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ABSTRACT Electric Power Systems (EPSs) are among the most critical infrastructures of any society,
since they significantly impact other infrastructures. Recently, there has been a trend toward implementing
modern technologies, such as Industrial Internet of Things (IIoT), in EPSs to enhance their real-time
monitoring, control, situational awareness, and intelligence. This movement, however, has exposed EPSs
to various cyber intrusions that originate from the IIoT ecosystem. Statistics show that 38% of reported
attacks have been against power and water infrastructure, and so far at least 91% of power utilities have
experienced a cyber-attack. The cyber-security problem is even more severe for IIoT applications in EPSs
due to the vulnerabilities and resource limitations of such applications. Thus, based on the above statistics,
it is necessary to investigate the vulnerabilities of IIoT-based applications in EPSs, identify probable attacks
and their consequences, and develop intrusion prevention and detection approaches to secure IIoT systems.
On this basis, this paper first elaborates on the applications of IIoT-based systems in EPSs, and evaluates
their security challenges. Afterwards, it comprehensively reviews various cyber-attacks against IIoT-assisted
EPSs, with a particular focus on attack entry points and adversarial methods. Finally, efforts to prevent
cyber-intrusions against IIoT systems in EPSs are explained, and different attack detection techniques are
discussed.

INDEX TERMS Cyber-attacks, cyber-security, electric power systems, industrial internet of things,
intrusion detection systems.

I. TRANSFORMATION OF IOT TO IIOT

THE concept of Internet of Things (IoT), which was
introduced by Kevin Ashton in 1999, aims to connect

anything at anytime in anyplace [1]. IoT is a novel paradigm
shift in Information Technology (IT), in which billions of
physical objects are connected to the internet and can share
real-time data without needing human interference. Addi-
tionally, innovations affected by IoT, such as sophisticated
automation and manufacturing technologies, exchange and
administration of information, and smart and automatic pro-
cesses and systems are becoming increasingly popular for
businesses and organizations [2]. By 2020, IoT connected
12.4 billion things, and it is predicted that this number grows
to 26.4 billion by 2026 [3].

The most important differences between conventional and
IoT-based networks, in terms of their security, are as follows:

• The first and foremost distinction between traditional
and IoT networks is related to the resourcefulness of
end devices [4]. IoT networks often includes embedded
devices, such as Radio-Frequency Identification (RFID)

and sensor nodes, with resource constraints. They are
often equipped with little memory, low computational
power, little disc space, and minimal power consump-
tion. Thus, IoT systems require lightweight safeguards
to balance security with available resources [5]. How-
ever, the conventional networks consist of a variety of
computers, servers, and devices. Thus, sophisticated and
multi-factor security methods may support conventional
networks without considering any resource limitations.

• In terms of security architecture, conventional networks
use a combination of firewalls, Intrusion Detection Sys-
tems (IDSs), Intrusion Prevention Systems (IPSs), and
static network perimeter protection to secure the net-
work. Additionally, end devices are protected by host-
based security techniques, such as anti-virus and secu-
rity/software patches. In contrast, host-based security
strategies cannot be applied to IoT devices with resource
restrictions [6]. In fact, IoT devices have numerous
vulnerabilities, and the conventional defense methods
are not able to protect these devices.
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• The majority of IoT devices are connected to the net-
work or gateway devices through slow and less-secure
connections, such as 802.15.4, 802.11a/b/g/n/p, Long-
Range Radio (LoRa), ZigBee, NB-IoT, and SigFox. As
a result, IoT devices are susceptible to data leakage
and other privacy concerns. For the conventional net-
works, however, end devices interact over secure and
more rapid wired/wireless channels, such as fibre optics,
DSL/ADSL, WiFi, 4G and LTE [5].

• Conventional-network devices utilize almost the same
operating system and data format. However, there are
diverse data contents and formats in IoT networks, due
to the application-specific capabilities of devices and the
absence of an operating system. Due to this diversity,
development of a default security protocol that suits all
sorts of IoT systems and devices is yet challenging [5].

Recently, IoT protocols and technology have been incor-
porated into industrial processes as well to address their ever-
increasing complexity, and make them robust against service
disruptions [7]. Industrial IoT (IIoT) is a term coined to
describe the integration of intelligent electronics into manu-
facturing processes throughout a product’s life cycle [8]. The
IIoT, which provides industrial systems with connectivity and
intelligence via sensing devices and actuators with ubiquitous
networking and computing capabilities, is a key component
of future industrial systems. For a faultless system, IIoT not
only connects machines, but also has a human interface unit.
It is expected that IIoT takes over the routine tasks of quality
control, assembly, and administration in the near future [9].

The advantages of IIoT, however, have been achieved at
the expense of exposing industrial processes to cyber-attacks,
since the increased number of interconnected networks and
devices provide cyber-attackers with more number of ac-
cess points. For this reason, IIoT providers have prioritized
cyber-security as a top concern for IIoT adoption [2], [10].
Given that IIoT is a natural transition from IoT, it inher-
its some of the IoT’s security problems. Additionally, IIoT
applications have some other security needs that are unique
when compared to IoT applications. These unique concerns
mostly stem from the absence of human interactions and
autonomous machine/device activities in IIoT applications.
Major differences between IIoT and IoT can be categorized
as follows:

• Market focus: IoT covers a variety of sectors, such as
enterprises, healthcare, and the public sector. Thus, it tends to
concentrate more on universal applications. In contrast, IIoT
systems are focused on a smaller market, as they are only
applied to industrial settings, such as power plants, oil and
gas refineries, and manufacturing facilities [11].

