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Abstract. This paper discusses event-based semantics in the context of the
emerging concept of Cyber Physical Systems and describes two related formal
models concerning policy-based coordination and Interactive Agents.

1 Introduction

Cyber-physical systems (CPSs) integrate computing and communication with monitor-
ing and/or control of entities in the physical world. Sensing and manipulation of the
physical world occurs locally, system behavior emerges as a result of communication
and other forms of interaction. Example CPSs include automobiles, aircraft, air traf-
fic control, power grids, oil refineries, medical devices, patient monitoring, and smart
structures. Software is becoming an increasingly important element of the operation of
these systems, and must do so dependably, safely, securely, efficiently and in real-time.

CPSs go beyond traditional embedded and distributed systems. They are often long
lasting, with 24x7 operation and must evolve without losing stability. Some CPSs or
their components have stringent QoS requirements, others are more flexible.
Traditional embedded and critical systems are closed, not only in the sense of closed
physical locations or dedicated networks, but also closed with respect to their computa-
tional boundaries, i.e., all the participating elements in the systems are known initially.
Thanks to network technology and mobility, today’s embedded systems are shifting to-
wards openness and federation This leads to multi-scale, wide area critical systems with
real-time requirements, all this still with certification requirements, a major verification
challenge. The openness brings more convenience and flexibility for controlling the
systems. However, it also introduces extra complexity into the systems: large scale, un-
certainty, and dynamics—entities can come into or leave from the systems, and makes
the coordination of entities even harder.

QoS requirements, such as timing properties, fault-tolerance, security, etc., dictate
how individual entities of the system being considered coordinate with each other. For
instance, a deadline constraint on a task indicates that there must exist another entity
that is coordinated with the constrained task. Or the deadline misses its meaning. If we
consider computation is to achieve the system’s functional requirements, QoS require-
ments are reflected through coordination among computational entities. With this view,
embedded or critical systems are compositions of two main elements—computation
and coordination.

A solid semantic foundation is crucial for design, deployment, monitoring and adap-
tation of CPSs. Such a foundation must support reasoning locally about individual com-
ponents and globally about system wide properties. Our hypothesis is that event-based
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semantics can provide such a foundation. In Section 2 we discuss the general idea of
event-based semantics. A sampling of related work is presented in Section 3. This is
followed by brief overviews of two specific ideas: PAGODA—a policy and goal-based
approach to modeling autonomous system components, and Interactive agents—which
combines a policy based coordination model and an extension of the notion of actors to
include interactions other than messages.

2 Event-Based Semantics

We begin with a discussion of various notions of event, followed by essential features,
and challenges to be met in developing event-based semantics for CPSs.

2.1 What Is an Event?

An instance of an action? An occurrence in time and space? A change of condition?
There are many notions of event, different notions being useful for different purposes,
including:

– In the actor model of computation an event is a message send or receive.
– In the process algebra model of computation an event is an action shared by two

processes.
– In the world of linguistics events may happen over time or be nested. For example:

Tim and Ben played World of WarCraft. They completed a quest.

We can classify event models along several dimensions:

– punctual (for example, message send/receive) vs durative (for example, filling the
tank, attending a class)

– single vs stream (for example, card reader readings, periodic chemical sensor read-
ings, or object tracking)

– change vs action/observation.

In addition, event models may have different underlying temporal models: causal or-
dering (before/after), discrete time, continuous time.

It is important for an event-based semantic to include many different notions of event,
and to allow moving from one to another in meaningful ways.

2.2 Why Event-Based?

What are the essential features of event-based semantics? One key feature of events is
that they concern interactions between components and observations rather that internal
state. This enables specification and reasoning at higher-levels while integrating easily
with more detailed information. Another key feature of events is the notion of causal
partial order that reflects the physical reality that for events separated in space we may
not be able to decide a linear order (and should not depend on it).
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– Events are a natural way to think about reactive systems, such as CPSs. They pro-
vide a natural way to specify components of open systems in terms of interfaces and
observable behavior. Events also can form the basis for specifying coordination and
composition of components.

