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ABSTRACT Cyber-physical systems (CPS) are interconnected architectures that employ analog and digital

components as well as communication and computational resources for their operation and interaction

with the physical environment. CPS constitute the backbone of enterprise (e.g., smart cities), industrial

(e.g., smart manufacturing), and critical infrastructure (e.g., energy systems). Thus, their vital importance,

interoperability, and plurality of computing devices make them prominent targets for malicious attacks

aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their

mission-critical nature within the power grid infrastructure, can lead to disastrous consequences. The security

of CPES can be enhanced by leveraging testbed capabilities in order to replicate and understand power

systems operating conditions, discover vulnerabilities, develop security countermeasures, and evaluate grid

operation under fault-induced or maliciously constructed scenarios. Adequately modeling and reproducing

the behavior of CPS could be a challenging task. In this paper, we provide a comprehensive overview of

the CPS security landscape with an emphasis on CPES. Specifically, we demonstrate a threat modeling

methodology to accurately represent the CPS elements, their interdependencies, as well as the possible

attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS

framework designed to delineate the hardware, software, and modeling resources required to simulate

the CPS and construct high-fidelity models that can be used to evaluate the system’s performance under

adverse scenarios. The system performance is assessed using scenario-specificmetrics, while risk assessment

enables the system vulnerability prioritization factoring the impact on the system operation. The overarching

framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four

representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-

step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and

secure CPS.

INDEX TERMS Cyber-physical systems, security, threat modeling, power grid, simulation, risk assessment,

testbeds.

NOMENCLATURE

AGC automatic generation control
BESS battery energy storage system
CB circuit breaker
CHIL controller hardware-in-the-loop
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CORE common open research emulator

CPES cyber-physical energy systems

CPS cyber-physical systems

DAA data availability attack

DER distributed energy resources

DG distributed generation

DIA data integrity attack

DiD defense-in-depth
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DoS denial-of-service

EMT electromagnetic transient

EPS electric power systems

ESS energy storage system

EV electric vehicle

FACTS flexible AC transmission systems

FDIA false data injection attack

HIL hardware-in-the-loop

HMI human-machine interface

IC integrated circuit

ICS industrial control systems

ICT information and communication technologies

IDS/IPS intrusion detection and prevention systems

IED intelligent electronic devices

IoT internet-of-things

IT information technology

MG microgrid

MitM man-in-the-middle

MPPT maximum power point tracking

MTU master terminal unit

NIC network interface cards

OS operating system

OT operational technology

PCC point of common coupling

PHIL power hardware-in-the-loop

PLC programmable logic controllers

PMU phasor measurement units

PV photovoltaic

QoS quality-of-service

RES renewable energy source

RTS real-time simulator

RTU remote terminal units

SCADA supervisory control and data acquisition

SDN software defined network

T&D transmission and distribution

TDA time-delay attack

TES transactive energy systems

TESS thermal energy storage system

TS transient stability

TTP tactics, techniques, and procedures

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Over the past years, electric power systems (EPS) have

diverged from a unidirectional generation and transmission

model towards a more distributed architecture that supports

traditional generation sources as well as distributed energy

resources (DERs) in the form of distributed generation (DG),

such as PV and wind, and distributed storage (DS) sources,

such as battery energy storage systems (BESS) and thermal

energy storage systems (TESS). The transformation of EPS to

cyber-physical energy systems (CPES) is primarily enabled

due to the introduction of information and communica-

tion technologies (ICT), automated control systems, remote

sensing, and embedded industrial internet-of-things (IIoT)

devices. According to the National Institute of Standards

and Technology (NIST) [1], cyber-physical systems (CPS)

refer to architectures that incorporate digital, analog, and

physical components. The interaction of these components

is determined by the dynamics of the system and the rules

which orchestrate its operation. CPES are energy-focused

engineered systems that are transforming the way tradi-

tional EPS operate by seamlessly integrating physical entities

with human, digital, and networking components designed to

operate through integrated physics and computational logic.

As such, CPES contribute significantly towards the EPSmod-

ernization allowing for better planning, more flexible control,

cyber-secure operations, system-wide optimization, transac-

tive energy systems (TES), improvements in power quality,

system reliability enhancements, resiliency, interoperability,

and cleaner energy generation.

The security of CPS presents significant challenges in

controlling and maintaining secure access to critical system

resources and services (e.g., for CPES: generation reserves,

frequency stability controls, power line protection, etc.),

as well as ensuring the confidentiality, accessibility, and

integrity of the information exchanged (e.g., control signals

of supervisory control and data acquisition – SCADA sys-

tems). CPS, being large-scale complex systems of systems,

employ numerous computing components such as remote ter-

minal units (RTUs), programmable logic controllers (PLCs),

and intelligent electronic devices (IEDs) that are often

designed without security in mind. Typically, the hardware,

software, and communication interfaces of these devices

are developed utilizing commercial off-the-shelf compo-

nents [2]. Thus, vulnerabilities within such components

can be ported to the CPS environments creating potential

entry points for malicious adversaries1 aiming to disrupt

CPS operations. An indicative incident of malicious behav-

ior targeting CPS operation was reported in March 2019.

Attackers targeted the United States (U.S.) grid infrastruc-

ture and performed a denial-of-service (DoS) attack through

the exploitation of a known CPES vulnerability, namely

a web interface firewall vulnerability [3], [4]. The attack

resulted in the loss of communication between the utility’s

generation assets and the energy management system [5],

causing brief interruptions in the utility’s service. The number

of cyber-attacks where adversaries exploit known and exist-

ing vulnerabilities to compromise CPS is increasing. This

fact is validated by security reports stating that ‘‘99% of

the vulnerabilities exploited in 2020 are known to security

professionals, while zero-day vulnerabilities only account

for the 0.4% of vulnerabilities exposed during the past

decade’’ [6].

The importance of CPS, and CPES in particular, for eco-

nomic prosperity and public health at the national, state,

and local level can motivate attackers to compromise such

systems in order to obtain financial or political gains.

1Throughout the paper, we use the terms adversary, threat actor, and
attacker interchangeably.
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Hence, the evaluation of the CPES robustness and resilience

against attacks in realistic scenarios is of paramount impor-

tance. At the same time, the quantification of cybersecurity

risks is becoming more complex and challenging as EPS –

also referred to as the ‘‘largest interconnected machine on

earth’’ [7] – integrate numerous cyber-components at all

levels and scales. In the past, the simulation of specific abnor-

mal scenarios (e.g., faults, overvoltage conditions, frequency

fluctuations, etc.) was sufficient to provide insights into EPS

operations. However, current advances towards intelligent

and interconnected CPES require more accurate models and

representations capable of capturing the dynamic behavior

of these interoperable systems. The enhancement of CPES

security and reliability requires constant probing for potential

weaknesses [8]. Security studies need to reflect the nature of

the CPES infrastructure in actual testing environments that

support the interfacing of actual hardware devices designed to

operate in the ‘real’ system. In this context, hardware-in-the-

loop (HIL) testbeds are effective in providing testing capa-

bilities for evaluating the synergistic relationship between

physical and virtual components in controlled environments.

Security-oriented HIL testbeds are invaluable in performing

cybersecurity and risk analyses, identifying system vulnera-

bilities in various layers (e.g., hardware, firmware, software,

protocol, process), implementing intrusion detection and pre-

vention algorithms, and assessing the efficiency of mitigation

techniques without inducing excessive economic burdens or

safety hazards [2], [9].

The primary motivation of this paper is to develop a

framework, which bridges theoretical and simulation-based

security case studies and evaluates CPS system behavior

leveraging testbed environments, leading to more secure

CPES architectures. In order for testbeds to reliably capture

the characteristics of the cyber-physical environment, testing

and experimental case studies need to be described and mod-

eled considering both the cyber and physical domains. The

case studies require detailed descriptions of the resources and

metrics that will be utilized for evaluating the CPES perfor-

mance, reliability, and resilience. In addition, the testing setup

must also capture the threat modeling characteristics of the

adversary and the attack methodology. In terms of a potential

adversary, the threat modeling characteristics are adversarial

knowledge, resources, access to the system, and specificity.

As for the attack methodology, the threat modeling charac-

teristics include the attack frequency, reproducibility, discov-

erability, target level, attacked asset, attack techniques, and

premise. Doing so, in a holistic and step-by-step approach,

allows researchers and stakeholders to thoroughly exam-

ine and uncover security risks existing in the CPES under

evaluation.

B. RESEARCH CONTRIBUTION AND OVERVIEW

The underlying goal of this manuscript is to provide

a complete and detailed presentation of CPS security

research studies by demonstrating a modular framework for

assessing CPS security in the context of CPES. To this end,

the paper describes all the required components for evaluating

the behavior and performance of CPES under diverse and

adverse operational scenarios. The framework exhibits the

modeling techniques used to represent the cyber and phys-

ical domains of the system, considers the resources used to

model the CPES, and presents essential evaluation metrics

for each corresponding case study. The contributions of this

work, focusing on CPES security, can be summarized as

follows:

• A literature review is provided that presents the

research efforts in the area of CPS and CPES

security, describes cyber-physical testbeds devel-

oped by prominent research centers and laborato-

ries around the world, and illustrates current threat

and risk modeling approaches widely used in the

industry.

• A threat modeling methodology is proposed, comprised

of two major parts, the adversary model and the attack

model, allowing for an inclusive evaluation of malicious

attack strategies.

• Leveraging our threat modeling approach, a risk assess-

ment process is provided that takes into account risks

related to the effectiveness of an attack, the targeted sys-

tem component, and the criticality of the cyber-physical

process being compromised.

• A framework is described that elucidates the crucial

components and resources needed to accurately charac-

terize CPS, making it essential for evaluating numerous

studies (e.g., cyber, control, etc.). It is important to note

that the proposed CPS framework can be used to charac-

terize CPS in other sectors such as healthcare and trans-

portation, but in this work, it is evaluated specifically

for CPES.

• Four illustrative CPES attack case studies are presented,

demonstrating the practicality of the CPS framework.

For each case study, we provide the corresponding back-

ground and mathematical formulation, threat model,

attack setup, and risk assessment. We also describe how

each stage of the CPS analysis framework is applied

to thoroughly model the specific characteristics of each

case study.

A schematic overview of this paper is illustrated in Fig. 1.

Section II presents the current state of CPES testbed research,

a literature review of CPES security studies, and prelimi-

nary information for threat analysis and risk assessment of

CPS. Section III delineates our comprehensive threat mod-

eling and risk assessment methodology. Section IV pro-

vides the description of the proposed CPS framework with

details on the modeling, resources, and performance metrics.

In Section V, we discuss the background information and

mathematical formulation for attack cases targeting CPES

and present such simulated test case scenarios accompanied

by their experimental results implemented using the devel-

oped CPS framework. Finally, Section VI concludes this

work.
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FIGURE 1. Roadmap of the paper.

II. CYBER-PHYSICAL ENERGY SYSTEMS (CPES):

TESTBEDS, STUDIES, AND SECURITY ANALYSIS

This section provides an overview of different CPES testbeds

developed by various research centers and presents their

research objectives alongside the equipment used to realize

them. We define different classes of CPES security studies

from literature and discuss prominent examples from such

categories. Furthermore, we describe threatmodeling and risk

assessment methodologies and discuss how they can sup-

port security studies by defining, preventing, and mitigating

threats.

A. CPES TESTBEDS

Throughout the years, EPS were designed and simulated fol-

lowing unidirectional structures in which power is generated

at large bulk power generation facilities and then delivered

through different stages of transmission and radial distribu-

tion systems to consumers. Minimum efforts were exerted to

facilitate the integration of renewable energy sources (RES)

and DERs [10]. However, the increasing penetration of RES

and DERs along with the grid modernization efforts through

ICT, increase the complexity of EPS [11]. On the one hand,

RES and DERs can be used to meet consumer demands

providing reliable, economic, and environmentally friendlier

energy. On the other hand, attackers can exploit the fact that

these resources are not centrally controlled (i.e., controlled

directly by utilities) and stealthily plant their attacks on

vulnerable system assets [12], [13]. The complex nature of

modern EPS introduces a variety of potential entry points for

attacks due to the fact that these systems depend on ICT for

the communication between system assets [14]. Although the

exigency for secure and resilient EPS is evident, our limited

experience with dealing and coordinating such sophisticated

architectures exacerbates the situation. We lack mechanisms

to detect and mitigate the impact of unexpected adverse

events on power system operation. The design of power

systemmonitoring, control, and estimation algorithms, which

are inherently secure, regardless of relying on CPES intercon-

nected nature, relies heavily on the existence of representative

frameworks where current and future security features and

methodologies can be developed and evaluated.

CPES testbeds can provide an ideal environment where

thorough system evaluations can be performed without any

impact on the actual power system. The use of testbeds

helps de-risk certain procedures beforemigration to the actual

system, and avoid any potential adverse impact they could

inflict. Such procedures include the testing and impact eval-

uation of new EPS equipment (e.g., integration of PV parks,

electric vehicles – EV charging stations, etc.), new control

strategies (e.g., power dispatch prioritization between DER,

RES, or other power generation resources), and mitigation

methodologies for unexpected events (e.g., faults, equipment

failures, cyber-attacks, etc.). The main structural components

of such cyber-physical testbeds are depicted in Fig. 2. Below,

we provide a list of the possible security-related tasks that can

be performed on CPES testbeds:

• Train users and stakeholders in a simulated/emulated

CPES environment.

• Validate interoperable systems’ performance holisti-

cally, i.e., from the lowest level of operation (e.g., sensor,

actuators, process, etc.) to the highest levels including

communication between assets, distributed control, and

monitoring applications.

• Develop and validate cyber-physical metrics and exam-

ine system security.

• Test novel security mechanisms such as intrusion detec-

tion and prevention systems (IDS/IPS), authentication

protocols, and encryption algorithms.

• Evaluate the impact of attacks on the cyber and physical

domains of the EPS.
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TABLE 1. Cyber-physical testbed architectures, accuracy, repeatability, cost characteristics, and example testbeds with their simulation resources.

FIGURE 2. Cyber-physical testbed components for EPS research.

• Examine the effectiveness of mitigation strategies

against adverse cyber-physical events.

The importance of cybersecurity research for CPS and crit-

ical CPES infrastructures has led many universities and U.S.

national laboratories to develop in-house testbeds, not only

for research but also for education and training purposes [41].

A variety of testbeds have been designed and implemented

based on the application field and the research objectives.

In Table 1, we provide a summary of some of the existing

real-time simulation CPS testbeds along with their inherent

resources (i.e., simulation capabilities). We also categorize

the cyber-physical testbeds based on their architecture, cost,

and accuracy characteristics. Additionally, we present an

in-depth overview of the differences between hardware and

software-assisted testbeds.

Hardware-assisted testbeds are designed to explicitly

study CPS while mostly incorporating several actual phys-

ical components encountered in the field. For instance,

CPES hardware-assisted testbeds integrate physical equip-

ment such as generators, relays, switchgear, energy storage

systems – ESS, PV panels, wind turbines, etc. By repli-

cating the behavior of the actual system with a consider-

able amount of physical equipment, these testbeds provide

stakeholders the ability to: i) make decisions not only based

on theoretical analyses but practical studies leveraging the

use of hardware resources, ii) evaluate the CPS behavior

under abnormal operational scenarios without inhibiting the

operation of the real system, and iii) preemptively assess

cyber-attack or fault mitigation and control strategies before

the corresponding hardware is deployed to the field, and

thus, de-risk this cost-prohibitive and unpredictable pro-

cess. Hardware-assisted testbeds, however, suffer from three

major disadvantages: i) they are not cost-effective since they

require the testbed components tomatch the actual equipment

deployed in the field, ii) once the equipment and testbed con-

figurations are setup in-place, any modification or expansion

of the system architecture can be either time-consuming or

practically and economically infeasible, and iii) scalability

issues of representing large-scale EPS due to the requirement

of procuring more assets (e.g., generators, inverters, etc.).

A typical example of a hardware-assisted research

laboratory that leverages actual operational equipment to

perform CPES security research is the Idaho National Lab-

oratory (INL) of the U.S. Department of Energy (DOE)

[15]. INL’s Power and Energy Real-Time Laboratory [16],

[17], alongside their nuclear laboratory [18], [19] and micro-

grid (MG) testbed [20], [21], allow the simulation of real-

istic scenarios supported by actual hardware equipment and

data generation routines. The real-time simulation capabil-

ities of INL’s testbeds allow researchers to create sophisti-

cated scenarios involving power hardware devices that are
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interfaced with real-time simulation environments via HIL

methodologies such as power hardware-in-the-loop (PHIL)

and controller hardware-in-the-loop (CHIL) [17]. HIL allows

controllers (CHIL) and parts of EPS (PHIL) to be extensively

tested before their final integration to the main grid [42]. The

National Renewable Energy Laboratory (NREL) of DOE also

includes hardware-assisted testbeds [22]. NREL’s Flatirons

campus specializes in designing, analyzing, and providing

accurate simulation models for wind turbines, hydropower,

and hydrokinetic generation plants [23]. Their unique facili-

ties drive the improvement of their high-fidelity simulation

models, which are cross-referenced to real assets, provid-

ing invaluable tools for power engineers performing system

analyses incorporating off-shore, or distributed hydro and

wind generation [24]. The actual power system assets of

wind turbines and hydro-plants, as well as their simulation

models, can be leveraged to investigate the potential impact of

component failures or cyber-attack incidents with minimum

cost, and most importantly, without compromising the actual

EPS operation.

Hardware-assisted CPES testbeds do not exclusively uti-

lize physical equipment. In most cases, the conducted

research is supported by simulation software enabling the

analysis of more complex systems. Since an actual dupli-

cate of an operational CPS in the lab is typically infea-

sible, in the past years, a high number of software-based

CPS testbeds have been developed following, the notion of

digital-twin systems [43], [44]. The main difference between

software-assisted testbeds and their hardware-assisted coun-

terparts is that they do not possess any actual field

equipment, thus limiting their testing scenarios. Moreover,

software-assisted testbeds can be further segmented into

sub-categories based on the simulation platform utilized for

the system analysis. Some of them utilize widely available

software simulators, e.g., Matlab/Simulink, PowerWorld,

PSSE, etc., while other rely on real-time simulators (RTS)

such as Opal-RT, RTDS, Typhoon, and Speedgoat. The

main advantage of software-based CPS testbeds, com-

pared to hardware-based testbeds, is the increased flex-

ibility in designing, modifying, and scaling the systems

under test. Also, their cost can be significantly lower for

simulating large-scale CPES. However, the validity of the

software-based simulated results relies heavily on the fidelity

of the models (for emulation, virtualization, etc.) used to

represent the corresponding real systems under investigation.