• Objectives: IoT is usually deployed to improve pro-
ductivity, health, and safety. IIoT, however, is usually less
user-centric and concentrates more on increasing security
and efficiency. Thus, in contrast to IoT, IIoT is an industrial
process that is not utilized by general consumers in their
individual lives [11].

• End devices: IoT and IIoT systems usually use dif-
ferent devices as they both have different focuses and ob-
jectives. IIoT devices are built to provide their users with
data on equipment, and these devices are integrated with the
existing equipment, instead of working alone. In contrast,
IoT devices—such as smartphones, smartwatches, and smart
thermostats—are often employed in the daily life, and can be
used independently [12].

• Risk of failure: The risk of failure in IoT devices is
relatively low as these devices are only applied on a small
scale. Typically, IoT devices are not utilized for restorative
practices that pose a threat when they fail. In contrast, failure
of IIoT devices is more hazardous, since IIoT is linked to an
industrial system [13].

• Development needs: IoT manufacturers aim to develop
technologies to suit the user’s daily life. Hence, IoT devel-
opment concentrates more on improving the comfort of its
users. In contrast, IIoT development usually emphasizes on
creating new devices that efficiently improve the operation of
its consumers [14].

• Compatibility with legacy systems: IoT devices don’t
have to be compatible with legacy systems. These devices are
not designed with backward compatibility as they often work
independently. In contrast, IIoT devices should be compatible
with the legacy systems and equipment in manufacturing
plants, since most IIoT devices assist the legacy systems in
offering digital information and receiving IT system com-
mands [14].

• Environmental requirements: IoT devices are usually
designed to function in normal environments with a standard
temperature and ecological pressure. IIoT devices, however,
are made more durable and reliable, since they are primarily
used in harsher environments, like factories, energy plants,
and oil refineries. Thus, manufacturers of IIoT devices usu-
ally craft their products to tolerate extreme temperatures, hu-
midity, and radio interference to ensure they provide reliable
services [15].

• Ecosystem architecture: An IoT system consists of a
public cloud, which is manageable by an operator. When an
inquiry is received, it is examined and directed through a
particular route that needs proprietary data unavailable for the
inviting entity. Once the cloud-based IoT process ends, the
outcomes are conveyed to the user through specific devices,
such as smartphones [16]. In contrast, the architecture of
the IIoT network is entirely different. An IIoT process is
completed in a private cloud operated by a service provider.
The data collected through an IIoT network is used to make
an efficient decision, which is transmitted to the Industrial
Control System (ICS) via the organization’s IT network [16].

• Operation safety: For the majority of IoT systems, the
safety of operation is not a concern, as these systems do not
usually handle industrialized processes. In IIoT ecosystem,
however, situation is entirely different, since an inappropriate
action of the IIoT system can render a process unstable or
unsafe, and can endanger people’s lives [17].
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• Operation reliability: In an IoT system, operation reli-
ability is essential, since people’s decisions entirely depend
on the result of IoT processes. Thus, an IoT system should be
capable of identifying and detecting deliberate or incorrect
acts by an approved individual. Additionally, an IoT net-
work should be equipped with measures to detect any data
manipulation and cyber-attacks [17]. In IIoT systems, this
requirement is even more serious, since IIoT systems are
often the components of ICSs in critical infrastructure [17].
Additionally, IIoT devices also need to last for a longer time,
since industrial plants and equipment are built for larger time
horizons. Therefore, IIoT devices need to function reliably
for a longer time than typical IoT devices [17].

• Communication media: The architecture of an IoT
ecosystem should match its communication media and pro-
tocols. As operations are consumer-oriented, the majority
of IoT ecosystems utilize communication media such as
Bluetooth, WI-FI, and cellular networks, as well as standard
IT protocols. As a part of ICSs, an IIoT network offers wire-
less and wired communication links among the ICS servers,
sensors, and Programmable Logic Controllers (PLCs) us-
ing ICS-oriented protocols. Communication latency in IIoT
ecosystems is an important concern, since in such systems
sensitive information must be shared almost simultaneously
[12].

• Cyber-security defense: In both IoT and IIoT systems,
cyber-risks are of significant concern, since the majority of
endpoint devices in both systems can serve as attack entry
points. As an IoT ecosystem deals with consumer-oriented
end devices, their cyber-security is a fundamental problem,
since this technology comes with cost limitations that pre-
vent deployment of cyber-security measures. For an IIoT
ecosystem, cyber-security risks are even higher, although
investment resources for retrofitting and upgrading are easier
to obtain. Thus, extra security measures are essential for IIoT
systems [12].

One of the major applications of IIoT networks is in
EPSs, since these systems are undergoing a revolution to
increase their efficiency, dependability, security, cost effi-
ciency, resiliency, and sustainability [18]. IIoT systems can
benefit the three main domains of EPSs—i.e., power gen-
eration, transmission, and distribution—by providing them
with real-time feedback, and allowing them to better serve
their consumers via more-advanced monitoring and control
capabilities. Additionally, IIoT systems can facilitate faster
adoption of renewable and sustainable energy solutions by
dynamically controlling the demand and synchronizing it
with the supply [19]. Thus, integration of IIoT systems in
EPSs can bring about potential economic, social, and envi-
ronmental benefits.

