significant likelihood
of inaccurate findings. Contrarily, a computerized recognition model can expedite the
procedure while also improving the system’s effectiveness.

Around 65 million individuals worldwide are afflicted by one or more types of chest
diseases, and 3 million people pass away each year as a result of such illnesses. Thus,
early detection of these abnormalities can spare individuals’ lives and prevent them from
invasive surgical treatments [6]. Consequently, scientists have concentrated their efforts
to propose trustworthy computerized alternatives to address the issues with manual CXR
inspection. Hence, artists have concentrated their efforts to propose trustworthy automated
alternatives to address the issues with the manual CXR examination process. Initially,
various CXR anomalies were classified using hand-crafted pattern calculation techniques.
These procedures are straightforward and effective with tiny amounts of data. Hand-
crafted key feature-extraction methods, in comparison, take a long time and require a lot of
subject knowledge to generate correct answers. Additionally, there will always be a trade-
off between categorization accuracy and computational cost for such algorithms. These
approaches’ ability to recognize objects can be improved by using large keypoints, but at
the expense of extra processing costs. Though using smaller keypoint sets makes hand-
coded techniques more effective, it leaves out important aspects of visual modalities, which
lowers the precision of classification outcomes. These factors prevent these approaches
from being effective for CXR evaluation [7].

The progress of AI-based solutions in the automated identification of medical problems
is astounding at the moment. When used in medicine, AI aids with patient management,
diagnosis, and treatment. This relieves physicians’ burden and lends a helping hand to
doctors. Such frameworks also provide assistance to the administration department of a
healthcare unit by providing automated management solutions [8]. The scientific world has
progressively become more engaged in using deep learning (DL) methods for digital image
processing, along with the CXR test. To accomplish the segmentation and categorization
task involved in several medical disease-related issues, a variety of well-studied DL models
are used, such as convolution neural networks (CNN) [9] and recurrent neural networks
(RNNs) [10]. As a result, deep learning is becoming an extremely potent solution in the
health sector, since the majority of tasks are related to the classification and segmentation
of diseases. Due to the empowerment of DL techniques, these systems are ideally suited
for analyzing medical images, since they can compute a more nominative set of image
characteristics without the need for subject-matter specialists. The way in which people’s
brains view and remember different objects serves as an inspiration for Cnn architectures.
A few such frameworks are VGG [11], GoogleNet [12], ResNet [13], XceptionNet [14],
DenseNet [15], and EfficientNet [16], etc., which are being thoroughly explored in the
field of medical image analysis. Such techniques can deliver consistent results with little
computation. The key rationale behind employing DL-based algorithms for the computer-
aided diagnosis of medical sample investigations is that they have the ability to compute
the essential data of the input sequence and can handle challenging sample distortions, i.e.,
luminance and chrominance changes, clutter, blurring, and size changes, among others.

Extensive research has been carried out in the domain of the recognition of chest
abnormalities. In this section, a detailed analysis of existing work is accomplished to
recognize the various abnormalities of the chest. One method was discussed in [3], in which
the DL methods Vgg-16 and XceptionNet were employed for locating pneumonia-affected
areas of images. In the first step, data augmentation was performed with various operations
such as zoom, angle rotation, and image flip to enhance the diversity of the database. In the
next phase, the DL approaches were applied to compute a set of deep keypoints. The work
gained the highest results for the XceptionNet model; however, categorization performance
requires more enhancement. Bhandary et al. [17] also introduced a model to recognize
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pneumonia-affected areas from lung samples by employing DL approaches. Initially, a
model called custom AlexNet was introduced for pneumonia detection. In the second
step, an ensemble approach was used to join pattern-based keypoints computed via the
application of the Haralick and Hu algorithm [18] with the deep keypoints calculated
with the first model. The computed keypoint set was utilized to train a support vector
machine (SVM) and softmax classifier. The work in [17] acquired categorization results of
97.27% utilizing CT samples over the LIDC-IDRI repository. In [19], the researchers used
various image dimensions and transfer learning to assess the effectiveness of various pre-
trained deep networks, including GoogleNet, InceptionNet, and ResNet. Additionally, the
properties that these models learned were analyzed using network visualization. According
to the findings, shallower nets, such as GoogleNet, perform better than deep networks at
differentiating between healthy and diseased chest x-rays. A DL-based approach called
CheXNet was developed by Rajpurkar et al. [20] to diagnose various disorders in the
chest. Using batch normalization and dense connection, the network had 121 layers.
The ChestX-ray14 database was used to reinforce the ChexNet classifier, which was built
earlier with ImageNet samples. This method received an F1 measure of 0.435 and an AUC
of 0.801. A DL approach for coronavirus disease identification over a variety of other
chest ailments using chest X-rays was put forth by the researchers in [21]. To address the
concerns with skewed class samples, the authors used a GAN-based method to produce
synthetic images. They used a variety of scenarios to analyze the model behavior, including
data augmentation, transfer learning, and unbalanced category samples. The outcomes
demonstrated that, with balanced data, the ResNet model produced a high performance
of 87%. Ho et al. [22] developed a two-phase method to accurately identify 14 distinct
disorders from X-ray samples of the chest. Utilizing activation weights taken from the
final convolutional layer of the trained DenseNet121 net, the anomalous area was initially
located. Next, categorization was carried out by combining patterns and deep features
to perform the fusion of keypoints. Composite characteristics were categorized using a
number of supervised learning algorithms, including SVM, KNN, AdaBoost, and others.
The experiments revealed that, with an accuracy of 84.62%, the ELM predictor performed
well in contrast to other learners. Utilizing chest X-ray scans, the researchers in [23] created
a CNN network with 3 convolutional layers to identify 12 distinct disorders. They examined
and studied how well unsupervised learning performed compared to backpropagation
NN and competitive NN. The outcomes showed that the suggested CNN’s strong feature
learning enabled it to achieve a high classification rate and greater generalization capability.
However, the number of convergence cycles and calculation time was a little higher.

