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Abstract

Background: Group | introns are one of the four major classes of introns as defined by their
distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts,
group | introns are referred to as autocatalytic introns. Group | introns are common in fungal and
protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all
other organisms and genomes, including bacteria.

Results: Here we report five group | introns, each containing a LAGLIDADG homing
endonuclease gene (HEG), in large subunit (LSU) rRNA genes of cyanobacteria. Three of the
introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene
of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are
closely related to introns and HEGs located at homologous insertion sites in organellar and
bacterial rDNA genes. We also present a compilation of group | introns with homing endonuclease
genes in bacteria.

Conclusion: We have discovered multiple HEG-containing group | introns in a single bacterial
gene. To our knowledge, these are the first cases of multiple group | introns in the same bacterial
gene (multiple group | introns have been reported in at least one phage gene and one prophage
gene). The HEGs each contain one copy of the LAGLIDADG motif and presumably function as
homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution,
suggests that these intron-HEG elements have been transferred horizontally among organelles and
bacteria. However, the mode of transfer and the nature of the biological connections among the
intron-containing organisms are unknown.
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Background

Group I introns are distinguished by a conserved second-
ary structure fold of approximately ten paired elements
and the ability to catalyze a two-step splicing reaction in
which the intron RNA is removed from the precursor RNA
transcript [1]. Because of their ability to self-splice, group
I (and group II) introns are referred to as autocatalytic
RNAs. The majority of group I introns are found in
nuclear rRNA genes and in the plastid and/or mitochon-
drial genomes of fungi and protists [2]. A smaller number
of these intervening sequences are found in phage, viral,
and bacterial genomes. In bacteria, group I introns inter-
rupt four different tRNA genes [2], the recA and nrdE genes
of Bacillus anthracis [3-6], the tmRNA gene of Clostridium
botulinum [7], the thyA gene of Bacillus mojavensis [8], the
RIR gene of Nostoc punctiforme [9], and the large subunit
(LSU) rRNA genes of Coxiella burnetii [10], Simkania
negevensis [11], several closely related Thermotoga species
[12], and the cyanobacterium Thermosynechoccus elongatus
(strain BP-1, formerly referred to as 'Synechococcus elonga-
tus') [13]. Group I introns have not yet been found in
archaea.

In eukaryotes, group I introns are common in protists
except the excavates [14]. These sequences are particularly
abundant in fungi, algae, and true slime molds. The wide-
spread, but highly biased distribution of group I introns
(i.e., frequent in some taxa such as fungi, but absent from
others) suggests they have been transferred horizontally
among taxa, and come to reside in different genes. Inter-
estingly, group I introns are sometimes associated with
homing endonuclease genes (HEGs) that can invade
group I introns to promote efficient spread of the intron/
HEG into homologous intron-less alleles [homing,
reviewed in [15]]. Briefly, the HEG is expressed and
intron/HEG mobility is initiated when the site-specific
homing endonuclease (HE) generates a double-stranded
DNA break at or near the site of insertion in an intron-less
allele, soon after mating between intron-containing and
intron-lacking organisms [e.g., [16,17]]. HEGs that are
associated with group I introns are categorized into five
families by the presence of conserved sequence motifs
(LAGLIDADG, His-Cys box, GIY-YIG, HNH and PD-(D/
E)XK [18,19]) in the HE proteins.

It is currently believed that most intron/HEG elements
follow a recurrent gain and loss life-cycle [20]. In this
model, a mobile intron/HEG invades by homing an
intron-minus population until it becomes fixed at a single
genic site. After fixation, the HEG degenerates and is lost
because it no longer confers a biological function. With-
out the HEG, the intron is lost. Once the population is
intron-minus the same intron/HEG element (from
another population) may re-invade the same genic site.
However, the evolutionary outcome may be different if
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the HEG or the intron gains a function other than endo-
nuclease or splicing activity, respectively. In a few cases,
intron-encoded proteins with dual roles have been
reported. For example, in addition to functioning as hom-
ing endonucleases, I-Tevl, encoded within the td intron of
phage T4 acts as a transcriptional autorepressor [21], and
I-Anil, a LAGLIDADG HEG encoded within a group I
intron interrupting the apocytochrome b gene of Aspergil-
lus, function as a maturase [22]. By gaining new biological
roles the HEG and/or the intron can avoid becoming
redundant and lost [see [23]].