Examples of testbed environments with extensive CPS

simulation capabilities include the ones at Texas A&M and

TU Dortmund. At the Texas A&M CPS testbed, despite the

lack of actual EPS equipment, CPES technologies such as

smart grid controllers and RES can be virtualized and evalu-

ated using software-based implementations. The testbed also

includes RTS systems (RTDS) and supports the modeling of

communications of CPES components via network simula-

tors (OPNET). Furthermore, it allows researchers to evalu-

ate how communication-enabled devices expand the threat

surface [25].

The rapid penetration of ICT technologies in CPS is

driving the design and development of large-scale software-

defined network (SDN) testbeds [45]. In such SDN-type

testbeds, researchers can evaluate novel network technolo-

gies, communication protocols, custom data routing algo-

rithms, etc. An example of such an environment is the

SDN4SmartGrids CPS testbed at TU Dortmund, where both

SDNs and power system RTS are employed for exper-

imentation with ICT-based smart grid applications [27].

In particular, the TU Dortmund’s testbed is comprised of

a RTS (Opal-RT) responsible for simulating the power

system components. The infrastructure emulating the

network topology and communication between the sim-

ulated grid assets (e.g., EVs, ESS, etc.), management

systems, and telemetry units (e.g, phasor measurement

units – PMUs, advanced metering infrastructure – AMI, etc.)

is implemented using the SDN and the OPNET network

simulator [28].

In order to bridge the gap between the hardware

and software-assisted CPS testbed methodologies, hybrid

testbeds are considered as an effective alternative. As their

name implies, hybrid approaches trade-off the utilization

of the physical components, that can be found at the

transmission and distribution (T&D) level of CPES, with the

utilization of simulators and software suites designed to accu-

rately represent the behavior of real energy systems. Hybrid

testbeds enable diverse security investigations that can focus

on the physical-system (e.g., programmable controllers,

IEDs, grid assets, etc.), the cyber-system (i.e., SCADA com-

munications, telemetry and remote control of assets, monitor-

ing and measurement components, etc.), or any combination

of the two. The main advantage of such testbeds is that they

provide re-configurable platforms that can scale up, using

simulation, to realistic systems’ sizes, while also retaining

the ability to investigate, with high granularity, the individual

security and control properties present in physical devices.

Consequently, hybrid CPS testbeds can evaluate holistically

the impact of cyber-attacks on CPES, without any of the limi-

tations encountered in hardware-assisted or software-assisted

testbeds.

A prime example of a hybrid CPES testbed frame-

work is HELICS [35], [36]. The HELICS infrastructure

enables the integration of different RTS operating at different

time-steps as well as the interconnection of T&D system

components. By timely simulating (depending on the tem-

poral constraints) complex T&D architectures, cybersecurity

assessments, including real-time impact analysis and risk

mitigation strategies, can be conducted providing meaning-

ful insights regarding the behavior of CPES [37]–[39]. The

Pacific Northwest National Laboratory (PNNL) also features

a hybrid testbed leveraging the aforementioned advantages.

The testbed facilitates a variety of cybersecurity studies [33],

and provides an effective framework for system vulnerabil-

ity assessments, interactive simulations of CPES environ-

ments, threat scenario analyses, and risk mitigation strategy

evaluations.
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The facilities of the Center for Advanced Power Sys-

tems (CAPS) of Florida State University (FSU) also include

a hybrid testbed setup. The testbed supports the use of RTS,

based on the RTDS and Opal-RT platforms, power system

simulation software such as OpenDSS, PSCAD/EMTDC,

Matlab/Simulink, RT-Lab, RSCAD/RTDSphysical, and

EPS components including generators, inverters, and flex-

ible AC transmission systems (FACTS) [29]. The center’s

infrastructure can be segregated into two main subsystems

able to perform both real-time and HIL simulations. The

first subsystem is composed of 15 RTDS-enabled racks,

each consisting of around 26-30 parallel processors. The

subsystem can support real-time simulations comprised of

more than 1, 000 electrical nodes (e.g., measurement points)

and 5, 000 control units at time-steps in the range of 50µs.

It should be noted that for time-critical implementations, such

as power electronics converters, the time-step of real-time

simulation can be further reduced in the vicinity of 1µs.

Fiber-optic networks facilitate the interconnection between

the RTS and the physical EPS equipment. Namely, the phys-

ical equipment of the testbed includes a 4.16 kV dis-

tribution system, a 7.5 MVA on-site service transformer,

a 5 MW variable-voltage variable-frequency converter,

a 5 MW dynamometer, and a 1.5 MVA experimental bus at

480 Vac [30]. The second subsystem includes three Opal-

RT-enabled racks, supported by multiple processor units

along with Xilinx field-programmable gate array (FPGA)

computation units. The FPGA hardware accelerators perform

the simulation of high-frequency power electronic converters

with stringent timing constraints (i.e., in the ns range), while

the rest of the EPS is simulated usingµs time-steps. Both sub-

systems have support formultiple industrial protocols utilized

for the communications between the physical or simulated

EPS assets. Advanced control schemes and experimentation

with communication network components are also supported

via HIL simulations [31], [46]. Additionally, the impact of

unexpected failures or cyber-attacks targeted at these com-

ponents can be examined in a controlled environment where

minimum risk exists [32].

B. CPES SECURITY STUDIES

During the past decade, significant effort has been exerted

into CPES security studies with the objective of enhancing

CPES resiliency and alleviating cybersecurity vulnerabilities.

For instance, a comprehensive work reviewing cybersecu-

rity vulnerabilities and solutions for smart grid deployments

is presented in [75]. Security solution evaluation, system

threat classification, and future cybersecurity research direc-

tions are also considered. The authors in [76], investigate

cyber-attacks on IoT-enabled grid deployments. They dis-

cuss how advancements in IoT technologies can drive the

power grid modernization process, but at the same time

increase the system’s threat surface given its interconnected

topology encompassing millions of IoT nodes. Researchers

in [77] examine the security of modern power systems

from the viewpoint of interconnection with microgrids.

Emphasis is given on the cybersecurity and reliability chal-

lenges arising in these architectures. Essential approaches

(e.g., testbed-assisted security studies) are discussed to

enhance the security of future power systems. In addi-

tion, [78] provides a complete overview of the cyber-threats

encountered on the infrastructure, network protocols, and

application levels of power systems. Furthermore, attacks

targeting the data availability, integrity, and confidentiality of

microgrids are discussed in [79].

In this section, we outline the main topics of existing

literature in the area of CPES security. More specifi-

cally, the literature work is classified using the following

categories: i) studies investigating the exploitation of

CPES vulnerabilities, ii) studies evaluating the impact of

cyber-attacks on CPES, iii) studies proposing and assessing

algorithms (e.g., anomaly detection, IDS/IPS, etc.) for the

detection of cyber-attacks, and iv) studies focusing on mit-

igation and defense mechanisms. In Table 2 we provide an

overview of recent CPES security studies classified under the

four aforementioned categories.

1) ATTACKS EXPLOITING CPES VULNERABILITIES

CPES are advancing towards decentralized interconnected

systems in order to support increasing power demand while

minimizing transmission losses, leverage MG deployments

and their functionalities (e.g., grid-connected or autonomous

operations), and incorporate DERs. In addition, to enhance

CPES control, reliability, and security, digital ICT equipment

such as advanced measuring and monitoring units are being

employed in geographically dispersed locations of decentral-

ized CPES. For example, PMUs provide time-synchronized

(using GPS) granular measurements for EPS related states

including voltage, current, and power magnitudes and phase

angles. However, it has been demonstrated that adversaries

can leverage open-source public resources to perform GPS

spoofing attacks against PMUs [47]. By introducing small

undetectable timing delays (in the µs range) in the measure-

ment signals (within the IEEE standard limits for synchropha-

sors C37.118 [80]), the phase differences between actual

and measured angles can be significantly altered exceeding

allowed limits, tripping circuit breakers (CBs), sectionalizing

parts of the EPS, and causing power outages (e.g., brownouts,

blackouts) [81].

Moreover, in [48], researchers introduce a coordinated load

redistribution attack affecting power dispatch mechanisms.

By attacking generators or transmission lines while falsifying

load demand and line power flows, system operators are

misled into increasing load curtailment. Furthermore, in [49],

the authors investigate two types of DoS attacks along with

their impact on EPS. The first attack is assumed to be a

stealthy false data injection attack (FDIA) performed to mask

the attack impact from detection algorithms. The second,

assumed as a non-stealthy attack, aims to maximize the

damage on power system operation by targeting the most

vulnerable transmission line, impeding power dispatch, and

causing load shedding. In [50], the authors propose hybrid
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TABLE 2. CPES security study categories and research examples.

data integrity and data availability attacks. They demon-

strate how control center measurements can be manipulated

leading to undetectable FDIAs. In more detail, by modify-

ing some measurements (i.e., integrity attack) while making

some others unavailable to the state estimation algorithm

(i.e., availability attack), FDIAs can bypass bad data detection

algorithms.

Ubiquitous power electronics bring new challenges to

CPES operation [82]. Future CPES are expected to be

inverter-dominated systems. As such, vulnerabilities in such

components can lead to abnormal system operation. In [52],

the authors investigate how stealthy non-invasive attacks on

grid-tied inverters can compromise their nominal operation

and impact grid operation. Specifically, by spoofing the

inverter’s hall sensor they demonstrate fluctuations in the out-

put voltage, active and reactive power while also introducing

low-frequency harmonics to the grid. Similarly, by exploiting

a vulnerability in the authentication mechanism of General

Electric Multilin protection and control devices, the authors

in [83] show that remote or local attackers can obtain weakly

encrypted user passwords, which could then be reversed

allowing unauthorized access. Furthermore, the authors

in [12], [13] show that by coordinating the power usage

of multiple devices, power reserve limits of EPS can be

exceeded causing tripping of lines and shedding of loads.

A botnet of IoT (internet-of-things)-connected high-wattage

loads, such as washing machines, air-conditioning units, dry-

ers, etc., are coordinated over the network, causing unex-

pected power usage profiles and pushing the grid to instability

limits. Such attacks demonstrate that there is no require-

ment of strong adversarial knowledge nor considerable attack

resources [51].

2) EVALUATION OF ATTACK IMPACTS ON CPES

Impact evaluation and analysis studies are considered essen-

tial for prioritizing and safeguarding critical components in

CPES. Such analyses explore the consequences of malicious

attacks and can serve to proactively prepare systems for their

adverse implications. Impact evaluations can expose critical

system components, assist in prioritizing and securing them,

and aid in the development of contingency plans in case

these vulnerable components get compromised. For instance,

the authors in [53] propose assessment metrics designed to

evaluate the resiliency of CPES against adversarial attacks.
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Different techniques from game theory, graph theory, and

probabilistic modeling have been utilized to assess the capa-

bility of CPES when supporting critical (or unsheddable)

loads after they have been compromised or the system has

suffered unexpected disturbances. Other works focus on ana-

lyzing the impact of cyber-attacks in transactive energy sys-

tems – TES [54]. Here, the authors investigate the system

operation under two types of attacks that are designed to

maliciously affect either the bid prices or the bid quantities.

In view of the fact that IEDs, AMI, and smart inverters

are penetrating EPS at a rapid pace, the authors in [55]

and [84] demonstrate the adverse grid consequences if such

devices are compromised. Specifically, the simulated impact

of malicious smart inverter firmware modifications in MGs

is demonstrated in [55]. Attacks targeting SCADA-controlled

switching devices or monitoring devices impeding situational

awareness (in an integrated T&D systemmodel) are evaluated

in [84].

Furthermore, cybersecurity assessment methodologies

investigating the impact of RES integration to the grid are

also investigated in the literature. For instance, the authors

in [56] leverage open-source intelligence and contingency

analysis methods to discover the most critical system paths.

Such transition paths could be utilized by an adversary to

maximize the impact of cyber-attacks, leading to disastrous

consequences for the EPS. A different approach, which con-

siders intrusion and disruption process modeling, is proposed

in [57], where a stochastic game theory-based CPES security

evaluation model is developed. The authors in [58] propose a

mathematical framework to estimate the probability and eval-

uate the impact of malicious attacks on substation automation

systems. In [59], the reliability and security of CPES are

analyzed through a communication failure assessment pro-

cess. Overall, assessment methodologies of attack impacts

on CPES are designed with the purpose of aiding CPES

evaluation studies. Thus, they should be leveraged as part of

a defense-in-depth (DiD) portfolio when assessing potential

damages and devising CPES defense strategies.

3) ATTACK DETECTION ALGORITHMS IN CPES

The severity of the effects of cyber-attacks in CPES under-

lines the need for accurate and effective attack detection

mechanisms that can improve the situational awareness of

system operators. Hence, remediation actions can be issued

to avoid system and equipment failures, as well as ensure

human safety. A plethora of detection schemes have been pro-

posed especially for FDIAs in CPES [60]–[63]. For instance,

in [63] researchers develop a distributed host-based collabo-

rative mechanism for detecting false data measurements in

PMUs. Each PMU is assigned a host monitor to probe its

status (i.e., normal operation or anomalous) by comparing

it with predefined nominal values. Then, a majority voting

algorithm is executed to decide if the acquired measurements

are valid by comparing the status of the under-investigation

PMU with the corresponding neighboring PMUs. Unsuper-

vised learning-based anomaly detection methods have also

been proposed for cyber-attack detection in CPES [64].

An example of such anomaly detection scheme is presented

in [65], where authors identify suspicious sensor activity

using recurrent neural networks (RNNs). Other researchers

have also demonstrated how data integrity attacks (DIA)

can be identified when sensor and process patterns deviate

from a residual-based fingerprinted data [66]. Furthermore,

given the extensive use of Fieldbus communication devices

in CPES,methodologies have been designed to detect anoma-

lous network traffic in a variety of Fieldbus protocols [67]. All

of the reviewed detection mechanisms have the objective of

notifying system operators once incongruous sensor or mon-

itor behavior is detected in the CPES. As a result, malicious

incidents can be effectively handled, minimizing their impact

on CPES operations.

4) ATTACK MITIGATIONS AND DEFENSES IN CPES

The deployment of defense and mitigation mechanisms is

critical to enhance the overall CPES security and minimize

the adverse impact of cyber-attack scenarios. For example,

mitigation strategies can protect CPES against FDIAs which

could potentially result in generator equipment damage [71].

Specifically, BESS could be leveraged to assist the genera-

tors and reduce the load curtailment inflicted by malicious

attacks. A hybrid control-based approach to safeguard sys-

tems against cyber-attacks is presented in [72]. The hybrid

controller switches to the most secure controller, from a

subset of available controllers, given that some of these

controllers might have been compromised by an adversary.

In [68], a semi-supervised learning mechanism is utilized to

study malware patterns and defend the system from unknown

malware targeting the CPES infrastructure.

Apart from software-based mitigation techniques and

defenses, hardware-oriented mechanisms have also been

proposed. In [70], the authors propose the use of hard-

ware security primitives leveraging the intrinsic variation

of BESS lithium cells to enhance communication protocol

security. The practicality of the approach is validated in a

simulated testbed environment [74]. Furthermore, in [73],

an instrumentation-based defense technique is presented

employing a sub-optimal plan to secure CPES in real-time.

Even though the discussed defense and mitigation mecha-

nisms may not be applicable for all cyber-attack scenarios,

research and development in this direction contribute towards

understanding attackers’ tactics and defending against them,

enhancing the security of CPES.

C. THREAT ANALYSIS AND RISK ASSESSMENT

Precise modeling is essential in order to investigate com-

plex CPES architectures, discover any potential vulnerabil-

ities, and extensively test and evaluate security features. The

intricacies of CPS typically consist of multiple intercon-

nected layers bridging assets of varying importance for the

system operation, and leveraging ICT and communication

protocols. Different methods are being used to review CPS

architectures and assess their cybersecurity. Among them,
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the DiD and the Purdue models are the most popular ones.

The DiD strategy was initially employed in military applica-

tions [85]. It ensures resiliency, redundancy, and the existence

of multiple defenses if a vulnerability is exploited, a critical

security flaw is identified, or a failure or unintentional fault

occurs. Enforcing the DiD multi-layered topology has two

main advantages from a security perspective. First, it delays

the attack progress in the system since each layer provides

an isolated execution environment. Second, it allows system

operators to deal with the attack independently on multi-

ple layers, rather than having to rely on a single point-of-

defense. Similarly, the Purdue model for industrial control

system (ICS) network segmentation [86], part of the Pur-

due Enterprise Reference Architecture (PERA), incorpo-

rates the DiD concept by demonstrating the interconnections

and dependencies between layers and components, allow-

ing for the design of secure CPS [87]. In the following

parts (II-C1 and II-C2), we provide the essential information

and related work regarding threat modeling and risk assess-

ment methodologies with emphasis on industrial CPS and

critical infrastructures.

1) THREAT MODELING

The term ‘threat modeling’ refers to the procedure by

which potential vulnerabilities are discovered before they

can become system threats. This process is crucial for the

design of security defenses and mitigation strategies. It is

evident that performing threat modeling for CPES is essential

since their compromise can have disastrous consequences

to the grid operation and the economic and social well-

being. However, CPES consist of multiple layers and assets,

hence, it can be challenging, due to extensive time, mod-

eling efforts, resources, and cost, to exhaustively examine

all the possible scenarios that could arise as system vulner-

abilities. To overcome such issues, without compromising

the system’s reliability, multiple threat modeling approaches

have been proposed aiming to prioritize vulnerabilities and

assist the implementation of potent security mechanisms.

These methodologies provide a holistic view of the system

by highlighting the significant assets, commonly referred to

as crown-jewels [88], and assessing threats based on their

potential impact and ease of deployment on the system.

