
Journal of Information Security, 2017, 8, 125-140 
http://www.scirp.org/journal/jis 

ISSN Online: 2153-1242 
ISSN Print: 2153-1234 

DOI: 10.4236/jis.2017.82009  April 30, 2017 

 
 
 

Cyber Security: Nonlinear Stochastic Models for 
Predicting the Exploitability 

Sasith M. Rajasooriya*, Chris. P. Tsokos, Pubudu Kalpani Kaluarachchi 

Department of Mathematics and Statistics, University Of South Florida, Tampa, Florida, USA 

 
 
 

Abstract 
Obtaining complete information regarding discovered vulnerabilities looks 
extremely difficult. Yet, developing statistical models requires a great deal of 
such complete information about the vulnerabilities. In our previous studies, 
we introduced a new concept of “Risk Factor” of vulnerability which was cal-
culated as a function of time. We introduced the use of Markovian approach 
to estimate the probability of a particular vulnerability being at a particular 
“state” of the vulnerability life cycle. In this study, we further develop our 
models, use available data sources in a probabilistic foundation to enhance the 
reliability and also introduce some useful new modeling strategies for vulne-
rability risk estimation. Finally, we present a new set of Non-Linear Statistical 
Models that can be used in estimating the probability of being exploited as a 
function of time. Our study is based on the typical security system and vulne-
rability data that are available. However, our methodology and system struc-
ture can be applied to a specific security system by any software engineer and 
using their own vulnerabilities to obtain their probability of being exploited as 
a function of time. This information is very important to a company’s security 
system in its strategic plan to monitor and improve its process for not being 
exploited. 
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1. Introduction 

“Risk” is an unavoidable phenomenon in the Cyber world. Information systems 
ranging from very small and personal level apps to massive corporate and gov-
ernment applications and system platforms are facing the threat from Cyber-at- 
tacks [1] in various dimensions. The number of such attacks and the magnitude 

How to cite this paper: Rajasooriya, S.M., 
Tsokos, C.P. and Kaluarachchi, P.K. (2017) 
Cyber Security: Nonlinear Stochastic Mod-
els for Predicting the Exploitability. Journal 
of Information Security, 8, 125-140. 
http://dx.doi.org/10.4236/jis.2017.82009 
 
Received: March 22 2017 
Accepted: April 27, 2017 
Published: April 30, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution  
International (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.82009
http://www.scirp.org
http://dx.doi.org/10.4236/jis.2017.82009
http://creativecommons.org/licenses/by/4.0/


S. M Rajasooriya et al. 
 

126 

of the hazards have been heavily increasing throughout recent years. Hackers are 
getting more active and effective. The risk is getting higher. System administra-
tors and defending professionals are working hard to understand attackers, at-
tacking strategies and effectively defend attacking attempts. To establish suc-
cessful defending platforms, a proper understanding of the “risk” associated with 
a given vulnerability [2] [3] is required. If we have effective models that enable 
the defenders and system administrators to successfully predict the risk of a giv-
en vulnerability being exploited as a function of time, it will be helpful to plan 
and implement security measures, allocate relevant resources and defend the 
systems accordingly. We, in this study, improve the Markovian approach of 
Vulnerability Life Cycle Analysis [2] to come up with better modelling tech-
niques to evaluate the “risk factor” using probability and statistical methods. 

The objective of this study is to propose and present a rational set of methods 
to identify the probabilities for each different state in the vulnerability life cycle 
[2] [4] [5] and use this information to develop three different statistical models 
to evaluate the “Risk Factor” [2] [5] of a particular vulnerability at time “t”. In 
our recent study “Stochastic Modelling of Vulnerability Life Cycle and Security 
Risk Evaluation” (Journal of Information Security, 7, 269-279) [2], we intro-
duced the strategy of using Markov processes to obtain the “transition proba-
bility matrix” of all the states of a particular vulnerability as a function of time. 
We iterated the Markov process and determined that it reached the “steady 
state” with probabilities of reaching the “absorbing states” [1] [2]. The two ab-
sorbing states were identified as “exploited” and “patched” states. We pro-
ceeded to introduce the “Risk Factor” that could be used as an index of the risk 
of the vulnerability being exploited [1]-[7]. Finally, we presented successful sta-
tistical models that could calculate the “Risk Factor” more conveniently without 
going through the Markovian process [1] [2] [6]. 