Another work was discussed in [24] in which the researchers created a multi-scale
attention net to improve the efficiency of identifying multiple classes of chest diseases.
By employing a multi-stage attention block that combined local attributes obtained at
various sizes with global keypoints, the introduced network used Densenet-169 as its core.
To address the problem of imbalanced image samples, a unique loss method utilizing
perceptual and multi-label balancing was also devised. The AUC of the proposed method
was 85 on the CheXpert database and 81.50 on the ChestX-Ray14 repository. A cross-
attention-oriented, end-to-end structure was proposed by Ma et al. [25] to overcome the
class-imbalanced issue of multi-label X-ray chest disease categorization. For improved
keypoint depiction via shared attention, the model included a loss formula containing
attention and multi-category balancing loss in addition to the computation of features
with Densenet having 121 and 169 layers. On the ChestX-Ray14 samples, the discussed
model displayed an improved AUC of 81.70. To increase the precision of multi-class
respiratory disease detection using chest radiography, Wang et al. [26] introduced the
ChestNet framework. Two sub-networks, a categorization net, and an attention net made
up the entire framework. A pre-trained ResNet152 algorithm was utilized to collect uniform
keypoints that served as the foundation for the categorization network. Utilizing the
keypoints that were retrieved, the attention net was utilized to examine the connection
between category labels and anomalous areas. Employing the ChestX-ray14 database, the
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developed framework performed better for categorization. A strategy to perform multi-
label chest illness classification and abnormality localization concurrently was suggested
by Ouyang et al. [27]. The paradigm included both an activation- and a gradient-based
attention mechanism (AM). The work utilized a hierarchy-based visual AM with three
levels: forefront, positive/negative, and abnormal attention. Because there were only a
few box annotations for the diseased area that were readily available, the framework was
learned by employing a weakly supervised learning approach. The average AUC value for
this method on the ChestX-ray14 database was 81.90.

Pan et al. [28] employed the well-known DL networks DenseNet and MobileNet-V2 to
differentiate diseased samples of chest X-rays from normal images. The work was focused
on classifying 14 types of chest diseases. The approach was trained and tested on two
different datasets to test the cross-corpus behavior of the model. The work discussed in [28]
attained the best results with the MobileNet-V2 model. Another technique was presented
in [29] focusing on classifying both coronavirus and chest-related diseases from the X-ray
image modality via the employment of the DL approach. In the first phase, samples were
categorized as healthy, coronavirus-affected, and other, which were later distributed into
14 classes of chest abnormalities. The work utilized various deep nets, and ResNet-50
attained the best results in the recognition of COVID-19 and other chest disease-affected
samples. A technique for the identification of both bacterial and viral influenza using chest
images was developed by Alqudah et al. [30]. First, a customized CNN technique was
tailored to learn characteristics unique to the pneumonia illness after being pre-trained
on other medical samples. Next, categorization was carried out with various predictors,
including the KNN, SVM, and softmax algorithm. The findings demonstrated that the SVM
significantly improved results compared to the other classifiers, but the effectiveness was
assessed using a small sample set. An end-to-end training method for performing multi-
class respiratory illness categorization was described in [31]. In order to eliminate irrelevant
information from samples, a preprocessing step was initially applied using trim and resize
procedures. In order to construct a nominative feature set and subsequently classify the
images into the appropriate categories, the pre-trained EfficientNetv2 network was applied.
This strategy yields better outcomes for three-class classification, but the algorithm has
over-fitting issues and performs worse as the classes increase. The effectiveness of various
ResNet-based methods for the problem of labeling multiple chest X-ray data was examined
by Baltruschat et al. [32]. For better classification, the scientists expanded the design and
added non-image information, including the patient’s age, gender, and sample capture
category, to the net. According to the findings, the ResNet model with 38 layers integrating
metadata outperformed the rest of the networks, with an AUC of 72.70. A DL approach
performing multi-category identification of chest diseases from X-ray and CT samples was
proposed in [33]. Four distinct customized structures built on VGG-19, V2-based ResNet-
152, and Gated Recurrent Unit (GRU) were evaluated by the researchers. The findings
demonstrated that the customized VGG-19 model beat the other algorithms by achieving
an accuracy rate of 98.05% on the X-ray and CT data samples; however, the method had
problems with model over-fitting. Ge et al. [34] developed a multi-class technique for
diagnosing diseases from chest X-rays making use of labeling dependencies for illnesses
and states of health. The network was made up of two separate sub-CNNs that learned
with multiple loss method pairings, including correlation, multi-label softmax, and binary
cross-entropy losses. Bilinear pooling was additionally implemented by the researchers
to calculate useful keypoints for effective categorization. With ResNet as the backbone
model, this technique [34] displayed an AUC of 83.98; however, it had a high complexity
of computation. Albahli et al. [35] proposed an approach for classifying chest diseases
using the X-ray image modality. Initially, samples were preprocessed to improve the
visual appearance. After this, a histogram of the gradient (HOG) descriptor was used with
numerous DL frameworks such as ResNet101, DenseNet201, etc. for features computation.
Meanwhile, the SVM technique was used for classification. The approach acquired the best
results with the ResNet101 model, but at the expense of increased computational cost.
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The research mentioned above has produced impressive results. However, these
approaches can only be used to classify a small number of chest-related disorders, because
they are not generalizable. Table 1 provides a summary of the methods for identifying
chest illnesses from the literature. As can be observed, there is still room for advancement
in regard to categorization accuracy, computing overhead, and generalization power for
multi-label chest diseases.

