
ORIGINAL ARTICLE

Cyber-physical production systems architecture
based on multi-agent’s design pattern—comparison of selected
approaches mapping four agent patterns

Luis Alberto Cruz Salazar1,2 & Daria Ryashentseva1 & Arndt Lüder3 & Birgit Vogel-Heuser1

Received: 3 September 2018 /Accepted: 17 April 2019
The Author(s) 2019

Abstract

The growing complexity of production systems requires appropriate control architectures that allow flexible adaptation during

their runtime. Although cyber-physical production systems (CPPS) provide the means to copewith complexity and flexibility, the

migration with existing control systems is still a challenge. The term CPPS denotes a mechatronic system (physical world)

coupled with software entities and digital information (cyber part), both enabling the smart factory concept for the Industry 4.0

(I4.0) paradigm. In this regard, design patterns could help developers to build their software with common solutions for

manufacturing control derived from experiences. We provide a description and comparison of the already existing multi-agent

systems (MAS) design patterns, which were collected and classified by introducing two classification criteria to support MAS

developers. The applicability of these criteria is shown in the case of specific example architectures from the lower and higher

control levels. The authors, together with experts from the German Agent Systems committee FA 5.15, gathered more than

twenty MAS patterns, evaluated, and compared four selected patterns with the presented criteria and terminology. The main

contribution is a CPPS architecture that fulfills requirements related to the era of smart factories, as well as the Reference

Architectural Model I4.0 (RAMI 4.0). The conclusions indicate that agent-based patterns greatly benefit the CPPS design. In

addition, it is shown that manufacturing based on MAS is a good way to address complex requests of the CPPS development.

Keywords Cyber-physical production systems . CPPS . Design patterns . Distributed control systems . Industry 4.0 . MAS .

Multi-agent systems . RAMI 4.0

1 Introduction

Commonly, companies widen their product portfolio and at-

tempt to shorten their production time to increase revenue and

market presence. These actions may indirectly increase the

complexity of the production process. At the same time, the

Industry 4.0 (I4.0) paradigm tries to meet the emerging DIN

SPEC 91345 norm [1], regarding the Reference Architectural

Model I4.0 (RAMI 4.0) inside the factory and migrate from

conventional automation systems to cyber-physical produc-

tion systems (CPPS) [2], and their admitted standards [3, 4].

The term CPPS denotes a mechatronic system coupled to

smart entities that enable the smart factory and machines tools

of I4.0 concept [5, 6]. The application of the distributed con-

trol theory based on the multi-agent systems (MAS) is

employed [7, 8] to cope with CPPS challenges. Since it is

not always straightforward to create such a system from

scratch, ready-made solutions, such as design patterns, based

on the experience of specialists from different fields are re-

quired. In order to reduce the time, cost, and risk of developing

a new design, MAS developers shall understand these pre-

pared solutions in an easy way. Also, as the MAS were not

often implemented in the industry due to the limited

All author are members of the technical committee FA 5.15 “Agent

systems” of the Society Measurement and Automatic Control (GMA)

within the Society of German Engineers (VDI) and German Electrical

Engineers (VDE), and National Member Organizations (NMO) of IFAC

and the IEEE-IES Technical Committee on Industrial Agents (TC-IA)

* Luis Alberto Cruz Salazar

luis.cruz@tum.de

1 Institute of Automation and Information System, Technical

University Munich, Garching, 85748 Munich, Germany

2 Universidad Antonio Nariño, Bogotá, Colombia

3 Institute of Ergonomics, Manufacturing Systems and Automation,

Otto-von-Guericke University, Magdeburg, Germany

https://doi.org/10.1007/s00170-019-03800-4

The International Journal of Advanced Manufacturing Technology (2019) 105:4005–4034

/Published online: 201926 July

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-019-03800-4&domain=pdf
http://orcid.org/0000-0001-8386-5568
https://orcid.org/0000-0002-9554-6983
https://orcid.org/0000-0001-6537-9742
http://orcid.org/0000-0003-2785-8819
mailto:luis.cruz@tum.de

understanding [8, 9], to increase their acceptation, the pre-

pared patterns can help.

Design patterns provide a means of identification and con-

sideration of broader success aspects in particular problems

[10]. They are described as an abstraction of the system devel-

oping process, since they are based on already working solu-

tions. The abstraction focuses on the essential aspects captured

by the pattern [11]. Therefore, design patterns due to the prop-

erties of the agents [9] provide increased connectivity between

control levels of the automation pyramid, to ease the migration

to the CPPS. As the MAS have a flexible programmable and

dynamic architecture [8], patterns could provide the support of

properties such as reusability, flexibility, adaptability, and

modularity, which will satisfy the requirements of CPPS [3,

12], following the future needs of the automation [13, 14].

1.1 Contribution to the industrial automation

The idea of this paper is to provide engineers and programmers

with existing patterns based on the MAS structures, which will

help improve their design efforts and therefore increasing the

efficiency of the manufacturing process control, and decreasing

the development design cost (reusability [15]). Based on prior

experiences, design patterns are delivered to address MAS into

different levels of the automation hierarchy (low/high level)

with real-time and non-real-time control systems, mainly indus-

trial controllers’ technologies, e.g., Programmable Logic

Controller (PLC). Furthermore, design patterns enable MAS

developers to easily have the same understanding of the solu-

tion system’s design [15–17]. Thus, ready-made templates are

designed to simplify the comparison of MAS alternative solu-

tions [17]. Other benefits of this contribution are the following:

1. Awell-discussed survey/summary at least in agents work-

ing group of the German IFAC NMO GMA FA 5.15 is

presented.

2. Mapping of analyzed MAS functional requirements to

sub-agents’ patterns was provided.

3. Proposed sub-agent patterns for MAS technology in in-

dustrial environments are extendible; further extended de-

signs are possible for more use cases.

4. The proposed sub-agent patterns will reduce the time and

cost efforts, as the proposed pattern is a “ready-made”

solution.

5. The identified design patterns are the basis for the devel-

opment of agent-based CPPS and for their structural rep-

resentation. However, the contribution does not consider

an explicit MAS architecture (with final requirements) for

the application of an individual CPPS or system domain.

6. The proposed sub-agent patterns support integration and

development of MAS for different automation levels

based on ISA 95 and RAM I4.0.

Existing control architectures are frequently based on the de-

veloper’s experience from every single domain, but MAS devel-

opers are often unaware of the benefits of design patterns.

Therefore, this manuscript provides 13 criteria (see Section 3),

as a key result from a preliminary classification of differentMAS

and their evaluation in various domain solutions, as shown in

[18]. Thereby, thiswork aims at finding and validating the criteria

required for pattern creation enabling the migration to CPPS:

& Using relevant requirements of the CPPS from Ribeiro

and Hochwallner [12].

& Aligned with smart agent proposals for industry from

Leitao et al. [9].

& Aligned with the RAMI 4.0 model [1].

Based on the essential properties of MAS [8], this paper

gives a deep classification and analysis of the collected MAS

with the derived criteria, which will help for further pattern

development, and suggestion of agent-based CPPS

architecture.

1.2 Research questions and hypotheses

Despite the fact that theMAS application has not been popular

in industry, nowadays, its admission is acceptable [8, 9] and

the MAS applicability is more extensive than over the last

years [8, 9, 18]. Moreover, the existence of patterns will ease

the perception and comprehension for the MAS developers.

Design patterns based on MAS for manufacturing would en-

able rapid application in industry [17]. Besides, the agent-

based architectural solutions usually possess the characteristic

of “plug and produce” use and are applicable in many do-

mains after simple parameter adjustment [19]. In addition,

they are suitable for different control layers regarding the au-

tomation pyramid that will allow the creation of versatile ap-

proaches regarding CPPS [9]. It is a big challenge to charac-

terize a universal design that applies to the logical architecture

and to software abstractions. Therefore, in this work, the target

of design patterns concerns a functional system level as a

MAS logical architecture that does not deal with software

level abstractions. However, relevant information to logical

architecture and software could be addressed by the final de-

sign proposal. Consequently, this work addresses four general

research questions (RQ1-RQ4) connected to eight research

hypotheses (RH1.1-RH4.2), as shown in Table 1.

The manuscript is structured as follows: Section 2 reviews

the state-of-the-art of the collected MAS patterns for

manufacturing systems. Section 3 introduces the discussion

about the classification criteria to compare MAS approaches

for the further elaboration of the patterns. Section 4 evaluates

the four different MAS approaches applying the 13 classifica-

tion criteria. In Section 5, common functional requirements of

MAS patterns are presented. Finally, Section 6 represents the

Int J Adv Manuf Technol (2019) 105:4005–40344006

agent-based CPPS architecture aligned with RAMI 4.0 model.

This work is summarized within the conclusion in Section 7.

2 Related work

As described in the previous section, this paper presents select-

ed MAS ready-made solutions to give support to developers,

so they can easily produce new control systems [15, 17]. It

helps to avoid the common design mistakes during the sys-

tem’s development phase [8]. The new solution should support

among others reusability, flexibility, modularity, as defined in

[8, 20]. TheMAS approaches are classified in order to facilitate

the migration from the conventional automation systems to the

CPPS. Therefore, authors use a template that consists of a list

of classification criteria validated by experts in the German

community FA 5.15 (see Section 3). Because all approaches

were created to be used in different domains and different

layers of the automation pyramid, a notable part of them are

concentrated to provide the flexibility or changeability (FC) of

the system. Others concentrate on other features such as reli-

ability (RL), adaptability or agility (AA), reconfigurability

(RC), and dependability (DP). All of these characteristics are

enlisted and described in Table 2, according to [8, 12, 20, 21].

The comparison of existing systems architectures and their

focuses—regarding specific CPPS and RAMI 4.0 require-

ments—are collected and presented in Table 3; as shown,

almost all architectures concentrate on providing flexibility

for the automation systems. Table 3 also compares the struc-

ture for CPPS approaches regarding the control distribution’s

classes from Trentesaux [22]. The CPPS structures can be

classified between Classes 0 and III according to their control

and decision-making mechanism, as the following list:

& Class 0. Centralized control systems (e.g., CIMOSA [23])

& Class I. Fully hierarchical control system (e.g., acquire,

recognize, and cluster architecture for SoA or ARC-SoA

[24])

& Class II. Semi-heterarchical control system (e.g.,

ADACOR [25] architecture)

& Class III. Fully heterarchical control system (e.g., D-MAS

architecture [26])

Any MAS may be used regardless of its class, since all

MAS were proposed for different use cases, e.g., for the in-

dustry, smart grids, etc. [9] and be applied for the purpose of

satisfying the CPPS and RAMI 4.0 requirements (see Section

2.1). In fact, these approaches apply methods and techniques

such as the Industrial Internet of Things (IIoT), decision-mak-

ing mechanisms, semantic models, process synthesis, and op-

timization [18].

The German committee FA 5.15 initiated the idea of this

work, where 20 different agent-based approaches were col-

lected inside of the group discussions. Additionally, each

FA-author had a direct access to the evaluation of the pattern

and gave feedback. Therefore, authors do not claim that the

collected list of MAS is holistically completed, as it focuses

just on German applications for production systems.

However, the list of MAS can be further extended to consider

other applications. At the moment, it covers the different fields

of application from software and manufacturing domains:

smart grids, logistics, geography and image process applica-

tions, etc.

Wannagat [27] presents a MAS implementation concept

for handling a faulty sensor or an actuator for automation

systems. This architecture provides the flexibility, reliability,

and reconfigurability for the production systems. The work of

Table 1 Research questions and related hypotheses

Research questions Hypotheses Proof

RQ1—How are the MAS patterns for CPPS

depicted and what criteria are used to describe them?

RH1.1—classification criteria for MAS approaches delivers valid and

decidable information for their evaluation

D

RH1.2—MAS approaches for CPPS can be classified and identified

with similar design pattern’s terms (e.g., names, functionalities, etc.)

E

RQ2—For which domains of CPPS are the

MAS patterns designed and applicable?

RH2.1—MAS approaches have application in diverse domains with

different goals and benefits (e.g., flexibility, adaptability, etc.)

D

RH2.2—CPPS are applicable in every domain in appliance with the

real-time requirements of MAS approaches

E

RQ3—Which MAS design patterns for CPPS are reusable? RH3.1—there are reusable MAS patterns with functional and non-functional

requirements for CPPS design

E

RH3.2—MAS components follow specific sub-agents, which have

particular aims and are reusable for CPPS design

E

RQ4—How do the MAS design patterns develop

into a CPPS aligned with RAMI 4.0?

RH4.1—it is possible to harmonize different MAS approaches to

obtain a simple CPPS architecture aligned with RAMI 4.0

E

RH4.2—MAS patterns provide Industry 4.0 component’s properties and

specific information to its administration shell

E

D, insights gained from documents and feedback of MAS patterns’ authors; E, insights gained by the validation analysis of this manuscript’s authors

Int J Adv Manuf Technol (2019) 105:4005–4034 4007

Schütz [28], based on Wannagat, proposes a heterarchical

approach about a PLC-Agent-System with individual knowl-

edge-based agents. Main features of the approach are flexi-

bility and reconfigurability. The MAS of Ulewicz [7] repre-

sents an abstract architecture concept for plants inside indus-

trial automation. Its focus is on providing flexibility and reli-

ability and it has been applied on real industrial context,

validated by industrial experts. Legat [15] proposed an

agent-based architecture for handling unforeseen failures;

the main features of this approach are flexibility and

reconfigurability [29].

The approach of Rehberger [19] is designed for achieving

both flexibility and availability during run-time (for coping

with unknown product recipes and breakdowns of sub

Table 3 Related work focusing on providing benefits and regarding CPPS and I4.0 requirements

Author(s) Characteristic benefit Classification CPPS requirement RAMI 4.0 requirement

FC RL RC AA DP Scope Class Req.

1.1

Req.

1.2

Req.

1.3

Req.

1.4

Req.

1.5

Req.

2.1

Req.

2.2

Req.

2.3

Req.

2.4

Req.