– Global state and local state can be abstracted to event partial orders. The causal
partial order of an event semantics captures dependencies/consequences and al-
lows reasoning about what must have happened in the past, given some reasonable
assumptions about the behavior of system components. Further, by (logically) lo-
cating events, reasoning can be localized, and will scale.

– Event models can be used to give semantics to specifications, as well and to support
runtime observation/monitoring adaptation, security decisions, trust building. They
support new programming abstractions that deal with actions and interactions rather
than state transformations.

– Events may have associated evidence, for example the sensor generating low level
events, the algorithm used to extract information (colors, shapes, faces, sound pat-
terns, . . . ), rules used to infer higher level events from lower level events (location
of a person, end of lecture), or human input.

2.3 Challenge Areas

There are many challenges to realizing the full promise of event-based semantics. The
overall challenge is to develop general mathematical models together with domain spe-
cific refinements that are both natural and expressive. Beyond models its is crucial to
develop logics and reasoning principles. Finally these models and logics need tools to
make them usable for analysis, synthesis, and transformations. Below we discuss some
of things an appropriate event model should capture and some of the issues that will be
faced in doing so.

Identifying, Modeling and Reasoning About Interdependencies. It is critical to enable
increasing dynamic (computer) control that is safe and without unpleasant surprises.
Consider for example, a power grid versus a transportation system. One the one hand,
some elements of the transportation system depend on the power grid: trolly cars, fuel
pumps, logistics planning. On the other hand changes in the transportation system may
affect loads on the power grid. How can event partial orders combined with event time-
lines enable effective modeling and analysis? For example, an event based model could
express dynamic consequences of dependencies, not just static relations.

Dealing with Time, Space, Scale, and Uncertainty. Time resolution of observation and
actions. Events must be communicated in time to be useful. An example is sub second
control on a power grid. Local event and control models may change over time. One
example is different aircraft flight modes—takeoff, landing, or cruising. Another exam-
ple is traffic control for high density landing of aircraft, weather and traffic patterns can
change things substantially. Thus we must be able to model and reason about changes
of event structures over time.

Systems operate at multiple time scales, for example realtime control of a single de-
vice in the context of scheduling of train/air traffic or coordination of human activity. An
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event-based semantics is needed that supports reasoning at each scale and integrating
multiple scales.

Event hierarchies and rules for deriving high level events from lower level evidence
or refining high level events to lower level events such as actions are needed.

Privacy Issues for Human Centric CPS. Access to dynamic data raises new issues as
patterns over time, together with context, can enable unexpected inference of informa-
tion. An example: the water company may monitor patterns of water usage, for the
purpose of optimizing flow control. Maybe be able to detect activity such as shower,
toilet flush, running a dishwasher. If the electricity company and the water company
shared information, it might be possible to infer more refined differences. Electricity
patterns for a dishwasher might be different than those for a washing machine. Clearly
there is the possibility of invasiveness if such inferences are made (and exposed) .

Notice that the dynamic data can be modeled as event streams and transformations
on event streams can be used to control what information is exposed. Much work devel-
oping formal ‘threat’ models (knowledge context and ability of entity accessing data)
is needed to realize this possibility.

Composition Composing is not just putting things together in parallel! It is also nec-
essary to provide a means of interaction, and a means of constraining possible interac-
tions. For example,

– What network and communication protocols are needed to enable interacting with
physical systems?

– What coordination primitives are needed to describe event-based compositions that
involve physical systems?

– What properties of the components and their composition are important?

Incomplete specifications are often more elegant and easier for a designer or im-
plementor to work with, but they are generally not composable—as the missing infor-
mation leaves open the possibility of interference or unexpected combined behaviors.
Arguments for composition properties typically assume all events are known, while in
a given event model some information will be implicit in the model. Assume/guarantee
formalizations can help, but when composing using multiple models it will be crucial to
make explicit all information relevant to the composition. A possible approach to cross
model composition is to develop meta-models that make explicit model assumptions.

Another aspect of composition is composing evidence—proofs, statistical confidence
levels, trust. For example, low level events or event streams may be combined an ab-
stracted to infer higher level events. Event models are a good basis for thinking about
situation awareness, and it may be important to know how and event was detected,
before taking action.