STRIDE2 and DREAD3 are well-established threat mod-

eling frameworks for the security assessment of products and

services throughout their life-cycle [89], [90]. For instance,

STRIDE uses data flow diagrams for the threat modeling

process. The data flow diagrams map system threats to

the corresponding vulnerable system components (STRIDE

per-element approach). Given the interdependent nature of

CPES, an attacker can compromise the system operation

by exploiting different component vulnerabilities. Therefore,

to guarantee the overall system security, vulnerabilities need

2STRIDE is an acronym for Spoofing, Tampering, Repudiation, Informa-
tion disclosure, Denial-of-service, and Elevation of privilege.

3DREAD is also an acronym that stands for Damage, Reproducibility,
Exploitability, Affected Users, and Discoverability.

to be addressed both at the component level as well as within

the component interrelations (visualized in the data flow dia-

grams) [91]. DREAD can be leveraged to evaluate and rank

the severity of threats. ADREAD analysis is comprised of the

following six steps: asset identification, system architecture

formation, application decomposition, threat identification,

threat documentation, and threat impact rating. DREAD and

STRIDE methodologies can also be used jointly for compre-

hensive cybersecurity assessments [92].

Apart from STRIDE andDREAD, other methodologies for

security assessments have been proposed and utilized in the

cybersecurity arena. For instance, OCTAVE4 Allegro is an

alternative approach used by organizations when performing

mainly information technology (IT) security evaluations and

strategic planning for cyber-threats [93]. However, recent

works validate the applicability of OCTAVE Allegro for CPS

security assessments, both for the enumeration of potential

risks as well as the design of countermeasures to maintain

nominal system operation [84], [94]. Themain steps followed

inOCTAVE security assessments include: the development of

risk evaluation criteria according to operational constraints,

critical asset identification, critical asset vulnerabilities and

corresponding threats discovery, and threat impact assess-

ment. STRIDE, DREAD, and OCTAVE are well-established

tools when performing threat modeling analyses and identi-

fying vulnerabilities in the pre-attack context.

The investigation of adversary behavior post-compromise

is also important. At this point, the adversary has already

overcome the first line of defense and has access to sys-

tem resources. Notably, there is extensive research on ini-

tial exploitation and use of perimeter defenses [95], [96].

However, there is a knowledge gap of the adversary process

after initial access has been gained. To address the afore-

mentioned pitfall and support threat modeling, risk analy-

sis, and mitigation methodologies, pre-and post-compromise

events, MITRE developed the ATT&CK for Enterprise

framework [97].

MITRE ATT&CK is an open-source knowledge-base that

includes common adversarial attack patterns (e.g., attacks,

techniques, and tactics). The ATT&CK database is constantly

being updated with recent attack incidents to enhance enter-

prise cybersecurity by exposing system vulnerabilities and

warrant safer operational environments for businesses and

organizations. The framework describes the tactics, tech-

niques, and procedures (TTPs) that an adversary could follow

in order tomake decisions, expand access, and stealthily com-

promise an organization while residing inside the enterprise

network [98], [99]. In January 2020, MITRE corporation,

realizing that ICS is an essential part of critical CPS infras-

tructures and with the objective of addressing cybersecurity

issues arising by the diverse and interconnected nature of

CPS, launched the ATT&CK for ICS framework [100].

4OCTAVE acronym is for Operationally Critical Threat, Asset, and Vul-
nerability Evaluation.
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The ATT&CK for ICS framework is also a free

community-supported threat knowledge-base that includes

information about TTPs that adversaries utilize when tar-

geting ICS (within CPS). The framework assists in under-

standing the adversarial attack chain and enhance the security

standpoint of ICS and related CPS assets. ATT&CK for ICS

is based on MITRE’s ATT&CK for Enterprise framework,

i.e., it ports many of the gathered threat intelligence from

enterprise networks to ICS since industrial networks often

have similarities with enterprise networks. The heterogeneity

of ICS, however, with a plethora of operating systems (OS),

network devices, and communications protocols co-existing

with a variety of field devices (e.g., PLCs, IEDs, PMUs,

RTUs, etc.) led to significant revisions from the ATT&CK

for Enterprise to the ATT&CK for ICS.

The ATT&CK for ICS framework is designed to sup-

port a multi-layer reference approach for adversarial behav-

ior evaluations. The framework is segregated into four core

components, making it applicable to a wide spectrum of

industrial CPS. The first component category includes

i) assets which consist of control servers, engineering work-

stations, field controllers, human-machine interface (HMI),

among others. All these assets might not be apparent in every

system. This is factored in by the ATT&CK methodology

which investigates attacks targeting the respective assets inde-

pendently as well as their cooperation with other industrial

assets. The second core part of ATT&CK for ICS is the

abstraction focusing on the ii) functional levels of the Purdue

architecture. Such levels describe the depth of infiltration that

the adversary has achieved. The level ranges from Level 0,

which corresponds to the physical devices (e.g., sensors and

actuators) that orchestrate the industrial process, all the way

to Level 2, which includes the supervisory control systems,

the engineering workstations, and HMIs. These functional

levels are depicted in Table 3. The last two parts of the

framework revolve around the adversarial iii) tactics and

iv) techniques. The term ‘tactics’ refers to the reason why an

adversary performs an action, i.e., adversary objective such as

disrupting an industrial process control routine. Techniques

describe the activities that the adversary uses to achieve the

attack goal, i.e., represent ‘‘how’’ an attacker accomplishes

his/her objectives by taking an action, e.g., throughmodifying

the PLC control logic.

2) RISK ASSESSMENT

The term ‘‘risk assessment’’ refers to the process of identi-

fying potential risks and their corresponding impact to the

system operation as well as determining strategies tomitigate,

defer or, accept these risks based on their criticality [93].

Cyber-threat risk assessment is a critical operation that CPES

and their ICS need to perform regularly. The introduction

of new technologies into CPES (i.e., DERs, EVs, control

devices, etc.) along with the interoperable nature of the sup-

ported ICT infrastructure increases the risks arising from

both the cyber (e.g., measurement, control commands, or

TABLE 3. ICS functional levels, equipment categories, and their
corresponding components [101].

communication integrity attacks) and the physical domain

(e.g., sensor and actuator compromise).

Typically, risk assessment methodologies rely on prob-

abilistic analyses that leverage Markov-chains [102],

Petri-nets [103], Bayesian belief networks [104], or game

theory to estimate the impact of adverse events on system

operation [105], [106]. In [106], for example, researchers

model both the attackers and the system’s defenses as agents

with different action sets and objectives. Due to the contra-

dictory roles of such agents, the corresponding action payoff

depends on the ability to compromise the system’s assets or

the ability to detect the malicious attack from the perspective

of attackers or defenders, respectively. Other works have

proposed worst-case scenario risk assessment analyses that

employ exhaustive Monte Carlo simulations and focus on

diverse operation areas of EPS (e.g., automatic generation

control –AGC, T&D system operations, etc.). Then, the

interdependence of such EPS areas with specific risk mit-

igation mechanisms is analyzed [107], [108]. For instance,

the authors in [108], review the impact on buses and transmis-

sion lines under abnormal operations caused by cyber-attacks.

They also investigate how adverse scenarios can be mitigated

if robust protection system strategies, i.e. coordinated bus

and transmission line trippings, are correspondingly put in-

place. Although probabilistic risk analyses and worst-case

scenario assessments can provide useful results under spe-

cific constraints (i.e., if only part of a system is examined),

applying such methods to dynamically changing large-scale

T&D integrated models can be a challenging task. The mul-

titude of T&D assets expands the search space of exhaustive

methods such as Monte Carlo-based risk analyses [109]. For

each asset and every investigated potential attack, the risk

analysis process needs to be re-examined and re-computed.

The risk calculation overhead is also exacerbated due to the

interconnected CPS architecture.

The aforementioned methods, apart from being compu-

tationally intensive, can also potentially suffer from poor

accuracy. The security risk assessment accuracy of these

methods relies on the precise modeling of the CPES

physical components (e.g., generators, transmission lines,

substations, etc.), their topology, as well as their interconnec-

tions with the cyber components (e.g., ICT nodes supporting
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EPS functions) [110]–[112]. Failure to properly model CPES

canmask interconnection dependencies between components

and their layers (cyber or physical), and thus, perturb the

risk score calculation process. The presented risk assessment

approaches in this section are credible if security assessment

is performed partially, i.e., they fail to capture comprehen-

sively system risks as their focus is on specific parts of a

CPES ignoring the impact propagation to the rest of the

infrastructure. In this work, the threat and system repre-

sentation is performed meticulously during the threat mod-

eling process (Section III) and the CPS framework stages

(Section IV), respectively. As a result, our approach deter-

mines in advance a detailed system model, overcoming the

drawbacks encountered when performing segmented risk

evaluations.

In our analysis, system-specific characteristics are formal-

ized and Risk scores are calculated by combining the attack

Threat Probability along with the CPES objective priorities

(Section III-C). The proposedmethodology expedites the risk

assessment analysis of CPS (since the threat modeling, CPS

framework analysis, and performance metrics determination

have been performed previously), and thus, mitigation poli-

cies can be evaluated iteratively until the corresponding Risk

goals are met. For example, if an EPS asset is compromised,

there might be multiple defense mechanisms that could be

enforced to mitigate the attack. However, the implementation

of some of these mechanisms might result in significant

impacts (e.g., uneconomic operation, partial grid disconnec-

tions, etc.) or affect other parts of the system due to its interde-

pendent nature. The ability to evaluate, in real-time, the effec-

tiveness of risk mitigation mechanisms provides significant

benefits for CPS, aiming to balance security objectives and

system performance.

III. THREAT MODELING FOR CYBER-PHYSICAL SYSTEMS

The fundamental property of any adverse failure is an artifact

of the semantics and capabilities of building CPS from a

diverse, possibly infinite, set of ways. It is crucial to miti-

gate any adverse event in CPS, regardless of whether it is

accidental or intentional. However, some distinctions need

to be made between these two types. For example, there is

a high probability that a natural adverse event (e.g., short

circuit fault) can be detected by the process, considering a

built-in fault detection scheme in the system. In contrast,

an intentional fault (possibly caused by an attacker) could

alter the results of the system in a congruous way, hence caus-

ing the event to go undetected. Traditionally, fault monitoring

and detection approaches do not consider the implications

that arise due to adversaries and their attack goals. Their

aim is solely to recover from transient faults overlooking

the actions which trigger this abnormal behavior. Without

considering a threat model that includes malicious and moti-

vated adversaries, as well as sophisticated attacks, defense

detection schemes can be potentially evaded by attackers

entirely, despite the redundancy already built into control pro-

cesses. A fault can become an exploited vulnerability and the

compromised component, if not sanitized properly, can pose

a danger to the entire CPS.

The complex nature of CPS, and consequently CPES,

urges the identification of attack vectors on both the cyber

and the physical domains of the system. Adversaries are

constantly improving, adapting, and modifying their attack

patterns to evade security mechanisms. As a consequence,

security researchers cannot passively await until an asset

in the system is compromised to initiate remediation. To

support the identification, anticipation, and mitigation of

cyber-attacks in CPS, we develop a holistic threat model that

incorporates the core components of MITRE’s ATT&CK for

ICS methodology while providing an additional dimension

for security investigations. Specifically, the presented threat

modeling approach extends MITRE’s methods since:

• We incorporate an adversary model to allow for more

granular and explicit threat modeling analyses.

• We rigorously define all aspects of potential cyber-attacks

so that they can be implemented in CPS testbeds for

security evaluations (e.g., evaluate defense mechanisms,

mitigation strategy, detection schemes, etc.).

• We perform risk assessments considering the actual

impact of cyber-attacks on the CPS and leveraging both

the threat modeling and CPS framework resource map-

ping. Hence, every possible attacked CPS component

is accounted towards the Risk score calculation, aiding

threat prioritization, and CPS security posture aware-

ness.

In the developed threat modeling methodology, we evalu-

ate threats and prioritize them based on the degradation that

they can potentially inflict on the CPS. Our threat model

consists of two major components, the adversary model and

the attack model, as illustrated in Fig. 3. To understand the

security implications of threats targeting CPS, the adversary

model needs to capture specific information involving the

adversary’s capabilities, intentions, and objectives. In addi-

tion, it is essential to model attacks based on their spe-

cific methodology, targeted system component, and system

impact, as well as define rules that enable multi-layer and

severity attack analyses. The adversary and attack models

compose the threat score index factored in the threat risk

calculation process presented in Section III-C. For instance,

the threat score of an attack performed by a stealthy and

motivated adversary will be higher than the threat score of

the same attack performed by an adversary with limited

resources and oblivious knowledge about the system. Our

versatile threat modeling approach can support various types

of malicious events and enable end-users to adjust the desired

level of threat model granularity.

A. ADVERSARY MODEL

The capabilities of an attacker and the characteristics of

the adversary model can be captured by factors such as

resources, skills, knowledge of the system, access privileges,

and opportunities (i.e., the means to carry out the attack and

the number of failed attempts allowed) required to perform

29786 VOLUME 9, 2021



I. Zografopoulos et al.: Cyber-Physical Energy Systems Security

FIGURE 3. Adversary model and attack model components comprising
the comprehensive threat model architecture.

the attack. When it comes to system knowledge, distinction

has to be made between white-box attacks, where an adver-

sary has complete information, and black-box or gray-box

attacks, where an adversary has limited information about the

system [113]. In the gray-box threat model, the adversarial

knowledge is limited to the target model, while in black-box

attacks adversaries do not know the target model and can

only query to generate adversarial samples [114]. We port

such classification in the context of CPES, in which attackers

may have full, partial, or zero knowledge of the system

model and real-time power gridmeasurements. Existingwork

often assumes that adversaries have perfect knowledge of the

system model, i.e., the information needed to create the mea-

surement matrix (Jacobian) of the power system that depends

on the network topology, the parameters of power lines, and

the location of RTUs and PMUs [115]. However, in realistic

attack scenarios, adversaries have limited knowledge of the

system due to the dispersed, interconnected, and complex

nature of the power grid, the restricted access to CPES control

and monitoring functions, and errors in the data collection

process [51], [116], [117].

Our adversarymodel takes into consideration the presented

distinctions and defines a hierarchy of the available informa-

tion to the attackers in order to characterize their knowledge

capabilities. At the lowest level of the system, knowledge

hierarchy is an adversary that has no information about the

system model. At the highest level is an adversary that knows

the model characteristics, the algorithmic details, and all

the grid measurements. In order for the adversary, however,

to acquire system measurements or perform reconnaissance

and monitoring, he/she should have – to some extent – access

to the system. As such, our model delineates this access

as the accessibility level an adversary needs to have in the

target CPS.

In the MITRE ATT&CK for ICS framework, the term

‘attacker tactics’ covers the attackers’ access level with

their corresponding intentions and objectives. In our mod-

eling approach, however, the term is captured in two sub-

categories, access and specificity, to allow for a more

elaborate adversary classification. The access category

defines the degree to which an attacker can interact with a

system asset, while the adversarial specificity encapsulates

the objectives and goals of the adversary who executes the

attack on the CPS. Adversarial objectives are broadly lumped

under targeted and non-targeted. In the case of targeted

objectives, an adversary’s intention is to execute an attack

which can result in a specific target output (e.g., the mis-

calculation of EPS system states, due to topology modifica-

tions of wind integrated resources [118], or FDIAs [119]).

On the other hand, non-targeted attacks can generically max-

imize malformed outputs of CPS algorithms (with respect

to the ground truth) affecting the operational reliability of

the system. Finally, our adversary model also captures the

adversary resources, differentiating between attackers with

limited resources and attackers with a variety of intellectual

and physical assets at their disposal.

Adversary Model Formulation: Our attacker model is

decomposed into four dimensions: adversarial knowledge,

resources, access, and specificity:

1) Adversary Knowledge

a) Strong-knowledge adversary: White-box attacks

assume an adversary with full knowledge of the

system model, parameters, and state vectors.

b) Limited-knowledge adversary: Gray-box attacks

assume an adversary with some knowledge of the

system’s internals with a partial understanding of

the network and system model.

c) Oblivious-knowledge adversary: Black-box

attacks assume an adversary with zero knowledge

about the details of the system and can only

estimate the system outputs using confidence

scores. In such scenarios, the attacker does not

have knowledge in regard to the system model.

2) Adversary Access

a) Possession:This type of attack requires the adver-

sary to have physical access to the attacked com-

ponent (e.g., IED, solar inverter, transformer, etc.)

operating either in the digital or analog domain.

The access could involve chassis intrusions (e.g.,

microprobing, memory flashing, circuit bend-

ing, etc.), or interface access to the device

(e.g., side-channel analysis, power analysis, pro-

tocol decode, etc.).

b) Non-possession: In this type of attacks, the adver-

sary cannot physically manipulate the asset under

attack. Attacks can be performed leveraging prox-

imity access (e.g., GPS spoofing, side-channel

analysis), or by exploiting network interfaces

(e.g., replay attacks, rollback attacks, etc.).

3) Adversarial Specificity

a) Targeted attacks occur in multi-class identifica-

tion, control, andmonitoring -based scenarios and

misclassify CPS algorithms and operations to a

specific malicious result category xj ∈ X from

all possible results X . The adversary goal is to

maximize the probability of the targeted class,

i.e., maximize P(xj).
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b) Non-targeted attacks are similar to targeted

attacks in terms of misclassification objective,

however, the selection of category xj is relaxed to

any arbitrary output category except the correct

one xi.

4) Adversarial Resources

a) Class-I attackers that, despite their adversarial

motivation, do not have the financial resources,

equipment support, or access privileges, to suc-

cessfully realize any attack without being

detected.

b) Class-II attackers that can be funded individ-

uals, organizations, or nation-state actors with

large budgets and substantial access privileges,

skills, and tools capable of realizing sophisticated

attacks.

B. ATTACK MODEL

The second part of the proposed threat modeling method

focuses on the specific characteristics of malicious attacks

(e.g., frequency, reproducibility), the targeted CPS compo-

nents, and the process aiming to achieve the system com-

promise. The attack model improves MITRE’s taxonomy,

which includes concepts such as the attack levels, assets, and

techniques, by incorporating supplemental dimensions neces-

sary for holistic security investigations. For instance, partic-

ular attention is drawn on aspects like the attack frequency,

reproducibility/discoverability, along with the premise of the

compromise. The aforementioned features enable the com-

prehensive characterization of the attacks elucidating all their

underlying elements, and as a result, they assist in performing

threat and system impact evaluations for CPS environments.