Here we report multiple group I introns in rRNA genes of
cyanobacterial strains assigned to the genus Synechococcus.
A common feature of these introns is the presence of
LAGLIDADG homing endonuclease genes in peripheral
stem-loop regions of the group I ribozyme. To our knowl-
edge, this is the first discovery of multiple group I introns
in a single chromosomal gene of a bacterium (multiple
group I introns are also present in at least one phage gene
[24] and one prophage gene [25]). We analyze the struc-
ture of these newly discovered introns and investigate
their phylogenetic history in the context of related introns
from bacteria and organelles. In addition, we present a
compilation of known group I introns in bacterial or
phage genomes that encode HEGs.

Results and discussion

Group I introns with LAGLIDADG HEGs in the LSU rDNA
genes of Synechococcus strains

In an unpublished study on cyanobacterial phylogeny, we
sequenced the LSU rRNA gene from 25 diverse cyanobac-
teria. To our surprise, we found introns in two of the LSU
genes, from Synechococcus lividus strain C1 and Synechococ-
cus sp. C9, both originally isolated from a hot spring hab-
itat in Yellowstone National Park, Wyoming, USA [[26];
see also Table 1]. The LSU rRNA gene of Synechococcus sp.
C9 contains three group I introns, located at positions
L1917, L1931, and L2593 (by convention, the numbering
reflects the Escherichia coli genic position), whereas the S.
lividus strain C1 LSU rRNA gene contains similar introns
at the L1931 and 12593 positions. All five introns possess
a full-length HEG, each containing a single copy of the
LAGLIDADG motif. Very few introns have been reported
in rRNA genes from other bacterial phyla and this is only
the second report of introns in cyanobacterial rRNA genes.
The first was for a single group I intron (also with a LAGL-
IDADG HEG) in the thermophilic cyanobacterium Ther-
mosynechococcus elongatus [[13]; Table 1].

The inferred secondary structures of the intronic RNAs are
presented for one each of the L1917, L1931, and L2593
Synechococcus introns (Fig. 1). Unusual features include
open reading frames (ORFs) that extend from peripheral
loops into the intron core structure. For example, the
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Table I: Group | introns in bacteria and phage that encode homing endonuclease genes (HEGs)

HEG family ~ Organism? Taxonomy® Gene¢ rDN  Intro HEsize Functional Accession
A n (aa) e HEsf number
inserti  size
on (nt)
sited
LAGLIDA
DG
* Synechococcus sp. C9 Cyanobacteria LSU LI917 743 18I DQ421380
Thermotoga subterranea Thermotogae  LSU LI917 774 168 AJ556793
Simkania negevensis Chlamydiae LSU L1931 654 143 U68460
* Synechococcus lividus (strain Cl) Cyanobacteria LSU L1931 675 162 DQ421379
* Synechococcus sp. C9 Cyanobacteria LSU L1931 666 167 DQ421380
Thermotoga naphthophila Thermotogae  LSU L1931 699 162 AJ556785
Thermotoga neapolitana Thermotogae  LSU LI931 700 162 AJ556784
Thermotoga petrophila Thermotogae  LSU L1931 698 162 AJ556786
Coxiella burnetii Proteobacteri  LSU L1951 720 157 AE016828
a

* Synechococcus lividus (strain Cl) Cyanobacteria LSU L2593 744 189 DQ421379
* Synechococcus sp. C9 Cyanobacteria LSU L2593 748 159 DQ421380
Thermosynechococcus elongatus Cyanobacteria LSU L2593 745 175 AP005376

GIY-YIG
@ Escherichia coli phage T4 Phage sunY/nrdD - 1033 258 I-Tevll NC 000866
@ Escherichia coli phage T4 Phage td - 1017 245 I-Tevl NC 000866
Bacillus mojavensis Firmicutes thyA 1122 266 I-Bmol AF321518
Bacillus subtilis phage 322 Phage thy - 392 pseudo L31962
O Bacillus anthracis Firmicutes nrdE - 1102 253 I-Banl NC 003997

(prophage)