Cyber-security, however, is a growing challenge for EPSs,
since it directly impacts their reliability and overall cost.
Statistics reveals that, so far, (i) 91% of power generating
companies have been the victims of cyber-attacks; (ii) cyber-
attacks against electricity and water suppliers account for
38% of all identified threats; and (iii) 61% of oil and gas

suppliers, which provide power generation companies with
their required fuel, are not able to detect sophisticated cyber-
attacks [20]. As these statistics demonstrate, EPSs are highly
vulnerable to cyber attacks, and are attractive targets for
adversaries. On the other hand, integration of IIoT in EPSs
can intensify this problem due to the inherent vulnerabilities
and resource limitations of IIoT systems. Therefore, it is
crucial to investigate the cyber-security challenges of IIoT-
based applications in EPSs, and take necessary measures to
secure such systems.

The remainder of this paper is organized as follows: Sec-
tion II elaborates on integration and applications of IIoT
systems in EPSs; Section III explains major IIoT architec-
tures for EPSs; cyber-security challenges and requirements
of IIoT-based applications in EPSs are discussed in section
IV; Section V reviews cyber-attacks against different layers
of IIoT systems in EPSs; security enhancement measures for
IIoT-aided applications are described in section VI; and the
paper is concluded in Section VII.

II. IIOT SYSTEMS IN EPSS
IIoT networks in EPSs use smart devices to collect data from
the grid through a cyber layer. This data is then used to
operate the grid more efficiently, and to serve the customers
better. Thus, connectivity and interoperability are two impor-
tant features of IIoT networks, which lead to higher standard
procedures and services. The following subsections elaborate
on major applications of IIoT systems in EPSs, which are also
shown in Fig. 1.

A. ELECTRIC POWER GENERATION
IIoT systems—which are a combination of cloud-based ana-
lytics, IT, and Operational Technology (OT) technologies—
can be implemented for different applications in the power
generation process to improve the operator’s situational
awareness using the real-time data coming from power
plants. This enhanced situational awareness can improve the
operation of power plants, facilitate integration of renewable
energy, and enhance the timely/predictive maintenance of
generating units. Some of the applications of IIoT systems
in electric power generation are as follows.

1) Optimizing fuel mix

The first application of IIoT systems is to optimize the fuel
mix of different types of generating units. This task is of high
importance, since there is a wide range of generating units
in a power network, which are becoming increasingly diver-
sified [21]. Thus, integration of IIoT systems in EPSs can
maximize the efficiency of power generation by balancing the
fuel mix. As a result, it is critical that operators have real-time
data about all the assets in the network to analyze the supply
and demand, and their reaction to the energy price [18]. On
the other hand, energy providers are required to update and
adjust their business models to take advantage of new IIoT
applications’ capabilities [22]. For instance, it is critical to
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FIGURE 1. IIoT systems in EPSs

use the insights gained by big data analytics to balance the
fuel mix.

2) Emission monitoring of power plants
IIoT-based embedded systems can be used for monitoring
harmful gas emissions from thermal power plants by mea-
suring the Carbon Monoxide (CO) and Particulate Matter
(PM) concentrations emitted by them [23]. Additionally, IIoT
systems can control the condition of combustion and mini-
mize the emission of Sulphur Dioxide (SO2) in power plants
using combustion images [24]. In fact, it is critical to monitor
the gases generated by thermal power plants in order to
reduce their negative effects on the environment and diminish
their health threats [25]. Such IIoT-based systems utilize a
variety of sensors to determine the concentration levels of the
gases in the atmosphere, and send the sensed information to
the cloud computation center. If the measured data exceeds
the emission requirements, the operator is notified to take
appropriate actions and minimize hazardous emissions .

3) Digitizing power markets
The power market is another important application for IIoT
systems. So far, the volumetric tariffs have been used as a
revenue model in conventional EPSs. In this model, people
are the source of information, skills, and knowledge for the
power market. This invaluable resource becomes inacces-
sible if current employees retire. In order to preserve the
wisdom and expertise of senior employees, digital advance-
ments must be made. For instance, new income streams
must be developed for future EPSs to accurately evaluate
and distribute investment costs and other activities [18].
Additionally, small-scale energy resources are not taken into
account for market participation in the national or regional
levels. Furthermore, conventional markets are unable to cope
with renewable energy resources in real-time due to their
stochastic nature [26]. Thus, a new IIoT-based information-
driven infrastructure is needed to boost the productivity of
power markets by considering new components, such as local
energy generation units [27].

4) Control of renewable energy resources
It is imperative to increase the penetration level of renewable
energy resources in future EPSs. These sources of energy,
however, are intermittent in nature, and are highly dependent
on environmental factors; for instance, the speed and direc-
tion of the wind affect the generation of wind power plants,
and solar irradiation impacts the output power of photovoltaic
cells. To improve the efficiency of such resources and the
reliability of the entire grid, IIoT systems can be used to
ensure a constant supply of safe, economical, and reliable
energy [28]–[30]. In fact, IIoT systems can use sensor mea-
surements, a cloud computing platform, and enhanced load
and weather models to accurately and efficiently control
renewable energy resources [22].

5) Digitizing power generation
To intelligently operate EPSs and effectively balance the
demand and supply, it is crucial to collect real-time data from
both transmission and distribution networks. To this aim,
IIoT systems can be implemented, and the required data can
be collected using smart meters, intelligent feeders, Phasor
Measurement Units (PMUs), and micro PMUs [31]. This
data can be processed for forecasting the load, estimating the
states of the system, and controlling the EPS in a distributed
manner. For instance, Digital Twin, built by General Electric,
is an ensemble of physics-based methods and advanced data
analytics that employs IIoT systems to model the present
state of every asset in a digital power plant [18].