New Models for Thinking About Things Top to Bottom. Currently embedded systems
have their control loop in the hardware or a realtime operating system. This does not
scale and does not work well in open systems. How can thinking in terms of events lead
to better models?



Cyber-Physical Systems and Events 105

New Languages Based on New Models of Computation and Interaction. Languages are
needed for event-based requirements, executable specification, composing, monitoring,
and even programming. Considerations include

– the ability to change the way instructions/descriptions are interpreted
– scoping visibility and effects of actions
– containing effects of errors or unexpected events—both physical and cyber
– programming concepts with resource sensitivity built in
– what can be monitored, detected and/or controlled?

3 Related Work

In the following we review a sampling of work related to event-based semantics.

Events Vs. State, Partial Order Vs. Interleaving. In [26,25] an argument is presented
that the traditional computer science model of concurrent programming using state-
based models and threads incurs unnecessary complexity and results in code that is
difficult to debug. For sequential computation and function composition they work
nicely. When deterministic sequential threads are composed in parallel they become
non-deterministic and difficult to manage. A tag based signal model is proposed build-
ing on [24]. The domain of tags comes equipped with an ordering relation, events are
tag-value pairs, and signals are sets of events describing incremental evolution of a sys-
tem. Components modeled in terms of signals compose naturally. The model is elab-
orated to model both components and connectors, thus capturing interactions and also
introducing the possibility of feedback loops. A mathematical theory based on topolog-
ical concepts has been developed to give a compositional semantics to the components-
connector wiring diagrams [27].

In [9] Clinger proves the existence of global times for event diagrams (a form of
event partial orders) corresponding to possible interleavings. This provides an associ-
ated interleaving model allowing one to reason sequentially or about partial orders.

Rewriting logic [28,30] extends equational logic with local rewrite rules that model
change over time. Proofs in rewriting logic can also be thought of as computations.
Since rules are applied locally, a computation step may involve multiple parallel
rewrites, while an equivalent computation carries these out one step at a time. In [29] it
was shown that in a restricted class of rewrite theories modeling object / actor systems,
there is an isomorphism between equivalence classes of proofs/computations and the
event partial order generated by the computation.

In [36] an abstract interpretation of time is proposed to model systems involving
preemptive scheduling. In this approach, models of the individual process are composed
into a single time domain with the result being an infinite state timed automaton called
a time domain automaton. Each state of such an automaton represents an equivalence
class of all possible execution interleavings that result in that particular event ordering.
Abstract interpretation combined with constraint solving techniques are used to make
the model amenable to analysis.
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Event Models for Actors. The actor model [20,2,1] is a model of concurrent and dis-
tributed computation based on asynchronous message passing. Actors are reactive en-
tities that encapsulate state and control and interact with other actors only by sending
and receiving messages. Events are the basis of semantics of actor languages and sys-
tems. Grief [18] introduced the notion of event diagram which captures the linear order
of events at each actor and the causal order between message sends and corresponding
receives. Baker and Hewitt [5] proposed a set of laws characterizing these event partial
orders. In [33] a compositional notion of Actor Algebra is developed. Actor Algebra
models include interfaces, specifications, event diagrams, and interaction paths with
mappings between the different algebras.

PastTime Distributed Temporal Logic (PtDTL). PtDTL, a variant of PastTime Tem-
poral logic was introduced in [32]. This logic reasons not over interleavings and linear
sequences of past states, but over partially ordered sets of events causally in the past. As
for event diagrams, events are located and the logic introduces epistemic operators that
allow reasoning about what holds at the most recent causally previous state of another
actor or process. The logic is used as the basis of an efficient algorithm for distributed
monitoring.

Causal Logic of Events. Causal Logic of Events (CLE) [8,6,7] is a logic for distributed
computing that has the explanatory and technical power of constructive logics of com-
putation. CLE provides a proof technology that supports correct-by-construction pro-
gramming based on the notion that concurrent processes can be extracted from proofs
that specifications are achievable. A methodology for specifying distributed systems in
CLE has been developed and implemented in NuPrl [3]. Requirements for a distributed
system are expressed in terms of events, these requirements are then refined to collec-
tions of constraints called Message Automata (MAs) that imply the original require-
ments. MAs can be compiled to standard languages such as Java. Models of message
automata are event diagrams, with events localized and the event order at each location
a total order. Working bottom up, system properties can be inferred from MAs. Event
classes and laws for composition allow specification and reasoning at a higher level of
abstraction. The logical framework also supports timing properties, for example using
variables that are trajectories of values rather than discrete values. The methodology
has been applied to a variety of networking and security protocols.