The presented attack model accounts for the CPS structure

and interconnections. Given that the same adversarial objec-

tive can be achieved following different attack paths, prop-

agation scenarios with diverse attack entry points should be

investigated. These attack paths can be initiated from process

control devices such as sensors or actuators and propagate to

supervisory and control equipment like HMIs. In particular,

the attack model considers the attack frequency, i.e., the

number of compromises required to achieve a particular

adversarial objective, and the attack reproducibility and dis-

coverability. The aspects of reproducibility and discoverabil-

ity are crucial for CPS risk evaluations. This is attributed to

the fact that even catastrophic attacks might not pose any

actual danger for the CPS if materializing them is nearly

impossible, or they can be easily discovered during their

initial stages. The attack functional level, attacked asset,

and attack techniques notions correspond to the definitions

introduced in MITRE [100]. The only difference is that

the selected attack techniques in our methodology represent

some of the most common use cases encountered specifically

in CPES. An overview of the CPS functional levels along

with the corresponding attacked assets are illustrated in Fig. 4.

Also, we consider the attack premisewhich indicates whether

the attack is targeting the physical or cyber domain of a CPS,

FIGURE 4. CPS functional attack levels and assets overview.

trailing the attack path origin and its expected impact. The for-

mulated attackmodel with the additional aspects of attack fre-

quency, attack reproducibility and discoverability, and attack

premise allows to fine-tune each attack case study’s model,

and overall compose a well-defined CPS threat modeling

approach.

Attack Model Formulation: Our attack model is decom-

posed into six dimensions: attack frequency, attack repro-

ducibility and discoverability, attack level, attacked asset,

attack techniques, and attack premise.

1) Attack Frequency

a) Iterative attacks: attacks that need multiple itera-

tions to achieve the desired malicious output.

b) Non-Iterative attacks: attacks that only need to

be realized once to achieve the desired malicious

output.

2) Attack Reproducibility and Discoverability

a) One-time attacks: attacks that can only be realized

once since they are detected after the first attempt.

b) Multiple-times attacks: attacks that can be repro-

duced multiple-times before they are identified

and detected.

3) Attack Functional Level

a) Level 0: attacks that target CPS processes

and their corresponding operational equipment

(e.g., sensors, actuators, etc.).

b) Level 1: attacks that target the industrial control

network (e.g., PLCs, system controllers, RTUs,

etc.) and aim to stealthily manipulate functions

that control CPS processes.

c) Level 2: attacks that target the SCADA, and mon-

itoring devices (e.g., HMIs, engineering worksta-

tions, data historians, etc.) on the network level

(i.e., LAN) overseeing CPS processes.

4) Attacked Asset

a) Field controllers: Such assets are low-level

embedded devices (e.g., RTUs, PLCs, IEDs) that

enable the control of CPS processes. They typ-

ically possess limited computation capabilities

and they are in charge of coordinating industrial
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processes (e.g., generator governors, manufactur-

ing process controllers, etc.).

b) Control servers: These devices cover the func-

tionality of both programmable controllers (e.g.,

PLCs) as well as communication servers (e.g.,

SCADAmaster terminal units (MTU), distributed

control servers, etc.). Thus, apart from interfac-

ing with low-level CPS devices (e.g., sensors,

actuators), they can also support software-based

services in industrial environments.

c) Safety instrumented systems (SIS): These sys-

tems (e.g., protective relays, recloser controllers)

are designed to perform automated remedia-

tion actions if an abnormal system behavior is

detected (e.g., short-circuit, fault, etc.). The goal

of protection systems is to keep the industrial CPS

plant online, while avoiding hazard conditions.

d) Engineering workstations: These units are usu-

ally powerful and reliable computing configu-

rations used for the monitoring and control of

CPS, processes, and equipment. They are often

accompanied by hardware components and soft-

ware packages that enable CPS supervision.

e) Data historians: Such elements are databases

used to keep records and store process data. This

information is stored in a time-series format that

enables the examination, display, and statistical

analysis of process control information.

f) Human-machine interfaces (HMIs): A graphi-

cal user interface that enables users to moni-

tor system operations, diagnose malfunctioning

system behavior, and initiate control and miti-

gation actions. HMIs can vary between vendors

supporting different capabilities, graphical rep-

resentations, and control interfaces (e.g., web-

based, LAN-based, etc.). Additionally, different

user groups can have access to different HMIs

according to the systems they are monitoring and

their clearance level for managing the CPS.

g) Input/output (I/O) servers: Such servers consti-

tute the connecting link between system appli-

cations and the field devices which coordinate

the ICS equipment under the control subsystems

directions. I/O and data acquisition servers (DAS)

operate as buffers since they can convert low-level

control system data to packets, and forward them

to the supervision locations (e.g., HMIs, engi-

neering workstations). Additionally, they serve

as intermediate translation units as they collect

information from field devices (utilizing diverse

communication technologies) and translate them

to the predefined formats expected by system

applications.

5) Attack Techniques

a) Modify control logic: In such attacks, adversaries

can cause the CPS to operate abnormally by

modifying the code running on the system’s con-

trol devices (e.g., PLC, RTU, IED). These system

devices are orchestrating physical processes via

actuators and other field equipment.

b) Wireless compromise: In these attack scenar-

ios, adversaries can gain unauthorized remote

access to the CPS network by exploiting: the vul-

nerabilities of devices with wireless connectiv-

ity, insecure wireless communication protocols,

and/or network connections leaking sensitive

information.

c) Engineering workstation compromise: In such

attack setups adversaries, after granted access to

a CPS engineering workstation, can cause sys-

tem malfunctions via compromising CPS con-

figurations controlled by engineering worksta-

tions, e.g., security systems, process controls,

ICT infrastructure, etc.

d) Denial-of-service (DoS): Malicious adversaries

performing DoS attacks can compromise a CPS

asset by inhibiting its nominal functionality ren-

dering it unresponsive. For instance, overflow-

ing a device with artificial data, blocking its

inbound or outbound communications, or even

suspending/disrupting its operation can impact

time-critical CPS.

e) Man-in-the-middle (MitM): During MitM attacks

adversaries can maliciously intercept, modify,

delay, block, and/or inject data streams exchanged

between CPS asset communications. Depending

on the adversary access level on the CPS net-

works, numerous attacks (e.g., modify or inject

control commands, delay alarm messages, etc.)

can be planted affecting CPS operations.

f) Spoof reporting messages: Adversaries perform-

ing this type of attack can broadcast mali-

cious modified system messages. The attack goal

is to either impact CPS operations by limit-

ing the situational awareness (e.g., suppressing

critical alarm messages), or misreport informa-

tion (e.g., sensor measurements), thus, driving

systems to unstable and potentially irreversible

states.

g) Module firmware: In module firmware attack

cases, adversaries can upload maliciously mod-

ified code to embedded devices of CPS (e.g.,

PLCs, smart inverters, etc.). These actions can

affect devices operation via modification of their

control objectives, and/or insertion of backdoor

features (e.g., remote access, exploit system logs,

etc.) allowing them to stealthily manipulate CPS

assets.

h) Rootkits: In this type of attack, adversaries

employ rootkits, typically planted in the OS of

devices, to disguise malicious software, services,

files, network connections ports, etc. Rootkits
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provide attackers with user or even root-level

privileges while hiding their presence from CPS

defense mechanisms.

6) Attack Premise

a) Attacks targeting the cyber domain

i) Communications and protocols: refers to

attacks targeting the in-transit CPS data,

i.e., exchanged communications data includ-

ing remote access credentials, measurements,

system reports and warnings, etc., with the

objective to get unauthorized access (data

espionage) or insert malicious modifications

(data alteration).

ii) Asset control commands: includes attacks tar-

geting the CPS data integrity, i.e., mask coun-

terfeit system data as genuine and unmodified,

and trustworthiness (e.g., impersonate autho-

rized user groups and issue, access, or modify

control commands).
iii) Data storage: accounts for attacks target-

ing the accuracy and non-repudiation of CPS

data (e.g., logs and historical records of

all the performed tasks such as asset set-

point modifications, user sign-ins and action

histories, inbound/outbound connections and

traffic, etc.).

b) Attacks targeting the physical domain

i) Invasive: attacks that require physical access

to the CPS asset (e.g., PLC hardware includ-

ing micro-controller, memory, integrated cir-

cuit – IC, etc.) in order to manipulate it

(e.g., desoldering, depackaging) [120]. These

attacks are time-consuming and require spe-

cialized equipment, however, they are difficult

to detect.
ii) Non-Invasive: attacks that do not require any

physical tampering of the ICs residing on

the CPS assets, and performing them mul-

tiple times can be achieved with minimum

effort. No traces are left after the attack is

performed rendering them the most difficult

type of attacks to detect. Common examples

of non-invasive attacks include power analysis

attacks, timing attacks, electromagnetic emis-

sion attacks, brute force attacks through phys-

ical means, hall sensor spoofing, etc. [52].
iii) Semi-Invasive: attacks that are a trade-off

between invasive and non-invasive attacks,

given that they are not as difficult to per-

form as invasive attacks and can be eas-

ily performed multiple times similar to

non-invasive ones [121]. Common examples

of semi-invasive attacks include fault injec-

tion, laser scanning, ultra-violet radiation,

or control process tampering [122].

C. RISK ASSESSMENT METHODOLOGY

Risk assessment is a fundamental process in every cybersecu-

rity analysis study. Its importance is further accentuated in the

context of mission-critical CPSwhere operational disruptions

can have disastrous impacts. Existing efforts often port IT risk

assessment methodologies into operational technology (OT)

security evaluations, and consequently, fail to holistically

capture CPS constraints and objective [123]. Some key dif-

ferences between IT and OT security revolve around the risks

associated with loss of operation, asset availability, commu-

nication latency, architectural differences, and contingency

management strategies [124]–[126].

Qualitative assessments for cybersecurity risks require

substantial system knowledge of the CPS structure and

experience from the organizations and groups conducting

the analysis [123], [127]. On the other hand, quantitative

studies calculate exact risk scores aiding the prioritiza-

tion and mitigation procedures [104], [128]. Other works

employ simulation-assisted investigations in order to evaluate

the corresponding impact of cyber-attacks [129]. Moreover,

researchers have also considered dynamically adapting risk

assessment models factoring the system and attack impact

evolution for the risk score calculations [130]. Recent works

have proposed combinations of different risk methods har-

nessing the advantages of more than one strategy and provid-

ing more realistic evaluations [131]–[133]. These combined

approaches are motivated by the fact that in CPS we can have

the same impact on system operation using different attack

paths. Thus, although the system impact remains the same,

the risk scores of these attacks would substantially differ.

For example, such scenarios, i.e., following different attack

procedures to achieve the same adversarial objective, would

be difficult to capture using a qualitative-only risk assessment

method.

In this paper, we utilize a hybrid risk assessment method

bridging the advantages of both quantitative and qualitative

methods. The hybrid approach adapts to dynamic system

operation and adjusts risk scores based on the current sys-

tem state. Specifically, we assess qualitatively the impact

of attacks. To calculate the corresponding attack damage,

however, we quantitatively prioritize CPS objectives. The

threat probability is also assessed quantitatively to weigh the

attack damage and model the risk. It is important to note that

both the objective priority as well as the threat probabilities

can change during the real-time system operation.

Such scenarios can be accommodated by our risk model.

For instance, the loss of power at a residential area has the

same outage impact, regardless if this is due to a natural disas-

ter (e.g., hurricane, thunderstorm), a malicious attack, or EPS

electrical faults (e.g., short-circuits). However, the threat

probabilities and CPS objective priorities for the three afore-

mentioned scenarios differ significantly. ‘‘People health and

personnel safety’’ objective during a natural disaster has

much higher priority compared to a power outage due to

an EPS fault. The latter event, being not a life-threatening
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situation, would have a higher ‘‘uninterrupted operation and

service provision’’ priority.

Furthermore, the presented threat modeling methodology

of Section III-A and III-B, which enables precise adversary

and attack descriptions, serves as the backbone of our risk

assessment method. Specifically, the definitive granularity

of threat characterizations, not only exposes the vulnerable

system assets but also can infer which CPS objective will be

affected the most. The CPS objective is critical for the attack

impact evaluations, while vulnerable assets demonstrate the

feasibility of an attack. Thus, CPS attack risk scores can be

calculated and their prioritization can be performed based on

the affected CPS objective. The threat Risk is defined as:

Risk = Threat Probability× Damage (1)

The Threat Probability portion of the risk formula accounts

for the threat details, i.e., the adversary and attack models

discussed previously, in addition to how likely it is for the

investigated threat to materialize in the specific system con-

text. The second component of Eq. (1) includes the Damage,

which assesses the corresponding impact inflicted on the

system. The Damage is defined as follows:

Damage =

n
∑

k=1

Objective Priority× Attack Impact (2)

where the Objective Priority and the Attack Impact are used

to address the consequences of the attack in the context

of the specific CPS objectives. The Attack Impact is eval-

uated qualitatively using a number from 1 to 3, reflecting

Low, Medium, or High impact, respectively. In addition, for

every CPS, the objectives are ranked in order of importance.

We utilize four (n = 4) main objective categories: i) people

health and personnel safety, ii) uninterrupted operation and

service provision, iii) organization financial profit, and

iv) equipment damage and legal punishment. Numbers

from 1 to 4 are used for the objective priorities; 1 indicates

the least significant goal while 4 stands for the most critical

objective.

In Table 4, we demonstrate a damage calculation example

where we provide a subjective priority ranking as well as

the attack impact values. Using Eq. (2), the total poten-

tial damage score can be calculated as
∑

(4 + 9 + 6 +

2) = 21. Given a specific Threat Probability value, we can

then assess the total Risk for the examined attack scenario.

Overall, the presented application-aware risk assessment

procedure is taking into consideration all the underlying

components of sophisticated and multi-layer threats targeting

complex CPS. In addition, it provides a universal method to

assess attack risk, regardless of the particular CPS architec-

ture or the corresponding operational objectives. Based on the

assessment results, administrative authorities can prioritize

which assets need immediate attention andwhich threats pose

the highest risk (if vulnerabilities of the in-scope CPS assets

are exploited).

TABLE 4. Example of attack damage calculation.

IV. CYBER-PHYSICAL SYSTEM FRAMEWORK:

MODELING, RESOURCES, AND METRICS

FOR CPES STUDIES

The framework depicted in Fig. 5 shows the different domains

in which the proposed CPS framework is divided. The main

objective of the framework is to provide a clear understand-

ing of all the underlying concepts and components being

considered in CPS investigations. Specifically, the presented

conceptual framework is intended to assist researchers in

identifying the models, resources, and metrics required to

perform reliable CPES studies. Based on the study objectives,

the framework can be treated as a ‘how-to guide’ towards the

implementation of use cases and the development of CPES

testbeds. This section, first, describes the cyber-system and

physical-system layers that need to be considered for the

CPES representation. Then, we describe the different factors

that need to be taken into account when performing CPES

studies, i.e., the modeling techniques, resources, and metrics.

Physical-System Layer: NIST’s definition for CPS estab-

lishes that the physical-system layer of a CPS is com-

posed of hardware and software components embedded

into the system environment. These components have the

capability of interacting with other physical-layer units

through physical means, i.e., via sensors and actuators,

or through the cyber-system layer using standard commu-

nication protocols. Some sectors where CPS can be exten-

sively found are smart manufacturing [134], healthcare [135],

robotics [136], transportation [137], and EPS [138]. In this

paper, the developed framework focuses on the EPS sec-

tor, i.e., the models, resources, and metrics used in the

physical-system layer are based on elements encountered

in the generation, transmission, and distribution systems

that comprise CPES. Example components within the

physical-system layer of CPES are PV panels, Li-ion BESS,

wind energy systems, power converters, generators, voltage

regulators, transformers, and T&D lines.

Cyber-System Layer: The cyber-system layer of a CPS

is composed of the ICT structures deployed in the system.

It encompasses communication and networking components

such as hubs, modems, routers, switches, cables, connec-

tors, databases, and wired and/or wireless network inter-

face cards (NIC) [139], [140]. These components allow the
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FIGURE 5. Cyber-physical system (CPS) framework: the cyber-system and physical-system layers are presented with their
respective factors, i.e., modeling, resources, and evaluation metrics, needed for conducting cyber-physical studies. Different use
cases requirements can be adjusted to perform CPS related investigations.

interconnection of multiple computing devices using com-

mon communication protocols over digital links with the

purpose of sharing, storing, and processing resources and data

located across networking nodes. In this paper, our developed

framework focuses on elements that make up communication

networks in CPES, i.e., the models, resources, and metrics

used in the cyber-system layer are related to components

such as smart-meters, PMUs, EPS-related communication

protocols (e.g., DNP3, IEC61850, IEEE 37.118, etc.), and

other networking devices that support communication in EPS

operations.

A. MODELING

Models able to represent systems by describing and explain-

ing phenomena that cannot be experienced directly [141].

Such models are built from mathematical equations and/or

data that are used to explain and predict the behavior

and response of complex systems. Specifically for CPES,

researchers focus on creating models capable of replicat-

ing the behavior of the components that comprise the

cyber-system and physical-system layers of EPS, e.g., models

for components such as PV systems, wind energy systems,

ESS, transformers, transmission lines, distribution lines,

smart meters, PMUs, routers, switches, etc. In this part,

we describe the different modeling techniques used to model

both the cyber and physical layers of CPES.