2.5

ADACOR (Leitão and

Restivo, 2006) [25]
• • • HMS architecture II + ++ ++ + + – – ++ – –

Andrén et al., 2013 [30] • MAS for smart grid III + + ++ + – + – – – –

Cruz S. et al., 2018 [31] • • • CPPS architecture II ++ ++ ++ ++ ++ – – ++ – –

Fischer et al., 2018 [32] • • MFS agent-based III ++ + + + – – – + – –

Karnouskos and De

Holanda, 2009 [33]
• MAS for smart grid III + + ++ ++ – – – ++ – –

Leitão et al., 2016 [9] • • • • MAS for industry III ++ ++ ++ ++ + – – – – –

Lüder et al., 2017 [16] • • MAS for industry III + + ++ – – – – ++ – –

Lüder et al., 2017 [34] • MAS for industry III + + ++ ++ – + + + + +

Nieße, A., 2015 [35] • MAS for smart grid III + + ++ ++ ++ + + ++ + +

PROSA (Brussel et al.,

1998) [36]
• • • HMS architecture II + ++ ++ + + – – ++ – –

Regulin et al., 2016 [37] • MFS agent-based III + ++ ++ + – – – – – –

Rehberger et al., 2017

[19]
• • MAS for industry III + + + ++ – – – + – –

Ribeiro and

Hochwallner, 2018

[12]

• • • • CPPS architecture III ++ ++ ++ ++ + + + ++ + –

Ryashentseva, 2016 [38] • • MAS for industry III + + ++ ++ + – – ++ + -

Schütz et al., 2011 [28] • • MAS for industry III ++ ++ ++ ++ + – – + – –

Theiss and Kabitzsch,

2017 [39]
• MAS for industry III + + ++ ++ + – – + – –

Ulewicz et al. [7] • • MAS for industry III + ++ ++ + – – – + – –

Vogel-Heuser et al., 2014

[40]
• MAS for industry III + ++ ++ + + – – + – –

Wannagat, 2010 [27] • • • CPPS architecture III + + ++ + – – – + – –

Notation: ● Applicable; ++ High; + Medium; – Low

Table 2 Description of characteristics for CPPS [8, 12, 20, 21]

Feature Description

Flexibility/changeability [12, 21] (FC) It is often the grade to which a product or system can be used with effectiveness, efficiency, freedom from risk,

and satisfaction in contexts beyond those initially specified in the requirements

Reliability [21] (RL) A set of attributes that bear on the capability of software to maintain its level of performance under stated

conditions for a stated period of time (four attributes: maturity, fault tolerance, recoverability, reliability

compliance)

Reconfigurability [20] (RC) A system designed at the outset for rapid change in structure, as well as in hardware and software components,

in order to quickly adjust production capacity and functionality within a part family in response to sudden

changes in market or regulatory requirements

Adaptability/agility [8, 12] (AA) The capability of surviving and prospering in a competitive environment of continuous and unpredictable

change by reacting quickly and effectively to changing markets, driven by customer-designed products and

services

Dependability [20] (DP) The set of independent production events (ES) that completely defines the available production processes in a

production system. Their number could be given by an equation in [20]

Int J Adv Manuf Technol (2019) 105:4005–40344008

modules) as well as adaptability during engineering (MAS

with exchange-/adaptable knowledge base in form of a dis-

crete and continuous plant model). The works of Fischer [32]

and Regulin et al. [37] present MAS control approaches en-

hancing the flexibility and reconfigurability of material flow

systems (MFS). All of them focus on the flexibility and de-

pendability features. Hoffmann’s approach [41] is proposed to

reach the customized products and production configuration

providing dynamic reconfiguration, production fault compen-

sation, and predictive maintenance. The next approach of

Pech [42] enables flexibility and adaptability for the user in-

teraction and query formulation for information retrieval.

The approach of Ryashentseva [38] presents a supervisor-

based and self-adapting architecture with the focus to realize

reconfigurability and adaptability of the production system.

Lüder et al. [16] propose the resource allocation and the re-

source access design patterns for manufacturing systems. He

focuses on reliability, adaptability, and flexibility properties.

Based on this proposal of the ready-made pattern for resource

processing, the possibility of pattern elaboration for the CPPS

is suggested in this paper [16]. Its literature review was based

on a Google Scholar search (exploiting the terms

“manufacturing system,” “agent,” and “control”) and have

limited the works published the last 10 years after 2006 [8,

16]. Summarizing the MAS for manufacturing, a variety of

agent-based methodologies exist for the model-based devel-

opment of software for manufacturing [32, 43]. Surrounded

by their last 100 most recent results, just 19 papers have been

selected, since other papers were not in the production system

control field with architecture representation. Other surveys

about the design patterns for distributed automation have been

analyzed in [11, 17].

Meanwhile, diverse agent-based approaches intending to

provide manufacturing control for CPPS, based on Agent

Oriented Software Engineering (AOSE), have been presented.

The most relevant point of views from the authors are listed

and compared in [4], such as Gaia, MaSe, and other method-

ologies. Holonic Manufacturing Systems (HMS) are also con-

sidered for distributed control systems, in [25, 36, 44, 45].

Finally, MAS approaches also enable to boost energy efficien-

cy via smart grids, as shown in [30, 33, 46].

This section concludes that control decisions and the over-

all intended behavior of different MAS approaches listed are

described. In addition, their integration in the automation pyr-

amid has been specified, and the different control decisions

are outlined. Each industrial agent mapped to a control pyra-

mid layer designated, to which the agent belongs and has a

control decision and specific features (e.g., flexibility). Based

on this research and preliminary work of Lüder et al. [16], the

next chapter presents the development of the classification

criteria in order to evaluate the collected MAS patterns.

Further, in the paper, it will be used to evaluate four different

approaches [16, 27, 38].

2.1 Requirements regarding CPPS and RAMI 4.0

Adapted from Ribeiro and Hochwallner [12] concepts, re-

quirements are understood as explicit conditions which must

be represented by system in order to fulfill a specification, or a

standard.

For an agent-based CPPS, aligned from [4, 12, 31, 40],

there are five key requirements: the application independence

(Req1.1), meaning that a MAS and its protocols and messages

should be independent of a specific application. The level

independence (Req1.2) referring that all levels of automation

for ISA 95 (see Section 5.6) are available depending on the

scenarios in which the CPPS will be applied. Platform inde-

pendent implementation (Req1.3) implying that modules are

effortlessly integratedwith independent implementation (open

technologies). Robustness against errors (Req1.4) meaning

MAS must react to faults and dynamic conditions in an ap-

propriate way, i.e., it must be robust against unforeseen.

Decentralization (Req1.5) means that MAS have to deal with

temporary network connection loss and critical data should be

distributed between multiple nodes.

Regarding the RAMI 4.0 model (see Section 6), there are

other five crucial requirements for the I4.0 components con-

cept [47]. The sub-models (R2.1) shall support various engi-

neering disciplines. The system boundary (R2.2) implies that

a sub-model describes the relationships between the RAMI

4.0 layers. The nestability principle (R2.3) for the specific

engineering discipline shall have its own organizing principles

for the relevant resources (assets in hierarchy dimensions).

The virtual representation (R2.4), an administration shell,

can denote a digital active with their parts. Finally, the func-

tional properties (R2.5) require that the manifest has an exter-

nally accessible set of meta-models describing its functional

and non-functional properties.

3 Classification criteria for MAS patterns
(RQ1)

In this section, the classification criteria for the MAS design

patterns are described. It is based on preliminary consider-

ations that were briefly discussed in the previous section. As

specified in the state of the art, there are many different design

solutions for the control of the manufacturing systems with

MAS architectures. However, the application and thereby the

evaluation of the design pattern criteria will be shown in the

next section that is based on only four MAS field approaches.

Accordingly, the adapted SLR method of outlining and

obtaining design patterns [10], usually applied in the area of

software for mechatronics systems, is presented here. To ex-

tend the work done by Lüder et al. [16], a bottom-up approach

is proposed in this paper. The adaptation of the design pattern

is based on distributed automation systems [17] and

Int J Adv Manuf Technol (2019) 105:4005–4034 4009

developed by the classification criteria from Lüder et al. [16]

and Leitao et al. [8] and Ribeiro and Hochwallner [12].

Finally, thirteen criteria were proposed (cp. Table 4) to classify

MAS architectures’ patterns. These patterns were introduced

and evaluated by the members of the German FA 5.15 work-

ing group.

The industrial automation field should support the devel-

opers to create new functionalities based on different common

parts and experiences, to fulfill requirements from the previ-

ous section (see Section 2.1). Consequently, different kinds of

design patterns were to support engineers in solving the re-

spective problems and obtain solutions with common

methods.

One of the main contributions of this paper is the compila-

tion of the criteria for the MAS design pattern template (cp.

Table 4). First, the template introduces the pattern category,

pattern type, pattern name, pattern description, context, solu-

tion, and implementation used for the distributed systems pat-

tern in [17]. Second, the template adds MAS-architecture,

knowledge base and processing, real-time properties, depend-

ability, learning, MAS-autonomy, and others.

In addition to the criteria of the MAS pattern (Table 4), a

classification of each sub-agent pattern of the MAS

architecture is developed. These supplementary criteria de-

scribe in details the features of each sub-agent in order to

better understand MAS architecture and better compare their

identifying patterns. Then, Table 5 extends the patterns de-

scription criterion from Table 4, according to the following

items: sub-agent name, main functionality, ISA 95 level (au-

tomation level), real-time capability, source type info, commu-

nication base, key properties, and related work.

For this proposal paper, an approach is demarcated as a

set of architectures, methodologies, or standards, which

follow a common scheme. In the case of architectures, these

are considered single structures of static system model. The

aspect MAS architecture describes the associations be-

tween different types of agents (or sub-agents) and includes

the MAS set-up [31]. In addition, most of the MAS are not

patented by their authors and usually do not have the prac-

tical data to carry out their implementation (i.e., clear meth-

odology). In this case, MAS methodology should deter-

mine the best steps to follow in order to improve reusability

in development and quality systems (usually used for soft-

ware engineering as AOSE [4]). A good methodology

should indicate how the MAS would satisfy all its process

in a systematic, predictable, and repeatable way. In the end,

Table 4 Criteria to classify MAS architectures/patterns

Criteria Descriptions Examples options

Pattern category Favorable function patterns: system properties that can

be realized by employing MAS, i.e., increased

flexibility and adaptability

Flexibility pattern, adaptability pattern, reliability

pattern, reconfigurability pattern

Pattern type Name of the pattern type: technology-independent task

of the MAS (categorized)

Fault-tolerant sensors

Pattern name Name of the MAS pattern Soft sensor

Pattern description Description of the logic structure (which

components/agents does the pattern contain?)

MAS with 4 sub-agents, which enable identifying

faulty sensors and automatically replacing themwith

soft sensors based on models

Context/area of application Application context of the pattern Various domains, e.g., logistics, process engineering

MAS-architecture Approach for realization of the agents’ behavior Reactive/cognitive/hybrid

Solution Graphical depiction of the MAS-Architecture Depiction of the MAS’ components (notation class

diagram)

Knowledge base and processing How is the knowledge stored? Models, rules. How is

the knowledge processed? With which methods?

Model from engineering, ontology, meta model data

structure. Inference mechanisms for ontologies

Learning/knowledge acquisition Methods and techniques for learning

abilities/knowledge base

Machine learning, neuronal networks

Implementation Technological realization of the MAS (platform,

languages)

Model: SysML, programming language IEC 61131-3

Real-time properties Timeliness and concurrency requirements Usage replacement sensor < 2 PLC-cycles < 40 ms

Dependability Requirements towards reliability, availability,

maintainability, security or safety

Soft sensor can replace sensor with a reliability of x%

MAS-autonomy Autonomy/independence in decision making Replacement of sensor not autonomously, since

number of replaceable sensors is limited

Others Additional author’s comments (remarks, clarifications,

etc.)

Int J Adv Manuf Technol (2019) 105:4005–40344010

an ideal final stage of the MAS design phase would be its

standardization (creation of norm). International institu-

tions such as ISO, ASME, IEC, IEEE, and others might

endorse both, MAS architectures and methodologies, as a

current standard for smart manufacturing as supported by

experts [3, 4, 21].

The evaluation of the criteria proposed in this section is

introduced as follows based on MAS approaches for

manufacturing.

4 Evaluation of four selected MAS
architectures applying criteria classification
(RQ2)

This section presents the application of the criteria for MAS

design patterns discussed in the previous section (cp. Tables 4

and 5).

The general patterns’ analysis starts from the lowest layer

of the traditional automation pyramid, applied (see Section

5.6) in the logistics domain, manufacturing execution systems

(MES). The first architecture of Wannagat [27] concentrates

on the field level control and presents a MAS architecture for

hard real-time and dependability, applied to PLC controllers

(the most popular in industrial environments). Based on that,

many other authors continue to build their MAS architectures

on it (Folmer [48], Schütz [28], Rehberger [19], and Ulewicz

[7]). Second author Fischer [32] also applied MAS for hard

real-time including control level to put adaptability, flexibility,

and dependability attributes into MFS. In this case, new com-

ponents based on metamodeling can be added. The reflection

of this idea can be found in other researches such as Priego et

al. [49] and Hanisch et al. [50]. A third work by Ryashentseva

[38] represents a MAS approach focused on the real-time

capabilities for self-reconfigurability of production plants,

and has implemented supervisory control theory (SCT) in-

creasing self-adaptability. This approach covers the middle

and low levels of the automation pyramid from the coopera-

tion with legacy systems on field control level and

communication with MES. Finally, Lüder et al. [16] propose

the fourth MAS approach, which includes design patterns

considering different levels of manufacturing, even upper-lev-

el MES.

In this paper, the authors choose the following three basic

terms in order to facilitate the discussion of the following

MAS approaches: i) From the VDI standard 2653 sheet 1, a

sub-agent is an encapsulated entity (of software, hardware, or

both) with specific goals inside the whole MAS architecture.

The sub-agent endeavors to reach his goals with autonomy

and by interacting with its environment and among other

sub-agents [18]. ii) From Ribeiro and Hochwallner [12], a

module is “tightly coupled within and loosely connected to

the rest of the system.” Hence, a module is a MAS software

component that does not have dynamic characteristics and

intelligent properties like a sub-agent (e.g., autonomy, mes-

sage interactions, and cooperativeness). However, it can de-

termine specific functions, methods, or routines which are

often part of or used by sub-agents (e.g., control module

[28]). iii) Adapted from the ISO/IEC 2382-1, a database

(DB) is a collection of data ordered giving to a conceptual

structure relating the features of the info and the associations

among their corresponding entities, supporting one or more

request areas and accessible in various ways. Mostly, a DB in

MAS architectures is an organized collection of data for the

module’s interactions. It is stored and accessed electronically

as the “yellow pages” for services exposed to other sub-agents

[7, 32].

Below, the following abbreviations will be used in the cor-

responding figures: resource agent (RA), coordination process

(CP), knowledge base (KB), and communication interface

(CI).

4.1 Design pattern for the resource agent

The RA architecture presented in [27] provides an agent-based

interface for technical components in the field control level

(see Fig. 1).