Strand Spaces as an Event Model for Security and Location. Key exchange has logi-
cally simple goals, agnostic to communication concerns. In contrast, location protocols
have quantitative goals, and models must consider transmission properties and use ge-
ometry. Strand spaces are a mathematical model that provides a special-purpose exe-
cution semantics, called Bundles, based on a causal partial order, that is complete for
symbolic analysis of key exchange [16]. Reasoning about properties such as authenti-
cation or confidentiality makes combined use of causality and cryptographic properties.
Strand spaces have been used to model and analyze a variety of security related proto-
cols, including key exchange, contract negotiations, and secure payments systems.

Metric strand spaces are introduced in order to also reason about space and time.
Bundles in a metric strand space have a distance and time elapse measures on some pairs
of events that obey axioms reflecting by a model of transmission speed [19]. Secure
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location protocols combine cryptography with the physics of message transmission.
The cryptographic operations authenticate the principals and preserve confidentiality,
while the physics of message transmission constrain their possible locations. In the case
of metric strand spaces, the strand space model is enriched by associating a space-time
location with each node. The strands follow the world lines of principals. Some bundles
are compatible with the physics of message transmission – e.g. the maximum message
transmission speed – while others are not. An assertion true in every bundle compatible
with the physics is a valid conclusion of a secure location protocol.

CEL and strand spaces are similar in a number of ways. They share notions of causal
order and the need to express limitations on the adversary. Strand spaces have a notion
of unique origination that is similar to the CEL notion of nonce. The two formalism dif-
fer in their treatment of (logical) locality: in CEL locality encompasses multiple activi-
ties of a single principle or actor and may allow sharing of information across multiple
threads/activities. In contrast the Strand space model explicitly isolates each activity of
a principal (a strand) enforcing further localization.

Event Streams and Uncertainty. Event-based semantics is natural for many real-time
embedded applications. In such applications the issue of temporal uncertainty is a
common and challenging problem. Temporal uncertainty comes from the inherent re-
strictions in the underlying sensing layer, such as the temporal/spatial limitations of
sampling, inaccurate clocks and unpredictable network latency. Although events occur
instantaneously (dense time) in the physical world, an event occurrence often cannot be
assigned a precise time owing to the above limitations. PTMON (Probabilistic Timing
MONitor) [42,41] is a generic framework for incorporating various uncertainty mod-
els on event time stamps, developed in the context of monitoring timing constraints on
event streams. A monitor task is formulated by timing constraints in a simple real-time
temporal logic and satisfaction/violation of these formulas is checked at run time. Given
a probability model of the temporal distance from event occurrence to event detection,
timing constraints based on event occurrences can be transformed to those based on
event detection. This transformation enables the early detection of timing constraint
violations. Applications include real-time baggage tracking, wireless process control,
remote monitoring, online multimedia downloading, and teleconference.

Grounding High-Level Event Definition. High-level event-based models require a pre-
cise notion of events in the model. A formal way of defining high-level events in terms
of low-level system state helps to define a faithful abstraction for an event-based model.
The logic of events and conditions (LEC) [22] is a two-sorted logic bridging the gap be-
tween state-based formalisms, commonly found in low-level models, and higher-level
event formalisms. Conditions represent an abstract view of the system state, with prim-
itive conditions being state predicates over the observable state variables in the system.
Primitive events can also be directly observed during a system run. The use of LEC for
event definition was developed in the context of run-time verification. The same sepa-
ration of concerns used in run-time verification can be applied to high-level modeling
in general. The basic approach is to provide an event-based model that uses high-level
events as atomic building blocks, reducing the size and complexity of the model. The
event definition layer provides grounding of the high-level model in the implicit low-
level model. It can be used to establish a mapping between behaviors of the high-level
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and low-level models, which can be used to demonstrate, without ever constructing the
low-level model explicitly, that the high-level model is a faithful representation of the
system.