1) PHYSICAL-SYSTEM LAYER

The design andmodeling of the physical-system involve areas

such as hardware design, hardware/component sizing, con-

nection routing, and overall system testing. All components

in this layer must be categorized based on their respective

temporal and spatial requirements along with their intrinsic

physical characteristics. In EPS, some of these characteristics

and requirements are related to rated voltage, current, and

power values, location of the generation and load resources,

and physical characteristics of the lines (i.e., resistance, reac-

tance, capacitance, and length). These features are utilized

in developing models that represent the physical devices in

the system. The objective is to capture and simulate sys-

tem behavior so that a digital twin of the real system can

be implemented. This ‘virtualization’ capability provides a

significant advantage by allowing the analysis and study of

different types of scenarios that can arise during the operation

of the CPS. We can analyze and track physical processes,

replicate potential harmful operating conditions or scenarios,

and accelerate the testing of software and hardware compo-

nents. More specifically, for EPS modeling, the current state-

of-the-art simulation technology is based on electromagnetic

transient (EMT) and transient stability (TS) simulation tech-

niques [142]–[144].

a) Electromagnetic transient (EMT): EMT simulation is

a technique used to precisely reproduce the system

response to fast dynamic events and system perturba-

tions, that occur in the range of tens of microseconds

or lower, caused by fast switching electromagnetic

fields or loading events. Due to requirements, such

as the unsymmetrical and instantaneous modeling of

the signals and values that characterize the behavior

of the system, nonlinear ordinary differential equa-

tions (ODE) are used to represent the system behav-

ior in the EMT simulation environment. This detailed
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modeling provides improved accuracy, compared to

TS-type simulations, when capturing the system behav-

ior and response to fast transient events. However,

it requires high computational resources for the sim-

ulation of systems with a large number of compo-

nents. Typical applications where EMT studies are used

include the simulation of power electronic devices,

unbalanced distribution systems, and the impact evalu-

ation of DER integration into modern power networks.

b) Transient Stability (TS) Simulation: TS simulation is

a technique used to capture the slow dynamic events,

i.e., events in the range of tens of milliseconds and

higher, that occur in power systems. These events are

related to the voltage stability, rotor angle stability,

and frequency stability phenomena. In TS, the EPS is

represented by nonlinear differential algebraic equa-

tions (DAE). These equations are used to solve the

system states assuming that the fundamental power fre-

quency (e.g., 50 or 60 Hz) is maintained throughout the

system. Commonly, TS-type simulations are used for

studies related to the analysis, planning, operation, and

control of EPS elements with large time-steps, i.e., in

the milliseconds range. Given that large time-steps

and positive-sequence phasor-domain simulations are

used in TS-type simulations, they allow users to simu-

late large-scale T&D networks while requiring signifi-

cantly less computational resources when compared to

EMT-type simulations [142].

c) Hybrid-Simulation (TS+EMT): Hybrid-simulation

models make use of both EMT and TS simulation

tools to leverage the benefits of two or more simulation

environments, hence allowing even more comprehen-

sive and accurate simulation studies. Some examples

of these types of simulations are found in recent lit-

erature [145]–[147]. Integrated T&D co-simulations

are a major field of study enabling the use of

hybrid-simulation environments. Such environments

can provide ways of simulating in detail, for example,

power electronic converters interfaced with large-scale

power networks. T&D co-simulation also provides

an effective way of studying the diverse impacts that

anomalous events (e.g., unintentional faults or inten-

tional malicious attacks) may have locally and globally

in the overall physical-system layer of the CPES.

2) CYBER-SYSTEM LAYER

The design and modeling of the cyber-system layer involve

communication network modeling, communication protocol

implementation, design of information systems, and data stor-

age processing. To model this layer, researchers must have a

deep understanding of the communication infrastructure that

needs to be replicated using the respective cyber-system layer

models. Some of the characteristics that need to be taken

into consideration for modeling the communication infras-

tructure are: i) the topology of the communication network,

ii) physical characteristics (cable lengths, physical

components, delays, etc.), and iii) Quality-of-Service (QoS),

among others [140]. In a real-world CPS (e.g., cellular net-

works, military zones, or SCADA systems), multiple and

diverse networking and computing components comprise the

cyber layer. This hinders the implementation of tests and

studies designed to evaluate the operation and performance of

the actual network or to simply conduct any other CPS-related

investigation.

As discussed in Section II, carrying out evaluation type of

studies in real systems can be dangerous for human safety,

excessively costly, and may cause interruption or degradation

of the network performance and the QoS (as perceived by

the users). To address these issues, models can be used to

simulate or emulate the behavior and performance of the

cyber-system layer under different scenarios. In essence,

simulation allows replicating the behavior of cyber-system

layer components, while emulation duplicates the behavior of

these components and allows them to be used alongside real

devices. The simulation and emulation of the cyber-system

layer are fundamental tools for understanding and studying

topics related to complex network deployment, networking

architectures, communication protocol features, and deploy-

ment of new services.

The simulation/emulation modeling process is often

instantiated by identifying all the network components, com-

monly referred to as communication network entities. These

entities, i.e., nodes and links configurations, constitute the

network topology. Fig. 6 depicts a conceptual illustration of

how the modeling process is performed in a communication

network simulation. As seen in Fig. 6, in a network simula-

tor/emulator architecture, a node is a key entity that represents

any computing device connected to the overarching network.

This abstraction encapsulates all the possible representations

of computing devices that may exist in a network setup. Some

of these computing devices can refer to routers, switches,

and hubs which embody the backbone of the network, while

computers, RTUs, PLCs, meters, and servers constitute the

endpoints of the network. A node is primarily characterized

by its packet transmission entity attribute. In this packet

FIGURE 6. Conceptual diagram of the modeling and simulation process
of communication networks.
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transmission attribute, endpoints delineate the source or des-

tination of the data packets while all backbone elements

perform the forwarding tasks related to these packets. Other

parameters, known as state variables, differentiate the behav-

ior for each one of the modeled nodes. Some of these param-

eters are memory consumption, physical location, battery

power, and CPU utilization. Additionally, other simulation

entities, such as NIC, help to identify nodes in the network.

These interfaces also have individual state variables that

represent their state (i.e., idle or busy, and installed or not

installed) while being in charge of transmitting, receiving,

and processing the packets exchanged with other network

nodes.

Similar to the nodes, interfaces include other entities,

such as queues and links, which represent realistic packet

processing scenarios. Queues are modeled as buffers in the

outgoing and incoming packet processes. Links are mod-

eled as the connections between the two nodes communi-

cating via the corresponding interfaces (i.e., communication

medium). More specifically, links are modeled by defin-

ing communication parameters such as the available band-

width, propagation delays, jitter, and pre-defined packet loss

rates. Furthermore, packets are modeled as entities that con-

tain the data exchanged between nodes in the network. For

each node in the network, entities that represent the proto-

col stack must also be defined, while the packet sizes are

determined by the corresponding communication protocol

(e.g., TCP, UDP, etc.).

A protocol entity is responsible for managing the outgo-

ing and incoming packets by adding and removing packet

headers. Protocol modeling is also a key process. It covers

the specific steps required to accurately emulate the behavior

of the protocol stack. In this process, models are developed

to capture elements and properties from the network access

layer, internet layer, transport layer, and application layer.

Finally, models for performance evaluations, which do not

represent real elements in the network, are also defined as

additional entities that facilitate the implementation and eval-

uation of the network. Some representative examples of such

entities are logging and helper utilities which can aid the

network evaluation process [148].

B. RESOURCES

The ‘resources’ represents the different hardware and soft-

ware systems that form, and can be used to model and sim-

ulate, the cyber- and physical-system layers of the CPES

being studied. In this part, we make a distinction between

the hardware and simulation/emulation resources that need

to be considered for modeling the cyber- and physical-system

layers using tools and techniques such as offline simulation,

emulation, real-time simulation, and HIL.

1) PHYSICAL-SYSTEM LAYER

The simulation and hardware resources for the modeling

and implementation of the CPES physical-system layer are

presented below.

a) Simulation: A simulation provides a set of models

or representations used to reproduce the behavior or

operation of different processes of a particular system

over time. Particularly for EPS, EMT- and TS-type

simulations are the most prominent tools used to

investigate the behavior of different system compo-

nents. These simulation classes can be further clas-

sified into two main categories: offline and real-time

simulations [149].

i) Offline simulation: Offline simulation tools pro-

vide a simple and cost-effective way of con-

ducting simulations on any generic computing

device. These tools can execute models at slower

or faster-than-real-time speeds depending on the

complexity of the model as well as the avail-

ability of computing resources. Figs. 7a and 7b

show how the computation time of the system

models, for both slower and faster-than-real-time

offline simulations, is not synchronized with the

simulation clock, i.e., the real-time clock. Offline

simulations allow the simulation of complex sys-

tems without considering real-time constraints,

which for instance, enable researchers to simulate

large periods of time, e.g., months or years, in a

few minutes or seconds. Some tools and soft-

ware which are available for this type of sim-

ulations include: MATLAB/Simscape Electrical

(EMT & TS), OpenDSS (TS), Gridlab-D (TS),

FIGURE 7. Differences in the computation timing of offline simulation
and real-time simulation: (a) slower-than real-time, (b) faster-than
real-time, and (c) real-time simulation.
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eMegaSim (EMT), ePhasorSim (TS), and ETAP

eMTP (EMT).

ii) Real-time simulation: Real-time simulation tools

provide the capability of generating results that

are synchronized with a real-time clock. This

allows physical devices to be interfaced with

the simulated system via realistic data exchanges

synchronized using a real-time clock. Fig. 7c

demonstrates how for real-time simulation the

computation time for the system is synchronized

with the simulation clock. The computation time

needed to solve all the states of the simulated

system needs to be lower or exactly the same

as the simulation clock, i.e., the real-time clock.

Real-time simulation setups allow researchers to

connect real devices using HIL techniques such

as CHIL and PHIL. Some tools and software

which are available for this type of simulations

include: eMegaSim (EMT), ePhasorSim (TS),

HyperSim (EMT), RTDS (EMT), and Typhoon

HIL (EMT).

b) Hardware: Real-time HIL implementations allow

the interconnection of external hardware devices

to a real-time simulation environment through the

appropriate I/O or networking interfaces.

Two of these HIL techniques are CHIL

and PHIL.

i) Controller Hardware-in-the-Loop (CHIL): In

CHIL, physical devices are in constant communi-

cation and interaction with a simulation running

in the real-time environment. This interconnec-

tion includes sending control signals and receiv-

ing feedback signals through I/O and/or network-

ing ports [150], [151]. As seen in the hardware

section of Fig. 5, a physical device connected

using a CHIL implementation can be interfaced

directly: i)with the physical-system layer simula-

tion using the appropriate interface, or ii) through

the cyber-system layer using standard communi-

cation protocols and corresponding networking

components.

ii) Power Hardware-in-the-Loop (PHIL): In PHIL,

a power hardware system such as a PV panel,

inverter, or battery system is physically con-

nected to the RTS through analog and digital

I/O ports. A PHIL implementation needs the use

of a power amplification unit that is responsible

for the amplification and conversion of the dig-

ital voltage and current data signals – coming

from the simulation environment – into analog

voltage and current signals required by the con-

nected actual/physical device. Interfacing algo-

rithms are also essential to facilitate the inter-

connection between the software models and the

physical-system [152].

2) CYBER-SYSTEM LAYER

The simulation/emulation and hardware resources related to

the modeling and development of the cyber-system layer for

the communication network are presented below.
a) Simulation/Emulation: As mentioned before, the main

difference between simulation and emulation is that in

a simulation, the models used are designed to replicate

the behavior of the system while emulation is designed

to duplicate the behavior of the system. Amore detailed

description of the difference between simulation and

emulation is given below in the context of the resources

required to effectively replicate the cyber-system layer.
i) Simulation: In network simulations, theoretical

and mathematical models are developed to cre-

ate entirely virtual models of the correspond-

ing networking components. Network simulation

tools use discrete-event simulation approaches

that generate sequences of discrete events that

characterize the discrete cyberspace. The two crit-

ical components of such discrete-event driven

simulators include the simulation time variable

and a list of pending future events. The simu-

lation time variable represents the current time

at which the state of the system is known (in

the simulation), while the list of pending future

events contains all the state changes that have

been scheduled to occur in the future, which guide

the flow of the simulation. In a network simula-

tion, external devices cannot be interfaced with

virtual simulated devices, contrary to a network

emulation, hence, the entire communication net-

work needs to be simulated. Some of the available

software tools that support this type of simula-

tions are: ns-2 [155], ns-3 [156], SimPy [157], and

EXata [148], [158].

ii) Emulation: In network emulation, hardware and

software solutions are designed to accurately

replicate the behavior of networking components,

exactly as if they were actual parts of an external

network. Network emulation tools enable the con-

figuration and manipulation of network param-

eters and constraints (e.g., packet loss, delays,

jitter, etc.) to mimic the mirrored network. Some

of the available software tools that support this

type of network modeling are: the Common Open

Research Emulator (CORE) [159], NetEm [160],

and EXata [158]. Notably, some tools are capa-

ble of adapting network simulation models for

emulation purposes by adding real-time syn-

chronization mechanisms between the virtualized

simulated environment and the real networking

components [161], [162].
b) Hardware (HIL): Similarly to the HIL implementations

realized in the physical-system layer, HIL implemen-

tations of network components in the cyber-system
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TABLE 5. Physical-system layer performance metrics. These metrics are divided according to the domain where they can be measured.

layer can also be performed using the corresponding

networking interfaces. Networking HIL provides emu-

lation capabilities that allow the integration of real

equipment into the emulated network through standard

communication protocols. Commonly, a larger portion

of the network or system is emulated and connected

with external (real) devices. Such a method provides

high-fidelity responses – as expected from the actual

device – while maintaining the scale of the emulation.

Some software tools that support HILwith communica-

tion network models are EXataCPS [158], ns-3 [156],

and CORE through the RJ45 utility [159].

C. PERFORMANCE METRICS

A multitude of metrics exists to evaluate the performance of

the modeled cyber- and physical-system layers. The use of

metrics allows the concise evaluation of the overall system

alongside its corresponding subsystems. In essence, these

metrics provide quantitative ways to measure and evaluate

the performance of the system’s operation at a particular time,

both at the cyber- and the physical-system layers.

1) PHYSICAL-SYSTEM LAYER

Some of the most commonly used metrics employed to eval-

uate the performance and operation of different functions

that exist in the physical-system layer of CPES are presented

in Table 5 and described below:

a) Control systems: Metrics related to control systems

can be used to examine the performance of different

control routines present at the physical-system layer.

The evaluation can include the steady-state response

of the system or other system performance indicators

such as rise time, percent overshoot, settling time,

steady-state error, and integrate absolute error.

b) EPS resiliency, stability, and optimization: Perfor-

mance metrics can be defined in order to evaluate the

performance of the system according to a predefined

baseline behavior. For instance, in an EPS where the

operation of a new MG controller is investigated, per-

formance metrics related to voltage regulation, fre-

quency regulation, energy cost, and power quality can

be utilized. Similarly, especially for controllers, which

are limited by their computing resources, different per-

formance metrics can be utilized to determine execu-

tion times, CPU utilization, and memory utilization.

c) Simulation accuracy: The simulation accuracy, either

offline or real-time, can also be assessed based on

different performance metrics dependent on the stabil-

ity and accuracy of the system response, respectively.

The main objective of these metrics is to validate the

response of different physical systems (being simu-

lated) when compared to the actual response expected

from the system under examination.

2) CYBER-SYSTEM LAYER

Different metrics can be utilized to evaluate the performance

of the modeled cyber-system layer communication network.

Here, we demonstrate, as a practical example, some of the
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TABLE 6. Cyber-system layer performance metrics. These metrics are divided according to the OSI model layer and connection where they can be
measured.

most widely used metrics designed to evaluate the network

performance at different layers of the open systems intercon-

nection (OSI) model [148]. Table 6 outlines some represen-

tative network performance metrics.

a) Physical (L1) and Data Link Layers (L2): These layers

describe how data should be generated and transmitted

by network devices over the corresponding physical

media.

b) Network Layer (L3): This layer describes how data

packets are transferred between a source and a des-

tination node inside the network. It represents layer

3 of the OSI model. The main performance metrics

described below are designed to evaluate two main

routing functions: path selection, and network topol-

ogy management. Path selection aims to determine the

best path from source to destination, while network

topology management defines how network entities are

interconnected for data forwarding purposes.

c) Transport (L4), Session (L5), Presentation (L6), and

Application (L7) Layers: These layers describe the

shared communication protocols and interfacing meth-

ods used by the nodes in the network. In essence, these

are the layers responsible for providing full end-user

access to the communication network infrastructure.

It is important to note that many other network and

physical performance metrics can be used to evaluate spe-

cific scenarios. The presented lists include a subset of the

available metrics discussed in the literature. There are also

application-specific metrics that can be defined according to

each study’s requirements. Overall, researchers should care-

fully model their systems as well as select the corresponding

resources and metrics to accurately represent the cyber- and

physical-layer of the CPES under test. This will allow the

integration of any external physical device, either through

CHIL and/or PHIL, and ensure the holistic validation of the

system’s operation.
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TABLE 7. Threat model of the attack case studies.

V. EXPERIMENTAL SETUP & CASE STUDIES

The case studies discussed in this section demonstrate how

the presented threat modeling approach, the CPS framework,

and risk assessment methodology can be utilized to perform

detailed CPES studies. Table 7 describes how each study can

be formalized using our proposed threat modeling method.

Following, the correspondingmodeling layers, resources, and

evaluation metrics are identified for each case study accord-

ing to the conceptual CPS framework. Additionally, for each

attack scenario, the specific background, and mathematical

formulation are described and the corresponding threat model

is provided based on Section III. The threat model describes

the assumptions made for the adversary intentions and capa-

bilities as well as the attack-specific details, demonstrating

the practicality of our modeling approach for diverse attack

scenarios. Furthermore, we demonstrate how the proposed

risk assessment procedure can be applied to each case study

and assist in prioritizing mitigation strategies. In our work,

the objective priority for CPES is outlined in Table 8. It should

be noted that the order of objectives might change depending

on the system’s component being analyzed or the stakehold-

ers’ priorities. For instance, the impact of the ‘‘uninterrupted

operation and service provision’’ objective could indicate less

priority in the case of a compromised inverter serving as an

ancillary power generation source in a residential deploy-

ment, in contrast to a T&D system-wide attack.

TABLE 8. Objective Priority for CPES Risk Assessment.

The attack cases presented in this section can be char-

acterized as either DIA or data availability attacks (DAA).

Table 9 provides the essential notation for the case studies.

Each scenario follows a mathematical background as part of

a CPS plant formulation:

x(k + 1) = Gx(k) + Bu(k) (3)

y(k) = Cx(k) + e(k) (4)

TABLE 9. Symbols and notation for case studies formulation.
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where x(k) ∈ R
n represents the states of the system,

u(k) ∈ R
l represents the control variables, and y(k) ∈ R

m

represents the system measurements. G ∈ R
n×n, B ∈ R

n×l ,

and C ∈ R
m×n represent the system matrix, input matrix, and

output matrix, respectively. The term e ∈ R
m represents mea-

surement noise in the system’s input measurements. As for

the cyber part of the CPS, it can be generally expressed as:

u(k + 1) = Hy(k) (5)

where H ∈ R
l×m represents the control matrix [163].