B. POWER TRANSMISSION
Existing transmission systems are faced with challenges,
such as slow reaction to outages, high power losses, data
theft, and poor monitoring of transmission lines and other
components. Such challenges can be addressed by imple-
menting IIoT systems for real-time monitoring of transmis-
sion networks [32].

As an example, an IIoT-based monitoring platform has
been developed for substations in [33], and has been prac-
tically implemented in a petrochemical facility’s local power
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substation in Texas, USA [33]. This platform monitors all
critical parameters of substations, including voltage, fre-
quency, power, circuit breaker status, and transformer tem-
peratures, in steady-state and during transients. In this plat-
form, high-resolution time-stamping and synchronization are
provided using industrial-standard GPS, and high-speed and
reliable data acquisition and processing are achieved using
FPGA-embedded controllers. The controllers are equipped
with predefined event triggering mechanisms with recording
functions. When such events occur, the controller records
the information and sends it to a control center through the
IIoT platform. This data can be used to prevent future similar
incidents.

Additionally, IIoT-aided systems have been used to prevent
physical damages to transmission towers, e.g., caused by
theft, natural catastrophes, hazardous constructions, and the
growth of tree limbs beneath the wires. To monitor and
prevent such damages, IIoT-enabled transmission towers use
various sensors to detect early signs of potential risks, and
prompt an immediate and appropriate action. Anti-theft fas-
teners, lean sensors, cameras, and vibration sensors are some
components that can be used for this purpose. Every time a
risk is detected by these components, a signal is sent to the
control center to make appropriate decisions [34].

C. POWER DISTRIBUTION

Similar to transmission systems, distribution networks are
faced with a number of challenges, including power outages,
ineffective demand response, electricity theft, and inefficient
integration of distributed energy resources. These challenges
can be addressed by employing IIoT systems in different
domains of distribution systems, as discussed below.

1) Smart grids

Smart grids enjoy a bi-directional flow of information be-
tween consumers and suppliers, which can be used for system
optimization and efficient energy distribution [35]. In smart
grids, IoT/IIoT-related systems can be used for different
purposes in energy generation, smart homes, transportation
systems, and smart industry [35]. For example, consumers’
energy demand patterns can be extracted by collecting data
via an IoT platform. Another application of IIoT-based sys-
tems in smart grids is controlling and monitoring of battery-
powered devices, thus distributing the energy more efficiently
[36].

Additionally, IIoT-enabled loads, storage devices, and re-
newable generating units have enabled customers to generate
a part or the entire of their required energy locally, and even
to trade the surplus energy with the network. In this context,
intelligent loads share their data—such as their demand,
power consumption, and the time of use—to optimize their
power consumption and cost. Energy storage devices, such
as batteries and electric vehicles, are also used to deal with
uncertainties and the intermittent nature of generating units,
as well as to participate in demand response programs [22].

Moreover, in an IIoT-enabled smart grid, all assets con-
nected to the grid can interact with each other to ensure that
the distribution of energy is perfectly managed whenever and
wherever it is required. In such a smart grid, the operator is
notified before any acute problem occurs, thus an appropriate
corrective or preventive action can be taken in advance. For
example, exceeding the demand over the grid’s capacity can
be detected by real-time monitoring of loads and generating
units. Thus, the energy consumption of flexible loads can
be rescheduled to a time when demand is expected to be
lower. Additionally, dynamic pricing models can be used to
decrease the consumption or increase the generation during
peak hours [37].

2) Smart load management
In general, electric energy consumption can be divided into
four categories: residential, commercial, industrial, and trans-
portation. The following discusses how IoT/IIoT can be
used to manage the energy consumption in residential and
industrial loads.

Residential loads include, but are not limited to, lighting,
appliances, and water heaters, as well as Heating, Ventilation,
and Air Conditioning (HVAC) systems. IoT systems can
be used to manage energy consumption of the appliances
and lighting systems. For instance, IoT/IIoT systems can
notify customers when their energy consumption exceeds
the standard level. Additionally, IoT/IIoT-based home en-
ergy management systems can monitor the energy usage to
schedule and run some flexible loads, e.g. some appliances,
during low-demand hours. This contributes significantly to
the efficient use of electrical energy and reducing greenhouse
gas emissions [36]. Moreover, given that HVAC energy con-
sumption accounts for half of the total energy consumption in
most buildings, IoT/IIoT-based HVAC management systems
are critical for managing electric energy and its cost in build-
ings. For instance, such systems can determine unoccupied
spaces in buildings, and manage the operation of the HVAC
system in these spaces.

Industrial loads can be also managed by using IIoT-based
systems. For instance, by monitoring each component and
its consumption, the components that consume more energy
than expected can be detected. Additionally, quality control
can be performed by using an agile and flexible IIoT system
that recognizes failures in real-time. These IIoT systems
lead to a better management of components, detecting and
fixing faults, optimizing each component’s consumption, and
ultimately to the reduction of energy losses in smart factories
[38].

III. ARCHITECTURE OF IIOT NETWORKS
IIoT architectures comprise several layers, each includes IIoT
networking platforms, protocols, and standards. These layers
are configured based on each application’s requirements, e.g.,
scalability, flexibility, and interoperability, and allow multi-
ple technologies to interact with each other. The disparate
requirements of applications, result in diverse structures for
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FIGURE 2. Common IIoT architectures for EPSs: a) basic three-layer, b) four-layer, and c) five-layer.

IIoT systems, and barricades development of a standard de-
sign for all applications. The following subsections elaborate
on various IIoT architectures in EPSs, which are shown in
Fig. 2.