However, in this process, we used a logical and realistic approach to assign in-
itial probabilities for each state of the vulnerability. In this study, we introduce 
more relevant and sophisticated sets of methods to assign the initial probabilities 
for each state of Vulnerability Life Cycle based on several logical assumptions. 
We use the CVSS score [3] [8] as we did earlier, but here we calculate and in-
troduce initial probabilities taking the entire CVE Data Base 
(http://www.cvedetails.com/) into consideration. 

Finally, using our new methods, we develop three new statistical models for 
vulnerabilities that differ based on their vulnerability score ranging from 0 to 10 
as low risk (0 - 3.9), medium risk (4 - 6.9) and high risk (7 - 10). Using these 
models the user will be able to estimate the “Risk” of a particular vulnerability 
being exploited at time “t” and to observe the expected behavior of the vulnera-
bility throughout its life cycle. 

1.1. Vulnerability Life Cycle Analysis Method 

In our previous study [2], we introduced the use of Markov chain process to de-
velop the transition probability matrix including all the important states of Vul-

http://www.cvedetails.com/
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nerability Life Cycle. The Vulnerability Life Cycle Graph that we discussed is 
presented below by “Figure 1”. When we draw a Life Cycle Graph for a given 
vulnerability, it has several nodes which represent the stages of the Vulnerability 
Life Cycle. Earlier we assigned logical probabilities for a hacker to reach each 
state by examining the properties of a specific vulnerability. Life Cycle Graph has 
two absorbing states [2] [4] [5] [6] that are named “Patched” state [2] [4] [5] 
[6] [7] and “Exploited” state [1] [2] [4] [5] [6] [7]. Therefore, this allowed us to 
model the Life Cycle Graph as an absorbing Markov chain. It should be noted 
that in the figure below the states three and five are absorbing states of this Life 
Cycle Graph as there are no out flaws from those states. 

We define, iλ  to be the probability of transferring from state i to state j. 
Where, , 1, 2,3, 4,5.i j =  
In actual situations the probability of discovering a vulnerability can be as-

sumed very small. Therefore, for 1λ  we had assigned a small value. Then prob-
abilities for 2 3 4 5, , ,λ λ λ λ , were also assigned accordingly. Then we checked sev-
eral random values for iλ s and observed the behavior of each different state to 
be a function of time. 

Using these transition probabilities we could derive the absorbing transition 
probability matrix for a Life Cycle of a particular Vulnerability, which follows 
the properties defined under Markov Chain Transformation Probability Method 
[2]. 

However, in our present study, instead of randomly assigning transition 
probabilities for each of the state presented in the Life Cycle, we use a new set of 
methods that are probabilistically more reliable. It is challenging to acquire a 
complete set of information relevant to Vulnerabilities in a manner that we can 
calculate the required probabilities conveniently. Therefore, we use available and 
 

 
Figure 1. Markov Model Approach to Vulnerability Life Cycle with Five States. 
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reliable data resources about Vulnerabilities to develop our methodology that we 
discuss in the section that follows. 

1.2. Common Vulnerability Scoring System (CVSS) and Common 
Vulnerabilities and Exposures (CVE) 

It is important to discuss here the usage of Common Vulnerability Scoring Sys-
tem (CVSS) [8] and CVE Details [9], as we gather data from those resources. 
Common Vulnerability Scoring System (CVSS) is the commonly used and freely 
available standard for assessing the magnitude of Information System Vulnera-
bilities. CVSS gives a score for each vulnerability scaling from 0 to 10 based on 
several factors. National Vulnerability Database (NVD) [3] provides CVSS score 
and updates continuously as new vulnerabilities are discovered. CVSS score is 
calculated using three main matrices named, Base Matric, Temporal Metric and 
Environmental Metric. However, NVD data base provides us with the Base Me-
tric Scores for the Vulnerability only because the Temporal and Environmental 
Scores are varied on other factors related to the organization that uses the com-
puter system. The Base score for more than 75,000 different vulnerabilities are 
calculated using 6 different Matrices. It is managed by the Forum of Incident 
Response and Security Teams (FIRST). CVSS establishes a standard measure 
of how much concern vulnerability warrants, compared to other vulnerabilities, 
so that efforts can be prioritized. The scores range from 0 to 10. Vulnerabilities 
with a base score in the range 7.0 - 10.0 are High, those in the ranges 4.0 - 6.9 are 
Medium, and 0 - 3.9 are Low. Hence, the three transition probability matrices 
and statistical models that we develop in this study are based on this classifica-
tion of the CVSS score. 