Fig. 8 depicts a diagram of the CPS mathematical formu-

lation and the respective variables compromised by attackers

during DIA and DAA scenarios. In the DIA case, either the

measurements (y) or the control variables (u) can be com-

promised by attackers via modification or fabrication. On the

other hand, in a DAA scenario, either the measurements (y)

or controls (u) can be compromised by attackers via inter-

ruption, i.e., delaying their acquisition or utilization by the

system.

FIGURE 8. Diagram of CPS plant under DIA and DAA scenarios.

A. CASE STUDY 1: CROSS-LAYER FIRMWARE ATTACKS

Background & Formulation: Cross-layer firmware attacks

refer to attacks targeting the firmware code of embed-

ded devices (i.e., the device read-only resident code which

includes microcode and macro-instruction level routines),

aiming to generate and propagate impacts from the device

layer to system and application layers, respectively. Typ-

ically, embedded devices in industrial CPS run on bare

metal hardware without OS and directly boot monolithic

single-purpose software. In such devices, tasks are executed

on a single-threaded infinite loop. If the device firmware

code execution is maliciously modified, adversaries could

gain total control over the embedded device. The effects of

such attacks can have a cross-layer impact affecting mul-

tiple components and processes of the CPS. For example,

in a CPES, by modifying the firmware controlling grid-tied

inverters connected to BESS or EV chargers, an adversary

could compromise the system’s measurements, thus caus-

ing frequency fluctuations, voltage sags, and system sta-

bility issues. Other scenarios could even cause wide-area

outages, such as the Ukrainian power grid attack in 2015,

in which attackers replaced the legitimate firmware of serial-

to-Ethernet converters at substations causing them to become

inoperable [14]. In general, cross-layer firmware attacks can

be categorized as a DIA-type of attack since modifications at

the firmware level could result in compromising the integrity

of data at different CPS layers.

In this type of DIA, the adversary (though firmware mod-

ifications) can tamper with the input/sensed measurements

(e.g., modify, scale, etc.), y(k), and thus directly affect the

inverter control strategy and variables, u(k), driving the sys-

tem into instability. This type of attack can be characterized as

a combined DIA attack [164]–[166]. In more detail, the sys-

tem’s inputmeasurements aremodified using both an additive

random/white noise component and an attack model in which

nominal measurements are scaled (increased or decreased).

These DIAs can be modeled as:

ya(k) =

{

y(k), when k /∈ Tattack

βy(k) + W, when k ∈ Tattack

(6)

where β represents the multiplicative attack term, W repre-

sents the additive random/white noise attack, Tattack repre-

sents the period of time when the DIA is performed, and ya
represents the ‘altered’/attacked input measurements. β > 1

represents increasing-type of attacks, and β < 1 decreasing

attacks.

Following this combined-type DIA mathematical formu-

lation, we demonstrate how the inverter operation can be

compromised by spoofing its energy conversion module. The

results of this compromise affect not only the inverter behav-

ior but also propagate and impact the MG operation as well.

Threat Model: As presented in Section III, the threat mod-

eling process for any attack can be characterized by the

adversary model and the attack model formulations. Specifi-

cally, in this cross-layer firmware attack case, we assume an

oblivious adversary without full observability of the CPES,

and who has direct physical access to the targeted hardware

controller (i.e., adversary access: possession). Regarding

adversarial specificity, the attack is presumed to be a non-

targeted attack. The adversarial resources could range from

the minimum, i.e., Class I, up to state-funded criminal orga-

nizations (Class II), in the worst-case scenario.

Furthermore, our case study assumes an attack that occurs

iteratively and can be reproducedmultiple times. The targeted

asset is a solar inverter controller, so the attack level is

defined as Level 1. Finally, the technique employed to com-

promise the system involves control logic code modification,

and the attack premise can be categorized as either invasive

or non-invasive (on the physical domain) or could target the

inverter control (e.g., power conversion, power factor, active

reactive injections, setpoints, etc.) usingmalicious commands

(on the cyber domain).

Attack Setup & Evaluation: In this case study, a cross-

layer firmware attack is modeled as a DIA that compromises

physical components, more specifically a PV inverter, at the

physical-system layer of the CPES. Both EMT and TS simu-

lation modeling approaches are used to model a MG system

comprised of a solar PV with its inverter, a Li-ion BESS,

a diesel generator, and residential and industrial loads. The

MG is connected to the main grid via a 13.8 kV/5 kV distri-

bution substation transformer with a capacity of 250 MVA.
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The nameplate generation capacity for the diesel generator

is set to 1 MW. The maximum generation capacity that the

PV inverter can reach is 250 kW based on the provided

solar irradiance profile. The BESS is capable of providing

up to 100 kW and storing 100 kWh. The loads of the MG

include aggregated residential loads with a constant power

demand of 250 kW and a variable lumped industrial load

whose power demand ranges between 250-750 kW. Fig. 9

shows a conceptual illustration of the described MG. The

main software resource used to conduct the EMT and TS

offline-simulations of the physical-system layer for this case

study is MATLAB/Simscape Electrical.

FIGURE 9. Conceptual illustration of the MG system used for the
cross-layer firmware case study.

In Fig. 10 we illustrate, the top-level architectural overview

of an inverter, the core components comprising it, and the

maximum power point tracking (MPPT) controller block that

is the main target of this attack use case. Attackers can

disrupt the nominal inverter operation by tampering with the

firmware subroutines which control both the DC-DC boost

and the DC-AC conversion stages. In particular, Figs. 11, 12

demonstrate the specifics of how the operation of an inverter

can be affected by an adversary capable of compromising

the firmware. For our use case, we employ a grid-tied solar

inverter module provided by Texas Instruments [167]. The

inverter leverages an F2803x series control card which is

responsible for managing the inverter’s peripheral devices

(e.g., sensing modules, analog-to-digital converters, transis-

tor gate driver circuits, etc.) as well as the power conversion

process (i.e., solar energy to electricity). By modifying the

FIGURE 10. Cross-layer firmware attack targeting the inverter’s
maximum power point tracking (MPPT) controller.

FIGURE 11. Cross-layer firmware attack impact on the DC-DC converter
stage: (a) solar irradiance profile, (b) impact on the DC voltage output,
and (c) impact on the DC power output.

operation of the MPPT algorithm – within the firmware code

of the control card that the inverter utilizes to optimize the

output power generated by the solar panels – the attacker is

able to destabilize the operation of the converter.

MPPT algorithms enable inverters to obtain high power

conversion efficiencies. By constantly monitoring the solar

PV outputs (i.e., PV generated voltage and current), MPPT

algorithms regulate the converter’s operating point achiev-

ing maximal power transfer. Given that the PV real-time

generation measurements are critical for the MPPT opera-

tion, any perturbations of the sensed values can potentially

compromise the inverter’s nominal operation. For our case

study, the modification of the inverter’s firmware tampers

with the inverter’s MPPT function and the controls of the

DC-DC andDC-AC converters. In the context of DIA attacks,

the sensed inputs to the MPPT function, i.e., PV voltage

and current, are maliciously modified. By tampering with

the MPPT input measurements, down-scaling, and introduc-

ing additive sinusoidal noise (combined-type DIA attack),

we are able to generate the oscillatory behavior depicted

in Fig. 11. This unstable behavior propagates through the

inverter’s power conversion process leading to anomalous
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FIGURE 12. Cross-layer firmware attack impact on the DC-AC converter
stage (grid-tied inverter end): (a) impact on the AC voltage output,
(b) impact on the AC current output, and (c) impact on the AC power
output.

behavior on the grid-tied inverter end, as seen in Fig. 12. The

result of this compromise is the eventual disconnection of the

inverter-enabled power resource (t = 1sec) in order to protect

the rest of the MG devices and avoid operational disruptions.

The metrics used to evaluate the performance and behavior

of the MG operation, based on the presented CPS framework,

are the physical-system layer performance metrics related to

frequency stability and voltage stability. Fig. 13 demonstrates

the overall impact of malicious inverter operation on the

MG, and how the grid’s power, voltage, and frequency are

affected. In more detail, we notice that at t = 35sec when a

significant load increase in the MG occurs, the contribution

of the anomalous inverter behavior significantly impacts the

frequency causing potential stability issues. However, at t =

15sec and t = 50sec, when the power generation of the

inverter as well as its power contribution to the grid is much

lower following the solar irradiance profile, the impact of

the inverter’s malicious behavior is reduced. Thus, from an

adversarial perspective, targeting an inverter device during

peak-hours when the solar generation is reaching its maxi-

mum can yield significant implications on the grid’s opera-

tion. Fig. 11 shows the impact of the attack on the DC-side of

FIGURE 13. Cross-layer firmware attack impact on the power grid:
(a) renewable source generated power, (b) phasor and EMT magnitude of
the MG voltage, and (c) MG operating frequency.

the converter. It can be observed that both the DC voltage and

current fluctuate, creating harmonic distortion at the output.

Similarly, Fig. 12 demonstrates how the AC power generation

is affected by the firmware modification attack. At t = 1sec

the oscillatory behavior causes an islanding scenario that

disconnects the PV system from the rest of the MG. Fig. 14

shows the mapping of the presented case study with the

CPS framework.

FIGURE 14. Mapping of cross-layer firmware attack case study with
CPS framework.

It is important to note that in the presented case study, it is

assumed that the cross-layer firmware attack is performed

by an adversary with the capability of compromising the

physical device, hence, modeling the cyber-system layer was
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not required. An extension of this study could involve the

implementation of an over-the-air cross-layer firmware attack

that compromises a device via the cyber-system layer. The

implementation of such a scenario would also require the

modeling of the cyber-system layer, i.e., the communication

network that serves as the medium and entry point for the

attack.

Risk Assessment: Due to the inherent difficulty of getting

simultaneous access to multiple devices in order to cause

severe impacts on grid operation, the Threat Probability

for this type of attack is set to Medium (2). For the

resulting damage part of the Risk formula, we use the pri-

orities indicated in Table 8, and set the ‘‘People health

and personnel safety’’, ‘‘Uninterrupted operation and service

provision’’, and ‘‘Equipment damage and legal punish-

ment’’ attack impacts to Low (1), while the ‘‘Organiza-

tion financial profit’’ counterpart is set to Medium (2).

Thus, the comprehensive Risk for the evaluated cross-layer

firmware attack study is estimated to be 2 ∗
∑

(4 + 3 +

2 + 2) = 22.

B. CASE STUDY 2: LOAD-CHANGING ATTACKS

Background & Formulation: In load-changing attacks,

an adversary triggers an unexpected or sudden demand

increase or decrease of IoT connected high-wattage appli-

ances and DERs, with the objective of causing grid insta-

bilities [12]. Although currently hypothetical, due to the low

penetration rates of IoT-controllable high-wattage loads and

DERs, load-changing attacks are projected to become a ‘real’

threat in the near future as the number of controllable DERs

and loads is anticipated to grow exponentially [168]–[170].

Attackers able to install malware that could control DERs

and load consumption, can therefore maliciously manipu-

late system operating conditions and affect the CPES. One

example of such an attack can entail an adversary capable

of synchronously switching on and off high-wattage devices

at unexpected times, causing power, voltage, and frequency

instabilities, i.e., an Aurora-type attack at the load side [171].

This event could also potentially damage utility equipment or

initiate cascading failures in distribution systems.

In terms of mathematical formulation, load-changing

attacks can be framed as a DIA-type that maliciously mod-

ifies the control variables of loads in CPES, causing signifi-

cant unexpected power variations that could, in turn, lead to

circuit overflows or instabilities at certain vulnerable loca-

tions of the electric grid. This type of attack involves the mali-

cious manipulation of high-wattage appliances and/or DERs

that can significantly disturb the balance between power

supply and demand. In order to perform this type of attack,

we assume that the adversary accesses and controls multiple

compromised elements through the cyber layer of the sys-

tem, i.e., its communication network infrastructure, and then

manipulates their control variables causing rapid fluctuations

in the system’s response. A load-changing attack is different

from a ‘measurements-altering’ DIA in the sense that, instead

of measurements being affected, the control variables are the

ones being directly manipulated by the adversary. Using the

same CPS system described by Eqs. (3) – (5), the generalized

DIA for the load-changing attack scenario is described by:

xa(k + 1) = Gx(k) + B
(

u(k) + 1u(k)
)

(7)

ya = C
(

x(k + 1) + B1u(k)
)

+ e(k + 1) (8)

where xa and ya represent the states and measurements,

respectively, ‘altered’ by the manipulation of the system’s

control variables 1u.

In order to map the above formulation to the load-changing

attack case within CPES, the term u in Eq. (7) can be adapted

to represent the controllable ‘altered’ load demand in the

system as:

da(k) = di(k) + 1d(k) (9)

where d represents the controllable load demand, di is the

initial ‘un-altered’ load demand,1d is the portion of the total

load demand affected by the attack, and da represents the

total load demand ‘altered’ by the load-changing attack. If the

attackers simultaneously compromise more than one load in

the system, Eq. (9) can be extended as:

DT (k) =

m
∑

l=1

di,l(k) +

n
∑

j=1

da,n(k) + Ploss (10)

where DT represents the total demand in the system, m is the

number of total ‘unaltered’ loads, n is the total number of

loads compromised by adversaries, and Ploss is the total loss

in the distribution network.

Based on the CPES requirement to balance load and gen-

eration in real-time in order to maintain frequency stability in

the system [172], the summation of all generation output and

all load demands and losses must be approximately equal:

DT (k) ≈

Ng
∑

g=1

Pg(k) (11)

where Ng represents the number of g generators in the sys-

tem. To understand the effect of sudden load changes in the

frequency stability at each generator bus, we use the swing

equations. The swing equations in Eq. (12) – (14) describe

the relationship between the input mechanical power (Pm),

output electrical power (Pe), and the rotational speed of the

generator (ω) [173]. The term Pe is directly related to Pg,

since it represents the generator power output plus electrical

losses of the generating unit.

2 H

ωs

d2δ

dt2
= Pm − Pe (12)

dδ(t)

dt
= ω(t) − ωs (13)

2 H

ωs

dω(t)

dt
= Pm − Pe (14)

Pe =
VsVr

X
sin(δ) (15)

In these equations, H represents the constant normalized

inertia, ωs is the synchronous speed (i.e., 50 or 60 Hz), and
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δ is the power angle; the angle between the generator’s inter-

nal voltage, i.e., the voltage at the generator bus Vs, and its

terminal voltage, i.e., the voltage at receiving bus Vr . X is the

reactance based on the classical model of a generator [174].

The relationship between the electrical frequency ω(t) with

the power angle δ is shown in Eq. (13). Based on these

relationships, any sudden change in load demand, caused

by high-wattage loads turning on/off in the system, will

affect Pe, and thus cause subsequent frequency fluctuations,

as seen in Eq. (14).

Threat Model: In the load-changing attack case study,

the adversary is assumed to be either oblivious, i.e., hav-

ing no knowledge of the system topology, or with limited

knowledge. Such limited information regarding the CPES

could assist in optimally coordinating the attack and could

be acquired, for example, via open-source intelligence tech-

niques. The adversary can perform the attack remotely, thus,

non-possession is presumed of the IoT devices controlling

the high-wattage loads. Load-changing attacks are targeted

attacks aiming to destabilize grid operation by causing black-

outs, voltage sags, and/or frequency fluctuations. As a conse-

quence, determined adversaries with significant resources at

their disposal (Class II attackers) are required to successfully

materialize such attacks.

As for the attack model of the load-changing scenario,

the attack frequency component is considered iterative due

to the fact that in order to cause a significant effect on the

system, a single attack incident may not be sufficient. The

reproducibility of such stealthy and indirect attacks is set to

multiple-times. Furthermore, the attack functional level is at

Level 1 or 2, per the assets that are vulnerable and enable

this load-changing scenario (e.g., PLCs, controllers, HMIs,

etc.). Last, the attack techniques that the adversaries use can

either include control logic modifications if PLCs are targeted

or wireless compromise if a wireless controller is affected.

In both cases, the attacks target the cyber domain, and specif-

ically, the integrity of the in-transit data issued from HMIs or

SCADA MTUs (i.e., communications and protocols), or the

control commands to PLCs.

Attack Setup & Evaluation: In order to demonstrate the

effects of load-changing attacks on CPES, we simulate such

attacks targeting multiple load buses in the IEEE-39 bus

system. Three vulnerable load buses (bus 16, 23, and 29) are

selected as the targets for the load-changing attacks [175],

as shown in Fig. 15.

In this case study, it is important to examine the dynamic

impact of frequency instabilities caused by load-changing

attacks. Hence, to study these frequency instabilities,

we model the physical-system layer using an EMT-approach

with support from real-time simulation. At this layer, the gen-

erators are modeled as synchronous machines taking into

consideration the dynamics of the stator, the field, and the

damper windings. An excitation system is used for the sys-

tem’s control and protection functions designed to handle any

disturbances measured in the power system [176]. Loads are

modeled as constant impedance, current, and power (ZIP)

FIGURE 15. Load-changing attack on IEEE-39 bus system. Load-changing
attack targets are shown as red arrows in the system topology.

models [177]. The mapping of this load changing attack case

study to the CPS framework is presented in Fig. 16. The main

software resource used to conduct the EMT real-time simula-

tions of the physical-system layer is eMegaSim (from Opal-

RT). Themetrics used to evaluate the performance and behav-

ior of the IEEE-39 bus test system, based on the presented

CPS framework, are the physical-system layer performance

metrics related to frequency stability (Table 5).

FIGURE 16. Mapping of load-changing attack case study leveraging the
CPS framework.

In order to evaluate the impact of the load-changing attack

on the power grid frequency, we observe the frequency vari-

ations measured at the generators’ connections to the grid.

We develop four different scenarios of load-changing attacks

in which the system is initialized with original load values

from literature [178], and the system frequency is kept at

a nominal value of 60 Hz. All load-changing attacks are

triggered at t = 4sec with a duration of 0.5sec. Fig. 17a

shows the effect of a 20% load demand increase at bus 29.

Such sudden load demand increase causes the measured fre-

quency to decrease to around 59.87 Hz on the nearby gen-

erator 9 while having a smaller impact on other generators.