Table 1. An evaluation of the existing work.

Reference Model Performance Limitations Identified

[3] VGG-16
XceptionNet

Accuracy = 87% (VGG16)
Accuracy = 82% (XceptionNet) Performance needs improvements.

[17] AlexNet Accuracy = 97.27% Performance degrades for unseen cases.

[19] GoogleNet Accuracy = 80%
The classification results can be enhanced by including
the segmentation technique to permit the model to
extract more illness-related characteristics.

[20] Deep Net AUC = 80.10 Classification results require improvements.

[21] Deep Net Accuracy = 87% Performance degrades for distorted images.

[22] Ensemble method Accuracy = 8462% Classification results require improvements.

[23] Deep Net Accuracy = 92.4% Performance degrades for distorted images.

[24]
DenseNet
andmulti-scale attention
network

AUC = 85
The performance can be improved further.

AUC = 81.50

[25] DenseNet-121
DenseNet-169

AUC = 81.70
The framework is economically inefficient.

AUC= 77.50

[26] ResNet-152 AUC= 78.10 The framework is economically inefficient with high
inference time.

[27] ResNet and visual AM
AUC = 81.90 The technique relies on the accessibility of box

annotations.AUC = 91.66

[28] DenseNet MobileNetV2
AUC = 92.40

Performance degrades for unseen cases.
AUC = 90

[29] ResNet-50 AUC = 96.90 The model is unable to tackle noisy images.

[30] Deep Net Accuracy = 94% Requires evaluation on a complex dataset.

[31] V2-EfficientNet Accuracy = 82.15% Performance degrades with an increase in disease
classes.

[32] ResNet-38 AUC = 0.822 Classification results need enhancement.

[33] Modified VGG-19 Accuracy= 98.05% Requires evaluation on a complex dataset.

[34] ResNet and DenseNet AUC =0.8398 (ResNet) and
0.8392 (DenseNet) The model is unable to tackle distorted images.

Although current methodologies have produced impressive CXR recognition accuracy,
there is a need for progress in terms of precision and computational burden. As a result, a
deeper analysis of the classical machine learning (ML) and DL methodologies are needed
to improve the effectiveness of classifying chest-related disorders from the X-ray medical
image modality. The main issue with ML approaches for categorizing CXR abnormalities is
their decreased efficacy with longer computation times [36]. Comparing DL techniques
to human brain intelligence, the capacity to resolve challenging real-world problems is
astounding. Even though the DL method fixes issues with ML techniques, it also made
models more sophisticated. Consequently, a more reliable method of classifying CXR-
related diseases is required.
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Due to the many commonalities between various chest disorders, it might be chal-
lenging to classify various CXR disorders accurately and on time. Additionally, the input
samples’ prevalence of distortion, fading, illumination variance, and brightness shifts
makes the categorization process even more challenging. Therefore, we developed a new
framework called chest abnormalities’ detection from the X-ray modality using the Effi-
cientDet (CXray-EffDet) model to locate and categorize the eight different categories of
chest anomalies in order to address the shortcomings of previous approaches. Descriptively,
we utilized the EfficientNet-B0-based EfficientDet-D0 model to compute a reliable set of
sample features and accomplish the classification task by categorizing the eight categories
of chest illness from the X-ray images. The experimental findings demonstrate that even
with the existence of diverse image distortions, our method is competent at differentiating
between the different kinds of chest disorders. Below are the primary contributions of the
proposed work:

• A model named the CXray-EffDet is proposed to recognize chest diseases from
X-ray images.

• The introduced framework is proficient in correctly identifying and categorizing the
eight kinds of chest abnormalities from the X-ray images due to the robustness of the
CXray-EffDet approach.

• The proposed model boosted the categorization performance due to its enhanced
recognition ability to tackle complex sample transformation changes.

• The CXray-EffDet approach presents a computationally effective approach to classify-
ing chest disorders from X-ray samples due to its one-stage object identifier.

• The proposed work is capable of both detecting the locations of diseased regions and
their associated class.

• To demonstrate the accuracy of our method, we give a detailed assessment of the new
methods for the categorization of CXR diseases and perform extensive experiments
on a challenging database called NIH Chest X-ray.

The rest of the article follows the above outline. An explanation of the presented work
and employed dataset is given in Section 2. Section 3 comprises the description of the
employed performance metrics and experiments used to assess the classification results of
the presented work. Section 4 comprises the discussion, and the conclusion is elaborated
on in Section 5.