Table 5 Criteria to classify the patterns description (sub-agents)

Criteria Descriptions Examples options

Sub-agent name The name of the sub-agent (or acronym) Coordination agent, resource agent

Main functionality The main functionality of the sub-agent with text descriptions Communication entity among other sub-agents

ISA 95 level Action’s automation levels L2, L1–L3. See Section 5.6

Real-time capability Requires or not hard real-time execution for its functionality Yes, No

Source type info. Sub-agent’s info. source (data/hardware/both) Data/hardware/both

Communication base Communication-based concept/theory/protocol (direct or indirect) Control net protocol—CNP, ACL, FIPA specification

Key properties Social primary properties or abilities Autonomous: control over its behavior

Related work Has a preliminary design? Author name, standard

Int J Adv Manuf Technol (2019) 105:4005–4034 4011

A RA has four main modules with specific characteris-

tics. One of these is the Control Module that is connected

with the I/Os (sensors and actuators signals) of the plant

hardware. From this module, the data of the control vari-

ables are sent to the actuators and the information from the

sensors is measured. A Diagnosis Module detects failures

within the sub-agent’s status, which identifies the existing

situation based on the sensor data (signals measurements or

other sub-agents’ messages from Agent Interaction). Table

6 shows the design pattern for the RA in production plants

[19, 28].

Incoming sensor measurements are processed in order to

detect sensor failures. In this case, the Diagnosis module

connects to the Knowledge base module, and it specifies

the system model to the corresponding technical device.

Afterwards, each sub-agent reviews the parameters of

the technical specific system from the MAS architecture.

It also preserves the processes inside the explicit limits.

Redundant sensor measurements are calculated using ana-

lytics. These “virtual” data from I/Os provide for the fault

state based on the Diagnosis module (a result of the com-

pensation failures). Finally, the Planning module contains

local goals and negotiates time schedules for message

exchange with other sub-agents. Additional three basic en-

tities from FIPA standard have discovery dedications: a

sub-agent called Agent Management System (AMS), the

Message Transport System (MTS), and the Directory

Facilitator (DF). Robustness against errors should be

enhanced by using direct connections between sub-agents.

The AMS allows the bidirectional mapping between IP-ad-

dresses and sub-agents’ identifications. In addition, the RA

contains communication interfaces to update error status

through message interactions, delivered to sub-agents in

higher heterarchy levels (e.g., AMS).

Table 7 shows the list of identified sub-agents for the MAS

based on the RA pattern in [27].

4.2 Design pattern for plug and produce of MFS

Fischer presents a MAS architecture in [32] that provides ba-

sic entities (sub-agents and modules) for the coordination of

an entire MFS. Figure 2 illustrates the general implementation

scenario of the approach based on Fischer’s static graphic

models. Table 8 shows the design pattern for MFS according

to Fischer’s MAS architecture [32].

This MAS approach is self-motivated in only one of

the MFS’s modules. It contains the sub-agent called

AMS, the DF, and the MTS, all of them from FIPA stan-

dard. These are used in the same manner as presented by

Wannagat et al. [19, 28] in Section 4.1. Fischer’s pattern

focuses on the MFS, but both patterns (Fischer-Wannagat)

are used for the real-time intelligent conveyors’ re-

routing. AMS comprised of methods for registering or

deregistering a module from/to the MAS. The DF allo-

cates orders to the agreeing module and sub-agents by

a l l o c a t i n g t h e e q u i v a l e n t p r i n c i p l e s i n t h e

Fig. 1 Identifications of RA

pattern inWannagat’s architecture

[27]

Int J Adv Manuf Technol (2019) 105:4005–40344012

Communication Agent. The Order Agent executes the re-

ceived module’s demands. It manages whether the module

could fulfill the demanded order and, if that is possible, it

supplies the order into a list containing scheduled re-

Table 7 Identification of sub-agents patterns for the resource agent as used by Wannagat [27]

Sub-agent name Main functionality ISA 95

level

Real-time Source type

info.

Communication base Key properties Rel. work

Resource agent Deliberates and reasons

about the demanding

task to answer to the

PM with an offer

L0–L2 Yes Hardware Fieldbus IEC 61158

Industrial Ethernet,

EtherCAT

Autonomy,

reactiveness

[7, 19, 28,

32]

Agent interaction Allows remuneration

between software

objects at runtime

depending on the

current situation set

L0–L2 Yes Data/hardware Cooperativeness

Communication

agent

Coordinates the

message-based

communication

between the agents

on a single PLC or

net PLC

L0–L2 No Data Cooperativeness,

reactiveness

Agent management

system

Contains methods for

de/registering module

to/from the system

L2 Yes Data FIPA specification Cooperativeness,

proactiveness

Process agent Supervises and handles

global tasks that

concern the whole

system (e.g., check

global errors)

L0–L2 No Data Cooperativeness,

proactiveness

Table 6 Reconfiguration of faulty devices MAS (Wannagat [27]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility, reliability, and reconfigurability

Pattern type MAS implementation concept for faulty sensor or actuator identification in automation systems

Pattern name Agent@PLC

Pattern description Main part is the resource agent (RA), and three more sub-agents. See Table 7.

Context/area of

application

Solution adapts the actual values with appropriate changes instead of using worst-case values in predefined replacements.

The process operation time will be longer under the prerequisite that the process operation is still beneficial with reduced

precision, speed, etc. This leads to higher availability in different context and domains

MAS-architecture Hybrid-pattern replaces faulty sensor value with virtual one, calculated based on other sensor’s and model’s information

(MDE based calculation). The faulty sensor has to be identified. The possible decrease in correctness is identified; the

virtual sensor is used until the real one is available again

Solution See Fig. 1

Knowledge base and

processing

Object-oriented and agent-based concepts (OOP) and Systems Modeling Language (SysML)

Learning/knowledge

acquisition

Possible, filtering wrong values

Implementation IEC 61131-3

Real-time properties Hard real-time capable thanks to the resource agents’ behavior into physical plant devices such as PLC

Dependability Higher degree of dependability of the MAS–failures of plant components detected by virtual sensors

MAS autonomy It is half-half dependable–individual control agents represent and control technical plant units (e.g., machines) to allocate

their services encapsulated [28]

Others Application uses three different type virtual sensors

Int J Adv Manuf Technol (2019) 105:4005–4034 4013

quests. There is also a System Agent with two main re-

sponsibilities. First, it provides the module report checked

in the module’s knowledge base to the Coordinator.

Secondly, it processes from Order Agent requests. The

Coordinator is the highest authority of the system that

initiates the registration or deregistration of modules and

Fig. 2 Identification of MFS

patterns in Fischer’s architecture

[32]

Table 8 Design pattern for MFS (Fischer [32]), according to the introduced classification

Criteria Descriptions

Pattern category Reconfigurability and flexibility (changeability) pattern

Pattern type Agent control approach enhancing the flexibility and reconfigurability of MFS

Pattern name Plug and produce of MFS

Pattern description There are five sub-agents with FIPA specifications. See Table 9

Context/area of application Logistic domain

MAS-architecture Reactive

Solution See Fig. 2

Knowledge base and processing 1) MAS system: agent is implemented with the module’s control code on an individual PLC. 2) Coordinate

system approach: use of two different types the module and global coordinates system

Learning/knowledge acquisition No

Implementation Sub-agents: FIPA and ADS (automation device specification) protocols, implemented in IEC 61131-3. Low level:

IEC 61131-3, object-oriented extension

Real-time properties Yes, since PLCs are hard real-time systems they have to ensure constant cycle times to read/write/process all the

MFS signals

Dependability No

MAS autonomy Half-half autonomy thanks to acting individual agents, which are capable of communicating to give a task, but, a

coordinator connects the MAS to superordinate levels

Others Re-routing considers not only transportation abilities but also manipulations, which need to be performed in order

to fulfill an order correctly

Int J Adv Manuf Technol (2019) 105:4005–40344014

the recalculation of the system KB at startup or when the

system configuration changes. Table 9 shows the list of

sub-agents for the MAS architectures for MFS design pat-

tern [32].

A Control Agent directly communicates with the field con-

trol level through Program Organization Units (POUs), and

represents the lowest entity in the MAS heterarchy [15]. A

POU gets information or module requirements for founding

Table 9 Identification of sub-agents patterns for MFS as used by Fischer [32]

Sub-agent name Main functionality ISA 95

level

Real-

time

Source type

info.

Communication base Key properties Rel. work

Agent

management

system

Contains methods for

de/registering module

to/from the system

L2 Yes Data FIPA specification Cooperativeness,

proactiveness

FIPA, [7, 37]

Coordinator agent Initiates add or removal

modules (highest

authority)

L2 No Data Automation device

specification (ADS)

protocol

Autonomy,

proactiveness

Communication

agent

Transfers and receives

information of agents via

ADS and Ethernet

communication

L0–L2 Yes Data/hardware Cooperativeness,

reactiveness

Order agent Manages the incoming

module sub-orders

L0–L1 Yes Hardware Cooperativeness

System agent Module description and

processes sub-orders

provides

L2 Yes Hardware Cooperativeness

Control agent Communicates with the

control POUs to get

data/starts actuators

connection to the

hardware

L0–L1 Hardware Reactiveness

Fig. 3 Patterns for self*-control MAS in Ryashentseva’s architecture [38]

Int J Adv Manuf Technol (2019) 105:4005–4034 4015

the module’s KB. Individually, one of the sub-agents and

modules recorded above are implemented as an individual

Function Block (FB) into PLC software and a device. The

module’s capabilities and agents are bounded by techniques

given to the equivalent FB following object-oriented exten-

sions with IEC 61131-3 languages [15].

Table 10 Agents pattern for self*-control architecture (Ryashentseva [38]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility pattern

Pattern type Supervisor-based self-adapting architecture

Pattern name Agents and SCT based self*-control architecture for production systems

Pattern description Pattern consists of five sub-agents. See Table 11

Context/area of

application

Applicable in different context and domains

MAS-architecture Hybrid (the high-availability agent reacts on the failures of the other sub-agents proactively, while other agents operate

reactively)

Solution See Fig. 3

Knowledge base and

processing

Meta-model and ontology/inference machine and meta-model

Learning/knowledge

acquisition

Learning is possible: fuzzy-model is located in supervisor agent and can be learned through the experience of rescheduler

agent and executive agent

Implementation Modeled by SysML, implement with FIPA standard

Real-time properties Hard real-time capabilities since the executive agent exchanges data with sensor, actuator and other hardware agents (e.g.,

PLC); Other sub-agents in real-time are working on a request, selecting a suitable resources

Dependability MAS is valid to provide higher reliability, reconfigurability, security and safety

MAS autonomy Knowledge base is edited autonomously; reconfiguration is not autonomously

Others Domain specific knowledge and model are editable during run-time

Table 11 Identification of sub-agents patterns for self*-control as used by Ryashentseva [38]

Sub-agent

name

Main functionality ISA 95

level

Real-time Source type

info.

Communication base Key properties Rel. work

Executive

agent, EA

Exchanges data with sensor, actuators

and other hardware agents (e.g.,

PLC), safety maintenance (with SA)

L0–L1 Yes Data/hardware FIPA specification Cooperativeness [7, 16, 32]

Supervisor

agent, SA

Communicates ERP/MES and

peripheral systems, process

optimization, decision making,

resources’ plans (with DA)

L2–L4 Yes Data/hardware FIPA specification Cooperativeness [32, 51,

52]

Dispatcher

agent, DA

Dispatches the system (with HAA);

knowledge base (resources,

services, modes); provides the

control rules, plan services and

resources (with the EA and SA)

L1–L2 Yes Data/hardware FIPA specification Cooperativeness,

reactiveness

[27, 32]

High

availability

agent, HAA

Provides safety maintenance (with

EA); fault tolerance: back-up

controller; security: leakage

protection; safety: system work

check; dispatcher of the crossed

tasks (DA)

L0–L1 Yes Data/hardware FIPA specification Cooperativeness,

autonomy

[16]

Rescheduler

agent

Implementation resources

configuration (with SA/DA); KB

tuning (DA); mode identification

together with EA and SA

L1–L2 Yes Data/hardware FIPA specification Cooperativeness,

autonomy

[16, 27,

51, 53]

Int J Adv Manuf Technol (2019) 105:4005–40344016

4.3 Design pattern for agents with self*-control

The MAS architecture with self-control from Ryashentseva [38]

consists of five logically and physically separated sub-agents

cooperatively performing different tasks (see Fig. 3). The tasks

of each sub-agent in this pattern are evenly allocated between

them, describing all the necessary functions and properties of the

cyber physical control system, e.g., from the field level, where

Table 12 Design pattern for resource access (Lüder [16]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility, adaptability, and agility pattern

Pattern type Resource access pattern enables coordination of resources and decoupling of control layers. A structure of

interacting resource related agents is applied enabling processing capability aggregation

Pattern name Resource access design pattern

Pattern description Two mandatory types of sub-agents: the resource related agent and order agent. See Table 13

Context/area of application For any production system control and its architecture representation

MAS-architecture Hybrid

Solution See Fig. 4

Knowledge base and processing Ontology/processing: sub-agents types will execute a negotiation process based on a contract net protocol

Learning/knowledge acquisition No

Implementation Implementation of production process related capabilities and their control; FIPA specifications

Real-time properties Yes, hard real-time capability through to the resource related agent type

Dependability Medium maintainability since the product type information agent stores detailed info about the product ordered,

the maintenance actions and others

MAS Autonomy By one sub-agent type providing decision support

Others Representation of the forming of agent coalition and physical resource access, which are required for production

process execution

Fig. 4 Resource access design pattern from Lüder et al. [16]

Int J Adv Manuf Technol (2019) 105:4005–4034 4017

the communication with legacy systems is considered, to the

highest levels of automation pyramid, where the availability of

resources is also considered to produce the highly customized

product. For example, the High-Availability Agent is responsible

for safety and security functions, whereas the Rescheduler Agent

is in charge of data processing inside the process control. This

last sub-agent also ensures the availability of all necessary re-

sources of the system. The Supervisor Agent performs supervi-

sory tasks concerning data processing in the MAS and process

optimization. Table 10 shows the pattern and Table 11 shows the

list of sub-agents of the MAS self*-control architecture [38].

The Dispatcher Agent manages access to the system

functions and deals with the knowledge base to ensure

sustainable control. The Executive Agent is used to com-

municate with and control the legacy systems that are used

now in the industry. This MAS control architecture con-

tributes to high product customization and quality due to

its low development and implementation costs. The univer-

sal features of the proposed control system make its oper-

ation and adaptability feasible for different uses in the

industry.

4.4 Resource access design pattern

The resource access design pattern presented by Lüder et al.