H-N-H
@ T-even phage RB3 Phage nrdB - 1090 269 I-Tevlll X59078
Bacillus phage SPOI Phage DNA pol - 882 174 I-Hmul M37686
Bacillus phage SP82 Phage DNA pol - 915 185 I-Hmull u04812
Bacillus phage ¢e Phage DNA pol - 903 I8l U04813
Escherichia coli phage @I Phage DNA pol - 601 131 I-Tsll AY769989
Escherichia coli phage W3 | Phage DNA pol - 601 131 I-Tsll AY769990
Bacillus phage Spbeta Phage bnrdF - 808 173 NC 001884
Staphylococcal phage Twort Phage nrdE - 1087 243 I-Twol AF485080
Bacillus thuringiensis phage Bastille Phage DNA pol - 853 188 I-Basl AY256517
Streptococcus thermophilus phage || Phage Lysin - 1013 253 AF148566
Lactobacillus delbrueckii subsp. lactis phage LL- ~ Phage terl - 837 168 L37351
H

PD-(D/

E)XK
Synechocystis sp. PCC 6803 Cyanobacteria tRNA-fMet - 655 150 I-Ssp68031  U10482

2 Organism names. Intron hosts reported in this study are marked with asterisks. Filled circles indicate that homologous introns are found in
closely related T-even-like phages [50] and the open circle indicates that homologous introns exist in closely related Bacillus species and strains [4],

but are not included in this table.

b Classification of organisms follows that of the NCBI (National Center for Biotechnology Information) GenBank.

¢ The gene in which the intron is inserted.
4 The numbering reflects the Escherichia coli genic position.

¢ HE length in amino acids (aa). HE gene fragments are indicated (pseudo).

f Active HE proteins that cut the intron minus target sites.

L1917 OREF starts in P6 and continues through the group
I ribozyme elements P7, P3 and P8 before it stops in P9.
The double role of the ORF and ribozyme core regions
suggests that these nucleotides must be under strong selec-
tive pressure to maintain the catalytic RNA functions and
to preserve the genetic code for a functional homing endo-
nuclease. Although uncommon, similar features have
been noted in other intron-HEG elements [e.g., [11,27-

29]]. It is also noteworthy that the L1917 and L1931
introns are very similar to subgroup IC1 introns that con-
tain a complex P5 region and a classical group IC1 intron
P7, but lack a P2 element, which often is associated with
long-range tertiary interactions (i.e., with P13 and P14).
The L2593 intron has a short P5 region, but contains a rel-
atively large (ca. 65 nt) extension in the P7 region (P7.1
and P7.2) and a short P2. The P7.1 and P7.2 structures
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Putative secondary structure of rDNA group | introns in Synechococcus. The group | introns are inserted after positions L1917,
L1931, and L2593 of the large subunit ribosomal RNA gene. Open reading frames (ORFs) that encode putative homing endo-
nucleases (HEs) with a single copy of the LAGLIDADG motif are inserted into peripheral regions. Paired elements (PI-P10)
and every |0th nucleotide position in the introns are indicated on the structures. The L1931 and L2593 introns shown are
from S. lividus strain Cl, whereas the L1917 intron is from Synechococcus sp. C9.

were also identified in the crystal structure of a group I
intron from the bacteriophage Twort, where it was shown
that they are part of peripheral structures that encircle and
stabilize the guanosine-binding pocket [30]. Introns lack-
ing the P2 element are common in organelles, and typi-
cally belong to the 1C2, 1A1 or IB4 subclasses of group 1
introns.

Compilation of group I introns with HEGs in bacteria and
phage

At last count (2005) [see [14,31]], approximately 3% of
nuclear group I introns contained a HEG. There are no sys-
tematic counts for organellar introns, but in May 2007 the
intron database of ref. 2 contained 117 and 83 introns in
rRNA and protein genes, respectively, of mitochondria. Of
these, 79 contain an HEG, and for 49 introns the presence
of ORFs was not determined. In plastids, 105 introns
interrupt rDNA genes and 8 interrupt protein genes (note
that there are 242 entries of the same trnL intron, and
none of these contain an ORF). Of these, 11 contain an
ORF and for 80 the presence of an ORF was not deter-
mined. Many of the "undetermined" entries do contain
OREFs [32], but the exact number remains unclear. In sum-
mary, we estimate that at least 50 percent of organellar
introns contain ORFs (this value will likely change as
more sequence data are added to GenBank).