At t = 4.5sec, when the load demand increase is terminated,

the frequency fluctuates and increases to around 60.11 Hz

at bus 29. Fig. 17b shows the results of a simultaneous

load-changing attack that causes a 20% load demand increase

at buses 29 and 16. The main difference between this case

compared to the first scenario is the higher number of gener-

ators that are affected by the attack.

A load-changing attack with greater system impact is

depicted in Fig.17c. In this scenario, an attack is simulated as
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FIGURE 17. Frequency variation impact on the power grid: (a) with 20%
demand increased at bus 29, (b) with 20% demand increased at
buses 29 and 16, (c) with 50 % load increase at buses 29 and 16, and
(d) with 50 % load increase at buses 29, 16, and 23.

a 50% load demand increase that affects simultaneously buses

29 and 16. Here, we observe that the frequency measured at

multiple generators approximately reaches 59.85 Hz when

the load-changing attacks are triggered at t = 4sec, and

60.23 Hz when the load demand assumes nominal values

(t = 4.5sec). The final scenario is shown in 17d, where we

implement an attack that suddenly increases the load demand

by 50% at buses 29, 16, and 23. In this scenario, we observe

how every generator in the system is heavily affected by

the attack. The frequency measured at multiple generators

reaches minimum and maximum values of 59.85 Hz and

60.23 Hz at the respective trigger and termination events of

the attack. The most affected generators in this case study are

generators 9 and 6.

In the aforementioned scenarios, the attacker is assumed

to be able to alter the power consumption profiles of

IoT-connected controllable loads, and therefore cause sudden

load demand increase. The presented results demonstrate

the feasibility and impact of load-changing attacks. The fre-

quency fluctuations from such adverse events can lead to

exceeding the nominal EPS frequency limits [179], [180],

thus causing potential load-shedding incidents or equipment

failures [181]. As demonstrated in Fig. 18, EPS have in-built

control and protection mechanisms to maintain the power

system frequency within its nominal range. For example,

the AGCmechanisms can adjust minute frequency deviations

from their nominal value. However, if the EPS frequency

deviates more than 0.036 Hz from the predefined grid fre-

quency (i.e., 60 Hz), the generator governor systems are

employed to account for such frequency discrepancies and

stabilize the system. On the other hand, during more severe

incidents, such as overfrequency (at or above at 62.2 Hz)

or underfrequency (at or below 57.8 Hz) events, switching

equipment and relays will automatically trip to protect gen-

erators from such instantaneous and potentially catastrophic

frequency fluctuations [182]. Furthermore, during underfre-

quency incidents load shedding is typically employed to bring

the system frequency within acceptable operational limits

(between 58.4 Hz– 59.5 Hz) [179]. An ancillary mechanism

like the generator governors and AGC can then be utilized

to bring the system back to its nominal frequency state.

On the other hand, during severe events, where the frequency

keeps decreasing even further, generators’ CBs are tripped to

protect the equipment from permanent damage.

FIGURE 18. Power system corrective mechanisms to maintain stability
under different frequency deviations.

Risk Assessment: Similar to case study 1, load-changing

attacks require access to multiple devices to properly coor-

dinate a successful attack. Thus, the Threat Probability for

this type of attack is set to Medium (2). Following the

same objective priorities depicted in Table 8, we set the
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‘‘People health and personnel safety’’, and ‘‘Equipment dam-

age and legal punishment’’ attack impact to Low(1). On the

other hand, since potential protection mechanisms could be

triggered in the event of a load-changing attack causing

potential brownouts, in order to avoid cascading system

effects [183], the ‘‘Uninterrupted operation, and service pro-

vision" as well as the ‘‘Organization financial profit’’ are set

to Medium (2). Consequently, the Risk of the presented

load-changing demand attacks is estimated to be 2 ∗
∑

(4 +

2 + 6 + 2) = 28.

C. CASE STUDY 3: TIME-DELAY ATTACKS

Background & Formulation: Time-delay attacks (TDA) are a

type of DAAswhere attackers aim to destabilize the operation

of a compromised control system by delaying measurements

and/or control commands of sensors and actuators. This type

of attack does not require a massive amount of attacker

resources. For example, it can be implemented via network

congestion, caused by flooding the network with a huge

amount of data, thus disrupting the nominal operation of the

attacked system.

The mathematical formulation of TDAs is formu-

lated as follows. Consider the CPS system described by

Eqs. (3) – (5). If Tattack is defined as the period of time when

the TDA is performed, then the TDA can be structured as:

fD
(

sr (k)
)

=

{

sr (k − d), if k ∈ Tattack

sr (k), otherwise
(16)

where sr represents the compromised signal (which can be

either u, i.e., the control variable, or y, i.e., the measurements,

in the CPS), fD represents a time-delay function, and d repre-

sents either a discrete constant delay value or a time-varying

delay function.

TDAs are considered a major threat to CPES due to their

potential capability of disturbing the stability of islanded

MGs, or even the overall power grid, by simply delaying

measurements or control commands transmitted and received

from sensing and control devices (e.g., smart meters, PMUs,

etc.). Due to the importance of TDAs, existing literature

aims to understand the complications such attacks could

cause to CPES operations [32], [184], [185]. For instance,

in [185], the authors present an analysis of different TDA con-

cepts (e.g., TDA margins, boundaries, surfaces, etc.) regard-

ing effective conditions for TDA disruptions against grid

stability.

Threat Model: In the TDA case study, we assume an

oblivious adversary having essentially no knowledge of the

system topology; such detailed information is not necessary

to perform TDA events [186], [187]. Additionally, since this

type of attack is performed by introducing substantial delays,

mainly on the network level, possession of the targeted device

is not required. Due to the objective of TDAs aiming to

destabilize power grids by obstructing controls, crucial for

the system’s assets operation, TDA can be seen as a tar-

geted attack. Depending on the size and complexity of the

compromised CPES, the adversaries might require fewer or

an extensive array of skills and resources. Thus, adversaries’

resources for performing TDAs can be classified in either

Class I or Class II type of attackers.

In order for TDAs to compromise CPES and severely

impact their operation, TDAs should be performed iteratively

and multiple-times. In addition, Level 2 assets are commonly

the ones being targeted by TDAs. As mentioned before, typi-

cally, TDAs occur on the cyber domain, i.e., communications

and protocols, and target asset availability by tampering with

control commands issued by control server devices. Con-

sequently, wireless compromise, MitM, spoofing, and DoS

attacks are the most prominent techniques adopted by adver-

saries to cause anomalous incidents and cascading failures

based on TDAs.

Attack Setup & Evaluation: In this case study, we develop

and simulate a TDA scenario in order to demonstrate its effect

on a MG CPES. Specifically, in our study, a MG disconnects

from the main grid by an intentional islanding command

relayed from the MG controller at time t = 10sec. Due to

the insufficient generation capacity in the system, the MG

controller sends a load shedding command to a breaker that

controls a controllable load. At this point, the adversary

performs a TDA that will delay this load shedding command

sent from the MG controller to one of the controllable loads,

thus causing major disturbances at the physical-system layer

of the CPES. The TDA occurs at the cyber-system layer of

the CPES, so for this particular case study, models for the

cyber-system layer and the physical-system layer are required

to perform a real-time co-simulation of the respective layers.

The physical-system layer is modeled using an EMT-

simulation approach with support from real-time simula-

tion. At this layer, the MG is modeled as a test system

composed of a conventional generator operated using a fre-

quency control mechanism rated at 1 MW, a Li-ion BESS

rated at 100 kW/100 kWh, two controllable loads rated at

300 kW (load #1) and 700 kW (load #2), and a critical

(non-sheddable) load rated at 200 kW. The main software

resource used to conduct the EMT real-time simulations of

the physical-system layer for this case study is eMegaSim

(from Opal-RT). The cyber-system layer is modeled using

a communication network emulation platform that supports

co-simulation capabilities. Specifically, the software resource

used to model the communication network that represents the

cyber-system layer is EXataCPS.

Every MG component from the physical layer is mapped

with a virtual communication node inside the network emu-

lation platform. The backbone of the communication net-

work is represented by a network router. The network router

is responsible for sending control commands and receiv-

ing measurements from the MG components, i.e., BESS,

loads, and generator, to the MG controller, respectively. The

communication protocol used is the IEEE Std 1815, com-

monly known as DNP3. IEDs in the network are modeled as

DNP3 outstations and communicate with the MG controller

which is modeled as a DNP3 master. The DNP3 master
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and outstation devices exchange data and control commands

including, power generation, load consumption, breaker sta-

tus, etc. The connections between the communication net-

work nodes are modeled as wired 802.3 Ethernet connections

with 100 Mbps bandwidth. Fig. 19 shows a conceptual illus-

tration of the real-time co-simulation scenario designed to

perform the described case study. The metrics used to evalu-

ate the performance and behavior of the MG operation, based

on the proposed CPS framework, are the physical-system

layer performance metrics related to frequency stability, and

the cyber-system layer performance metrics related to aver-

age end-to-end delay and total number of packets delayed by

the TDA.

FIGURE 19. Conceptual illustration of the real-time co-simulation
MG system testbed used in the TDA case study.

Based on the described setup, the impact of a malicious

TDA in an islanded MG system is evaluated. An attacker

compromises the communication link between the MG con-

troller and the IED controlling the disconnection of the

breaker at the controllable (sheddable) load #1 (300 kW).

Three different attack test cases are evaluated by vary-

ing the time-delay duration of the TDA. These delays are

0.5sec, 5sec, and 15sec approximately. In the communi-

cation network, the attacks are modeled by modifying the

exchanged packets while introducing a timing delay between

the DNP3 master and the corresponding outstation.

The first attack scenario shows a 0.5sec TDA that blocks

the load shedding command performed by the MG controller.

Fig. 20a showcases the impact of the 0.5sec seconds TDA

when compared to the normal operation of the MG sys-

tem. In the graph, we observe how at t = 10sec the breaker

at the point of common coupling (PCC) is disconnected,

i.e., breaker command goes from 1 to 0, in order to perform

intentional islanding of the MG. Then, due to the insufficient

generation capacity, the MG controller sheds controllable

load #1 (shed command goes from 0 to 1). In the normal

operation case, the shedding procedure is performed as soon

FIGURE 20. Normal operation Vs. 0.5sec time-delay attack (TDA)
scenario: (a) EPS frequency response during a 0.5sec time-delay
attack (TDA) on the islanding command, and (b) generator power
fluctuation during the 0.5sec time-delay attack (TDA).

as the MG islands, while in the TDA scenario the shedding

procedure gets delayed by the amount of the time-delay

attack. Notably, the maximum and minimum values of the

MG frequency during the normal operation scenario are

60.02 Hz and 59.71 Hz, respectively. On the other hand,

the maximum and minimum values of the MG frequency

during the 0.5sec TDA scenario are 60.42 Hz and 59.32 Hz,

indicating (see Fig. 18) that system operators would have to

employ emergency corrective measures to maintain system

stability. Fig. 20b depicts the output power of the generator

set and the ESS during both scenarios.

Similarly, the second test scenario demonstrates a 5sec

TDA that blocks the load shedding command performed by

the MG controller. Fig. 21a presents the impact of the 5sec

TDA when compared to the normal operation of the MG

system. As seen, the impact on the operating frequency of

the MG is greater than the first test scenario due to the sus-

tained timing attack. The 5sec TDA causes a maximum and

minimum MG frequency of 60.52 Hz and 55.75 Hz, respec-

tively. Granted the substantial under-frequency incident,
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FIGURE 21. Normal operation Vs. 5sec time-delay attack (TDA) scenario:
(a) EPS frequency response during a 5sec time-delay attack (TDA) on the
islanding command, and (b) generator power fluctuation during the 5sec
time-delay attack (TDA).

i.e., 55.75 Hz, load-curtailment along with generator tripping

would have to be enforced to protect the EPS equipment and

avoid the incident propagation leading to a generalized grid

collapse (Fig. 18). As a result, this attack case demonstrates

the potential of TDAs to greatly disrupt the operation of the

system causing major equipment damages.

In the third test scenario, we perform a 15sec TDA that

blocks the load shedding command performed by the MG

controller. This case is analogous to a DoS attack, due to

the long period of the TDA, which can greatly disrupt the

operation of the MG’s load shedding mechanism. As seen

in Fig. 22a, this scenario demonstrates the worst-case sce-

nario of a TDA to the CPES. The MG frequency decreases

rapidly until it hits a minimum value of 15.31 Hz. Addi-

tionally, as depicted in Fig. 22b, the frequency-mode gen-

erator set is not capable of maintaining the stability of the

system for such a prolonged period causing large oscillations

in its power output. Notably, in realistic systems frequency

violations should be averted before reaching such extreme

values (e.g., 15.31 Hz). However, by leveraging the CPES

FIGURE 22. Normal operation Vs. 15sec time-delay attack (TDA) scenario:
(a) EPS frequency response during a 15sec time-delay attack (TDA) on the
islanding command, and (b) generator power fluctuation during the
15sec time-delay attack (TDA).

framework we can perform worst-case scenario analyses,

evaluate the system behavior under coordinated attacks (e.g.,

if an attacker disables automated grid safety mechanisms),

and identify critical system components and contingencies

without endangering the EPS operation.

In order to explore the behavior of the CPES at the

cyber-system layer, we analyze two metrics that provide

important information regarding the response of the com-

munication devices to the TDA. These two metrics are the

average end-to-end delay at the communication network,

and the number of packets delayed by the TDA. Fig. 23

shows the average end-to-end delay of all the network

devices communicating using DNP3 at the cyber-system

layer. Fig. 24 presents the total number of packets delayed

due to the TDA that compromises the correct operation of

the CPES according to two of the TDA scenarios (0.5sec and

5sec TDA). As seen in Fig. 23, the average end-to-end delay

of the communication network, operating under normal con-

ditions, has a maximum value of 0.0144sec. This value is

related to the master DNP3 device located at the PCC that
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FIGURE 23. Average end-to-end delay of all nodes in the communication
network (cyber layer).

FIGURE 24. Number of packets delayed by time-delay attack (TDA) at
delay = 0.5sec and delay = 5sec Vs. total number of packets in 30sec .

is communicating with all the DNP3 outstations. This is the

average time that theMG controller takes to communicate the

load shedding signal to the respective sheddable load under

normal operating conditions. In contrast, the TDA compro-

mises the system’s operation by delaying the load shedding

signal based on the scenarios presented previously. In order to

get more details regarding the attack study, the total number

of packets delayed by the TDA are measured and plotted

in Fig. 24. Here, we observe a side-by-side comparison of

the number of packets delayed in two of the presented test

scenarios, i.e., 0.5sec and 5sec delay scenarios, and the total

number of packets sent by the master and outstation devices

in the 30sec real-time co-simulation. Fig. 25 shows the map-

ping of the presented case study with the CPS framework.

Risk Assessment: In this type of attack, an adversary

does not require significant resources or capabilities to

compromise the CPES, as long as the system has not been for-

tified with state-of-the-art defense mechanisms. This ‘‘low-

bar’’ requirement of resources increases the probability of

successfully performing such an attack on a vulnerable CPES.

As a result, the Threat Probability for the TDA case study

is set to High (3). The impact on ‘‘People health and

FIGURE 25. Mapping of TDA case study with CPS framework.

personnel safety’’ as well as the ‘‘Organization financial

profit’’ are set to Low (1). However, TDAs can poten-

tially cause severe impacts on the grid operation. For this

reason, the ‘‘Uninterrupted operation and service provision’’

is set to Medium (2), and the ‘‘Equipment damage and

legal punishment’’ objective priority is set to High (3).

The resulting Risk for the TDA is estimated to be equal to

3 ∗
∑

(4 + 1 + 6 + 6) = 51.

D. CASE STUDY 4: PROPAGATING ATTACKS IN

INTEGRATED TRANSMISSION AND

DISTRIBUTION (T&D) CPES

Background & Formulation: As mentioned in Section IV,

T&D integratedmodels for real-time simulation within CPES

co-simulation testbeds can provide comprehensive and accu-

rate simulation results able to capture the dynamic behavior

of CPES. Specifically, integrated T&Dmodel co-simulations

can be used to holistically evaluate the impact of disrup-

tions (e.g., malicious attacks, faults, etc.) in EPS, and exhibit

how maloperations on the transmission system extend to

the distribution system and vice versa. Thus, in this case

study, we present DIA-type attacks as propagating processes,

similar to computer viruses, evaluated in real-time integrated

T&D simulation models.

EMT and TS power system simulations often model

only the transmission or the distribution system of power

grids. This is mostly due to the high computational power

required to have a real-time simulation model of an entire

EPS [145]. Aggregated distribution system sections are

typically replaced by static or dynamic loads when sim-

ulating transmission system models [172]. Correspond-

ingly, the transmission system’s behavior is often abstracted

using ideal voltage sources in distribution system model-

ing [188]. In addition, T&D models are usually simplified

to a single-phase representation [189], [190]. Such model-

ing approaches lose key information related to the behavior

of highly unbalanced distribution systems. In reality, T&D

systems are highly coupled [191], and in order to perform

comprehensive and accurate security assessment and impact

analysis studies in CPES, both T&Ddomains need to be accu-

rately modeled and simulated in a coordinated fashion. This

coordination involves a clock-synchronized loop in which,

even if the two models are executed on different cores of a

machine, they communicate in parallel to match boundary

conditions (i.e., voltages, power values, etc.) at every simula-

tion step, as seen in Fig. 26.

There are different techniques that can be used to

develop real-time integrated T&D models. Different plat-

forms provide different solutions and methods that allow
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FIGURE 26. Transmission and distribution (T&D) integrated simulation
system setup.

the parallel execution of different systems in real-time

EMT environments. In general, the overall T&D system

is separated into different groups (assigned to different

cores of the machine) that are solved individually using

a state-space approach. State-space equations and matri-

ces are used to describe the system group dynamics, while

the interaction between the groups is solved using a nodal

admittance method [192]. In the state-space approach the

physical-system is modeled as:

s′ = Aqs+ Dqv (17)

o = Eqs+ Fqv (18)

where s is the state vector, v is the input vector, o is the output

vector, and A, D, E , and F are the state-space matrices. The

term q represents the size of the matrices.