Event Models for Pervasive Spaces. The Responsphere Infrastructure is a campus-level
pervasive computing and communication infrastructure at University of California at
Irvine (http://www.responsphere.org). It consists of a variety of sensors (video cam-
eras, sensor mounted mobile robots, people counters, RFID, acoustic sensors, thermal
and gas sensors) dispersed over approximately a third of the campus, connected via a
variety of network and communication technologies (802.11, cellular, mesh, and power-
line networks). It includes dense sensing in a few chosen buildings where it monitors all
corridors, entries, exits, and public areas using cameras. In addition, some designated
public spaces and laboratories are instrumented with RFID readers. Responsphere also
includes mobile sensor mounted robots with communication capabilities that can be
programmed for autonomous data collection. Responsphere serves as a test bed for de-
veloping a variety of pervasive functionalities, for example, using a mixture of video
and RFID technologies to implement social policies of a shared common facility within
a particular building. Examples include reminding people to switch off the coffee ma-
chine and conducting social experiments to study recycling behavior. In addition Re-
sponsphere has been used to conduct and monitor a variety of emergency drills such as
building and region evacuations. The SATware System [21] (http://satware.ics.uci.edu)
is a scalable middleware, that runs on Responsphere and provides seamless access to
sensor and event level data. Applications access this information via a SQL style query
language referred to as SATQL, at both the physical (e.g., raw sensor feeds) and se-
mantic levels (i.e., at the level of entities, activities, and events). The key concept is that
of a virtual sensor that empowers programmers to define and detect semantic concepts
thereby realizing information abstraction. Virtual sensors are mapped (at run-time) to
a graph of operators which are implemented over physical sensor streams. Challenges
for management and programming of pervasive spaces include privacy and trustworthi-
ness, evidence for judging semantic event reports, trading function for privacy, and self
monitoring and adaptation.

4 Policy- and Goal-Based Operation of Autonomous Agents

There is a growing interest in autonomous agents that interact with and affect their
environment, and have some ability to observe, reason, and adapt. As part of a larger
system agents should also be able to compete for resources but also to cooperate for
mutual benefit or to achieve an overall goal.

PAGODA (Policy And GOal based Distributed Autonomy) is a modular architecture
for design of interactive autonomous systems. A PAGODA system is a collection of
PAGODA nodes cooperating to achieve some mutual goal. A PAGODA node (agent)
interacts with its environment by sensing and affecting, driven by goals to achieve and
constrained by policies. The PAGODA architecture was inspired by studying architec-
tures developed for autonomous space systems, especially the MDS architecture [15]
and its precursors [31]. Software for deep space missions must be
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– autonomous—operating remotely for extended time
– robust—operating under unpredictable conditions
– dependable—mission failure is costly

In PAGODA policy-based coordination is used at two levels: local modular combina-
tion of components making up an agents behavior; and coordination of a distributed
system of agents constraining the possible interaction scenarios to meet end-to-end re-
quirements.

The long term objective of the PAGODA project is to develop techniques for speci-
fication and analysis that take advantage of the modularity and the declarative nature of
policy- and goal-based systems. PAGODA has been developed in the context of projects
providing driving applications, including a rover (for example for exploration or patrol)
[13,14] and software defined radios [40] supporting specific missions. Other potential
applications include reactive/adaptive planners, cognitive radios, software assistants,
and self-configuring systems.

Our approach is based on the Reflective Russian Dolls (RRD) model of distributed
object reflection [29,34] which in turn is founded on the rewriting logic formal model-
ing framework [28,30]. In [34] a general approach to modeling policy-based coordina-
tion using RRD was presented. The question addressed by PAGODA is how to specify
autonomous behavior that meets or achieves its goals (subject to constraints on exter-
nal conditions) in a modular and declarative manner using models of its environment.
Our solution is to factor the behavior into components, each with a specific role, that
combine to achieve the desired result.