[16] is shown in Fig. 4. It consists of a Resource Related

Agent that provides process-related capabilities to the global

MAS by registering them with the Resource Capability

Monitoring Agent. Control devices (e.g., PLC, RNC, CNC,

etc.) typically implement the single resource-related parts of

the manufacturing process. These execute control modules

and software with hard real-time reaction (often < 1 s). One

category of the Resource Related Agent is the Field Control

Agent that provides fundamental means to access and directly

interact with the field control level by applying timing restric-

tions. The second sub-agent is the Aggregating Agent, which

has not a direct access to the field control level, but it is also

able to organize actions of other resource related agents by

integrating them in a higher-level action. This sub-agent gains

more multifaceted abilities by controlling the coordinated ap-

plication of the underlying abilities.

Table 12 shows the design pattern of the resource access in

production plants [16]. Table 13 shows the list of sub-agents

used by Lüder et al. in this pattern [16].

The classification criteria for MAS manufacturing control

from the Section 3 have been applied. The four patterns used

in this classification were selected based on preliminary work

of authors in [18], which demonstrated that patterns could be

identified despite their different terminology. By applying the

classification to 20 different MAS (see Section 5.6), there is a

necessity to differentiate the classification of sub-agents of

each MAS architecture. In the following section, the patternsT
ab
le
1
3

Id
en
ti
fi
ca
ti
o
n
o
f
su
b
-a
g
en
ts
p
at
te
rn
s
fo
r
re
so
u
rc
e
ac
ce
ss

as
u
se
d
b
y
L
ü
d
er

et
al
.
[1
6
]

S
u
b
-a
g
en
t
n
am

e
M
ai
n
fu
n
ct
io
n
al
it
y

IS
A
9
5

le
v
el

R
ea
l-
ti
m
e

S
o
u
rc
e
ty
p
e
in
fo
.

C
o
m
m
u
n
ic
at
io
n
b
as
e
K
ey

p
ro
p
er
ti
es

R
el
.
w
o
rk

O
rd
er

ag
en
t

A
ll
o
ca
te
s
o
f
o
rd
er
re
la
te
d
ac
ti
o
n
s
le
ad
in
g
to

an
o
rd
er

re
la
te
d
sc
h
ed
u
le

L
2
–
L
4

N
o

D
at
a

F
IP
A
sp
ec
if
ic
at
io
n

A
u
to
n
o
m
y,

p
ro
ac
ti
v
en
es
s

F
IP
A
,
[3
8
],

w
o
rk
s
in

[1
6
]

P
ro
d
u
ct
ty
p
e
in
fo
rm

at
io
n
ag
en
t

S
to
re
s
d
et
ai
le
d
in
fo

ab
o
u
t
th
e
p
ro
d
u
ct
o
rd
er
ed
,
th
e
m
ai
n
te
n
an
ce

ac
ti
o
n
s
to

b
e

ta
k
en
,
d
at
a
to

b
e
co
ll
ec
te
d
,
et
c.

L
2
–
L
4

N
o

D
at
a

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s

A
lg
o
ri
th
m

p
ro
ce
ss
in
g
ag
en
t

(d
ec
is
io
n
su
p
p
o
rt
ag
en
t)

E
x
ec
u
te
s
o
f
m
at
h
em

at
ic
al
al
g
o
ri
th
m
s
re
q
u
ir
ed

to
ca
lc
u
la
te
sc
h
ed
u
le
p
ro
p
o
sa
ls
,

co
st
s
o
r
o
th
er

n
eg
o
ti
at
io
n
re
le
v
an
t
v
al
u
es

L
2
–
L
4

N
o

D
at
a

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s

S
y
st
em

st
at
e
m
o
n
it
o
ri
n
g
ag
en
t

(d
ec
is
io
n
su
p
p
o
rt
ag
en
t)

P
ro
v
id
es

o
rd
er

an
d
re
so
u
rc
e
ag
en
ts
d
at
a
ab
o
u
t
th
e
cu
rr
en
t
st
at
e
o
f
th
e
o
v
er
al
l

sy
st
em

s
an
d
it
s
p
ar
ts
(r
es
o
u
rc
e
av
ai
la
b
il
it
y,
al
lo
ca
ti
o
n
,
et
c.
)

L
2
–
L
4

N
o

D
at
a

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s

R
es
o
u
rc
e
ca
p
ab
il
it
y
m
o
n
it
o
ri
n
g

ag
en
t

C
o
ll
ec
ts
an
d
d
is
tr
ib
u
te
s
re
so
u
rc
e
ca
p
ab
il
it
y
d
es
cr
ip
ti
o
n
s
re
q
u
ir
ed

to
id
en
ti
fy

re
so
u
rc
e
ag
en
ts
ap
p
li
ca
b
le
fo
r
a
ce
rt
ai
n
ac
ti
o
n
fo
r
an

o
rd
er

L
2
–
L
4

N
o

D
at
a

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s

R
es
o
u
rc
e
re
la
te
d
ag
en
t

T
ak
es

al
l
re
so
u
rc
e
al
lo
ca
ti
o
n
re
la
te
d
d
ec
is
io
n
s
le
ad
in
g
to

a
re
so
u
rc
e
re
la
te
d

sc
h
ed
u
le

L
1
–
L
3

Y
es

D
at
a/
h
ar
d
w
ar
e

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s,

re
ac
ti
v
en
es
s

A
g
g
re
g
at
in
g
ag
en
t
(r
es
o
u
rc
e

re
la
te
d
ag
en
t)

C
o
o
rd
in
at
es

sk
il
ls
o
f
o
th
er

re
so
u
rc
e
re
la
te
d
ag
en
ts
to

m
o
re

co
m
p
le
x
sk
il
ls

L
1
–
L
3

Y
es

D
at
a

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s,

au
to
n
o
m
y

F
ie
ld

co
n
tr
o
l
ag
en
t
(r
es
o
u
rc
e

re
la
te
d
ag
en
t)

P
ro
v
id
es

b
as
ic
sk
il
ls
b
y
d
ir
ec
tl
y
ac
ce
ss
in
g
an
d
in
te
ra
ct
in
g
w
it
h
fi
el
d
co
n
tr
o
l

d
ev
ic
es

L
0
–
L
2

Y
es

H
ar
d
w
ar
e

F
IP
A
sp
ec
if
ic
at
io
n

C
o
o
p
er
at
iv
en
es
s,

au
to
n
o
m
y

Int J Adv Manuf Technol (2019) 105:4005–40344018

included in MAS approaches will be classified further based

on similar function terminologies and automation levels.

5 Common functionalities and automation
level patterns (RQ3)

In this part, the application of the introduced approaches in

Section 4 and their pattern identification are discussed.

Abstracting a logical composition of CPPS and the scope of

its application’s environment suggest the practice of composi-

tional architecture [5, 40, 54, 55]. CPPS functions with services

can be implemented by recombining the features of the differ-

ent types of sub-agents or components inside the MAS ap-

proach. Regarding the design patterns from the MAS models

analyzed, the authors of this manuscript showed in Section 4

that the approaches do not follow the same structure with com-

parable heterarchy (agent’s hierarchy) of the MAS, although

these are similar in certain functional respects. The heterarchy

refers to the field of application of the sub-agents in the auto-

mation levels (e.g., often associated by ISA 95 levels).

Functionalities refer to the sub-agents’ services (functional

requirements) and the quality of them (non-functional require-

ments) [21]. The flexibility of manufacturing systems is real-

ized by an agent-based control. To apply the agent-based con-

trol in practice, it requires a balance between modular and

integral MAS designs. According to Ribeiro in [5], the

MAS’s structure types regarding the modularity can be de-

fined as modular MAS and integral MAS. The modular archi-

tecture is composed of hybrid modules interconnected to re-

spectively well-defined interfaces. The integral architecture

contains multiple functions, and interacts with many agent

interfaces and often has no discernable modules.

As already mentioned in Section 1.1, the superficial MAS

pattern description does not satisfy the aim of this paper to

create a ready-made solution. Consequently, it is necessary to

identify more specified pattern definitions. Based on the anal-

ysis of the collected approaches, this section focuses on the

common sub-agents and their action fields, which are usually,

applied in the MAS architectures. The next section introduces

patterns called resource access, knowledge base, coordination

process, and communication interface. According to the anal-

ysis, the identifiedMAS solutions are aligned with these func-

tion terminologies—as part of functional requirements—al-

though sometimes with different names.

5.1 Resource access common function

Resource Access (RA*) is a common function closely related to

the hard real-time capabilities of the MAS. For example,

Wannagat’s Resource Agent (Section 4.1) is a type of a modular

architecture. Its four modules contain limited application cases

and the RA modules interact over specific interfaces (e.g.,

Agent Interaction interface or Communication agent). RA is very

similar to the MFS architecture from Fischer (see Figs. 1 and 2),

and also to another work of MFS in [37]. A sub-agent module

from Fischer, called Application agent, encompasses the system

behavior. However, a MAS architecture includes other three sub-

agents with additional modules: order agent, system agent, and

control agent. Fischer’s architecture can be considered as a mod-

ular architecture based on agents’ entities and modules.

Furthermore, this MAS has crucial similarities with the RA of

Wannagat [19, 28]. Instead, Ryashentseva (see Fig. 3) and Lüder

et al. (see Fig. 4) approaches are integral architectures where the

MAS have similar sub-agent types: the executive agent and the

field control agent. Both provide basic abilities and interact with

all components and real-time devices in the field control level,

respectively.

All specified behaviors of the MAS architectures and their

interactions across the defined interfaces are identical.

Besides, the goals of resource agent, application agent, exec-

utive agent, and field control agent include direct connectivity

with the field control level to get data from sensors and actu-

ators in order to manage the incoming module orders.

5.2 Coordination process common function

The MAS architectures from Ryashentseva and Lüder et al.

present production processes with related capabilities to coor-

dinate an overall system by managing the internal components,

such as a supervisor agent, rescheduler agent, and resource

capability monitoring agent. These types of sub-agents are gen-

erally located higher in theMAS heterarchy and are parts of the

Coordination Process (CP) pattern function. CP defines the

boundaries for the sub-agents’ operations and reconfigurations

in order for them to stay within the adequate limits (e.g., re-

strictions of RA). The description of Fischer’s MAS architec-

ture has three main entities: the AMS, DF, and the specific

Coordinator Agent (see Section 4.2). RA from Wannagat has

an exclusive sub-agent for the coordination process and its

functionality is covered by the Diagnosis module and

Planning module (see Section 4.1). All the sub-agents shown

in this section could be grouped into the CP function, since

these are based on FIPA standard and contain methods for de/

registering modules from/to any MAS approach [7, 19, 38].

5.3 Knowledge base common function

Another crucial MAS pattern is the Knowledge Base (KB).

For Wannagat, there is a KB module, which includes an ex-

plicit system model of the consistent technical component as

local knowledge. Fischer uses the same pattern divided in the

System KB and the Module KB. In the case of the integral

architectures, there are clear examples with Ryashentseva (see

Fig. 3) and Lüder et al. (see Fig. 4) approaches, since both are

just based on agents’ entities with specific tasks. Another

Int J Adv Manuf Technol (2019) 105:4005–4034 4019

similarity of the self-control architecture is the presence of the

Dispatcher Agent. This sub-agent is comparable to the KB

characteristics of the Resource Related Agent. In general,

the KA should contain an explicit system model of the corre-

sponding technical component as local knowledge. The com-

ponents (sub-agents, modules, and databases) composing the

KB function are able to check whether the values of the pa-

rameters of the technical systems and processes do not violate

the predetermined constraints [7, 28, 38].

5.4 Communication interface common function

The Communication Interface (CI) function enables and ab-

stracts communication in between all components (sub-

agents, modules, databases, etc.) of all ISA 95 levels.

Different platforms via open communications interfaces

(e.g., industrial Ethernet, Profibus) and appropriate communi-

cation protocols (e.g., based on JADE, applying JAVA and

FIPA ACL Messages [31, 39, 56]) have to be accepted by

the CI function. These communication interfaces are also used

for sending errors and state messages to the sub-agents ranked

higher [15, 19, 28, 32, 38]. For example, the Communication

Agent, from Fischer, transfers and receives information of

sub-agents via ADS protocol (ADS, automation device spec-

ification) and Ethernet communication [7, 32]. Tasks of the CI

function are compared with the specific goals of the interfaces

from RA, which are called Agent Interaction and Status. From

Ryashentseva (see Fig. 3) and Lüder et al. (see Fig. 4) ap-

proaches, there are additional sub-agents called High

Availability Agent and Aggregation Agent with special pre-

dictive abilities for maintenance purposes. However, in com-

parison with the Wannagat and Fischer design patterns,

Ryashentseva and Lüder et al. do not clearly define the sub-

agent designated to the CI function.

5.5 Summary of the common functionalities

Comparing the designed patterns in Wannagat, Fischer,

Ryashentseva, and Lüder et al., Fig. 5 shows a summary of

them regarding the common functional requirements

discussed in this section. The four circles represent the KP,

CP, CI, and RA* as well as based on the internal MAS com-

ponents (sub-agents, databases, and modules). In Fig. 5, it is

shown that RA*, CP, and KB are often implemented by the

authors (more MAS components elements are inside the cir-

cles) than CI, which was considered only by Wannagat and

Fig. 5 Summary of the comparison of Wannagat, Fischer, Ryashentseva, and Lüder et al. MAS approaches to map common functional requirements

Int J Adv Manuf Technol (2019) 105:4005–40344020

Fischer. Additionally, some MAS components (e.g., high

availability agent) do not assign a functional pattern, but these

can apply appropriate quality controls (non-functional

requirements).

5.6 Automation levels and features of sub-agents
patterns

This part explains the most important patterns and their fea-

tures. Sub-agents have been specified and applied in the auto-

mation levels mapped into the ISA 95/IEC 62264 standard,

with open software and technologies application. The stan-

dard follows the traditional automation pyramid (five levels:

L0-L4) where the Plant Level (L0) is the lowest level. The

identified sub-agent patterns show some random elements

with proprietary interfaces that are often used in the industrial

control (e.g., mostly PLCs implementing IEC 61131-3 lan-

guages programs). Next, Device Level (L1) includes the most

popular sub-agent called RA. The components of this level

have typically control devices’ Reaction time (10 ms < RCτ <

1 s). From the functional point of view, RA covers the com-

ponents of a manufacturing system in the real world (L0), with

the lowest RCτ (partially < 1 ms). RA is also a part of the

SCADA Level (L2), with both hard and soft real-time capa-

bilities (1 s < RCτ < 60 s). The Process Agent is the most

popular sub-agent for the MES Level (L3), with medium re-

action time (1 h < RCτ < 1 day). PA sub-agent pattern usually

supervises the execution of a production recipe/plan, and in-

teracts with RAs and AMSs to achieve this goal. In contrast to

AMS, PA is not responsible for the technical system but for

the production recipe, since it usually requires non real-time

capabilities. The MOM/MES functionalities are often results

of negotiations/collaborations among different RAs, AMSs,

and PAs. In this manner, human operators can revise produc-

tion orders and rescheduling decisions that result in those ne-

gotiations. Another popular sub-agent here is the

Communication Agent (often in L1-L3) that converts propri-

etary interfaces into multiple protocols. If for example some of

the RAs request has to be linked to upper automation levels,

they usually communicate via CA in protocols such as ADS,

OPC UA, and FIPA specifications. Figure 6 shows the orga-

nization of the sub-agents in the automation pyramid for the

Industry 3.0 and its migration to the adapted “diabolo” archi-

tecture [57] for Industry 4.0.