2. Materials and Methods

The proposed work consists of two major phases, which are divided into: (i) the
preparation of image samples as per model requirements and (ii) the identification and
classification of numerous chest X-ray diseases. A visual representation of the proposed
approach is given in Figure 1. In the first phase, the samples are annotated by drawing a
rectangular box around the diseased region in the X-ray samples to precisely determine
the region of interest. Then, in the next step, the annotated images are utilized to train
a DL approach called chest abnormalities’ detection from the X-ray modality using the
EfficientDet (CXray-EffDet) model. More clearly, we have employed the EfficientNet-
B0-based EfficientDet-D0 framework to compute a distinct set of sample keypoints and
accomplish the classification task by categorizing the 8 classes of chest disorders from
the X-ray samples. The CXray-EffDet framework performs three steps to execute the
localization and categorization task. Initially, the features extractor of the CXray-EffDet
approach named the EfficientNet-B0 accepts the image as input and computes a deep
set of sample features. Then, the BiFPN unit executes top-down and bottom-up feature
extraction, blending numerous times to compute the final set of keypoints at Levels 3 to 7
in EfficientNet. In the last phase, the identified diseased area along with the predicted class
label is shown, and model performance is calculated by utilizing the evaluation metrics
used in the domain of computer-aided medical image processing. Thorough details of the
introduced model are given in Algorithm 1.
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Algorithm 1: Infected Region Detection

INPUT:
TrS, BBx
OUTPUT:
Identified Area, EfDet, Class
TrS—total images used for model training.
BBx—coordinates of the rectangular box showing the diseased portion.
Identified Area—diseased portion in the output.
EfDet –EfficientDet model with the EfficientNet-B0 base network.
Class portion—Label indicating the category of each identified area.
Size_of_Sample← [x y]
// Computing region of interest

α← AnchorsComputation(TrS, BBx)
// EfDet-Approach

EfDet← EfficientDet_B0Base (Size_of_Sample, α)
[Ptr Pte]← Distribution of the employed repository in the train and test parts

// Training phase
For each image i in→ Ptr
Compute EffNet(B0)-features→df Compute EffNet(B0)-features→df
Accomplish keypoints Fusion (df)→Ff
End
Train EffDet using Ff, and measure execution time t_EffDet
η_EffDet← LocateAffectedRegion(Ff )
Ap_EffDet← Evaluate_AP (EffNet(B0), η_ EffDet)
For each sample j in→ Pte
a) Extract key features through trained model Ap_EffDet→βI

b) [Bbox, ConfidenceScore, category]←Estimate (βI)
c) show the image with Bbox, score, and class label
d) compute

• Accuracy
• mAP
• precision
• recall
• time

End For
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2.1. Matetial

To perform the training and evaluation of the CXray-EffDet model, a standard and
publicly available database, the NIH Chest X-ray, is used in the introduced work [37].
The dataset contains 112,120 images of 30,805 subjects. There are a total of 14 diverse
categories of chest abnormalities in the NIH repository, as depicted in Figure 2. However,
expert-provided annotations are available for only 8 classes of diseases, which are as
follows: atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, and
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pneumothorax, respectively. Therefore, as the CXray-EffDet model is concerned with both
localizing and classifying chest diseases, we have used the mentioned 8 chest abnormalities
in the presented work. This dataset contains a total of 984 annotated images that are
used for model training. The basic reason for selecting the NIH CXR dataset in this work
is that the samples of this repository are complicated and diverse and contain several
transformations, such as variations in light, color, and size of diseased region, as well as the
incidence of noise, blurring, etc.
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2.2. Annotations

It is crucial to explicitly illustrate the location of the diseased areas in the suspected
samples for an effective and appropriate method of training. We used the LabelImg [39]
tool to produce annotations of the diseased image regions and precisely define the ROIs
to complete this operation. The created annotations are saved in a file that contains two
different sorts of data: the coordinates of the Bbox showing the affected area from the X-ray
chest images and the class that is assigned to each spot that is found. The model learning
file is then created from the XML file and used to build the network.

2.3. CXray-EffDet

In the proposed method, we present a DL framework called the CXray-EffDet network
that employs the EfficientDet model for chest disorders’ classification using the X-ray
images. To appropriately identify the chest diseases from the X-ray images, an effective
feature extractor is required. However, due to the reasons listed, acquiring a more relevant
group of image attributes is a difficult task. The estimation of a larger-sized feature set
could lead to the model over-fitting issue, whereas a smaller-sized feature map could
prevent the model from learning some crucial sample components, such as color and shape
changes, which blur the distinctions between normal and affected sample regions of an
image. It is crucial to adopt an automated keypoint estimation methodology instead of a
hand-crafted feature-calculation strategy in order to obtain a more reliable set of sample
keypoints. Due to wide differences in the mass, shape, luminance, and location of chest
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X-ray diseases, the architectures using hand-coded feature estimation are ineffective in
properly finding and categorizing diseased regions in their respective classes. We used Effi-
cientDet [1,40], a DL-based method with the ability to automatically calculate the resilient
key features from the images under analysis, to address the above-elaborated problems.
EfficientDet’s convolution filters analyze the structural details of the input sample to reg-
ulate the characteristics of the diseased regions. In order to locate and identify different
medical disorders, scientists have offered a number of object-detecting techniques. These
methods are broadly categorized into two types: one-stage (RetinaNet [41], YOLO [42],
CornerNet [2], SSD [15], CenterNet [43]) and two-stage (RCNN [44], Mask-RCNN [45],
Fast-RCNN [11], Faster-RCNN [21]) approaches.