4.1 PAGODA Nodes

Figure 1 shows the principal components of a PAGODA node: a knowledge base (KB),
a reasoner (R), a monitor (M), a learner (L), and a ‘hardware’ abstraction layer (HAL).
These interact with each other and the environment under the control of a
coordinator (C).

The knowledgebase (KB) is the centerpiece. It contains knowledge that is shared
and updated by the remaining components. This knowledge includes a wide range of
information:

– Goals that specify what the node or system is trying to achieve. A goal could be a
very high-level goal such as carrying out a scientific experiment or tuning param-
eters to achieve a given quality of service; or lower level goals that correspond to
actions that can be carried out.

– Policies that constrain the allowed actions / interactions of a node or system. A
policy might reduce the number of choices for setting parameters, for example
based on importance of different competing effects. Another policy might deter-
mine trade-offs between speed and power usage. Other policies might control ag-
gregation and abstraction of information used locally or communicated to other
agents.

– A device model that specifies the HAL interface: parameters/knob that can be set
(effecting) and read (sensing) and their relationships. At the system level the model



110 C. Talcott

Fig. 1. PAGODA node architecture

should also specify how values sensed at different nodes can be combined to deter-
mine non-local system properties, and the relationships of such properties to higher
level goals.

– An environment model, representing relevant features of the environment in which
the node is operating, including information about other nodes. For a mobile node
this could include terrain information or building maps.

– Node state, which includes values of variables determined by sensor readings and
deduced from actions and information collected from other nodes. It also includes
‘situation’ information such as the stage in a complex task/mission or progress
towards achieving a goal.

– History, a log of events–goals received, knob settings and sensor readings, monitor
alerts, and so on.

The job of the reasoner component (R) is to determine proper parameter settings in
response to goals requests: new goals, starting a new stage of a current goal, or alerts
raised due to unexpected sensor values, indicating that adjustments need to be made.
The reasoner uses information from the KB as a basis for its deductions: the device and
environment model, the goals and policies, and the current state. When new parameter
settings are determined, the reasoner also provides justifications such as what sensor
values and/or what relationships from the device model were used to infer the new
settings. This can be used for diagnostics if things don’t go as expected. The reasoner
also specifies sensors that should be monitored and conditions on sensor reading under
which the reasoner to be alerted to take corrective action.

The monitor component (M) receives monitoring tasks from the reasoner, reads and
evaluates specified sensors, and sends alerts to the reasoner when sensor readings are
not within specified limits.

The job of the learner component (L) is to improve the model used by the reasoner
to infer appropriate knob settings. In passive mode it observes events such as goals,
settings, sensor readings and alerts and attempts to improve relationships specified by
the model based on this information. A learner may also have an active mode where it
is allowed to propose experimental settings and observe the results.
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The hardware abstraction layer component (HAL) is an interface to the sensors and
effectors used by the node. It plays the role of device driver, handling knob setting and
sensor reading requests. In a real system the HAL might map requests to a format that is
understood by the actual hardware, or even to a lower level abstraction layer. The intent
is that these interactions should obey the ‘physics’ specified by the device model, but the
node needs to be prepared for things to go wrong—some hardware component breaks,
the environment is different than expected, it is being operated outside the expected
operational mode, and so on.

The coordinator (C) controls message semantics for internal components and me-
diates interactions with the external world. The coordinator is responsible for ensur-
ing specified relationships between the events (message deliveries) seen by different
components, and for meeting logging and notification requirements. It also enforces
component level synchronization constraints (only delivering messages for which the
component is enabled). The coordinator actions are specified declaratively by policies.
Note that coordinator policies are similar in spirit, to policies used by the reasoner, but
different in detail.

Each PAGODA component type has an interface specified using events. The seman-
tics of given component is an event-based semantics in the spirit of the Actor Algebra
discussed in Section 2. This enables event-based composition of components and their
semantics. Composition with a coordinator can be treated as a vertical composition in
the spirit of [12].

This architecture provides a simple means of plugging in different component in-
stances. PAGODA node components interact with other node components based on
component type not on component instance identity. Thus it is easy to have multiple
reasoners, knowledge bases, learners, etc., by simply modifying the coordinator policy
to choose appropriate component instances. Different reasoners might be appropriate
for different situations or goals, knowledge might be split into categories and stored in
separate KB instances, or two KB instances might contain knowledge at different levels
of abstraction appropriate for different situations.