Common Vulnerabilities and Exposures (CVE) is a dictionary resource and 
CVE Detail website [9] provides us with the data base in the basic categories 
with different CVSS scores. CVE Details provide us with quantities of vulnera-
bilities in different levels of magnitudes ranging from 0 to 10. Instead of ran-
domly assigning a reasonable probability for each different states ( iλ s), we now 
use these data resources as per their availability in estimating probabilistically 
reliable values for each state. Our approach in assigning initial probabilities into 
each state of the Life Cycle is discussed in the subsection 2.2 below. 

2. Methodology 
2.1. Methodology of Assigning Initial Probabilities 

Our objective now is focused on assigning initial probabilities for different states 
in the Life Cycle. In Table 1, below we present these initial probabilities that are 
required in our present study. Estimating them requires a great deal of data re-
sources. To estimate 1λ  as an example, requires the total number of vulnerabili-
ties in each category ranging from 0 to 10 in magnitudes, and information on 
their discovery with respect to time. Similarly for other states, we need the num- 
ber of vulnerabilities discovered, exploited before disclosed, exploited after discov-
ery but before patched, patched before the disclosure, patched after the disclosure, 
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Table 1. States Represented by the Transition Probabilities in the Vulnerability Life 
Cycle. 

Probability- iλ  State Represented 

1λ  Discovered 

2λ  Exploited before patched or disclosed 

3λ  Disclosed but not yet patched or exploited 

4λ  Patched before disclosed 

5λ  Exploited after disclosed 

6λ  Patched after disclosed 

 
under each CVSS score level. 

We start with the CVSS scores available for each vulnerability and categorize 
them and take the counts for the three different levels of vulnerabilities for 
possible states. However, it should be noted that, there are no data resources 
available providing all the data requirements here we have. Therefore, when the 
CVSS classifications available in the CVE detail website satisfy our requirements, 
we use those data and when they are not sufficient to make a reliable estimate we 
use information given by “Stefan Frei” in his thesis [4] and “Secunia Vulnerabil-
ity information report” [10]. 

We categorized 75,705 vulnerabilities according to their CVSS score and un-
der each of the three categories to find out number of total vulnerabilities and 
number of exploitations. We shall use this information to assign probabilities of 
discovery ( 1λ ) and exploitability ( 2λ ) for each CVSS score level. 

To assign probabilities for Disclosed but not yet patched or exploited ( 3λ ), 
Patched before disclosed ( 4λ ), exploited after disclosed ( 5λ ) and patched after 
disclosed ( 6λ ) we used Secunia vulnerability report information [10] and Frei’s 
results given in his study [4]. 

2.2. Estimating λ1 

To calculate an estimate for 1λ , “the probability of a vulnerability is being dis-
covered” [11] [12] for three categories of CVSS score, it is ideal to have an esti-
mate for the population of “total number of (known and unknown) vulnerabili-
ties at a particular time” so that we can get the proportion of discovered vulne-
rability out of the total. But, at a given time, it is impossible to know the total 
number of vulnerabilities in the cyber world as the number of vendors, applica-
tion software, system software and other apps are uncountable, so are the num-
ber of vulnerabilities that could be existing. Therefore, to have a logical estimate 
for the total number of vulnerabilities for each year, we first calculated the cu-
mulative number of vulnerabilities, and then calculated the number of vulnera-
bilities discovered in a particular year as a proportion of cumulative number of 
vulnerabilities in the next calendar year. Once we have taken these proportions 
considering all the years from 1999 till 2015, we took the average of those pro-
portions to be our estimate for 1λ . 
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2.3. Assumptions Made for λ1 

When calculating 1λ , it was assumed that, the number of unknown vulnerabili-
ties in a particular year are discovered in the next year and the accumulated 
number of vulnerabilities in a particular year is an estimate for the population 
size of the vulnerabilities in the previous year. 