The reason for choosing EffieicntDet over other one-stage detection techniques is that
these methodologies indicate a minimal time to complete the classification task, which
compromises the prediction performance. Though two-stage detection models are more
accurate at detecting medical abnormalities, this improvement comes at the expense of
high computation complexity, because these methods require two phases to find and cat-
egorize ROIs, making them inappropriate for use in real-life situations. Therefore, it is
necessary to propose a strategy that would result in the identification and classification
of chest X-ray diseases in a robust and efficient manner. We used the EfficientDet tech-
nique, introduced by the Google Brain team, to resolve the aforementioned problems. The
EfficientDet framework is a robust and reliable object-recognition technique that builds
on the multi-directed feature unification structure of FPN and takes inspiration from the
scaling strategy of the EfficientNet structure. The proposed CXray-EffDet model contains
3 major components, where the first unit is the EfficientNet model employed for features
extraction. In the presented approach, the EfficientNet-B0 is nominated as the base network
of the CXray-EffDet model. The second unit is termed the BiFPN, which accomplishes both
topmost and lower-right keypoint blending numerous times for the calculation of the final
feature set. Finally, the last unit of the proposed work is concerned with recognizing and
categorizing the identified portion into eight different types of chest diseases. A thorough
explanation of training parameters utilized for model training is elaborated in Table 2.

Table 2. Details of the used hyper-parameters.

Parameters Value

Total epochs 25
Learning rate 0.001

Batch size 16
Value of confidence score 0.5
Value of unmatched score 0.5

An in-depth explanation of all three units is given below.

2.3.1. EfficientNet-B0

For the purpose of obtaining the deep keypoints vector from the input samples, we
chose EfficientNet -B0 as our backbone model. The EfficientNet approach consistently
adjusts all dimensions with a predetermined set of scalability factors, as opposed to conven-
tional techniques that change model sizes, i.e., breadth, depth, and resolution, arbitrarily.
The EfficientNet -B0 is able to compute a more effective set of imaging keypoints with a
limited range of parameters, which also reduces calculation time and increases detection
performance. Figure 3 shows the organization of the EfficientNet-B0 model. The Efficient-
Net architecture is able to appropriately portray sophisticated image transformation, which
allows it to cope with the challenge of the lack of ROI positional information more effec-
tively. The EfficientNet architecture also permits the reuse of calculated features, making it
more appropriate for chest illness diagnosis and accelerating the training process.
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2.3.2. BiFPN

In the effective identification and recognition of various chest X-ray diseases, characteris-
tics such as location, background, intensity changes, and mass of the diseased portion must
be accounted for. As such, the employment of a multi-scale features extraction strategy can be
effective for the accurate recognition of numerous categories of chest disorders from the X-ray
samples. Frameworks historically have typically used top-down FPNs to combine multi-stage
features. The single-directed FPN, however, does not necessarily contribute to different scales
proportionally in the resulting features, which might lead to the failure to acquire some crucial
image behaviors in the chest abnormalities’ detection processes.

In order to more effectively address the issue of equitable participation in FPN, the
notion of BiFPN is included in the method that is currently presented. The BiFPN unit
uses regular and consistent links to enable information to pass in both the topmost and
lower-right sides. Additionally, the BiFPN component employs trainable weights to select
relevant keypoints with important contributions to the final architecture. Hence, features
from the P-(3 to 7) layers of the EfficientNet-B0 are designated as multi-stage keypoints,
which are taken as input by the BiFPN component. The breadth of the BiFPN unit increases
exponentially with an increase in depth enhanced by satisfying Equation (1):
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b and db indicate the breadth and depth of the BiFPN unit, and
∅ is the composite component used to monitor the scaling sizes with a value of 0 in the
presented work.

2.3.3. Box/Class Estimation Module

The collective multi-stage features computed by the BiFPN unit are propagated as
input to the box/class estimation unit to draw a rectangular box around the detected area
along with the respective category. The size of this unit is similar to the BiFPN module, and
depth is calculated as:

dRecbox = 3 + [∅/3] (2)

2.3.4. Detection Process

The CXray-EffDet framework is a more effective method in comparison to other
approaches and does not employ hand-coded feature computation methods, i.e., selective
search and proposal generation. As such, the input sample is passed to the trained model,
on which it directly locates the location of the diseased region by drawing a bounding box
around it and determines the associated class label along with the confidence score.

3. Experiment and Results

Here, we discuss the performance measures that were utilized to numerically estimate
the obtained results. Furthermore, we carried out an extensive experimental evaluation



Diagnostics 2023, 13, 248 11 of 22

to assess the proposed work in several ways to explain the efficacy of the CXray-EffDet
framework for locating and recognizing the eight kinds of chest abnormalities from the
X-ray images. The proposed work is implemented in a GPU-based system with the Nvidia
GTX1070 card in the Python language. In the proposed work, the CXray-EffDet model
employs the learned weights gained over the MS-COCO database, and transfer learning
is accomplished on the images from the employed repository to train it for recognizing
numerous chest abnormalities.

3.1. Evaluation Measures

To validate the CXray-EffDet model in localizing and classifying the eight kinds of
chest disorders, we selected numerous standard measures that are extensively utilized by
researchers working in the domain of object identification and categorization. More clearly,
the Intersection-over-Union (IOU), mean average precision (mAP), precision, accuracy,
and recall were employed for analyzing the performance of the presented approach. The
numerical details to compute the accuracy are elaborated in Equation (3):

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

The mAP is defined in Equation (4), in which AP defines the average precision over all
categories, and t represents a test image. Moreover, T shows total evaluation images.

mAP :=
T

∑
i=1

AP(ti)/T (4)

Figures 4–6 explain the IOU, precision, and recall measures, respectively.
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3.2. Localization Performance