A. THREE-LAYER IIOT ARCHITECTURE
A typical IIoT architecture includes at least three layers:
perception, network, and application layers, which are il-
lustrated in Fig. 2-(a). Generally, the top layer of a three-
layer IIoT Architecture is associated with applications, the
middle layer corresponds to the network requirements and
communication process, and the lowest layer is for hardware
and physical devices. This architecture is the most basic one,
which gives insights into the essential layers to make the
system work. In fact, other more-complicated architectures
can be also simplified to a three-layer architecture. The three-
layer design for IIoT-assisted EPSs has been suggested in
[32], [39], [40].

The perception layer senses and collects data by installing
and networking various sensors in EPSs. This layer com-
prises IIoT devices—e.g., remote terminal units, information
gathering devices, smart meters, and intelligent electronic
equipment—deployed in different domains of EPSs. This
layer receives information from IIoT devices and transfers it
to the network layer. The perception layer is divided into two
sub-layers: (i) perception control and (ii) communication ex-
tension. The former controls the physical layer by acquiring
data and analyzing IIoT devices, whereas the latter links IIoT
devices with the network layer through a communication
module [41].

The network layer embraces the communication system—
which is assisted by numerous telecommunication networks
as well as the Internet—to transfer the information acquired
by IIoT devices at the perception layer to the application
layer via the telecommunication networks. The core network,
which can be the Internet, oversees the routing, information
transmission, and control functions. The IIoT management
and information centers are also in this layer [41].

The application layer is a combination of IIoT technolo-
gies and industrial practices/expertise to enable a wide range
of IIoT-assisted EPS applications. This layer is responsible

for processing information that is received from the network
layer and using it for real-time monitoring, controlling, and
debugging of IIoT devices. Information sharing and security
are two important services in the application layer [41].

B. FOUR-LAYER IIOT ARCHITECTURE
A four-layer architecture for IIoT-aided applications in EPSs
consists of terminal, field network, communication, and
master station system layers, as shown in Fig. 2-(b). The
terminal and field network layers in this architecture form
the perception layer of the three-layer IIoT structure; the
remote communication layer corresponds to the network
layer; and the master station system layer is equivalent to the
application layer. This architecture is the most common one
for EPSs, which can be used for various applications, such as
(i) power plant operation (e.g., for monitoring of pollutant
and gas discharge, and controlling generation equipment),
(ii) state monitoring for transmission lines (e.g., ambient
condition, ice covering, temperature, sag), (iii) substation
equipment operation and control (e.g., state monitoring of
substation equipment and environment safety), (iv) power
distribution automation, and (v) consumption management
(e.g., in advanced metering infrastructure and smart homes)
[42].

C. FIVE-LAYER IIOT ARCHITECTURES
A five-layer architecture (Fig. 2-(c)), which consists of user,
energy management, market, communication, and regulatory
layers, is proposed in [43] for Transactive Energy Systems
(TESs). The user layer consists of applications that bene-
fit from the IIoT structure. The energy management layer
optimizes the system operation to control congestions, im-
prove the reliability, reduce system failures, and minimize
frequency and voltage deviations. This layer also ensures
maintaining a dynamic balance between supply and demand
in EPSs. Information related to the energy demand is col-
lected and stored in the market layer, which leverages ei-
ther local or cloud infrastructure to facilitate energy trans-
actions. The communication layer is used to transfer the
data from the market layer to the regulatory layer through
wired and/or wireless communication media. The highest
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layer is responsible for regulatory and governance processes,
in which the rules and procedures required for transparent
and smooth energy transactions are determined. In this ar-
chitecture, user, energy management, and regulatory layers
together are equivalent to the application layer of the three-
layer architecture. Similarly, the communication and market
layers correspond to the network and perception layers of the
three-layer architecture, respectively.

IV. CYBER-SECURITY OF IIOT SYSTEMS
The purpose of cyber-security is to protect IIoT assets and
privacy, and to reduce security risks that emanate from the
cyber layer. New cyber-security technologies are constantly
emerging to make systems more secure. However, develop-
ing cyber-security techniques for IIoT-based applications in
EPSs is challenging, since (i) a variety of devices, applica-
tions, communication media, and protocols are used in IIoT
networks, and (ii) the physical capabilities of devices and the
volume of information shared by them are limited. The major
security requirements of IIoT-based systems are as follows.

A. DEVICE SECURITY
The term device security refers to preventing a device (e.g., a
PMU or an actuator in EPSs) from being maliciously used to
conduct attacks, e.g., from participating in Denial of Service
(DoS) attacks, eavesdropping on network traffic, or compro-
mising other devices on the same network. This type of secu-
rity is applicable to all IIoT devices in EPSs. One of the most
important effects of security problems, such as DoS attacks
against IIoT devices, is negatively affecting the availability of
the network. Term availability in IIoT networks refers to both
hardware and software. Hardware availability means the exis-
tence of all devices all the time, whereas software availability
is the ability to provide service anywhere and anytime [44].
To secure an IIoT system and prevent unwanted malicious
actions, a main step is to ensure that all devices are secure and
trustworthy [45]. Trust management techniques are divided
into two main categories: deterministic and non-deterministic
trust. Deterministic trust encompasses policy- and certificate-
based mechanisms, whereas non-deterministic trust in-
cludes recommendation-, and prediction-based ones [46].
Policy-based mechanisms use a set of policies to identify
trust. In certificate-based approaches, trust is determined
by using public or private keys and digital signatures.
Recommendation-based systems utilize prior information
to define trust. However, if there is no prior information,
prediction-based methods can be used [46].