The left part of Fig. 6 shows traditional automation levels

with all identified sub-agents. The vertical integration of this

Part a) Part b)

Fig. 6 Migration from the traditional levels of the automation pyramid

(part a) to the “diabolo” [57] topology (part b). @: Sub-agent pattern;

AMS, agent management system; CA, coordination agent; CBM,

condition based monitoring; CMC, collaborative manufacturing

community; CPPS, cyber physical production system; DMC,

decentralized manufacturing community; DSS, decision support system;

H, horizontal integration; IIoT, industrial internet of things; KPI, key

performance indicator; L, life-cycle integration; MAS, multi-agent

system; MES, manufacturing execution systems; MOM, manufacturing

operations management; OEE, overall equipment effectiveness; PA,

process agent; PHM, prognostics and health management; QMS,

quality management system; RA, resource agent; RCS, resilient control

system; RT, real-time; SAP, systems applications products; SCADA,

supervisory control and data acquisition; and V, vertical integration

Int J Adv Manuf Technol (2019) 105:4005–4034 4021

pyramid is one of the essential challenges for the dynamic

evolution of Industry 4.0 [57]. Therefore, the right part intro-

duces the adapted Distributed Architecture to Bolster

Lifecycle Optimization or “diabolo” from [41]. This part of

Fig. 6 shows the crucial functions of an MES within the top

cone and device level processes (real and non-real-time) on

Table 14 List of sub-agents patterns for MAS architectures extended from [18]
P
a
tt
er
n

Sub-agent name
++Resource

Agent (RA)

++Process Agent

(PA)

++Agent

Management

System (AMS)

+Communication

Agent (CA)

Others

(no pattern)

Common functionality KB, RA* KB, CP KB, CI, CP KB, CI KB

ISA 95 level 0–2 2–3 1–2 1–3 0–4

Type of agent [8]

(reactive or proactive)
epocsSAMevitcaernetfOevitcaorpnetfOevitcaorpnetfOevitcaernetfO

M
a
in
a
u
th
o
r
la
st
n
a
m
e

Badr –RA ±Job@ ±Service@ – Job group@ Smart

manufacturing

Brehm et al. ++(RA || field
related@)

– ++Gateway@ ++Broker@ Operator@
(HMI)

Energy systems

Cruz et al. ++RA ++(Product@ &

diagnosis@)

++AMS – – Smart

manufacturing

Fischer ++(Control@ &

order@ &

system@)

++Coordinator@ ++AMS ++CA – MFS

Folmer ++Control@ +Process@ +System@ ++CA – Smart

manufacturing

Legat ++Execution@ ++(Supervision@ &
reconfiguration@)

++AMS – – Smart
manufacturing

Lüder et al. ++(RA || field

related@-RRA)

++Decision

support@-DSA

++(Order@ &

product type
info related@)

– Resource

capability
monitoring@,

(type of DSA)

Smart

manufacturing

M. Hoffmann +(Autonomous@ ||
transport@-

specific)

++ (Coordination@
|| manufacturing,

specific@)

– +Customer@ ERP
Interface@

Smart
manufacturing

Nieße A. +Control@ +Planning@ – – – Energy systems

P. Hofmann +Control@ – +Rule set

adaptation@

– Image

object@

Image

processing

Pech ±User@ ±Query

management@

±Query@ ±Ontology@ Information

retrieval@

Information

processing

Rauscher – ±(Coordination@ &
rule instantiation@)

±Model
related@

– Rule@ Information
processing

Regulin et al. +Module@ ++Coordinator@ ++AMS – – MFS

Rehberger ++RA ++Product
management@

– +@interaction – Smart
manufacturing

Ryashentseva ++(Executive@ &

rescheduler@ &
dispatcher@)

++Supervisor@ – – High

availability@,
HAA

Smart

manufacturing

Schütz ++RA ++PA ++(Control

strategy@ &
system@)

++(CA ||

@interaction)

– Smart

manufacturing

Theiss +Plant@ ++(Test

coordination@ &
monitoring@)

±Analysis@ +Test@ – Communication

agent

Ulewicz ++(Hardware@ &

system@)

– ++AMS ++(CA &

system@)

– Smart

manufacturing

Vogel-Heuser et al. ++Plant@ ++(Coordination@

& customer@)

++AMS – – Smart

manufacturing

Wannagat ++(RA ||
control@)

++(PA & system@) ++AMS ++(CA ||
@interaction)

CPPS plant@ Smart
manufacturing

Notations: same colors mean these are following a similar pattern with these degrees of “likeness”: ++High; +Medium; ±Low; −Very low or nothing.

Symbols for logical representations are & (and) sub-agent are complementary; || (or) sub-agent are similar. The names are reduced replacing “agent”

word by the “at” sign (@). References of the works are: Badr [58]; Brehm et al. [59]; Cruz et al. [31]; Fischer [32]; Folmer [48]; Legat [53]; Lüder et al.

[16]; M. Hoffmann [41]; Nieße A. [35]; P. Hofmann [52]; Pech [42]; Rauscher [51]; Regulin et al. [37]; Rehberger [19]; Ryashentseva [38]; Schütz [28];

Theiss [39]; Ulewicz [7]; Vogel‐Heuser et al. [40] and Wannagat [27]

Int J Adv Manuf Technol (2019) 105:4005–40344022

the bottom of the diabolo. Direct and indirect communication

ways are enabled in the bottom of the cone of the diabolo. The

agent-based CPPS architecture with the four patterns (RA, PA,

CA, and AMS) attempts to harmonize the data exchange be-

tween these two cones (e.g., using modeling language for

technical specifications and evaluation of the processes and

resources by Overall Equipment Effectiveness).

The list of all identified sub-agents is shown in Table 14

and organized in the automation pyramid of Fig. 6 (left side).

In the last case, the AMS is also the main pattern of the L1-L2

levels, since this sub-agent can be mapped in a bidirectional

way between sub-agents’ identifications. The AMS provides a

unified interface that makes it possible for every component of

the same type, regardless of the provider, to be reached with

the same protocol. A major requirement for the sub-agents

introduced in the L0-L2 levels is that they should be execut-

able in a hard real-time operating system and should follow the

hardware settings. The top-level (L4) of ISA 95 has the longest

reaction time for the ERP system with long-term schedules (8 h

< RCτ: < 1 week). L4 components should provide a human

interface and interface with eventually cloud services.

Regarding the sub-agents identified, there are not many sub-

agent types, which mainly provide patterns to create orders or

get status information about this level. An example out of the

patterns in the L4 is the ERP Interface Agent from Hoffmann

[41] that establishes via OPC an internal information exchange

with the ERP. More extended specifications and pattern descrip-

tions of these main sub-agents are scoped in the next section of

this paper.

6 Agent-based CPPS architecture for I4.0
component evaluation (RQ4)

The I4.0 focuses on key aspects of smart manufacturing that can

be explained as interactions between the following features [47,

60]: i) horizontal and vertical integration through value networks

and within a factory or production shop; ii) life cycle manage-

ment that refers the end-to-end engineering; iii) the human beings

coordinating the stream value; and iv) the security to achieve the

confidentiality, integrity, and availability of assuring data (trans-

fer and storage). Likewise, the mass personalization known as

Fig. 7 The landscape of the RAM I4.0’s axes and their optional norms

Int J Adv Manuf Technol (2019) 105:4005–4034 4023

the Additive Manufacturing can combine the smart manufactur-

ing to a paradigmmove for the I4.0 [61]. In order to facilitate and

promote the smart manufacturing aspects mentioned above,

RAMI 4.0 provides a flexible architecture based on functions

and information levels within 3D dimensions. As illustrated in

Fig. 7, there are different applicable standards [47], to follow the

guidelines in the RAMI 4.0 model.

The RAMI 4.0 model provides a structured view of the

multiple levels (even a specific Asset level) using an architec-

ture consisting of three axes (see Fig. 7). The aim of the model

is to create manageable segments (sub-models) by combining

the different axes at each point in the asset’s phases, to repre-

sent each relevant characteristic. The following items describe

the RAMI 4.0 axes distribution [47, 60]:

& The first axis is named the “Architecture hierarchy”. It is

based on the traditional IEC 62264-1 (ISA 95) and IEC

61512-1 (ISA 88) standards and their levels’ hierarchies.

The goal of this first axis is to define assets and their com-

binations with the necessary precision, since the description

of RAMI 4.0 is a purely logical one.

& The second axis is named the “Layers.” This one uses six

layers to represent the relevant information for the multiple

assets’ roles: Business, Functional, Information,

Communication, Integration and Asset.

& The third axis is named the “Product life-cycle.” Based on

IEC 62890, it represents the lifetime of an asset and the

value-added process.

In the next section, the authors of this paper address the

alignment of sub-agent patterns with the RAMI 4.0 model by

comparing only two dimensions. Many similarities can be

found between agent-based architecture for CPPS and the

RAMI 4.0; however, the Product Life-cycle axis is out of this

paper’s scope.

6.1 MAS architecture based on RAMI 4.0 model

Regarding the Layers axis, theMAS proposed based on patterns

should describe the I4.0 components in terms of properties, sys-

tem structures, specific data and functions, and their external

behavior. Since the present layers do not conform to the ISO-

OSI guidelines, it is not mandatory for a RAMI 4.0 layers to

provide the corresponding information. As a result, some layers

can also be ignored in specific domain systems that are not

applicable. A layer just characterizes parts of asset’s behaviors

and their connection between adjacent layers. A possible defini-

tion for the agent-based CPPS architecture is proposed in the

upcoming paragraphs.

An Asset is a physical/logical item having actual value to the

organization [34, 60] (e.g., products, equipment, software, hu-

man resource, standards, and documentation). In case of a phys-

ical asset, according to the IEC TS 62443-1-1, for industrial

control automation, the device under control can contain the

largest directly quantifiable value. The Asset Layer is the lowest

level of the RAMI 4.0 model because it reflects the physical

components, administrated by other upper layers, which are in

the cyber world.

The Integration Layer is a type of adaptation for the transition

among physical and cyber worlds. The main aim of this layer is

to convert a physical variable into a digital one. The resulting

data is converted according to specific formats. Therefore, the

Resource Agent is the most significant entity in this layer. For

example, RAs have the adequate subroutines to send and receive

data for a controller to regulate the speed in a conveyor (sub

function). Additionally, operator interactions could take place

in this layer, e.g., via Human Machine Interfaces (HMIs).

TheCommunication Layer covers connection lines according

to the guidelines of I4.0. This layer distributes information to

other I4.0 components and receives data back from them. The

base of the Communication Layer absolutely follows the seventh

ISO/OSI layer’s guidelines [47]. ACommunicationAgent, using

a uniform data presentation contained by the CPPS, can stan-

dardize the communication methods. In addition, CAs provide

services for control in the route of the adjacent Information

Layer. The definition of communication technologies within

I4.0, such as Machine-to-Machine (M2M) and Machine-to-

Business (M2B), e.g., the OPCUA (IEC 62541), clearly applies

to direct communication [34]. Other communication protocols,

such as FIPA specifications or MQTT, are much more flexible;

therefore, they enable indirect communication [31, 34]. For this

layer, the patterns AMS, DF, and MTS from FIPA can support

the Communication Layer and will be further explained in the

Functional Layer. For an agent-based CPPS architecture, the

scalability and the interoperability of industrial communication

Fig. 8 Agent-based CPPS architecture aligned into two axes of RAMI

4.0

Int J Adv Manuf Technol (2019) 105:4005–40344024

networks (IEC 61784) are decisive for numerous smart compo-

nents and functions as well (e.g., RFID sensors).

The Information Layer defines the information for signifi-

cant functions and data storage sites of a particular asset (i.e.,

the Cloud) [47]. The PA could be a logic abstraction for a

product in this layer. Since the PA holds its own information

of procedures and plans, it is responsible for coordinating its

own production. The PA pattern is a special entity of the agent-

based CPPS, which orchestrates the execution of processes

steps (with cooperative skills to interact with RAs, CAs, and

AMSs sub-agents). The Information Layer is important to un-

derstand the different partial models of all the sub-agents, in-

cluding existing data exchange formats for each specific case.

To fulfill the contents of this layer, its 4.0 implementation

should be based on models integrating different fields with

reliable and standard methods. Here, RAMI 4.0 suggests

Automation Markup Language (AutomationML) specifica-

tions, which trace a modular document structure with the

aim to join the diverse and modern engineering tools in their

heterogeneous disciplines (e.g., mechanical engineering and

electrical designs). Thus, for information models, the

AutomationML can enhance or adapt the existing XML-based

data formats, integrating AML and OPC (DIN SPEC 16592),

or using IEC 62424 (CAEX topology), ISO PAS 17506

(Collada), IEC 61131 (PLC open XML). It is also possible

to use engineering and designing tools, e.g., ISO/IEC 19514

(UML/SysML) [34]. For the semantics of AutomationML, the

standard’s properties from ISO 13584-42/IEC 61360 (eCl@ss:

classification and product description) with the Common Data

Dictionary (IEC 61360 CDD) can be applied. All of the above

comply with the standard for the Digital Factory (IEC 62832).

The Functional Layer follows the rules of I4.0 by assigning

all logical functions and services of the assets. These technical

functionalities get data from the Information Layer and depos-

it them back in the same layer, as methods and decision-mak-

ing logic (e.g., mathematical functions) [34, 47]. According to

the use case, these methods can also be executed in other

lower layers such as the Integration, Communication Layer

or Asset Layer. Therefore, AMSs have a fundamental role in

this layer, since it contains methods for registering and

deregistering modules to and from the system. Other leading

patterns are the knowledge base modules because they allow

the RAs or PAs to check whether the parameters of the tech-

nical systems and processes are kept within the predetermined

functional limits.