A robust chest disease detection approach must be competent to reliably identify
the affected region and specify the correct class. Therefore, we performed an analysis
to validate the localization power of the CXray-EffDet model. For this reason, we have
taken the images from the test set of the NIH Chest X-ray repository to evaluate the
localization ability of the presented work and attained results in terms of the pictorial
demonstration shown in Figure 7. The images exhibited in Figure 7 clearly portray that
the CXray-EffDet model is robust in locating the affected regions and can distinguish
numerous chest abnormalities competently. We report the results in terms of the numeric
form by computing the mAP score, as it is the standard measure used to compute the
localization power of an object-detection approach. More descriptively, we obtained an
average mAP score of 0.926. Both the graphical and numeric scores clearly show that our
work is proficient at locating the various categories of chest diseases with a high recall rate.
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3.3. Class-Wise Evaluation

In this part of the manuscript, a detailed evaluation of the category-wise results is
carried out to explain the recognition ability of the CXray-EffDet model to differentiate
the various forms of chest infections employing X-ray samples. To perform this, we took
the class-wise samples of the employed data samples and tested them on the trained



Diagnostics 2023, 13, 248 13 of 22

framework. To assess the performance, we computed the precision and recall scores, along
with the accuracy and F1-measure.

In the first step, we show the category-wise attained precision score of the CXray-
EffDet model for all eight categories to validate how effectively the presented model
recognizes the various disease classes. The obtained precision scores are given in Figure 8
for all eight classes of chest abnormalities, which clearly show that the CXray-EffDet model
is proficient at locating disease samples. More descriptively, the CXray-EffDet model
acquired a precision rate of 90%, which exhibits the effectiveness of the proposed approach.
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Furthermore, the recall scores for all eight chest diseases are computed to check the
recognition capability of the CXray-EffDet framework, and the attained values are given in
Figure 9. It can be seen from the performance elaborated in Figure 9 that the CXray-EffDet
model is capable of recognizing all categories of illnesses with a high score. In a clearer
manner, we gained an average recall value of 92.36%.
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Additionally, the F1-score is also reported for the CXray-EffDet model, as this measure
helps to provide a better depiction of the performance of a model by showing a comparison
of the precision and recall measures. Moreover, we computed the error rates for all
categories of chest diseases. The results both in terms of the F1-score and error rate
are given in Figure 10. The values depicted in Figure 10 clearly show that we obtained
the highest F1-score in the pneumothorax category, with an error rate of 4.67%, and the
CXray-EffDet model attained the lowest F1-score and highest error rate for the effusion
abnormality, with a value of 89.22%, along with an error rate of 10.78%. Descriptively, the
CXray-EffDet model shows an average F1-measure and an error rate of 91.16% and 8.85%,
which depicts the robustness of the presented method.
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An important aspect of discussing the categorization results of an approach is to show
the confusion matrix, as this measure effectively elaborates the categorization results in
terms of the attained true-positive rate (TPR), which assists in showing the capability of an
approach to locate healthy and diseased classes. Therefore, we computed the confusion
matrix for all eight kinds of chest disorders and give the results in Figure 11. The values
given in Figure 11 clearly indicate that the proposed model is competent at effectively
categorizing all types of chest disorders because of its high recall rate.

Lastly, the category-wise accuracy results were also computed for the CXray-EffDet
model, and values are given in Figure 12. The CXray-EffDet model exhibited robust
classification performance in terms of the accuracy measure for all eight types of chest
abnormalities. Descriptively, we attained an average accuracy value of 94.53%. As per
the analysis performed for all eight types of chest diseases in terms of several standard
measures discussed in this section, we can say that the CXray-EffDet model is proficient at
detecting and classifying chest-related abnormalities.
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3.4. Comparative Examination of the Presented Model with Base Approaches

In this section, a category-wise comparative analysis of the CXray-EffDet model is per-
formed with other base techniques to compare the chest disease classification performance
with them.

Initially, we nominated the AlexNet [46], GoogleNet [12], VGG16 [47], and ResNet50 [48]
models for comparison in terms of the AUC measure, and the acquired results are given
in Table 3. The comparison illustrated in Table 3 clearly shows that our work is effective
in robustly identifying the various categories of chest diseases as opposed to other ap-
proaches. Descriptively, for the atelectasis and cardiomegaly diseases, the comparative
methodologies gave AUC values of 65.25 and 72.75 respectively, which were 91.30 and
97.10 for the proposed work. Therefore, for the atelectasis and cardiomegaly abnormali-
ties, we provided performance gains of 26.05%. Similarly, for the effusion and infiltration
classes, the comparative models gave AUC scores of 68.50 and 60.25. In the comparison, we



Diagnostics 2023, 13, 248 16 of 22

attained AUC scores of 94.60 and 79.60 and show performance gains of 26.10% and 19.35%,
respectively. For the mass and nodule classes, peer works showed AUC scores of 54.25 and
64.50, which were 92.50 and 85.70 for our work. For the mentioned classes, we have given
performance gains of 38.25% and 21.20%, respectively. Moreover, for the pneumonia and
pneumothorax diseases, the selected DL approaches attained AUC scores of 57 and 73.50,
which were 88.10 and 97.50 for our work, and we attained performance gains of 31.10%
and 24%.

Table 3. Comparison of the presented work with base techniques for the AUC measure.