2.4. Estimating λ2 

Estimate for 2λ , “the probability of a particular vulnerability being exploited 
[13] [14] before patched or disclosed” was calculated using the data provided in 
the CVE Detail website. The entire set of exploited vulnerabilities were calcu-
lated for 10 different categories (or CVSS score levels) of interest. 

2.5. Estimating λ3, λ4, λ5 and λ6 

3λ , “the probability of a vulnerability being disclosed but not yet patched or ex-
ploited” is calculated using the equation, ( )3 2 41λ λ λ= − + . 

For 4λ , “the probability of a vulnerability being patched before disclosed”, we 
used information available in “Secunia Report on Vulnerability”. 

To estimate 5λ , “probability of a vulnerability being exploited after disclosed” 
and 6λ , “probability of a vulnerability being patched after disclosed” we used in-
formation given by “Stefan Frei” in his doctoral thesis [4]. Frei, estimates that the 
probability of a vulnerability being exploited after it is disclosed is greater than the 
probability of it being patched. He estimates that there is a probability around 0.6, 
for a disclosed vulnerability being exploited. Therefore, we, in developing our 
model used, fix values of 0.6 and 0.4 respectively for 5λ  and 6λ . 

“Table 2” below presents our results on probabilities for each state with re-
spect to each category/level of vulnerability. 

Using these transition probabilities for each level we can now derive the ab-
sorbing transition probability matrix for a Vulnerability Life Cycle, which fol-
lows the properties defined under Markov Chain Transformation Probability 
Method [15] [16] [17] [18] [19]. 

2.6. Transition Matrix for Vulnerability Life Cycle 
2.6.1. Executing the Markov Process to Transition Probability matrix 
Now that we have the Vulnerability Life Cycle Graph with two absorbing states 
and initial probability estimates for each state, we can write the general form of the 
transition probability matrix [15] [16] [19] for vulnerability life cycle as follows. 
 
Table 2. Estimates of Transition Probabilities for each Category of Vulnerabilities. 

Vulnerability level λ1 λ2 λ3 λ4 λ5 λ6 

Low 0.1777 0.016303 0.183696615 0.8 0.6 0.4 

Medium 0.1888 0.08104 0.118960089 0.8 0.6 0.4 

High 0.1804 0.147552 0.052448328 0.8 0.6 0.4 
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1 1

2 3 4

5 6

0 0 0
0 0
0 0 1 0 0
0 0 0
0 0 0 0 1

1

P

λ λ
λ λ λ

λ λ

 
 
 
 =
 

 

−




 

where, 
( )iP t -Probability that the system is in state i at time t. 

For 0t =  we have: 
( )1 0 1P = , Probability that the system is in State 1 at the beginning ( 0t = ). 

( )2 0 0P = , ( )3 0 0P = , ( )4 0 0P = , ( )5 0 0P = . 

Therefore, the initial probability can be given as [ ]1 0 0 0 0 , that is, the 
probabilities of each state of the Vulnerability Life Cycle initially. It is clear that, 
the “State 1” (Not Discovered) with probability of one represents that at the ini-
tial time (for 0t = ), where the Vulnerability has not yet been discovered and 
therefore the probabilities for all others stages are zero. 

Now, for three different categories of Vulnerabilities, we can iterate the transi-
tion probability matrix using Markovian process [15] until the matrix reaches its 
“steady state”. The iteration algorithm is explained below. 

For 0t = , we have 

( ) [ ]0 1 0 0 0 0 .P =


 

For 1t =  , results in 

( ) ( )1 0P P P=
 

. 

For 2t = , we can write 

( ) ( ) ( )2 0 2P P P=
 

. 

And thus, for = n , we have 

( ) ( ) ( )0n nP P P=
 

. 

Using this method, we can now find the probability that is changing with time 
and is related to each “state” and then proceed to find the statistical model that 
can fit the vulnerability life cycle. 