B. DATA SECURITY
Data security means protecting the confidentiality, integrity,
and/or availability of IIoT data. This type of security is ap-
plicable to all devices, no matter if they send, receive or store
data. IIoT devices in EPSs monitor the physical environments
and transmit the collected data through the network. How-
ever, this transmitted data is exposed to different security
threats like eavesdropping and altering. To secure data in the

context of IIoT, the confidentiality and integrity of the data
must be preserved [45]. Data confidentiality is the process of
hiding private information from unauthorized objects. Stan-
dard encryption mechanisms cannot be implemented directly
for improving the confidentiality of data in IIoT systems,
since some IIoT devices have limited resources [47]. Data
integrity ensures that the received data has not been altered
or modified during transmission. Integrity involves maintain-
ing the consistency, accuracy, and trustworthiness of data.
Several cryptographic hash algorithms (e.g. MD5 [48] and
SH1 [49]) are used to ensure data integrity. However, most
of these mechanisms cannot be implemented in IIoT sys-
tems, since IIoT devices are inherently resource-constrained
[50]. Availability means that the data remains available to
authorized users at all times. If an attacker compromises the
availability of data, the users are prevented from accessing
crucial information, or the system is brought to a halt. The
most important intrusion that can target the availability of
data is a DoS attack.

C. COMMUNICATION SECURITY

Connectivity is a critical component of any IIoT network.
To address this need, several different protocols (e.g., Blue-
tooth, WiFi, Zigbee, Z-Wave) may be utilized within a single
IIoT system to account for environmental limitations and
increase the reliability of IIoT communications. Choosing
the right communication protocol and medium depends on
(i) the configuration of the physical system, e.g., a high
distance between devices obliges using long-range commu-
nication protocols; (ii) IIoT tasks, e.g., real-time applications
require higher connectivity capabilities; and (iii) computing
resources of devices, e.g., power-constrained devices may re-
quire low-power communication protocols such as Bluetooth
Low Energy (BLE), ZigBee and LTE-M. In order to address
the communication needs of IIoT systems in EPSs, standard-
ization groups such as the IEEE and the Internet Engineering
Task Force (IETF) have developed IoT/IIoT-specific com-
munication protocols, such as IEEE 802.15.4e, 6LoWPAN,
and LoRa [51], [52]. On the other hand, to establish a se-
cure communication between IIoT devices, an authentication
process is required to authorize only the legitimate devices
to access the systems or their information. Access control
is a security feature that verifies the permission granted to
users and systems to perform operations on other systems and
resources [53]. Authentication is the process of validating a
user’s identity using login and other information—such as
password, PIN and digital certificates [46]—and is required
to secure the communication between two or group of parties.
Authentication ensures that only authorized users access IIoT
devices and achieves non-repudiation in communications.
When a new device is connected to the network, it should
authenticate itself before exchanging data. The authentication
can be verified using lightweight cryptographic algorithms,
physical primitives, or biometric identification [53].
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FIGURE 3. Taxonomy of cyber-attacks against layers of IIoT-aided EPSs.

D. INDIVIDUALS’ PRIVACY
Privacy includes the concealment of personal information
and the ability to control what can be done with this type
of information [54]. Data privacy must be addressed during
data collection, transmission, and storage. Several practical
solutions—such as anonymization, pseudo-random number
generators, block ciphers, and stream ciphers [46]—have
been proposed to deal with individuals’ privacy, which is
important in some of IIoT applications, such as power mar-
kets. Privacy preservation preferences impact expansion of
IIoT systems in the future, since concerns about privacy
and potential hazards of data leakages might slow down the
adoption of IIoT technologies.

V. TAXONOMY OF CYBER-ATTACKS AGAINST IIOT
SYSTEMS IN EPSS
Generally, attacks can exploit the vulnerabilities of IIoT sys-
tems in EPSs for modification, interception, or interruption
of data. These vulnerabilities are mainly due to the lack of
physical security, inadequate authentication, improper data
protection, insufficient access control, weak programming
practices, and insufficient audit mechanisms [55], [56]. The
vulnerabilities of IIoT systems stem from various layers (i.e.,
perception, application, and network layers), and result in
different types of attacks against each layer (Fig. 3). The fol-
lowing subsections enumerate the major families of attacks
against IIoT systems in EPSs.

A. ATTACKS AGAINST THE PERCEPTION/PHYSICAL
LAYER
Edge nodes—such as sensors and smart controllers—are
parts of the perception layer, which interact with the physical
environment. In most IIoT applications of EPSs, edge nodes
are easy to reach, as they are mostly unattended and some of
them run on a limited battery [57]. Operation of IIoT devices
in insecure areas makes them attractive targets for cyber-
attackers. Additionally, IoT-based authentication procedures
may be challenging for some IIoT devices, which makes

them vulnerable to cyber-attacks. Moreover, there is a lack
of standardized privacy policies for proper access control
management [58], and users sometimes ignore to update
the default credentials following the initial installation [55].
Therefore, access control protocols used for IIoT devices
are vulnerable [59]. Furthermore, there is a lack of stan-
dard programming practices for IIoT systems due to the
abundance and variety of devices. Firmware with known
vulnerabilities is an example of weak programming prac-
tices in the perception layer [55]. Hence, the aforementioned
vulnerabilities can be exploited by adversaries to attack the
hardware, firmware, and communication links of devices in
the physical/perception layer. The following attacks can be
launched against various components of this layer.