Framework Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Average

AlexNet 64 69 66 60 56 65 55 74 64
GoogLeNet 63 70 69 61 54 56 59 78 64
VGG16 63 71 65 59 51 65 51 63 61
ResNet50 71 81 74 61 56 72 63 79 69
Proposed 91.30 97.10 94.60 79.60 92.50 85.70 88.10 97.50 90.80

Second, we performed a comparative assessment of the introduced technique in terms
of the entire database using numerous standard measures with the base models. The
performed analysis is given in Table 4, which clearly shows that our work performs well for
all the performance metrics in comparison to the other DL approaches. More descriptively,
for the precision metric, the base models showed a value of 71%, which was 90% for our
work. As such, we have given a performance gain of 19% for the precision metric. Moreover,
for the recall and accuracy measures, the base models attained average scores of 72% and
73%, which were 92.36% and 94.53% for our work and resulted in performance gains of
21% and 22%, respectively. Moreover, for the F1-measure, we showed a value of 91.16%,
which was 71% for the base models. Hence, for the F1-measure, the CXray-EffDet model
attained a performance gain of 20%.

Table 4. Comparison of the presented approach with base techniques for the entire database.

Model Precision (%) Recall (%) Accuracy (%) F1-Score (%)

AlexNet 65 66.14 67.45 65.57
GoogLeNet 69.53 71.88 70.35 70.69
VGG16 72 74.32 75.41 73.14
ResNet-50 77 75 77.63 75.99
Proposed 90 92.36 94.53 91.16

The performed experimentation both in terms of class-wise results and the entire
dataset clearly shows that the CXray-EffDet model is quite proficient at identifying and
categorizing the eight classes of chest disorders as compared to other base techniques. The
basic cause of the enhanced results of the introduced approach is that it utilizes a shallow
framework architecture, which is effective at identifying a large set of sample keypoints.
Other base techniques are quite complicated in architecture and unable to tackle image
transformations, such as size, orientation, and mass differences of the diseased region,
which causes a reduction in the classification performance of these models. In comparison,
the CXray-EffDet model can better deal with such changes.

3.5. Discussion and Analysis

As the proposed approach is concerned with employing an object-recognition model
called the CXray-EffDet framework for the detection and categorization of chest diseases,
we performed an analysis to compare its results with other such approaches. To perform
this evaluation, both one- and two-stage networks are considered. The primary difference
between both object-recognition models is that in two-step approaches, the related class is
first established after a large number of area proposals have been produced to pinpoint the
position of the diseased component. Meanwhile, for one-stage algorithms, both the location
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and category of ROIs are computed in a single phase. For two-step techniques, the models
of Fast-RCNN [49], Faster-RCNN [50], and Mask-RCNN[51] were nominated, whereas in
the case of one-stage methods, the RetinaNet [41] and CenterNet [52] were selected.

To perform a comparative analysis of the categorization performance of all selected
approaches, we considered both the detection power and time complexity of all frameworks.
To compare the localization results, we chose the mAP measure, as it is the standard
measure utilized by object-identification approaches. The conducted analysis comparing
both the classification results and time complexities is given in Table 5. The reported
results in Table 5 clearly show that the proposed CXray-EffDet model is both effective and
competent as compared to all other techniques. More descriptively, for the mAP score, the
peer approaches gave an average score of 0.732, which was 0.926 for the proposed work.
Therefore, for the mAP metric, we have given a performance gain of 19.40%. Similarly,
the proposed approach showed a minimum execution time of 0.20 s in comparison to
other object detection models. The basic reason for the improved results of the proposed
approach is that the Fast-RCNN utilizes hand-coded models for feature extraction, which
are not proficient at handling sample distortions and result in performance degradation.

Table 5. Comparative assessment of the presented model with object-recognition frameworks.

Model mAP Test Time (sec/img)

Fast RCNN 0.65 0.28
Faster RCNN 0.77 0.25
Mask RCNN 0.79 0.23
RetinaNet 0.63 0.27
CenterNet 0.82 0.25
Proposed 0.926 0.20

Techniques such as Faster and Mask-RCNN have resolved the issue of the Fast-RCNN;
however, they suffer from high computational complexity because of the two-step object-
detection networks. Moreover, the RetinaNet model is not effective at extracting nominative
anchors for the acentric features of input images. The CenterNet approach performs well,
but is not proficient at tackling unseen cases. Comparatively, the introduced model resolved
the problems of the comparated techniques by presenting a more efficient feature descriptor,
which deals with the complex pattern of X-ray samples in a more discriminative way and
enhances the classification results.

Comparison with ML-based classifiers: By comparing the approach’s performance to that
of traditional ML-based predictors, we further demonstrated the resilience of our method
for diagnosing chest illnesses from X-ray images. Because of this, we chose the SVM and
KNN as our two ML classifiers, and the results are given in Table 6. The performance
scores listed in Table 6 clearly demonstrate that the given strategy achieved a maximum
AUC of 90.80. Meanwhile, the SVM predictor showed the second-best results, with an
AUC score of 74.50. The comparable methods displayed an average score of 73.30, which
was 0.887 for our technique. Consequently, we delivered a performance gain of 17.50%.
The comparative study clearly shows that the CXray-EffDet model is more effective at
categorizing the various illnesses of the chest in X-ray medical images.

Table 6. Comparative assessment of the presented model with ML-based algorithms.

Classifier AUC

Deep-Keypoints + SVM [53] 74.50
Deep-Keypoints + KNN [53] 72.10
Proposed 90.80

Lastly, we compared the chest disease identification and categorization results of the
CXray-EffDet model with the latest techniques [54–59] to evaluate our model’s performance
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against them. For fair assessment, the average results of these works are compared with
the proposed work.