As an example, for the vulnerabilities in Category one, where 1 0.1777λ = , 

2 0.0163λ = , 3 0.1837λ = , 4 0.8λ = , 5 0.6λ = , 6 0.4λ =  the transition 
probability matrix is written as follows: 

0 0 0
0 0 0.8
0 0 1 0 0
0

0.8223 0.1777
0.0163 0.1837

0.6 0.40 0
0 0 0 0 1

P

 
 
 
 =
 
 
  

 

As we execute this algorithm, for the vulnerabilities of category one, the sta-
tionarity (steady state) was reached (considering to 4 decimal digits) at 86t = , 
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that is, the minimum number of steps so that the vulnerability reaches its ab-
sorbing states is 86 and the resulting vector of probabilities for each of the ab-
sorbing states is obtained as the output of the calculation process. As shown be-
low, the transition probabilities are completely absorbed into the two absorbing 
states which gives the “probability of the vulnerability being exploited” and the 
“probability of the vulnerability will be patched”. All other states have reached 
the probability of zero. That is, 

0 0 0
0 0 0.8
0 0 1 0 0
0

0.8223 0.1777
0.0163 0.1837

0.6 0.40 0
0 0 0 0 1

P

 
 
 
 =
 
 
    

( )86

0.1524 0 0.8476
0 0 0.1524 0.8476

,0 0 1 0 0
0 0 0
0 0 0

0 0
0

0.6 0.4
0 1

P

 
 
 
 ⇒ =
 
 
  

 

( ) ( ) ( ) [ ]86 0 86 0 0 0.1265 0 0.8735 .P P P= =
 

 

That is, it will take the hacker 86 steps and a 12.7% chance to exploit the secu-
rity system and 87.3% probability to reach the patched state. Thus we are sure 
that after 86t = , one of the two states will be reached. 

Initially, we defined the 3rd state as “the state of being exploited” and the 5th 
state as “the state of being patched” in the vulnerability life cycle. Based on the 
current data resources available relevant to the vulnerabilities of category one we 
can use these results as estimates for the probabilities of being exploited and be-
ing patched. The results from this Markovian model [15] for the vulnerability 
life cycle show that the sum of the resulting probabilities equals to one (0.1265 + 
0.8735 = 1). This in other words indicates that our model estimates that one of 
these results are expected after 86t =  (ex: after 86 days) for a vulnerability in 
category one. Hence, it is clear that once the “steady state” is achieved, for a vul-
nerability of category one, estimates of the probability of being exploited is 
12.65% and the probability of being patched is 87.35%. 

Similarly, for vulnerabilities of categories two and three, the transition proba-
bility matrices can be obtained. Transition probability matrices and resulting 
steady state vectors for those categories are given below. 

For vulnerabilities of Category 2; 

0 0 0
0 0 0.8
0 0 1 0 0
0 0

0.8112 0.1888
0.081 0.119

0.6 0
0 0 1

.4
0

0
0

P

 
 
 
 =
 
 
  
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( )80

0.1524 0 0.8476
0 0 0.1524 0.8476
0 0 1 0 0
0 0 0
0 0

0 0
0

0.6 0
0

.4
0 1

P

 
 
 
 ⇒ =
 
 
    

( ) ( ) ( ) [ ]80 0 80 0 0 0.1524 0 0.8476 .P P P ==
 

 

For vulnerabilities of Category 3; 

0 0 0
0 0 0.8
0 0 1 0 0
0

0.8196 0.1804
0.1476 0.0524

0.6 0.40 0
0 0 0 0 1

P

 
 
 
 =
 
 
  

 

( )84

0.1790 0 0.821
0 0 0.1790 0.821
0 0 1 0 0
0 0 0
0 0

0 0
0

0.6 0
0

.4
0 1

P

 
 
 
 ⇒ =
 
 
  

 

( ) ( ) ( ) [ ]84 0 84 0 0 0.1790 0 0.821 .P P P= =
 

 

“Table 3” below summarizes our results. Number of iterations (steps) that it 
takes to reach the “steady states” and resulting row vectors of probabilities for 
each three categories of vulnerabilities are given in this table. 

2.6.2. “Risk Factor”—Calculating the Risk as a Function of Time 
Now that we have the steady state vector with the probabilities for patching and 
getting exploited, we can calculate the risk of a particular vulnerability using 
the“risk factor”. In our previous study [2] we have introduced this risk factor as 
follows. 

( ) ( ) ( )Risk Pr is in state 3 at time Exploitability scorei i iv t v t v= ×  

Exploitability score [3] for the vulnerability can be taken from the CVSS score 
as we mentioned earlier. With our results for three different levels of vulnerabili-
ties, now we have a better index for the risk factor since our initial probabilities 
were not just chosen randomly, but were estimated using the available and relia-
ble data sources. As an example, let’s consider a vulnerability in the lower level 
 
Table 3. Number of iterations (steps) to reach the steady state and Steady State Vector for 
each category of Vulnerability. 