To assess the frequency of HEGs in bacteria and phage, we
searched the literature to determine the total number of

published group I introns with HEGs in their genomes.
The results of this analysis are summarized in Table 1 and
show that the majority of HEGs in bacterial chromosomes
belong to the LAGLIDADG family and are found in group
I introns located in LSU rRNA genes. Two members of the
GIY-YIG family are found, in the chromosomal thyA gene
(encoding thymidylate synthase) of Bacillus mojavensis
and in the nrdE gene of a prophage of Bacillus anthracis
and other Bacillus species [see Table S2 in ref. [4]]. One
catalytically active homing endonuclease (I-Ssp6803I),
encoded by a group I intron that interrupts the tRNA-fMet
gene in the cyanobacterium Synechocystis sp. PCC 6803
[28], was recently identified as the first representative of
the PD-(D/E)XK family of homing endonucleases [19].
The total number of known group I introns in chromo-
somal DNA of bacteria (i.e., regardless of whether or not
the intron contains an HEG) is currently around 35 if
homologous introns in strains of the same species are
regarded as one entry (note that about 95 introns are
listed at the Comparative RNA web site [2], and that many
of these are multiple entries of the same intron in the
same species, but in different strains). Therefore, more
than 1/3 (14 of 35) of known group I introns in bacteria
contain HEGs. Finally, the 14 phage HEGs belong exclu-
sively to the GIY-YIG or HNH families. The three GIY-YIG
HEGs are found in Escherichia coli phage T4 and in Bacillus
subtilis phage P22, whereas the eleven HNH HEGs are
found in a wide variety of phage. Our study did not
involve comprehensive searches of genome databases, but
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is rather a compilation of known group I introns and
HEGs in bacteria. For example, in a recent paper [33]
many HNH HEG-like sequences were identified in bacte-
rial and phage genomes, but how many of these are asso-
ciated with group I introns is unclear. It is likely that more
intron/HEG elements remain to be identified in GenBank.
His-Cys box HEGs are found exclusively in nuclear introns
and are not included in our compilation.

Phylogenetic analysis of HEG-containing group | introns in
bacterial rRNA genes

The two unicellular, thermophilic cyanobacterial strains,
Synechococcus lividus strain C1 and Synechococcus sp. C9,
are distant relatives based on phylogenetic analyses of
small [34] and large subunit IRNA sequences (our unpub-
lished data). We added all five Synechococcus intron DNA
and HE protein sequences to previously published
sequence alignments that contain homologous LSU
intron/HEs [32] and inferred phylogenetic relationships
among the sequences in these two alignments. HEGs and
introns that are inserted at the same rDNA positions are,
in general, most closely related to one another [12,32].
Our inferred phylogenetic trees indicate that the Synechoc-
occus introns and their HEGs form a cluster with all other
known introns or HEs from the same rDNA insertion sites

(Fig. 2).

Each of the four, rDNA-positionally-distinct clades of
introns/HEGs contains a broad mixture of sequences from
bacteria, chloroplasts (entirely from green algae), and
mitochondria (mostly from green algae, but with three
introns/positions from the amoeba Acanthamoeba castella-
nii) (Fig. 2). These patterns and, crucially, the very
restricted and sporadic phylogenetic distribution of these
introns (especially so within bacteria and mitochondria,
less so within green algal chloroplasts) are consistent with
the hypothesis that these introns have been frequently
transferred horizontally among and within organelles and
bacteria. At the same time, however, because phylogenetic
resolution is generally poorly supported within each
intron clade (Fig. 2), it is unclear as to how many horizon-
tal transfer events may have been involved in the history
of the analyzed introns, much less which clades might
have served as donors and/or recipients in any particular
horizontal transfer event. Greatly increasing the sampling
of these intron families should help address these issues.
However, the short length and therefore limited informa-
tion content of the introns and HEGs will perhaps provide
severe constraints on our ability to ever recover a robustly
supported phylogenetic history of these mobile genetic
elements.