First, the performance was compared in the form of the AUC measure, and an analysis
is given in Table 7, which indicates that the CXray-EffDet technique outperformed the
other approaches. More clearly, the work in [54] employed a CNN-RNN-based approach
to recognize the eight classes of chest illness and attained an AUC score of 0.753, whereas
the method in [55] utilized the boosted cascaded convents algorithm with an AUC result
of 0.778. Moreover, the methods in [56] and [57] acquired AUC values of 0.801 and 0.821.
Chen et al. [59] selected a residual approach to recognize the various types of chest diseases,
with an AUC score of 0.838. Comparatively, the CXray-EffDet model attained the highest
AUC score of 0.908.

Table 7. Comparative assessment of the presented model with new techniques for the AUC metric.

Approach Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Average

[54] 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
[55] 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86 0.778
[56] 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
[57] 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821
[59] 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90 0.838
Proposed 0.94 0.95 0.93 0.92 0.93 0.84 0.84 0.91 0.908

Moreover, we further assessed the performance of the proposed method in the forms
of the IOU metric with the new methods given in [58–60], and the obtained scores are
depicted in Table 8. It is clear from the performance evaluation given in Table 8 that our
work obtained the highest IOU score of 0.834.

Table 8. Comparative assessment of the presented model with new techniques for the IOU metric.

Approach Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Average

[58] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569
[59] 0.72 0.96 0.88 0.93 0.74 0.45 0.65 0.64 0.746
[60] 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.728
Proposed 0.81 0.99 0.94 0.96 0.81 0.63 0.78 0.75 0.834

The work discussed in [58] utilized a CNN approach to classify eight types of chest
abnormalities with an IOU score of 0.569, and the works in [59] and [60] also utilized DL
frameworks, with IOU scores of 0.746, and 0.728, respectively. Descriptively, the compared
methods attained an average IOU score of 0.681, which was 0.834 for our work. Hence, the
CXray-EffDet model provided a performance gain of 15.27% for the IOU metric.

It is fairly evident from the assessment that the suggested scheme for the diagnosis
of chest illnesses is superior to more recent methods in terms of both the IOU and AUC
measurement metrics. The higher meaningful feature-calculation capability of our ap-
proach, which helps it to effectively recognize all kinds of diseases, is the main cause of the
presented solution’s strong recognition capacity. In contrast, the techniques in [54–59] have
a structure that is highly complex, contributing to the problem of framework over-fitting.
Additionally, the techniques are ineffective in precisely capturing visual features, because
they cannot handle various distortions of suspected samples, such as fluctuations in light
and color. In contrast, our approach is more successful at addressing the transformation
variations in the X-ray medical image modality. As a conclusion, it can be said that the
CXray-EffDet framework given here is more accurate in identifying and classifying chest
diseases from X-ray images.

4. Discussion

Abnormalities found in the chests of humans impose a serious threat to their lives, as
such diseases at the advanced level can cause the death of patients. Researchers are putting
effort into introducing computer-aided solutions for the timely and reliable recognition
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of chest diseases from X-ray samples. However, very little attention has been paid to
introducing such approaches that can not only determine the class of an abnormal chest area,
but also exactly locate the diseased region, which can assist doctors in better examining it
and starting curative procedures. The accurate and effective identification and classification
of particular abnormalities in the chest using the X-ray images is a complicated problem
because of the complex structural properties of these samples, e.g., their large exposure
dynamic range. Moreover, the presence of different image artifacts and huge inter- and
intra-class similarities further enhances the complexity of chest disease detection and
classification procedures. The aim of this study was to resolve these existing problems. We
have proposed a DL approach called the CXray-EffDet model. Descriptively, we utilized
the EfficientNet-B0-based EfficientDet-D0 framework to extract a nominative set of sample
features and perform the recognition and classification task by categorizing eight types of
chest diseases via the use of the X-ray images. A complex test of the model was performed
on the NIH CXR database. Our approach gained a mAP score of 0.926, along with precision
and recall rates of 90% and 92.36%. Both the qualitative and quantitative results show that
our approach is proficient at both locating and classifying the numerous categories of chest
diseases. Additionally, the approach is robust at detecting various image distortions and
notable inter- and intra-category similarities.

5. Conclusions

In the presented approach, a DL framework called the CXray-EffDet model was pro-
posed to recognize and classify eight categories of chest abnormalities from X-ray samples.
More clearly, we used the EfficientNet-B0-based EfficientDet-D0 model to compute a dis-
tinctive set of sample keypoints and accomplish the classification task. Furthermore, the
proposed architecture is economically resilient at categorizing a variety of CXR anomalies,
since it uses a one-stage object identifier to recognize numerous chest diseases. To demon-
strate the efficiency of the suggested strategy, we performed extensive investigations on
the NIH CXR database. We acquired a mAP score of 0.926, along with precision and recall
rates of 90% and 92.36%. The findings show that the presented model surpasses existing
frameworks with respect to both computing cost and classification results. Additionally, the
method can effectively classify the different kinds of chest illnesses under the occurrence of
various image distortions and notable inter- and intra-category similarities. The proposed
work performs well for chest X-ray disease classification. However, a little performance
degradation was observed for images with a blur effect. In the future, we plan to cover this
limitation. Moreover, we plan to evaluate this model for all fourteen categories of chest
abnormalities and accomplish an evaluation of other DL architectures as well.
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CXray-EffDet chest abnormalities’ detection from the X-ray modality using EfficientDet
DL Deep learning
ML Machine learning
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NIH National Institutes of Health
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