Category 
Number of  
iterations 

Steady state 
Probability of 

being exploited 
Probability of 
being patched 

Sum 

Low 86 [0.0000 0.0000 0.1265 0.0000 0.8735] 0.1265 0.8735 1 

Medium 80 [0.0000 0.0000 0.1524 0.0000 0.8476] 0.1523 0.8476 1 

High 84 [0.0000 0.0000 0.1790 0.0000 0.8210] 0.179 0.821 1 
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with an exploitability score of 2.4. Assume that we need to find the Risk factor of 
that vulnerability at 50t = . Then, using the Markov process we can come up 
with the resulting vector of the vulnerability that gives us the probabilities of be-
ing in each different state at that particular time. However, iterating Markov 
process for each time would not be a very efficient process due to the analytical 
calculations. Therefore, we proceed to move on to develop three different nonli-
near statistical models that make it much more convenient for the designed cal-
culation. 

To further explain the usage of the Risk Factor let’s take an example. Consider 
a vulnerability given in Table 4. With the published date and the exploitability 
score known for that vulnerability, we can now calculate the risk of being ex-
ploited at a particular date from the published date. For the first vulnerability V1 
(CVE 2016-0911) which is a low risk vulnerability the risk factor is 0.2474 and 
for the other two categories of medium and high risk levels, vulnerabilities 
V2(CVE 2016-2832) and V3(CVE 2016-3230), risk factors are 0.3667 and 1.17702 
respectively. 

The risk factor can be graphed as a function of time. The figure below shows 
the behavior of the risk factor of the middle level vulnerability V2(CVE 
2016-2832) over a time period of 101 days starting from 6/13/2016. We notice 
that the risk factor increases rapidly within around first 10 days indicating that 
once a vulnerability is published, the risk of being exploited rapidly increases. 
Even after this rapid increase, the risk does not show a decreasing behavior. This 
specific behavior is due to our model structure of the vulnerability life cycle. 
That is, consisting with two absorbing states (being exploited and being 
patched), we assume that either one of two outcomes are possible for a given 
vulnerability. Therefore, considering state of being exploited as an absorbing 
state the life cycle does not move to any other state beyond being exploited 
which explains why this graph stay increased without decreasing over the time. 

Figure 2 above illustrates the behavior of the Risk Factor as a function of time. 
The curve shows a rapid increase in the risk factor initially as expectable since 
the vulnerability immediately create a risk with its discovery and disclosure. 
Based on the graph, we can conclude that over the time with a life cycle consist-
ing two absorbing states, the Risk Factor of a given vulnerability increases rapid-
ly and become stable at a higher level of risk without decreasing back. This be-  
 
Table 4. Three vulnerabilities in each categories with their details and the calculated risk 
factors. 

Vulnerability Published date CVSS score 
Exploitability 

score 

Age of the  
Vulnerability to the 
date 6/24/2016 (tj) 

Risk factor 

( )( )j jR v t  

V1(CVE 
2016-0911) 

6/19/2016 1.9 (Low) 3.4 5 0.2474 

V2(CVE 
2016-2832) 

6/13/2016 4.3 (Medium) 2.8 11 0.3667 

V3(CVE 
2016-3230) 

6/15/2016 9 (High) 8 9 1.1702 
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havior exemplifies the threat any vulnerability would impose on an information 
system. As far as a proper patch is released and installed a probable harm from a 
given vulnerability increases monotonously. However, it should not be misin-
terpreted in the view point that the risk from a given vulnerability never reduces. 
Our Absorbing Markovian Model does not consider some of the interactions 
that might take place in the real world situations. Our intention here is to show 
the impact of a vulnerability until it is not patched. Outcomes from the situa-
tions where patching attempts and exploit attempts after and before disclose 
should be explained in much border modeling aspect of the vulnerability life 
cycle. 