Against this hazy backdrop of likely extensive, but poorly
resolved, horizontal transfer it is possible to identify a few
lineages of introns/HEs where an element seems to have

http://www.biomedcentral.com/1471-2148/7/159

been transmitted by standard vertical descent once
acquired by putative horizontal transfer. Most relevant to
this study, the S. lividus strain C1 L2593 intron and HE are
sister to the Thermosynechococcus elongatus 1.2593 intron/
HE, whereas the 1.2593 intron and HE from Synechococcus
sp. C9 are sister to this pair of sequences. This evolution-
ary relationship is in agreement with the inferred rDNA
phylogeny [see [26] and [34]; our unpublished data], and
therefore also with inferred organismal phylogeny. This
finding is consistent with the hypothesis that this intron
was acquired only once among cyanobacteria and was
subsequently subject to strictly vertical transmission. The
well-supported sister-group relationship of the 11931
intron and HE from 8. lividus strain C1 and Synechococcus
sp. C9 is also in accord with the hypothesis of vertical
transmission within cyanobacteria following initial acqui-
sition of the intron via horizontal transfer. In both cases,
however, sampling of many additional cyanobacteria,
especially those likely to belong to the intron-containing
"clades", is needed to better assess the evolutionary his-
tory of these introns. Nesbe and Doolittle [12] have like-
wise concluded that following its putative acquisition
from an organellar source, the L1931 intron was subject to
strictly vertical descent within a clade of nine intron-con-
taining species and strains of Thermotoga (three of which
were included in this study; Fig. 2). Finally, the well sup-
ported (Fig. 2B) pairing of L1931 HEs from plastid
genomes of two chlamydomonads is also consistent with
vertical intron descent in this lineage.

Distribution of single-motif LAGLIDADG HEGs

Group I introns with single-motif LAGLIDADG HEGs are
found in biogeographically and phylogenetically distantly
related organisms. For example, L1931 introns with sin-
gle-motif, relatively conserved (Fig. 2B) HEGs are present
in 1) Simkania negevensis found as a contaminant in a cell
culture in Israel [35], 2) the thermophilic bacterium Ther-
motoga neapolitana from submarine hot springs in the Bay
of Naples, Italy [36], 3) Thermotoga naphthophila from the
Kubiki oil reservoir in Japan [37], 4) the cyanobacterium
Synechococcus spp. from a hot spring habitat in Yellow-
stone National Park, USA [26], 5) mitochondrial and
chloroplast genomes of a diverse array of green algae, and
6) the mitochondrial genome of the amoeba Acan-
thamoeba castellanii. Yet the biological connections (if any)
among these organisms and the mode of group I intron
transmission remain unclear. Simkania negevensis is capa-
ble of growing and persisting in acanthamoebal cells [38],
indicating a potential association between these two
organisms that harbor L1931 introns.

Intron/HEGs are relatively widespread but very sporadi-
cally distributed in eukaryotes and prokaryotes. According
to the cyclic model for gain and loss of this type of selfish
intron [20], the intron/HEG is destined for degradation
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Phylogenetic relationships of rDNA group | introns (A) and their LAGLIDADG HE proteins (B). (A) The 50% majority-rule
consensus tree inferred using Bayesian analysis under the GTR + | + I" substitution model. The tree includes only those LAGL-
IDADG HEG-containing group | introns that are inserted at the same four rDNA positions (Table 1) at which introns are
found in bacteria. The tree is arbitrarily rooted on the branch leading to the L1917 introns. The thick branches denote > 0.95
posterior probability for groups to the right of the values. Numbers above branches indicate minimum evolution (Jukes-Cantor
model) bootstrap (BS) values from 2000 replicates, and numbers below branches indicate maximum parsimony values from
200 replicates. Bootstrap support values < 50% are not shown. Vertical bars on the right of the tree mark groups that share
insertion positions in the LSU rDNA. Bacterial introns are in blue, chloroplast introns are in green (these are all from green
algae), and mitochondrial introns are in vermillion (these are all from green algae, except for the three introns from the
amoeba Acanthamoeba). Taxa labeled with an asterisk possess the novel introns presented in this paper. The scale bar indicates
the inferred number of substitutions per site. (B) Minimum evolution phylogenetic tree of the HE proteins, analyzed under the
WAG + I substitution model. The tree is arbitrarily rooted on the branch leading to the L1917 HEs. Numbers above the
branches indicate the bootstrap support value (from 500 replicates) from a neighbor-joining analysis using the JTT substitution

model. Other features of labeling are as in A.

and loss after a population has been fixed for the intron.
However, the intron/HEG can continue to persist by
repeatedly spreading into new populations or species via
horizontal transfer. The enormous number of prokaryotes
on our planet (estimated at 4-6 x 103°cells [39]) and their
presence in virtually every environment compatible with
life may provide a constant source of intron-less popula-
tions that the intron/HEGs can potentially invade.