Additional components types could be easily incorporated. For example a component
capable of knowledge abstraction or aggregation could be invoked from time to time
by the coordinator to infer higher-level information from sensor data or information
received from peers. Such a component could be used to raise the level of abstraction
at which the reasoner or learner operates.

5 Interactive Agents

Much has been written contrasting interactive computation and other models such as
Turing machines and logic programming [37,38,39]. Our focus is on modeling and
reasoning about the capabilities enabled by interactivity.

An interactive agent must be aware of its surroundings, and it may also affect its
environment. It may need to negotiate, cooperate, or compete. A formal framework for
modeling interactive agents was introduced in [35]. The framework was based on the
need to consider the following features in the design of interactive agents.
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– An agent has a boundary consisting of points of interaction with the environment.
From the outside only what crosses the boundary is visible. Interaction points could
be sensors, such as light detectors or thermometers, effectors such as switches or
dials, or message queues for exchange of messages with other agents.

– An agent has actions that it can execute. It may also have goals, knowledge (about
its environment and itself), policies constraining actions, or strategies for achieving
goals.

– Internally an agent may have multiple concurrent activities; observing and process-
ing sensory information; refining goals to subgoals, choosing actions, executing
actions; evaluating and analyzing results: did actions have expected effect? updat-
ing knowledge by learning and inference;

– Interactivity means internal processes must be interruptible.

The framework is based on rewriting logic and a reflective model of coordination
for managing an agents activities. New forms of interaction are introduced to model
both message and channel/signal based interactions, and to pave the way for modeling
continuous interactions. The compositional interaction semantics of [33,12] is extended
to handle the new forms of interaction. The aims of the framework include:

– a higher level means of specifying and understanding agent behavior
– a place to classify agents with different ‘skills’
– a formal design space to represent a variety of design decisions and to study trade-

offs resulting from decisions such as adaptability vs. predictability;

One advantage of the proposed framework is that specifications are executable, allowing
prototyping of designs at many stages. In addition, such specifications are formally
analyzable using the Maude rewriting logic system, and connections with other formal
systems.

Briefly, interactive agents are formalized as actor like objects with rules for commu-
nication by messages, interaction through interface points, and policies for coordinating
activities, also represented as (sub)agents. What the agent reads at an interaction point
is controlled by the environment. What the environment can read is controlled by the
agent (by a write action).

An interaction path is a (possibly infinite) sequence of interactions (events as viewed
from an imaginary external observer). Each computation of an agent (allowed by the
rewrite rules) gives rise to a set of interaction paths consisting of the (non-silent) in-
teractions labeling the transitions (rewrite rule applications). The observable semantics
of an interactive agent is thus the set of interaction paths of its possible computations.
This definition derives from earlier work developing interaction semantics for actors
[33,12], ideas from Timed Data Stream semantics for the Reo coordination model [4],
and signal event semantics [23]. Interaction semantics is similar in spirit to the Inter-
active Stream Languages of [17]. The ideas are also related to work on interfaces of
reactive and concurrent systems such as, [10,11].

Interaction semantics is compositional both vertically and horizontally. The semantics
of the horizontal (parallel) composition of two systems is done by zipping compatible
paths, one from the semantics of each system. Two paths are compatible if their subse-
quences of complimentary interactions, such as out/write in one and in/read in the other
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match. In the composed path, these interactions become silent transitions and disappear,
and the remaining interactions are merged. (See [33] for details in the case of horizontal,
actor-actor composition, and [12] for vertical, actor-metaactor, composition.)

6 Conclusion

Cyber physical systems (CPSs) are an emerging phenomena. These systems are often
not only software intensive, but also are tightly integrated with physical system, leading
to many new challenges for design and development. We have proposed event-based se-
mantics as a semantic foundation for Cyber physical Systems. We discussed a variety of
notions of event, essential features and challenges for developing event-based seman-
tics for CPSs. We also sketched two compositional models, one for autonomous agents
and one for interactive agents. The latter providing forms of interaction such as needed
in CPSs.
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