The Business Layer is the highest level that defines the

pertinent business procedures with their structure require-

ments and the business-related features of the assets

(e.g., regulations, legislative requests, contracting, and licens-

ing) [60]. This layer does not refer to any concrete systems

such as the ERP, since the Functional Layer (in the factory

plant context) usually sets the ERP’s functions. Since no

pattern was found that could fulfill the Business Layer’s re-

quirements, this layer will not be further researched in this

paper.

Each sub-agent located in the agent-based CPPS architec-

ture, as Fig. 8 shows, is not required to have a fixed location in

the RAMI 4.0 layers.

Given the model associates multiple layers in two dimen-

sions, each MAS component pattern is a primary part with a

specific role in its respective layer, but they are possibly joined

with the other adjacent layers, as described above.

There is another important second axis fromRAMI 4.0, the

Architecture hierarchy that represents the hierarchy position

of functionalities and responsibilities within the factories/

plants. This functional hierarchy is not only the equipment

classes or the automation levels of the classical pyramid. As

mentioned above, this axis follows the ISA 95 and ISA 88

standards to realize the classification within the plant (see Fig.

8) [47]. However, RAM I4.0 considers other levels to cover as

many areas as possible from traditional industry to the new

factory automation. New terms based on ISA 95 levels (see

Section 5.6) are established such as the Enterprise Level (L4),

Work Unit Level (L3), Station Level (L2), and Control Device

Level (L1). I4.0 considers other multiple equipment or sys-

tems within the factory because not only the controllers are

decisive for this one. Therefore, the Field Device Level (L0)

has been added below the Control Device Level, and it is a

practical level of a smart field device (e.g., an MAS RFID

intelligent sensor [62]). Moreover, not only the plant and its

equipment are essential in I4.0, but also the products to be

factory-made itself. Then, RAMI 4.0 adds the Product Level

as the lowest level that allows standardized consideration of

the product to be mass-produced and the manufacturing capa-

bility (with their relationships).

An addition has also been made at the highest end of the

Architecture hierarchy axis. The two ISA/IEC standards cited

only define the levels within a plant (see Section 5.6).

However, I4.0 goes further by describing group corporations,

interdependencies, and net of factories (e.g., alliance with out-

er engineering companies and component suppliers/cus-

tomers). Consequently, the Connected World Level has been

added to observe above and outside the Enterprise Level.

Regarding the heterarchy sub-gent’s patterns in this axis, their

locations are based on the first (Lo) to last (L4), as ISA 95

automation levels mention. Consequently, the Connected

World and the Product levels are out of the agent-based

CPPS architecture proposed in this paper.

6.2 Design pattern for the administration shell

For this section, from [1, 34], there are specific terms as im-

portant definitions for I4.0:

Int J Adv Manuf Technol (2019) 105:4005–4034 4025

& The Industry 4.0 component (henceforth, I4.0 component)

is a “globally uniquely identifiable participant with com-

munication capability consisting of administration shell

and asset within an I4.0 systemwhich there offers services

with defined QoS (Quality of Service) characteristics.”

& The administration shell is the “virtual digital and active

representation of an I4.0 component in the I4.0 system and

contains the manifest and the component manager.”

& The Manifest is an “externally accessible defined set of

meta-information, which provides information about the

functional and non-functional properties of the I4.0

component.”

& The component manager is “the organizer of self-manage-

ment and of access to the resources of the I4.0 component…”

Looking to fulfill the requirements for the CPPS and the

RAMI 4.0 (see Section 2.1), a general organization for the ad-

ministration shell based on the MAS can be developed. For this,

the I4.0 components for the CPPS proposed display an abstract

form that defines real objects. For example, these could be a

valve as a control element, a pipe as the controlled process, a

sensor as a measuring element, and a PLC’s algorithm as a con-

troller, etc. MAS architecture should be based on design patterns

described above, in both ways, physical (assets) to the cyber

(digital data). Moreover, Information and Communication

Technology (ICT) needs to increase additionally regarding the

appropriate smart manufacturing aspects such as the horizontal/

vertical integrations, product life-cycle, human’s interaction and

others, as mentioned at the beginning of this chapter. As shown

in Fig. 9, the administration shell contains the “Header” and the

“Body” parts. Both in order to provide better identification via

asset(s) designations [34, 47, 60].

The intention of this section is to describe a general imple-

mentation of I4.0 components using a sub model design with

the identified MAS patterns. A basic application of an I4.0

component is based on the suggested international standard

of AutomationML, as a method for the Information Layer, and

OPC UA for the Communication Layer. Both together could

realize the Body of the administration shell of the I4.0 com-

ponents with an agent-based CPPS architecture. For the

Header part, the CPPS provides an adequate unique identifi-

cation of the I4.0 component by a server. Also, the data rep-

resentation and its function access should be integrated.

According to RAMI 4.0 suggestions [47, 60], a unique iden-

tification of the object could be using a UUID (Universally

Unique Identifier) or URIs (Unique Resource Identifiers, e.g.,

for RDF). The AutomationML concept specifies every object

with a UUID that could be kept as long as the object exists.

Fig. 9 CPPS’s administration

shell for I4.0 components

(adapted from [60])

Int J Adv Manuf Technol (2019) 105:4005–40344026

For communication, the I4.0 component provides access to

technical functions pre-realized in the AMS sub-agent (with

their respective DFs and MTSs), in order to enable the access

to the representation of any asset’s information.

The Body part of the administration shell contains structured

sub-models which might denote information and functions [34].

A standardized format eCl@ss, which is based on IEC 61360, is

suggested to describe the data and functions in a diverse and

harmonize format. The features of all sub-models, in conse-

quence will always develop a comprehensible table of contents

(each I4.0 component and its respective associated manifest and

administration shell). As a prerequisite for required semantics,

the Header shall individually recognize administration shells,

Assets, Sub models and their properties globally.

This paper’s approach assumes that a physical asset type of

interest is controlled by open controller architecture (e.g.,

PLC) that implements lower level programing codes (e.g.,

IEC 61131-3). As the MAS design patterns are shown (see

Section 5), the sub-agents of the different assets type can be

located on all ISA 95 automation levels. Hence, for the oper-

ation of an I4.0 component, it has to be clearly specified,

which technical functions are provided by the component

and their configurations limits. For the PLC implementation

example, adequate variables for the code should be accessible

via functions with multiple OPC UA servers interlinked and

following a service-oriented architecture (SoA), proposed in

[34]. As a result, the administration shell of a I4.0 component

consists of multiple sub models (first is the MAS architecture)

and a nonempty set of interl inked designs (e.g. ,

AutomationML projects, mechanical computer-aided designs

or CADs, interconnecting FBs/POUs models, UML classes

diagrams, and others [47]).

Other standards can be applicable to MAS patterns and

aligned to RAMI 4.0 with multiple aims (see Fig. 7): The

VDMA 24582 (condition monitoring) for maintenance pur-

poses into the Asset Layer and Integration Layer. The ISO/

IEC 27000 for the security of management systems. The IEC

62443 used for the network system security and IEC 62351

for secure authentication [63]. The IEC 61511 applies the

functional safety and the IEC 62061/ISO13849 relates the

machinery safety. Software quality can be valued by ISO/

IEC 25010 and the ISO/IEC 25023 (SQuaRE method) [21].

Semantic web stack can follow the W3C consortium defini-

tions such as SPARQL, RIF/SRWL, RDF/S, and OWL.

Energy efficiency can refer to the ISO/IEC 20140. Finally,

configuration and programing typical tools are based on

C++ plugins for control languages (e.g., mostly in IEC

61131-3 or IEC 61499 [13, 14], IEC 61804 (FBs for process

control or electronics), and the IEC 62453 (Field device tool,

FDT).

6.3 Discussion of the CPPS and RAMI 4.0 requirements
evaluation

The majority of the requirements specified in Section 2.1 are

already partly completed by the design pattern of the proposed

MAS architecture. First, for the CPPS requirements (Req1.1-

Req1.5), the compatibility to different applications (Req1.1) is

warranted by the open software MAS architecture (see Section

5). Level independence (Req1.2) and platform independence

(Req1.3) are partly achieved by applying four types of sub-

agents: the RAs, PAs, CAs, and AMSs (see Section 5.6).

Using the TCP/IP as fundamental communication protocols,

(e.g., OPC UA) can solve parts of handling and recovery errors

(Req1.4), and allows the CPPSs networks to be accessed by

other applications. By distributing organizational sub-agents in

the cloud (e.g., the PAs, and AMs), the agent-based CPPS is

decentralized (Req1.5), as shown in Section 5. However, the

multiple platform acceptation (Req1.3) and the reconfiguration

of sub-agents (Req1.4) should be further examined by quanti-

tative experimentations. As a first assessment of the platforms

suitability, some experiments with these CPPS requirements

were measured into multiple platforms in [31].

Table 15 Research questions, hypotheses (see Table 1), and their evaluation

Research question Hypothesis Status result Proof section related

RQ1 (how describe MAS patterns?) RH1.1 (valid classification criteria) True 3

RH1.2 (similar design MAS pattern’s terms) True 4, 5

RQ2 (for which CPPS domains?) RH2.1 (different goals and benefits) True 2, 4

RH2.2 (only real-time requirements) Partially true 4, 5

RQ3 (which MAS patterns are reusable?) RH3.1 (functional–and non–requirements) Partially true 5

RH3.2 (specific sub-agents) True 5

RQ4 (how to aligned CPPS to RAMI 4.0?) RH4.1 (simple CPPS aligned to RAMI 4.0) Partially true 6

RH4.2 (administration shell capable) True 6

Int J Adv Manuf Technol (2019) 105:4005–4034 4027

Regarding the RAMI 4.0 requirements, the proposed I4.0

components support multiple engineering disciplines and

norms (Req2.1). For example, the MAS architecture is focus

on the software components (sub-agents’ patterns); it is also

possible to associate the physical connections of assets via

CAD diagrams, according to functional considerations of

AutomationML, as Section 6 mentioned. The MAS systems

boundaries (Req2.2) and nestability (Req2.3) principles for the

I4.0 components are aligned by the MAS’s organization in the

axis of layers and Architecture axis, respectively (see Section

6.1). The general administration shell model of Section 6.2

partially gets the virtual representation of I40 components

(Req2.4) and its functional properties (Req2.5), as shown in

Section 6.2. However, the agent-based CPPS architecture did

not specify non-functional requirements (Req2.5) yet, such as

precise quality characteristics (non-functional requirements)

or evaluation metrics attributes (e.g., degree to which the

sub-agents cover all their tasks and objectives). The summary

of the hypotheses evaluation according to the fourth research

questions (RH1.1-RH1.4) is shown in Table 15.

From the eight hypotheses (see Table 1), five are true, and

three are partially true, considering the evaluation of this man-

uscript’s authors, and the FA 5.15 expert discussions. These

results are extended by fulfilling preliminary requirements

(see Section 2.1) and represent the related sections of this

manuscript, as shown in Table 15.

6.4 Comparison of the agent-based CPPS architecture
to other approaches

Considering the two essential architecture types from

Trentesaux [22] (hierarchical and heterarchical interaction

entities), CPPS can be described through different designs

with advantages and disadvantages of the distributing control

decisions (see Section 2). Explicitly, hierarchy could be seen

as a type of “vertical control distribution”while heterarchy is a

type of “horizontal control distribution” [64]. The type of

architecture will define the quality characteristics of the

production system. Traditional approaches are included into

the Class 0 and Class I types of architectures, respectively

centralized and fully hierarchical. What is common in these

two architecture types is that they both have a main decision

node, where the planning and information processing are

concentrated [65]. These classes show better optimization

qualities, but a slow response and low tolerance to faults and

expansibility [65]. Thus, it is possible to construct a CPPS

architecture typology that is inspired by Computer

Integrating Manufacturing or CIM (e.g., [23]). The CPPS of

Table 16 Different classes of CPPS approaches

Name of the

architecture/author

CPPS approach Sub-agent pattern

Resource agent (RA) Process agent (PA) Agent management system

(AMS)

Communication agent

(CA)

Class 0: Centralized control systems

CIMOSA [23] Based on CIM +Resource −Capability set −Organization unit –

Class I: Fully hierarchical control system

ARC-SoA [24] SoA and CPS +Data adaptor −Data client agent – +Shared variable engine

iLand [66] SoA +Service manager +Control manager −Application manager +Communication

middleware

Lee et al. [54] Industrial CPS +Snapshot collection −Similarity

identification

−Synthesis optimized future

steps

–

Class II: Semi-heterarchical control system

ADACOR [25] HMS +Operational holon ++Product holon +Supervisor holon –

IDEAS [8] MAS ++Machine resource

agent

++Product agent +AMS +Transportation system

agent

Pollux [67] Hybrid control ++Resource decisional

entity

++Local decisional

entity

++Global

decisional entity

–

PROSA [36] HMS +Resource holon ++Product holon +Order holon –

This paper’s authors MAS ++Resource agent ++Process agent ++AMS +Communication agent

Class III: Fully heterarchical control system

D-MAS [26] MAS ++Delegate ant MAS ++Delegate MAS – ++Smart messages entity

Ueda legacy [68] Bio-inspired +Service +Service engineering – –

Notation of degrees of “equivalence”: ++High, +Medium, −Low/nothing

Int J Adv Manuf Technol (2019) 105:4005–40344028

Class 0 and Class I (one-level heterarchy) are applicable

for CIM, since these are based on pure hierarchical interac-

tions (e.g., [24]). On the opposite side, Class III uses full

heterarchical interactions to lead mostly distributed architec-

tures (e.g., [26]).