3. Nonlinear Statistical Models for Exploitability 
3.1. Model Building 

In the previous section we developed an analytical algorithm that identifies the 
number of steps (time) that the transition probability matrix of the vulnerability 
life cycle will reach a steady state. Thus, for a given vulnerability in the categories 
of Low, Medium and High risk levels, we can include with the probability of be-
ing exploited (having hacked) and the probability of being patched as a function 
of time. However, this process is time consuming and the Markovian iteration 
process [1] [2] [15] [16] would be quite difficult to perform every time. Using 
this approach to find the minimum number of steps for each category we ob-
tained t = 86 steps for category one vulnerabilities, t = 80 steps for category two 
vulnerabilities and t = 84 steps for category three vulnerabilities. Then, we rec- 
orded the probability of being exploited at the each step. Thus, we have for each 
category a 2 × 86, 2 × 80 and 2 × 84, matrices of information, respectively. Our 
goal is to utilize this information and develop a statistical model for each cate-
gory to be able to predict the probability of being exploited as a function of time 
and thus bypassing the analytical difficulties. 

A sample of the data for each category is shown in Appendix A. All these of 
 

 
Figure 2. Behavior of the Risk Factor as a function of time. 
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the data sets exhibit nonlinear behavior and thus multiple regression is not ap-
plicable. After very exhaustive research, we were able to identify two sets of non-
linear statistical models for each category. 

The general analytical focus of the statistical models that we found is of the 
forms: 

Model 1: Y (exploitation probability) = 0 1 2
1 ln t
t

α α α ε+ + +  and 

Model 2: Y (exploitation probability) = 0 1 2
1 ln(ln )t
t

β β β ε+ + + , 

where, Y is the probability of being exploited, α  and β  are the vector of coef-
ficients or weights, t  being the time given in steps and ε  is the modelling 
error. We used the method of maximum Likelihood estimation to obtain the es-
timates of the coefficients that drives these models. 

Model-1 
The best nonlinear statistical model that we developed for Low, Medium and 

High Vulnerability categories are given below along with their R2 (coefficient of 
determination), 2

adjR  (R2 adjusted). 
Low (Category one) risk vulnerabilities: 

( )10.084197 0.116756 0.011321ln ,Y t
t

 = − + 
 

 

with 2 0.8684,R =  2 0.8653.adjR =  
Medium (Category two) risk vulnerabilities: 

( )10.111073 0.143992 0.011461ln ,Y t
t

 = − + 
 

 

with 2 0.8888,R =  2 0.8859.adjR =  
High (Category three) risk vulnerabilities: 

( )10.133927 0.169314 0.012375ln ,Y t
t

 = − + 
 

 

with 2 0.8988,R =  2 0.8963.adjR =  
As we will discuss R2 reflects on the quality of the proposed model. 
Model-2 
In investigating to see if we can improve the precision of the Model 1, we have 

found that by implementing another logarithmic filter to our initial model to 
further homogenizing the variance of our data. We obtained a set of models that 
gives us better results increasing the accuracy of our prediction approximately 
by 9% compared to the Model 1. New model equations for each of the categories 
are given below. 

Low (Category one) risk vulnerabilities: 

( )( )10.135441 0.308532 0.002030 ln lnY t
t

 = − + 
 

 

with 2 0.9576,R =  2 0.9566.adjR =  
Medium (Category two) risk vulnerabilities: 

( )( )10.169518 0.356821 0.007011ln lnY t
t

 = − + 
 
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with 2 0.962,R =  2 0.961.adjR =  
High (Category three) risk vulnerabilities: 

( )( )10.135441 0.308532 0.002030 ln lnY t
t

 = − + 
 

 

with 2 0.9588,R =  2 0.9577.adjR =   
Thus, Model 2 is a significant improvement in the R2 over model 1. 
Both models give very good predictions of the probability of exploitation as a 

function of time. However, “Model-2” seems to give better predictions because 
of the additional logarithmic filtering that we applied to homogenize the va-
riance further. Table 5 summarizes the 6 model equations with respective R2 

(coefficient of determination), 2
adjR  (R2 adjusted) values for convenient com-

parison. 

3.2. Evaluation of the Models 

We used R2 (coefficient of determination), 2
adjR  (R2 adjusted) and residual anal-

ysis using actual data that we did not use in the model building to validate the 
accuracy and the quality of these models. R2 is commonly used to measure the 
goodness of a statistical model and is defined as, 

2 1 ,Reg Res

Total Total

SS SSR
SS SS

= = −   

where ResSS  or SSE is the Sum of Squares of Residual and TotalSS  is the Total 
Sum of Squares. It is also referred to as the Coefficient of Determination. In our 
case the 2 0.96R =  states that the model is an excellent fit such that the 96% of 
the behavior in the response variable (probability of being exploited) is ex-
plained and predicted by the attributable variable (time-t) and only a 4% of the 
change in the response variable is not explained due to the variance. 