In a typical EMT state-space implementation, such as the

one available in Matlab Simscape Power Systems, every time

a switch changes status (on/off), the entire state-space solu-

tions are re-computed. Using such an approach for real-time

simulation (<≈50µs simulation time-step) of large inter-

connected T&D systems could be infeasible due to the

required computational resources. With every single sta-

tus change within the system model, the state-space out-

puts of the entire system would need to be re-computed.

To address this computational issue, platforms such as Opal-

RT, and its Advanced Real-Time Electro-Magnetic Solvers

(ARTEMiS) package, use state-space nodal methods [193].

ARTEMiS implementations discretize, pre-compute, and

store into cache memory, the state-space matrices for all

the combinations of switch topologies that can occur. Then,

using a nodalmethod, the common voltages, admittances, and

currents of the system (i.e., shared values between groups) are

solved as:

VY = I (19)

where V , I , and Y are the respective common voltages,

currents, and admittance matrices at the boundaries of the

groups. In essence, the use of this approach improves the

accuracy and computational execution time of the entire

system’s solutions. As a result, this is a feasible way for

simulating a real-time integrated T&D system and evaluating

the propagation impact of adverse disruptions, e.g., faults,

attacks, etc.

Threat Model: Integrated T&Dmodels can be seen as com-

plex structures. Depending on the T&D aspect targeted by an

adversary and the type of the attack, the threat model may be

adjusted to the specific details. For our use case, we assume

an adversary with strong knowledge of the system’s topology

and its components. Additionally, in our setup, the adversary

aims to destabilize the integrated T&D system bymaliciously

controlling switching devices, i.e., the CBs, thus possession

of the device is assumed. In the worst-case scenario analysis,

the attackers could lead the CPES towards full system col-

lapse, designating a targeted attack by Class II adversaries

with abundant resources (e.g., nation-state funded groups).

In terms of the attack model formulation, the attack fre-

quency is non-iterative, since compromising a critical sys-

tem asset (crown-jewel) could impact the overall system.

The reproduction of such types of attacks can be seen as

impractical due to their high system impact. Thus, we model

them as one-time attacks. The attack level is presumed to

be Level 2 since critical system components need to be

compromised. Such assets for our case include engineering

workstations since the attacker targets – in a DIA-type event –

the control and coordination between the T&D systems. The

attack technique is correspondingly an engineering worksta-

tion compromise. Directly issuing malicious commands from

an engineering workstation can also be a possible attack path,

assuming a malicious insider scenario. However, in our case

study, we assume a sophisticated and stealthy attack imple-

mented on the cyber domain targeting the data integrity of the

issued control commands from the engineering workstations

(DIA). For instance, disruptions on the T&D can occur by

falsifying the in-transit data exchanged between engineering

workstations and CB control devices, triggering unexpected

CB tripping and system sectionalization.

Attack Setup: In this case study, an integrated real-time

EMT T&D system is modeled in order to investigate different

interactions of propagating attacks and disturbances between

a transmission and an unbalanced distribution system. Specif-

ically, we integrate a transmission system, modeled as the

IEEE-9 bus system, with a distribution system, modeled as

the IEEE-13 bus test system. In order to match the power

generation and load consumption between the power grid

benchmarks, we scale some of the systems’ parameters. For

example, the active power and reactive power of the genera-

tors and the loads in the transmission system are reduced by

an order of magnitude, while all the loads in the distribution

system are increased by an order of magnitude. Addition-

ally, as shown in Fig. 27, the load at bus 5 of the IEEE-9

bus transmission model is ‘replaced’ by the IEEE-13 bus

distribution system. Generator 1 (G1) is used as the slack

bus. The EMTmodeling and real-time simulation of this case

study’s physical-system layer are performed using eMegaSim

of Opal-RT.

In order to evaluate the bi-directional impact of propaga-

tion attacks in integrated T&D models of CPES, we develop

two attack scenarios in this case study. The first scenario

assumes that the adversary has the capability of altering the

EPS topology. This can be achieved by decoupling the T&D

system at the PCC via a DIA attack on the EPS switch
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FIGURE 27. The integrated T&D real-time simulation model: it includes
the IEEE-9 bus system (transmission model) and IEEE-13 bus system
(distribution model).

devices (i.e., the distribution feeder CBs). The second sce-

nario demonstrates the impact on the distribution system

when transmission system components are compromised.

Following our CPS framework, the metrics used to evaluate

the performance and behavior of the T&D system under the

propagation attack scenarios, are the physical-system layer

performancemetrics related to frequency stability and voltage

stability.

In the first propagation attack scenario, we assume that the

adversary by tripping the CBs at the PCC between the T&D

system can disturb the EPS frequency impacting its operation

and potentially causing damages to field equipment (e.g.,

transformers, commercial and residential loads, etc.). Differ-

ent attack paths can be pursued to compromise and decou-

ple T&D systems. For instance, such adversarial objectives

(i.e., T&D decoupling) can be achieved by i) intruding via

the communication infrastructure and remotely manipulating

the control tags issued by engineering workstations located at

the system operation management facilities, ii) implementing

DoS attacks on the targeted PLCs, disabling the CBs, iii)

compromising the controller logic of IED-enabled switching

equipment, or iv) penetrating the utility SCADA network and

maliciously manipulating control settings (e.g., over/under -

voltage or current limits) [194].

The results presented in Fig. 28a are measured at the gener-

ator buses, i.e., buses 1, 2, and 3 of Fig. 27. The frequency at

the transmission side of the network rapidly increases when

the CB is tripped at t = 1.5sec, and returns to its nominal

values at around t = 1.8sec. The peak frequency value is

around 60.23 Hz. Fig.28b shows the frequency response of

the system when the attacker opens the CB between the T&D

system at t = 1.5sec, and then closes it after 15 cycles

(approximately 0.25sec later) which would avoid triggering

any protection countermeasures during this intermittent fre-

quency transient [171]. We observe how such attacks could

stealthily destabilize the EPS just by tampering with the CB

controls between different zones of the power grid. Here,

two main fluctuations are observed following the CB tripping

behavior, one between t = 1.5sec and t = 1.75sec when the

FIGURE 28. Frequency response when the CB at bus 5 of the IEEE-9 bus
system is: (a) opened at t = 1.5sec , (b) opened at t = 1.5sec and then
closed at t = 1.75sec , and (c) opened at t = 1.5sec , closed at t = 1.75sec ,
and opened again at t = 2sec .

CB is tripped open, and between t = 1.75sec and t = 2sec

when the CB is closed. The last scenario assumes an attacker

aiming to damage system components by asynchronously

changing the status of the CBmultiple times. Fig. 28c demon-

strates the frequency fluctuations on the generator buseswhen

the CB between the T&D systems is opened at t = 1.5sec,

closed at t = 1.75sec, and then opened again at t = 2sec.

Notably, if safety mechanisms are not promptly enforced,

the frequency instabilities occurring between t = 1.5sec and

t = 2.4sec could affect frequency-sensitive grid components

(i.e., consumer, commercial, and industrial loads), and impact

grid equipment and control functions (e.g., generators, trans-

formers, automated voltage control, etc.).

In the second scenario, it is assumed that an adversary has

the capability of compromising components at the transmis-

sion side of the power grid. For example, such types of attacks

have been experimentally evaluated and indicate that if they

last around three minutes, they can cause permanent damage

on generators [122]. In this use case, our aim is to evaluate
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how an attack on the transmission level can propagate on the

distribution level and manifest as a voltage variation. Con-

tingency analysis is employed in the integrated simulation

environment to study the effects of transmission-side adverse

events on the distribution system. In more detail, contingency

analysis is a simulation-based system analysis tool used to

assess the impact of various combinations of component fail-

ures occurring in transmission systems. The North American

Electric Reliability Corporation (NERC) enforces a N − 1

constraint for the U.S. power grid, which means that EPS

transmission systems need to maintain nominal operation

even if one component fails [195]. Such components include

generators, transmission lines, transformers, etc. Depending

on the security level of the EPS, a higher N − k criterion may

be required, where k ≥ 2 represents two or more contingency

events. For example, a nuclear plant may be required to

satisfy a N − 2 constraint, allowing the grid to withstand the

simultaneous failure of two components.

For the purpose of our study, we assume that the attacker is

able to compromise one or more components of the transmis-

sion system, causing under-voltage events at the distribution-

side. When component failures occur, the system aims to

maintain stability. However, the intermittent transmission

system instability along with the potential inability to support

power demand results in voltage deviations which are also

propagated to the distribution level. Four main sub-cases are

designed in this second scenario to illustrate the correspond-

ing voltage impact at bus 632 of the distribution system. The

first two sub-cases consider an attacker that compromises one

generator (G2 or G3) once at a time (N − 1), where the rest

sub-cases consider an attack on two generators (G2 and G3)

consecutively (N − 1 − 1), or simultaneously (N − 2). In all

sub-cases, we evaluate the voltage variation (depicted in per

unit – p.u.) measured at bus 632.

As seen in Fig. 29a and Fig. 29b, the voltage measured

at bus 632 of the distribution system drops from 1 p.u.

to 0.5 p.u. at t = 1.5sec, i.e., when one of the generators

(G2 or G3) is disconnected from the transmission system

(N − 1). Fig. 30a demonstrates the voltage variations of the

N − 1 − 1 contingency event in which G2 and G3 are dis-

connected at t = 1.5sec and t=1.6sec, respectively. During

this case, the bus voltage initially drops from 1 p.u. to 0.5 p.u.

(G2 disconnection), and then to 0.2 p.u. when G3 is also dis-

connected. In theN−2 case, presented in Fig. 30b, the simul-

taneous disconnection of G2 and G3 from the system lowers

the voltage significantly at t = 1.5sec. The voltage mea-

sured at bus 632 of the distribution system decreases to

under 0.2 p.u. within 0.05sec. Fig. 31 illustrates the mapping

of the propagating attack case study in T&D systems with the

CPS framework.

Risk Assessment: Compromising T&D systems requires

determined adversaries possessing both strong knowledge

of the system architecture as well as ample resources since

these can enhance the probability of materializing successful

attacks. Thus, we set the Threat Probability to High (3)

[196]–[199]. Attackers could perform stealthy and disastrous

FIGURE 29. Voltage response at bus 632 (distribution system) during
N-1 transmission system contingencies when: a) generator G2 is
disconnected at t = 1.5sec , and (b) generator G3 is disconnected at
t = 1.5sec .

FIGURE 30. Voltage response at bus 632 (distribution system) during
transmission system contingency scenarios:a) N-1-1 contingency where
generators G2 is disconnected at t = 1.5sec and G3 at t = 1.6sec
consecutively, and (b) N-2 contingency where generators G2 and G3 are
disconnected at t = 1.5sec simultaneously.

attacks by leveraging the knowledge of system topology,

asset placement information, power demand profiles, etc.

As a result, by targeting mission-critical system components
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FIGURE 31. Mapping of T&D case study with CPS framework.

during peak utilization periods (e.g., peak power demand time

of the day), adversaries could maximize the corresponding

attack impact [84]. A power system collapse (e.g., blackout),

which could be the impact of the successful propagation of

T&D attacks, can significantly affect ‘‘People health and

personnel safety’’, ‘‘Uninterrupted operation and service pro-

vision’’, and ‘‘Equipment damage and legal punishment’’.

Based on these assumptions, the ResultingDamage is set to

High (3), while the ‘‘Organization financial profit’’ is set

to Low (1). The aggregated Risk for this type of attack can

be estimated to be 3 ∗
∑

(12 + 9 + 6 + 1) = 84.

E. POST-RISK ASSESSMENT DISCUSSION

The next step after the risk score calculation includes risk

prioritization. The risk identification, assessment, and pri-

oritization serve as preliminary steps and are critical for

the decision making and formulation of mitigation plans.

Specifically, in this work, we have considered four diverse

attack use cases aimed at CPES while targeting different

cyber or physical subsystems or components. In more detail,

we discuss cross-layer firmware attacks with a calculated

risk score equal to 22, load changing attacks with risk score

equal to 28, TDAs with a risk score evaluated to 51, and

finally propagating attacks targeting integrated T&D CPES

with an 84 risk score. These risk scores provide a useful way

to perform one-to-one comparisons between attacks even if

their specifics are unknown.

Attacks with higher risk scores (e.g., the T&D propagation

attacks) will induce a higher impact on the systemwhen com-

pared to other attacks such as the cross-layer firmware attack

with a less pronounced risk score. In Section III-C, we justify

how the use of each case’s risk score variations depend on

the corresponding attack characteristics (e.g., threat proba-

bility, objective priorities, and potential impact on the CPES

operation). As a result, attacks similar to the one targeting

the integrated T&D system, aim to affect almost every CPES

operational objective. Furthermore, they are attractive from

an adversarial perspective due to the maximization of the

inflicted system disruption. Hence, such attacks will obtain

high-risk scores. The same cannot be argued for attacks that

can be sustained even post-compromise, targeting less critical

CPES equipment.

The risk score-based ranking helps to categorize the attacks

(and their corresponding risks) into pools [93]. For exam-

ple, assuming that we have four pools, the most devastat-

ing attacks (i.e., with scores greater than a system-defined

threshold) would be placed into pool 1, while less critical

attacks – with smaller risk scores – would be allocated to

pools 2 -4 in a descending risk score fashion. For each of the

pools, predefined strategies are designed to mediate potential

attacks. Typically, attacks belonging to pool 1 should be

mitigated at all costs since they can compromise the whole

system (in our case the CPES). However, the mitigation

of attacks belonging to lower-ranked pools might either be

i)deferred if they do not pose significant threats to system

operation, ii) transferred to other parties instead of allocating

system resources to resolve them, or iii) accepted if the

cost of mitigating them outweighs the impact that could be

inflicted on the system. Thus, the risk assessment does not

only provide better awareness of system risks and an efficient

way to perform risk comparisons, but it can also automate

the process of handling risks and administering corrective

measures.

VI. CONCLUSION

In this work, we provide a comprehensive analysis of CPS

security, with particular emphasis on CPES applications. The

first step in this process encompasses an extensive threat

modeling procedure, where adversary and attack models are

constructed. The adversary and attack models provide an

in-depth understanding of attackers’ motives and capabilities,

in addition to the attack’s details including potential entry

points, attack techniques, and end goals. The next step in the

analysis includes the presentation of a CPS framework, where

the resources, metrics, and modeling techniques needed to

effectively evaluate CPS, and more specifically CPES, are

discussed in detail. This framework is designed with the

objective of assisting researchers and stakeholders identify

the models and resources required to perform high-fidelity

and reliable CPS studies. Furthermore, we present a risk

assessment methodology that leverages both the treat mod-

eling as well as the CPS framework to characterize system

risks.

In order to illustrate the suitability of the overall method-

ology and description of the CPES security landscape,

we investigate four attack case studies. For each scenario,

we provide a fundamental background alongside its math-

ematical formulation and discuss the corresponding threat

model and attack setups. The presented case studies are sim-

ulated under nominal and abnormal operating conditions to

uncover their system-wide impacts. Risk assessment analysis

is also performed as part of each case’s security investigation.

During the risk assessment stage, we calculate the relative

risk scores indicating the severity of each compromise. The

risk scores correspond to the discussed studies, the threat

scenarios, and the targeted assets (e.g., microinverters, T&D

system, time-delay, etc.). These scores can be utilized for

the ranking and prioritization of possible disruptions, and the

determination of proper risk mitigation strategies to address

malicious attacks implications.

The holistic approach and studies presented in this paper

provide guidelines for modeling CPS threats as well as

designing, simulating, and evaluating detailed CPS models.

The presented framework can promote rigorous security anal-

ysis of CPS. Our future work will extend this framework and

advance its capabilities even further, allowing for:
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• Secure and resilient CPES operation: In this work,

we have stressed the importance of cyber-secure CPES

as well as that the integration of contemporary cyber

features and new physical components can increase the

attack surface. The emphasis though, should not only be

placed on detecting attacks, limiting andmitigating them

but also in designing fault-tolerant and resilient CPES.

Having identified potential vulnerabilities present in the

CPES and leveraging our framework, we will define

resiliency methodologies and metrics to assess CPES

posture. In more detail, the resiliency methodologies

will serve as CPES design best practices promoting

the design of robust systems with in-built redundancy

mechanisms if adverse scenarios occur. On the other

hand, the resiliency metrics will be ported to our current

framework and have a twofold objective, i) they will

indicate how effectively the system can handle adverse

circumstances, and ii) they will serve as criteria for

the categorizations of CPES based on their ability to

withstand attacks.

• Autonomous CPES operation and simulation-aided risk

assessments: CPES are becoming more sophisticated

and support a plethora of automated processes (e.g.,

automated control mechanisms, PLCs, AGC, etc.). Such

automated systems should be capable to make real-time

decisions, especially for time-critical parts of CPES, and

coordinate the dynamic system behavior. It is expected

that CPES will becomemore complex and densely inter-

connected as they integrate more features (remote access

and control, assets, communications protocols, etc.).

During their autonomous operation, the system might

encounter unexpected states (e.g., unintended faults dur-

ing natural disasters, or malicious attacks) that might

require specific handling. Thus, determining and eval-

uating their security should be facilitated in a dynamic,

albeit abstract way. Following this approach, guarantees

that every unexpected scenario will be accounted for,

and adverse situations will be timely prevented. Digital

twin system configurations can achieve these objectives

and enable the design and real-time evaluation of risk

mitigation strategies. As a result, a CPES testbed will

be designed to support the fully-automated operation,

and incident-response structures, where attacks can be

promptly detected and optimally mitigated, eliminating

any adverse consequence on the actual system.

• Dynamic reconfiguration and self-healing capabilities:

Securing CPES should be viewed from two direc-

tions. The first direction includes the security measures

and practices which should be employed to protect

system operations and avert attackers. On the other

hand, the second direction features the policies and

strategies which should be pursued post-compromise

or during dire circumstances. The first direction has

been extensively discussed in this paper; we aim to

account for the second direction in our future framework

extensions. Specifically, utilizing our framework and

system resources we will provide classes of crisis-

handling plans promoting CPES self-healing capabili-

ties. These classes will provide tailor-made strategies

to overcome emergencies, depending on the current

state of the CPES and the under-investigation scenario

characteristics. For example, during a transmission sys-

tem contingency, the corresponding class would pro-

vide alternative ways to dispatch power overcoming

this issue and potential predicaments. These dynamic

re-configurations and self-healing CPES capabilities

will stimulate the design of future secure and resilient

systems and prove invaluable tools for system operators.
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