Given high rates of horizontal transfer in prokaryotes
[e.g., [40,41]], it is surprising that only a small number of
introns have been found in their IDNA genes. As of 28
December 2006, 428 prokaryote genomes have been

sequenced and another 683 are in progress [42]. In addi-
tion, a search of the GenBank nucleotide sequence data-
base [43] limited to nearly complete rRNA gene sequences
of known prokaryote origin (i.e., excluding sequences
determined from bulk environmental DNA) returned
9,093 records for small subunit rRNA (> 900 nucleotides
in length), and 222 records for large subunit rRNA (>2000
nucleotides in length). Even though these numbers over-
estimate the complete number of prokaryote rRNA gene
sequences in GenBank, they provide a rough estimate of
how rare rDNA introns are in prokaryotes. It is therefore
surprising to find three group I introns with HEGs in a sin-
gle iDNA gene (in Synechococcus sp. C9). It is unclear why
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Synechococcus sp. C9 contains three introns and S. lividus
strain C1 contains two, whereas the vast majority of bac-
teria contain no rDNA introns and the few others that
have any introns possess only one.

One possible explanation is that the life history and/or
physiology of this cyanobacterial group promote intron
transfer. Alternatively, introns may sometimes serve a role
in the host cell and therefore accumulate in these lineages.
Whatever the reason, once inserted into rDNA, introns
could pose a risk for bacteria because they could poten-
tially interfere with posttranscriptional processing of pre-
cursor TRNA transcripts. Although not fully understood,
this processing is relatively complex in bacteria [e.g., [44-
46]]. In addition, group I ribozymes catalyze side reac-
tions other than self-splicing, reactions that result in
intron RNA circles and fragmented rRNAs [47]. Some
rDNA operons and primary transcripts contain many
group I introns (e.g., the IDNA operon of the myxomycete
Fuligo septica harbors 12 group I introns [48]), which
makes it increasingly important to strictly regulate group I
ribozyme activity towards splicing and not circle forma-
tion.

Conclusion

We found multiple HEG-containing group I introns in
cyanobacterial LSU rRNA genes. Specifically, the LSU
rRNA gene of Synechococcus sp. C9 contains three group I
introns, at positions L1917, L1931, and L2593, whereas
the S. lividus strain C1 LSU rRNA gene contains similar
introns at L1931 and L2593. This finding is surprising
because the vast majority of bacteria contain no rDNA
introns and the few others that have any introns possess
only one. The intron-encoded HEGs belong to the LAGL-
IDADG family, and contain one copy each of the con-
served amino acid motif that defines this family (i.e., the
LAGLIDADG motif). Phylogenetic analyses show that the
cyanobacterial introns and their HEGs are closely related
to introns and HEGs located at homologous insertion
sites in organellar and bacterial IDNA genes. Finally, from
previous studies it is estimated that approximately 3% of
nuclear group I introns contain HEGs. In our survey of
group I introns and HEGs in the literature we estimate
that at least half of organellar group I introns contain
HEGs, and that about one third of bacterial group I
introns contain HEGs.

Methods

Bacterial strains and nomenclature

Axenic slant cultures of Synechococcus lividus strain C1 and
Synechococcus sp. C9 were a gift from David Ward, Mon-
tanaState University, Bozeman. These cyanobacterial
strains wereoriginally isolated from microbial mat com-
munities in Octopus Spring, Yellowstone National Park,
Wyoming, U.S.A. Cells were scraped fromthe slants and
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DNA was isolated with the Puregene kit (GentraSystems,
Minneapolis, MN) following the manufacturer's protocol.