In order to be more confident in interpreting the value of R2 we also calculate 
the 2

adjR  (R2 adjusted) to address the issue of bias. 
2
adjR  (R2 adjusted) is defined by 

 
Table 5. New Nonlinear Statistical Models to estimate the probability of being exploited 
as a function of time. 

Model 1 

Category Model Equation R2 R2
adj 

Low ( ) ( )0.084197 0.116756 1 0.011321 lnY t t= − +  0.8684 0.8653 

Medium ( ) ( )0.111073 0.143992 1 0.011461 lnY t t= − +  0.8888 0.8859 

High ( ) ( )0.133927 0.169314 1 0.012375 lnY t t= − +  0.8988 0.8963 

Model 2 

Category Model Equation R2 R2
adj 

Low ( ) ( )0.135441 0.308532 1 0.002030ln lnY t t= − −  0.9576 0.9566 

Medium ( ) ( )0.169518 0.356821 1 0.007011 ln lnY t t= − −  0.962 0.961 

High ( ) ( )0.191701 0.383521 1 0.00358 ln lnY t t= − −  0.9588 0.9577 
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( )
( )

2 1
1 Res

adj
Total

n SS
R

n p SS
−

= −
−

, 

where, n is the sample size and, p is the number of risk factors (attributable va-
riables) in our models. The closer the R2 and 2

adjR  to one, the higher the quality 
of our models. 

We also performed residual analysis of all the models to determine if the error 
factor has significantly contributed to the accuracy of our models. In all cases, 
the residual error was not significant. Finally we tested all our models with the 
actual data that we did not include in developing the models and the results were 
exceptional. 

As mentioned, we needed a best fitting three Statistical models to calculate the 
“risk factor” conveniently. In other words, we expected to obtain a best fitting 
model that can replace the Markovian iteration and hence to avoid the difficulty 
in estimating of the probabilities for time “t” earlier to the “steady state”. With 
these new models we have achieved our goal. 

4. Conclusion 

In this study, we continue to improve the models we build up in our previous 
study [2]. We have improved the calculation methods of initial probabilities and 
created the Transition Probability Matrix in using of the Markovian process that 
we introduced in our previous studies. We used CVSS data presented in CVE 
details website and calculated initial probabilities for discovering and exploiting 
a vulnerability based on the records on last 17 years data. Finally, we created two 
sets of three models for predicting the risk of a particular vulnerability being ex-
ploited as a function of time. The models we presented are proven to have an 
excellent fit with the Markovian process probabilities. Therefore, we can replace 
the Markovian process using these models since these models enable us to get 
rid of analytical requirement to execute the Markovian iteration process of iden-
tifying the steady states of being exploited or being patched for each vulnerabili-
ty. 
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Appendix A 

Matrix values used for model building under each category. 

Low Vulnerability (0 - 3.9) Medium Vulnerability (4 - 6.9) 
 

Yi ti Yi ti Yi ti 

0.002897 1 0.0153 1 0.026618 1 

0.024865 2 0.041188 2 0.054112 2 

0.042929 3 0.062188 3 0.076645 3 

0.057784 4 0.079223 4 0.095114 4 

0.069998 5 0.093042 5 0.110251 5 

0.080042 6 0.104252 6 0.122657 6 

0.088302 7 0.113345 7 0.132825 7 

0.095093 8 0.120722 8 0.141159 8 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.126521 77 0.152416 71 0.179021 75 

0.126521 78 0.152416 72 0.179021 76 

0.126521 79 0.152416 73 0.179021 77 

0.126521 80 0.152416 74 0.179021 78 

0.126521 81 0.152416 75 0.179021 79 

0.126521 82 0.152416 76 0.179021 80 

0.126521 83 0.152416 77 0.179021 81 

0.126521 84 0.152416 78 0.179021 82 

0.126521 85 0.152416 79 0.179021 83 

0.126521 86 0.152416 80 0.179021 84 
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