1) Physical damage
Unattended IIoT devices and nodes are subject to physical
damages, such as storage removal, firmware manipulation,
tampering attacks, or information extraction using open com-
munication ports [60]. IIoT devices are often able to commu-
nicate and change settings through the communication sys-
tems, as well as through the physical layer. An attacker with
access to the input/output ports of an IIoT object can change
the parameters of devices and cause unwanted operations.
Moreover, using these ports, cyber-attacks can take the con-
trol of devices, manipulate their firmware, and inject codes
that cause them to act maliciously or even to be destroyed
[61]. The change of firmware might also include a downgrade
to previous versions, where known vulnerabilities exist. In
such a condition, an adversary can benefit from the known
vulnerabilities and take the control of devices. Attackers can
also learn the specification and sensitive information of an
IIoT system using unattended devices. For instance, attackers
can remove the storage of a device to extract its data and also
learn about the connections of devices in the network to plan
for the next stages of an attack, or gather information about
other devices that communicate with the targeted device.

2) Firmware modification attacks in perception layer
With physical access to a device, an attacker can replace the
default firmware of the device with a malicious one [55].
This intrusion gives attackers the full control of the device,
if they are present physically close to it or remotely through
the communication system. In the latter case, the attack can
be categorized as a threat to the network layer.

3) Device capture/node replication attacks
An attacker can perform a device capture/node replication
attack, in which a malicious node is added to an existing
network by adapting the ID number of a legitimate node in
the system [62]. With the malicious node camouflaged, the
attacker can perform malicious activities, such as rerouting or
dumping packets. Hence, this type of attack can compromise
the functionality of the entire IIoT-based system [58]. Due
to the lack of sufficient auditing, this type of attack would
not be identified easily and the operators will not notice
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that a legitimate node has been removed in the first place,
since the power consumption remains almost unchanged. It
should be mentioned that even though the malicious node
has the identity of a benign node, there would be a slight
imbalance in energy consumption, which can be detected if
there is continuous audit of power consumption throughout
the system.

4) DoS attacks in physical layer
DoS attacks can occur in the form of firmware, physical,
or network damages. In the case of firmware damage, the
attack can be categorized as a threat against the application
layer, whereas a loss of communication results in an attack
on the network layer. DoS attacks negatively impact service
availability, and occur by disabling the IIoT system from per-
forming its duties. It typically happens because of (i) a flood
of requests over the service host, resulting in a full buffer
in the ports of devices (i.e., routers, or servers); (ii) physical
removal of a device; and (iii) interrupting the communication
between devices when data transfer is required. DoS attacks
are categorized as either temporary or permanent. Devices
with low/no security update mechanisms may be vulnerable
to malicious firmware updates, and can be used as a bot for
sending floods of requests to the network to clog services.
A destructive update can also disable nodes or result in
their malfunction, possibly when the update targets specific
parts of the memory [63]. A Distributed DoS (DDoS) is an
attack in which many nodes participate in sending clogging
requests, whereas a DoS is initiated from a single device
within the network.

5) Battery draining attacks
One of the most important factors for designing an IIoT
device is its battery size, which directly impacts the size,
portability, and cost-effectiveness of the device. Reliance of
some IIoT devices on batteries makes them vulnerable to
battery draining attacks. In this type of attack, an adversary
sends a large number of packets to the target device to
make it run its authentication mechanism, so resulting in the
depletion of its battery [57]. As a result, the life of the node
ends, and the system does not perform correctly. In another
type of battery draining attack, the hostile node sends only
as many queries to the victim node as are required to keep
the target node awake and drain its battery. In this attack,
however, the energy consumption of the victim device is not
increased significantly in order to keep the attack stealthy
[64].

6) Node jamming attacks
This attack happens when an adversary obscures network
connection by interfering signals, such as jamming radio
frequency signals. This type of attack disrupts the availability
of IIoT systems, since target nodes and devices can no longer
be reached or controlled [65]. Additionally, node jamming
attacks make time-critical data unavailable [66]. This type of
attack can be also performed to disrupt the communication

system by decreasing the Signal-to-Interference-plus-Noise
ratio (SINR), which is often greater than one in normal
situations. To perform such an attack, the adversary must
have knowledge about the frequency and the modulation
technique used by the target device.

7) False Data Injection Attacks (FDIAs) in physical layer

Compromising the integrity of data by deliberate injection
of false information is categorized as an FDIA. Generally
speaking, in an FDIA, the data that is gathered by IIoT
devices is manipulated to portray a fake condition in the un-
derlying system or hide an event. In this attack, an adversary
can also take advantage of the limited error rate tolerance of
the system, and gradually raise the effect of false data such
that the attack remains unnoticed. FDIAs in cyber-controlled
networks have a significant effect on the system’s perfor-
mance, and can result in a system failure [67]. In FDIAs,
even a small portion of false data can disrupt the entire
IIoT system. Thus, adversaries can optimize their attacks to
reach the intended goal with the minimum adversarial efforts,
so keeping the attack stealthy [66]. In the physical layer,
this type of attack can be launched by manipulating sensors
physically.

8) Eavesdropping

In this type of attack, secret information is collected from
communication nodes and devices. Corrupted devices in an
IIoT system, including compromised nodes, may leak the
systems’ traffic and expose confidential information [68].
Additionally, network eavesdropping—which is often re-
ferred to as network snooping or sniffing—occurs when at-
tackers exploit insecure or vulnerable networks to access the
data transmitted between two devices. This attack is among
the most common ones in wireless communication.