Class II CPPS architectures, being semi-heterarchical, can

be positioned in between because they can integrate both hi-

erarchical or heterarchical interactions (e.g., [25])—assimilat-

ing both advantages and certain disadvantages. The main

advantages of the hierarchical type are the robustness, predict-

ability, and efficiency. Then, in the CPPS approaches of Class

II, local decisions are made taking into account global criteria

and these are distributed to different controllers. Despite their

advantages, traditional methods do not show the capability of

adaptation due to the rigidity of the control architecture that as

a result weakly responds to changes. Such types of production

systems will not show the capabilities of responsiveness, flex-

ibility, and reconfigurability [65]. Therefore, an advantage of

Table 17 Advantages and disadvantages of CPPS classes [22, 64, 65]

Main features of CPPS approaches Classes

0-I II-III

Have short reaction delays (reducing long-term instability (e.g., bullwhip effect in supply chains) – ++

Make easier the procedures to initialize and reconfigure (plug and produce systems capability) and breakdowns recovery – ++

Increase product traceability and allow “smart” products (more active life cycle, e.g., distribution, logistics, inventory, generation,

design, effectiveness, and agility)

– ++

Permit robustness with external/internal unexpected changes to return on long-term investments (opposite to CIM scheme) – ++

Can include the lack of predictability, analytical solutions, and poor ability to define optimal loadings (e.g., cause deadlocks) – ++

Facilitate supply chain collaboration mechanisms (business agility). Systems can co-exist with several hierarchies ++ +

Optimize resources utilization (system extensions and unforeseen modifications are facilitated). – ++

Enable flexibility and reactivity to disturbances (Fault tolerant) – ++

Address a global optimization of the decision-making ++ –

Allow a limit complexity and facilitate system implementation ++ +

Get poor ability to extend the system, and make unforeseen modifications (additions are difficult to make) ++ –

Have poor reliability (paralysis of the levels below a point of failure) and poor fault tolerance ++ –

Notation of applicability: ++High, +Medium, −Low

Fig. 10 The robot integrated agent network “RIAN” (adapted from [69])

Int J Adv Manuf Technol (2019) 105:4005–4034 4029

the proposed agent-based CPPS architecture can be found

according to the classification of [64]. The proposed architec-

ture is classified as Class II type, since sub-agent interconnec-

tion is not strongly associated (not Class III), while there is at

least a strong sub-agent connection (not Class I) [64]. For

example, a unique RAs’ network (Class III) of the CPPS could

be a Class II control system with supervisory level sub-agents

(with PA or AMS). Other CPPS approaches [22, 64, 65] can

also support advantages of Class II as well as MAS, bionic,

bio-inspired (e.g., [68]), and holonic. Among the last named

CPPS approaches, the PROSA [36] and ADACOR [25] are

the most relevant architectures. In principle, each holon shall

represent a logical unit of the manufacturing system, while the

sub-agent patterns could help its actual implementation [8,

65].

In heterarchical control systems (Classes II or III), long-

term optimization could be hard to get and to validate, while

with traditional classes (Classes 0 or I), short-term optimiza-

tion is easier to obtain [64]. In the Class III type, as long as all

the entities (e.g., agents) get the equal level of autonomy, an

adequate level of performance can be attained, but there is no

global view of the system [65]. As these features are disad-

vantages of Class III—even for MAS approaches of Class

II—the proposed agent-based CPPS architecture cannot claim

to be exempt from this problem and only an adequate AMS’s

global response to it could address the issue.

Table 16 summarizes different CPPS approaches examples

which allocate control decisions from centralized control

systems (Class 0 and Class I) aiming to design non-centralized

control systems (Class II and Class III). This table compares

components of different CPPS approaches with patterns of

this paper’s proposed CPPS architecture.

Table 17 compares advantages and disadvantages of hier-

archy (Classes 0/I) and heterarchy (Classes II/III) of CPPS

approaches (based on [22, 64, 65]).

6.5 Use case evaluation with an I4.0 demonstrator

The “Robot Integrated Agent Network” (RIAN) completes

the evaluation of the proposed agent-based CPPS architecture.

The RIAN demonstrator was presented at Automatica fair in

an industrial environment [69]. The purpose of the demonstra-

tor was to crosslink heterogeneous production equipment and

robots in a network for common customized production.

RIAN was the result of a collaboration of the academy

(Technical University of Munich “TUM” and Brandenburg

Technical University of Cottbus “BTU”) with different indus-

try partners [69], which applies the reference architecture of

the MyJoghurt I4.0 demonstrator [40]. With RIAN I4.0 dem-

onstrator, the users could customize the bottle opener (with

freely definable lettering) online and choose a delivery time

depending on available production capacity (IIoT-HMI inter-

face). A chain of production stations composed of autono-

mous and operator-controlled mobile transport robots defines

RAIN. These stations cover the production line for the indi-

vidualized bottle opener consisting of the following: cutting

Fig. 11 Interaction in the agent-

based CPPS network (adapted

from [69])

Int J Adv Manuf Technol (2019) 105:4005–40344030

by laser simulation (CPPS A), injection molding (CPPS B),

engraving-laser (CPPS C), packaging (CPPS D), and custom-

er delivery by a Mobile transport robot (CPPS E), depicted in

Fig. 10 (adapted from [69]).

Starting from the warehouse, mobile robots transport

pieces between stations of the production process.

Intermediate robot stations have hardware interfaces, which

ensure the exact positioning of pieces or their detection by

vision sensors. All CPPS communicate via an agent-based

CPPS network in order to exchange necessary processing

steps as well as clearances for manipulation. The current pro-

duction progress is traceable for the client, for the maintenance

and operating personnel. This is possible due to the aggregat-

ed reports of the individual sub-agent patterns (RAs, PAs,

CAs, and AMS) into an external server (at TUM Garching

near Munich), as shown in Fig. 10.

All CPPS A-E include RAs with goal-orientation algo-

rithms (even with artificial intelligent) to achieve PAs orders.

Inside the Mobile transport robots (CPPS E) and the Packing

station (CPPSD) exists a hardwareMAS interface (MAS ITF)

and agents (CAs) which ensure by computer vision systems

the exact positioning of the products (PAs) in the plant (see

Fig. 10). An agent (PA) assigns initial orders to the transport

robot (RA) from the storage and links the information about

the process steps and the corresponding features of the prod-

ucts. RIAN defines a distribution of production phases for

multiple participating companies and technologies (Req1.1-

Req1.3).

All CPPS interactions are connected to the local hardware

and accept new orders (PAfinal) after registering at the directo-

ry services (from AMS, MTS, and DF). Since the customers’

orders for products need to be decomposed into multiple dif-

ferent manufacturing tasks, to which the facility agents can

respond, various CPPS aligned with the proposed architecture

were implemented for this purpose (see Fig. 11).

A key benefit of the agent-based CPPS approach in the con-

text of I4.0 is the linkage of heterogeneous controls. RIAN

enables suitable controls to cooperate with adequate operating

systems of various robot vendors (e.g., Raspberry Pi with

Raspbian-Linux, Reiss robotics (now KUKA), robot controller

with VX Works, FANUC robot controller with FANUC OS).

Both the implementation on suitable controls as well as on

external computers is possible by using manufacturer provid-

ed interfaces. These interfaces enable data exchange between

agents (CAs) and controls on the field level (RAs). Thus, the

cost of changes in the software on the proprietary controls is

minimized.

The configuration, changes, and adaptation of the control

software (reconfigurability and reusability) are manageable by

calling functions according to each manufacturer specification

(CPPS) and adapting parameters or variables at runtime

(Req1.4). An agent (AMS) retrieves status information from

Fig. 12 The I4.0 components of the RIAN demonstrator

Int J Adv Manuf Technol (2019) 105:4005–4034 4031

all controllers containing the state of the plant and the process-

ing progress. Based on this information, it decides the strategy

of a production unit (Req1.5). Besides the agent (PAs) exten-

sive knowledge about the process data, there exists an encap-

sulation to the overall network information (AMS). Over

LAN, Wi-Fi, or mobile data connections, the current produc-

tion time and the price of the service are provided for all

participating agents (RAs, PAs, CAs, and the AMS), as shown

in Fig. 10. An Internet server is required for linking various

transport and production units via the Internet. The server (in

addition to the infrastructural facilities) also creates agents

instances (e.g., PAs) accessible on the cloud. Therefore, dif-

ferent hardware platforms, e.g., PC and PLC, are connected

via the Internet. The open protocol of the MAS platform

(based on TCP/IP) enables connect ions to other

implementations (e.g., based on C++).

In Fig. 12, the agent-based CPPS architecture is shown

considering the Functional and Communication Layers (re-

garding RAMI4.0) of RIAN. The proposed architecture was

used to implement a distributed production environment on

Automatica fair [69] as a collaboration of multiple companies

(e.g., Martin Engineering, Schunk, Beckhoff, and others) in

different exhibition halls (A4, A5, and B5). By using the pro-

posed MAS approach, companies were able to realize the

communication, design, and application with a specific imple-

mentation of different hardware and software platforms. Each

hall represents an administration shell of an I4.0 component

(CPPS A-E). In the industrial context, each hall could be rep-

resented by different worldwide plants, which collaborate in a

unique production process (see Fig. 12).

The industrial partner of RIAN confirmed that they were

amazed by the effectiveness and ease of the collaboration [69].

They implemented all necessary functionality needed to man-

age the production steps at the different facilities in the exhi-

bition halls. The RIAN implementation required less than 3

months with less of four to six developers per academic and

industrial partner.

7 Conclusion

Design patterns can help the MAS developers to set up their

architectures with prepared solutions also for manufactur-

ing control. They could design their own MAS in accor-

dance with accepted MAS patterns in industry to ease the

application of CPPS. Classification criteria also could aid in

the initial information organization of design pattern, since

there are many different approaches for MAS and automa-

tion domain.

Thanks to the preliminary analysis [18], and based on

works by Lüder et al. [16] and Leitao et al. [8], this paper’s

authors have developed 13 classification criteria for MAS pat-

terns. More than 20 MAS patterns were classified with the

derived criteria for MAS revealing different terminologies,

as well as new criteria to classify sub-agents. A CPPS archi-

tecture for manufacturing control for I4.0 components—re-

garding the RAMI 4.0—based on four sub-agents, was iden-

tified from the analysis of design patterns. They are as follow-

ing, Resource Agent (RA), Process Agent (PA), Agent

Management System (AMS), and the Communication Agent

(CA). According to the proposed design pattern, these sub-

agents should be considered mandatory for the agent-based

CPPS architecture, since each of them fulfills fundamental

functionalities. Regarding functional requirements identified,

these are grouped into a Resource Access (RA*), Knowledge

Base (KB), Coordination Process (CP), and Communication

Interface (CI). All sub-agents often use the Knowledge Base

in order to infer formal methods for its implementation. The

Resource Access is a very necessary functional requirement to

acquire and process data from physical resources with hard

real-time capabilities; as well, the RA typically covers the

lowest 0–2 automation levels. The Coordination Process con-

tains procedures and sub-agents’ delimitations for managing

MAS in a higher hierarchy. This functionality is usually in-

cluded in AMS on L1-L2 and PA on L2-L3 automation levels.

The CI enables open communication between automation

levels with multiple data formats, supporting the AMS’s and

CA’s (L1-L3) tasks. CI’s functionalities are frequently repre-

sented in all automation levels.

The proposed pattern of the four sub-agents can deliver

relevant MAS features for developers in order to support

new sub-models’ designs with similar solutions. In addition,

the pattern provides a proper information in order to reduce

time to compare similar researches. This pattern provides

MAS architecture that can help to cope with production com-

plexity and adaptively as required by CPPS.

This document addresses the industrial sectors in multiple

production systems domain: discrete manufacturing, continu-

ous process, hybrid production. In addition, it takes into con-

sideration the specificities of different MAS application (e.g.,

material flow systems, real-time capabilities, agent communi-

cations, and smart grids) and serves the needs of the RAMI 4.0

involving several partners and normativity.

To identify more patterns and to allow easier identification

of such a pattern, in the future, the other 16 patterns from the

FA 5.15 need to be analyzed with their authors support.

Especially, non-functional requirements will be part of the

further work of this manuscript’s authors, since these require-

ments remaining can map quality attributes to the identified

and newly MAS patterns.

Acknowledgments The authors especially thank the members of the

technical committee 5.15 “Agent systems” of the Society Measurement

and Automatic Control (GMA) within the Society of German Engineers

(VDI) and German Electrical Engineers (VDE) for their close assistance.

Also, regarding the specific feedbacks, this manuscript’s authors would

like to highlight the contribution of the colleagues: Aicher T., Badr I.,

Int J Adv Manuf Technol (2019) 105:4005–40344032

Brehm R., Bruce-Boye C., Fischer J., Hoffmann M., Hofmann P., Pech

S., Rauscher H., Redder M., Rehberger S., Schütz D., Theiss S., and

Ulewicz S. Finally, Luis Alberto Cruz Salazar thanks the Colombian

government grant of the department of science COLCIENCIAS –under

grant “Convocatoria 756 Doctorados en el exterior”– and the Antonio

Nariño University under grant “Programa de Formación de Alto Nivel -

PFAN”.

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. DIN (2016) Reference Architecture Model Industrie 4.0

(RAMI4.0). https://www.din.de/en/wdc-beuth:din21:250940128

2. Cheng Y, Zhang Y, Ji P et al (2018) Cyber-physical integration for

moving digital factories forward towards smart manufacturing: a

survey. Int J Adv Manuf Technol:1–13

3. Lu Y, Morris K, Frechette S (2016) Current standards landscape for

smart manufacturing systems. Natl Inst Stand Technol NISTIR

8107:39

4. Cruz SLA Vogel-Heuser B (2017) Comparison of agent oriented

software methodologies to apply in cyber physical production sys-

tems. In: 15th international conference on industrial informatics,

INDIN. IEEE. Emden, Germany, pp 65–71. https://doi.org/10.

1109/INDIN.2017.8104748

5. Ribeiro L (2017) Cyber-physical production systems’ design chal-

lenges. In: IEEE 26th International symposium on industrial elec-

tronics, ISIE, pp 1189–1194

6. Xu X (2017) Machine Tool 4.0 for the new era of manufacturing.

Int J Adv Manuf Technol 92:1893–1900

7. Ulewicz S, Schütz D, Vogel-Heuser B (2013) Flexible real time

communication between distributed automation software agents.

In: 22nd international conference on production research, ICPR

22, pp 1–7

8. Leitão P, Karnouskos S (2015) Industrial agents: emerging applica-

tions of software agents in industry, 1st edn. Elsevier, Amsterdam

9. Leitão P, Karnouskos S, Ribeiro L et al (2016) Smart agents in

industrial cyber physical systems. Proc IEEE 104:1086–1101

10. Juziuk J, Weyns D, Holvoet T (2014) Design patterns for multi-

agent systems: a systematic literature review. In: Agent-oriented

software engineering: reflections on architectures, methodologies,

languages, and frameworks, pp 79–99

11. Lüder A, Peschke J, Sanz R (2010) Design patterns for distributed

control applications. In: Kühnle H (ed) Distributed manufacturing:

paradigm, concepts, solutions and examples. Springer London,

London, pp 155–175

12. Ribeiro L, Hochwallner M (2018) On the design complexity of

cyber-physical production systems. Complexity 2018:1–13.

https://doi.org/10.1155/8503

13. Cruz SLA, Rojas AOA (2014) The future of industrial automation

and IEC 614993 standard. III international congress of engineering

mechatronics and automation. CIIMA.:1–5. https://doi.org/10.