The bacterial nomenclature used in this study is not
addressed here other than to point out that the cyanobac-
terial names in this paper are of botanical origin and have
not been validly published under the rules of the Bacteri-
ological Code, unlike the other bacterial names in this
report. Therefore they should be considered ad hoc and
not necessarily consistent with inferred phylogenetic rela-
tionships.

PCR and DNA sequencing

Approximately 2.8 kb of the 23S rRNA gene was amplified
from genomic DNA by polymerase chain reaction (PCR)
using primers 36F and 2763R [see Additional file 1].
Amplifications were carried out in 50 pL reactions under
standard conditions in a PTC 200 DNA Engine thermal
cycler (MJ Research). The reaction mixture typically con-
tained 1.0 U of Taq Polymerase and 10x PCR buffer
(Gibco BRL Life Technologies), 0.04 mM of each deoxy-
nucleotide, 600 nM of each amplification primer, approx-
imately 50 ng of genomic template DNA, and purified
water to volume.

Temperature and cycling conditions were as follows: one
95°C denaturation cycle for 3 min, followed by 35 cycles
of 95°C denaturation for 15 sec, primer annealing at
49°C for 15 sec, and elongation at 72°C for 90 sec. Four
pL of the amplified products were visualized on 1.5% aga-
rose minigels and the remainder was purified using
30,000 NMWL low-binding, regenerated cellulose mem-
brane filter units (Millipore). Agarose plugs were some-
times taken of weak PCR products and reamplified at
51°C using the same conditions. Both strands of purified
PCR products were directly sequenced in 10 pL reactions
using the sequencing primers listed in Additional file 1.
Cycle sequencing was conducted using dRhodamine Dye
Terminator reagents and a PE-ABI 377 automated DNA
sequencer (Perkin Elmer — Applied Biosystems). Sequence
fragments were edited and assembled into contigs using
Sequencher 3.0 (Gene Codes). Sequences obtained in this
study have been assigned GenBank accession numbers
DQ421379-DQ421380.

Intron secondary structure prediction and GenBank
searches

The central paired elements (P3, P4, P6, and P7) in group
I introns were identified by comparing the intron
sequences to available secondary structures of related
introns (identified by BLAST searches). Secondary struc-
tures of peripheral regions were predicted using Mfold
[49].
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The number of available small and large ribosomal RNA
gene sequences of known origin was determined by
searching the NCBI (GenBank) databases, restricting the
search to prokaryote organisms and excluding sequences
determined from bulk environmental DNA. The search
was further restricted to complete or nearly complete gene
sequences, at least 900 nucleotides in the case of small
subunit (16S) rRNA sequences and at least 2000 nucle-
otides in the case of large subunit (23S) rRNA sequences.

Phylogenetic analyses

The five Synechococcus intron DNA and HE protein
sequences were added to previously published sequence
alignments [35]. Only intron and HE sequences from
homologous LSU positions were kept, and the final align-
ments contained 44 sequences with 139 nt and 136 aa,
respectively [see Additional files 2 and 3]. Phylogenetic
analyses were done as previously described [35], and will
only be explained here briefly. A minimal evolution tree
(WAG + I’ model) was inferred from the protein data set
using the programs TREE-PUZZLE 5.0 (to calculate dis-
tances), and Fitch (for inferring the topology) from the
PHYLIP V3.6a3 program package. TREEVIEW 1.6.6 was
used to produce the tree image. Support for nodes was cal-
culated with one bootstrap analysis (neighbor-joining,
JTT-model, and 500 replicates), and Bayesian inference
(WAG + T model, 2 million generations and 50,000 cycles
as the burn-in). A 50% majority-rule consensus tree was
inferred from the intron data set using Bayesian analysis
under the GTR+I+I" substitution model. The tree includes
only those LAGLIDADG HEG-containing group I introns
that are inserted at the same four rDNA positions (Table
1) at which introns are found in bacteria. Two sets of
bootstrap values were calculated [minimum evolution
(Jukes-Cantor model and 2000 replicates) and maximum
parsimony (200 replicates)].

Abbreviations

HEG, homing endonuclease gene; HE, homing endonu-
clease; LSU, large subunit, rRNA, ribosomal RNA; rDNA,
ribosomal DNA; ORF, open reading frame; SSU, small
subunit.
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