1109/CIIMA.2014.6983434

14. Dai W, Vyatkin V (2013) A component-based design pattern for

improving reusability of automation programs. In: IECON proceed-

ings (industrial electronics conference). pp 4328–4333

15. Fuchs J, Feldmann S, Legat C, Vogel-Heuser B (2014)

Identification of design patterns for IEC 61131-3 in machine and

plant manufacturing. In: IFAC-PapersOnLine. pp 6092–6097

16. Lüder A, Calá A, Zawisza J, Rosendahl R (2017) Design pattern for

agent based production system control—a survey. In: 13th IEEE con-

ference on automation science and engineering, CASE. pp 717–722

17. Eckert K, Fay A, Hadlich T, et al (2012) Design patterns for dis-

tributed automation systems with consideration of non-functional

requirements. In: IEEE International conference on emerging tech-

nologies and factory automation, ETFA. pp 1–9

18. Vogel-Heuser B, Ryashentseva D, Cruz S. LA, et al (2018)

Agentenmuster für flexible und rekonfigurierbare Industrie 4.0/

CPS-Automatisierungs-bzw. Energiesysteme (agent pattern for

flexible and reconfigurable industry 4.0/CPS automation or energy

systems). In: VDI-Kongress automation. VDI Verlag GmbH,

Düsseldorf, pp 1119–1130

19. Rehberger S, Spreiter L, Vogel-Heuser B (2017) An agent-based

approach for dependable planning of production sequences in auto-

mated production systems. At-Automatisierungstechnik 65:766–778

20. Farid AM, Ribeiro L (2015) An axiomatic design of a multiagent

reconfigurable mechatronic system architecture. IEEE Trans Ind

Informatics 11:1142–1155. https://doi.org/10.1109/TII.2015.

2470528

21. HaouesM, Sellami A, Ben-Abdallah H, Cheikhi L (2017) A guide-

line for software architecture selection based on ISO 25010 quality

related characteristics. Int J Syst Assur Eng Manag 8:886–909

22. Trentesaux D (2009) Distributed control of production systems.

Eng Appl Artif Intell 22:971–978. https://doi.org/10.1016/j.

engappai.2009.05.001

23. Kosanke K, Vernadat F, ZelmM (2015) Means to enable enterprise

interoperation: CIMOSA object capability profiles and CIMOSA

collaboration view. Annu Rev Control 39:94–101. https://doi.org/

10.1016/j.arcontrol.2015.03.009

24. Morgan J, O’Donnell GE (2015) The cyber physical implementa-

tion of cloud manufactuirng monitoring systems. In: Procedia

CIRP, vol 33, pp 29–34

25. Leitão P, Restivo F (2006) ADACOR: a holonic architecture for

agile and adaptive manufacturing control. Comput Ind 57:121–130

26. Holvoet T, Weyns D, Valckenaers P (2009) Patterns of delegate

MAS. In: SASO 2009—3rd IEEE international conference on

self-adaptive and self-organizing systems

27. Wannagat A (2010) Development and evaluation of agent-based

automation systems in order to increase the flexibility and reliability

of manufacturing plants. PhD thesis, Faculty of Mechanical

Engineering, Technical University of Munich

28. Schütz D, Schraufstetter M, Folmer J, et al (2011) Highly

reconfigurable production systems controlled by real-time agents.

In: IEEE international conference on emerging technologies and

factory automation, ETFA. pp 1–8

29. Legat C, Lamparter S, Vogel-Heuser B (2013) Knowledge-based

technologies for future factory engineering and control. In: Studies

in computational intelligence. pp 355–374

30. Andrén F, Stifter M, Strasser T (2013) Towards a semantic driven

framework for smart grid applications: model-driven development

usingCIM, IEC61850 and IEC61499. Informatik-Spektrum36:58–68

31. Cruz SLA, Mayer F, Schütz D, Vogel-Heuser B (2018) Platform

independent multi-agent system for robust networks of production

systems. IFAC-PapersOnLine 51:1261–1268. https://doi.org/10.

1016/j.ifacol.2018.08.359

32. Fischer J, Marcos M, Vogel-Heuser B (2018) Model-based devel-

opment of a multi-agent system for controlling material flow sys-

tems. Autom 66:438–448

33. Karnouskos S, De Holanda TN (2009) Simulation of a smart grid

city with software agents. In: UKSim 3rd Europeanmodelling sym-

posium on computer modelling and simulation, EMS. pp 424–429

Int J Adv Manuf Technol (2019) 105:4005–4034 4033

https://www.din.de/en/wdc-beuth:din21:250940128
https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1155/8503
https://doi.org/10.1109/CIIMA.2014.6983434
https://doi.org/10.1109/CIIMA.2014.6983434
https://doi.org/10.1109/TII.2015.2470528
https://doi.org/10.1109/TII.2015.2470528
https://doi.org/10.1016/j.engappai.2009.05.001
https://doi.org/10.1016/j.engappai.2009.05.001
https://doi.org/10.1016/j.arcontrol.2015.03.009
https://doi.org/10.1016/j.arcontrol.2015.03.009
https://doi.org/10.1016/j.ifacol.2018.08.359
https://doi.org/10.1016/j.ifacol.2018.08.359

34. Lüder A, SchleipenM, Schmidt N, et al (2018) One step towards an

industry 4.0 component. In: 13th IEEE conference on automation

science and engineering, CASE. pp 1268–1273

35. Nieße A (2015) Verteilte kontinuierliche Einsatzplanung in

Dynamischen Virtuellen Kraftwerken (distributed continuous re-

source planning in dynamic virtual power plants). PhD thesis,

Faculty II—Computer Science. Economics and Law, Carl von

Ossietzky University of Oldenburg, Oldenburg

36. Brussel H Van, Wyns J, Valckenaers P, et al (1998) Reference ar-

chitecture for holonic manufacturing systems: (PROSA). Comput

Ind 37:255–274

37. Regulin D, Schütz D, Aicher T, Vogel-Heuser B (2016) Model

based design of knowledge bases in multi agent systems for en-

abling automatic reconfiguration capabilities of material flow mod-

ules. In: 12th IEEE conference on automation science and engineer-

ing, CASE. pp 133–140

38. Ryashentseva D (2016) Agents and SCT based self* control archi-

tecture for production systems. PhD thesis, Faculty of Mechanical

Engineering, Otto-von-Guericke University Magdeburg

39. Theiss S, Kabitzsch K (2017) A Java software agent framework for

hard real-time manufacturing control. - Autom

40. Vogel-Heuser B, Diedrich C, Pantförder D, Göhner P (2014)

Coupling heterogeneous production systems by amulti-agent based

cyber-physical production system. In: 12th IEEE international con-

ference on industrial informatics, INDIN. pp 713–719

41. Hoffmann M (2017) Adaptive and scalable information modeling to

enable autonomous decision making for real-time interoperable facto-

ries. PhD thesis, Faculty of Mechanical Engineering, RWTH Aachen

42. Pech S, Göhner P (2010) Multi-agent information retrieval in het-

erogeneous industrial automation environments. In: Cao L, Bazzan

ALC, Gorodetsky V et al (eds) Lecture notes in computer science.

Springer Berlin Heidelberg, Berlin, pp 27–39

43. Shehory O, Sturm A (2014) Agent-oriented software engineering:

reflections on architectures, methodologies, languages, and frame-

works, 1st edn. Springer-Verlag Berlin Heidelberg, Berlin

Heidelberg

44. Cruz SLA (2018) Automatización Industrial Inteligente: Una

estructura de control desde el paradigma holónico de manufactura

(intelligent industrial automation: a control structure since the

holonic manufacturing paradigm). Editorial Académica Española,

Beau Bassin, Mauritius

45. Indriago C, Cardin O, Rakoto N, Castagna P, Chacòn E (2016)

H2CM: a holonic architecture for flexible hybrid control systems.

Comput Ind 77:15–28

46. Nieße A, Tröschel M, Sonnenschein M (2014) Designing depend-

able and sustainable smart grids—how to apply algorithm engineer-

ing to distributed control in power systems. Environ Model Softw

56:37–51. https://doi.org/10.1016/j.envsoft.2013.12.003

47. Platform Industrie 4.0 (I4.0) (2018) The structure of the administra-

tion shell: trilateral perspective from France, Italy and Germany. 64

48. Folmer J, Schütz D, Schraufstetter M, Vogel-Heuser B (2012)

Konzept zur erhöhung der flexibilität von produktionsanlagen

durch einsatz von rekonfigurierbaren anlagenkomponenten und

echtzeitfähigen softwareagenten (concept for increasing the flexi-

bility of production plants by using reconfigurable plant compo-

nents). In: Informatik aktuell

49. Priego R, Iriondo N, Gangoiti U, Marcos M (2017) Agent-based

middleware architecture for reconfigurable manufacturing systems.

Int J Adv Manuf Technol 92:1579–1590. https://doi.org/10.1007/

s00170-017-0154-z

50. Hanisch HM, Lobov A, Lastra Martinez JL et al (2006) Formal

validation of intelligent-automated production systems: towards in-

dustrial applications. Int J Manuf Technol Manag 8:75

51. Rauscher M (2015) Agent based consistency check of heteroge-

neous models in industrial automation. PhD thesis, Faculty 5.

Computer Science, Electrical Engineering and Information

Technology, University of Stuttgart, Stuttgart

52. Hofmann P (2017) A fuzzy belief-desire-intention model for agent-

based image analysis. In: Ramakrishnan S (ed) Modern fuzzy con-

trol systems and its applications. IntechOpen, Rijeka

53. Legat C, Vogel-Heuser B (2014) A multi-agent architecture for

compensating unforeseen failures on field control level. In:

Studies in computational intelligence. pp 195–208

54. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems archi-

tecture for industry 4.0-based manufacturing systems. Manuf Lett

55. Monostori L (2014) Cyber-physical production systems: roots, ex-

pectations and R&D challenges. Procedia CIRP 17:9–13

56. Komma VR, Jain PK, Mehta NK (2011) An approach for agent

modeling in manufacturing on JADETM reactive architecture. Int J

Adv Manuf Technol 52:1079–1090. https://doi.org/10.1007/

s00170-010-2784-2

57. Vogel-Heuser B, Kegel G, Bender K, Wucherer K (2009) Global

information architecture for industrial automation. Atp 1:108–115

58. Badr I (2011) Agent-based dynamic scheduling for flexible

manufacturing systems. PhD thesis, Faculty 5. Computer Science,

Electrical Engineering and Information Technology, University of

Stuttgart, Stuttgart

59. BrehmR, RedderM, Flaegel G,Menz J, Bruce-Boye C et al (2019) A

framework for a dynamic inter-connection of collaborating agentswith

multi-layered application abstraction based on a software-bus system.

In: Czarnowski I., Howlett R., Jain L., Vlacic L. (eds) Intelligent

Decision Technologies 2018. KES-IDT 2018 2018. Smart

Innovation, Systems and Technologies, vol 97. Springer, Cham

60. Platform Industrie 4.0 (I4.0) (2017) Relationships between I4.0

components—composite components and smart production

61. Yao X, Lin Y (2016) Emerging manufacturing paradigm shifts for

the incoming industrial revolution. Int J Adv Manuf Technol. 85:

1665–1676. https://doi.org/10.1007/s00170-015-8076-0

62. Barenji RV, Barenji AV, Hashemipour M (2014) A multi-agent

RFID-enabled distributed control system for a flexible manufactur-

ing shop. Int J Adv Manuf Technol 71:1773–1791

63. Vargas C, Langfinger M, Vogel-Heuser B (2017) A tiered security

analysis of industrial control system devices. In: 15th international

conference on industrial informatics, INDIN. pp 399–404

64. Frayret JM et al (2004) Coordination and control in distributed and

agent-based manufacturing systems. Prod Plan Control 15:42–54.

https://doi.org/10.1080/09537280410001658344

65. Leitão P (2009) Agent-based distributed manufacturing control: a

state-of-the-art survey. Eng Appl Artif Intell 22:979–991. https://

doi.org/10.1016/j.engappai.2008.09.005

66. Garcia Valls M, Lopez IR, Villar LF (2013) ILAND: an enhanced

middleware for real-time reconfiguration of service oriented distrib-

uted real-time systems. IEEE Trans Ind Informatics. 9:228–236.

https://doi.org/10.1109/TII.2012.219866

67. Jimenez JF, Bekrar A, Zambrano-Rey G, Trentesaux D, Leitão P

(2017) Pollux: a dynamic hybrid control architecture for flexible job

shop systems. Int J Prod Res. 55:4229–4247. https://doi.org/10.

1080/00207543.2016.1218087

68. Váncza J, Monostori L (2017) Cyber-physical manufacturing in the

light of professor Kanji Ueda’s Legacy. In: Procedia CIRP

69. Vogel-Heuser B, Bauernhansl T, ten HM (2017) Handbuch

Industrie 4.0 Bd.2 (manual of industry 4.0 Vol.2), 2nd edn.

Springer Berlin Heidelberg, Berlin, Heidelberg

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Int J Adv Manuf Technol (2019) 105:4005–40344034

https://doi.org/10.1016/j.envsoft.2013.12.003
https://doi.org/10.1007/s00170-017-0154-z
https://doi.org/10.1007/s00170-017-0154-z
https://doi.org/10.1007/s00170-010-2784-2
https://doi.org/10.1007/s00170-010-2784-2
https://doi.org/10.1007/s00170-015-8076-0
https://doi.org/10.1080/09537280410001658344
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1109/TII.2012.219866
https://doi.org/10.1080/00207543.2016.1218087
https://doi.org/10.1080/00207543.2016.1218087

	Cyber-physical...
	Abstract
	Introduction
	Contribution to the industrial automation
	Research questions and hypotheses

	Related work
	Requirements regarding CPPS and RAMI 4.0

	Classification criteria for MAS patterns (RQ1)
	Evaluation of four selected MAS architectures applying criteria classification (RQ2)
	Design pattern for the resource agent
	Design pattern for plug and produce of MFS
	Design pattern for agents with self*-control
	Resource access design pattern

	Common functionalities and automation level patterns (RQ3)
	Resource access common function
	Coordination process common function
	Knowledge base common function
	Communication interface common function
	Summary of the common functionalities
	Automation levels and features of sub-agents patterns

	Agent-based CPPS architecture for I4.0 component evaluation (RQ4)
	MAS architecture based on RAMI 4.0 model
	Design pattern for the administration shell
	Discussion of the CPPS and RAMI 4.0 requirements evaluation
	Comparison of the agent-based CPPS architecture to other approaches
	Use case evaluation with an I4.0 demonstrator

	Conclusion
	References