9) Side-channel attacks

This type of attack aims to extract private information, such
as encryption keys, by recording and analyzing the Side-
channel activities of IIoT devices, such as timing, power con-
sumption, and electromagnetic radiations [69]. Secret keys,
for example, can be retrieved by the statistical analysis of
the timing or power consumption of cryptographic algorithm
executions, or the consequences of incorrect executions. The
data protected in encrypted packets can be exposed by ana-
lyzing their length and processing time. A side-channel attack
is fatal when the information is extracted while a system is
operating. For instance, PMU communication infrastructure
is vulnerable to timing side-channel attacks, in which the
Hash-based Message Authentication Code (H-MAC) algo-
rithm can be compromised by monitoring its execution time.
This attack can model some security features of the stored
key, e.g., its length and processing time, to decrypt the data
[70].
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B. APPLICATION LAYER ATTACKS
The application layer consists of a variety of software pack-
ages without standardized privacy policies for proper access
control management [58]. This motivates adversaries to tar-
get the application layer by attacks, such as code injection
and FDIAs. Additionally, in an IIoT-based EPS, attackers
can compromise the data—consisting of private information
about users, processes, and devices—to gain information
about the entire system and its control/protection strategies.
The diversity of devices and their wide range of activities,
on the other hand, undermine the reliability of anomaly de-
tection mechanisms in IIoT systems, and result in high false-
positive and/or false-negative alarm rates [71]. In addition,
existence of a huge number of devices in the IIoT systems
barricades implementation of strong audit mechanisms, thus
increasing the possibility of intrusions. These vulnerabilities,
among others, make the application layer an interesting target
to achieve malicious goals. The following subsections elabo-
rate on attacks that can target this layer.

1) Dictionary/brute-force attacks
A dictionary attack is a brute-force technique, in which
attackers bombard a device/software with a set of known
credentials to guess passwords [72]. This attack is possible
when authentication mechanisms are weak, and becomes
easier when factory-set credentials are still in place and not
updated [55]. Therefore, not updating the users’ credentials
[59] and utilizing weak privacy policies [58] can enable an
adversary to gain high-level access to the system and control
it after performing a dictionary attack. Additionally, this
attack is effective when log in attempts and user credentials
are not logged, or when there are devices with the same
credentials.

2) Sybil attacks
Sybil nodes are edge nodes with fake identities in IIoT net-
works. When attackers decide to perform a sybil attack, they
add and use sybil nodes in the system. As discussed before,
edge nodes are easy to capture—and thus are good candidates
for sybil nodes—since they often left unattended. In such
a case, an attacker can simply replace the legitimate node
with a sybil node. Since other legitimate nodes have often
simple authentication protocols, they are unable to verify the
authenticity of the node and let a malicious request from the
sybil node pass, whereby corrupting the legitimate nodes. In
this attack, the adversary can even gain access to many other
nodes using a sybil one [73].

3) Code injection
Similar to poor/malicious updates for the perception layer,
malign updates to applications and servers may trigger secu-
rity problems, such as data leakage, data loss, and unwanted
control. It is worth mentioning that this attack can also target
the physical layer when the adversary physically inserts some
malicious codes into an IIoT device. This can happen, for
instance, by attaching a malicious gadget to the target node

and, on occasion, rewriting the target’s operating system.
Structured Query Language (SQL) injection is a type of code
injection attack to acquire administrator access to databases
by exploiting vulnerabilities in the victim’s network infras-
tructure.

4) Attacks against cloud services
Cloud services have inherent security problems, which are
manifest in IIoT systems as well [66]. Since IIoT devices
rely on service providers to keep their data safe, the most
difficult task in establishing cloud-based services is to secure
data. Confidentiality, integrity, authorization, data availabil-
ity, and privacy are among the features that a cloud service
should maintain. Data breaches, data loss, integrity viola-
tions, and unauthorized access are all possible consequences
of a cloud’s improper data handling. If an attack occurs while
transmitting data over the cloud network, it can be considered
as an attack on the network layer; however, an attack is
against the application layer if this layer is compromised to
target the cloud.

5) Username enumeration and disclosure
To control an IIoT service, many applications use login pages
that can be targeted with brute-force attacks in order to find
out the user names listed on an application or a device.
These attacks will lead to either username enumeration or
user lockout due to failed trials [60], [74]. Username leakage
can damage the privacy of users and help to initiate other
attacks. The same attack can occur against cloud services
as well. The authentication process and procedures used for
cloud-based services are often extremely susceptible and fre-
quently attacked. Numerous cloud services continue to rely
on single-factor authentication and straightforward username
and password specifications. Thus, attackers can utilize this
vulnerability to their advantage while attempting to interrupt
services or steal information from a company that utilizes
cloud computing services.

6) Attacks using viruses and malware
Viruses and Worms can be injected into IIoT applications
using, for instance, backdoor methods, which essentially by-
pass the main authorization system, embedded for developers
or maintenance intentions. Primarily, default passwords and
out-of-date interfaces lead to backdoor exposures [75]. In
contrast to computer viruses, which need a host in order to
thrive, computer worms are able to thrive on their own and
propagate more quickly. A viruse can replicate itself and
spread from one IIoT device to another. It infects each system
by embedding itself in a variety of applications and running
the code when a user starts utilizing the infected software.
With the aid of this malicious application, the adversary may
steal information, create botnets, and harm the host machine.
A worm, however, spreads over a network by looking for
a vulnerable operating system. It operates on the system
to cause damage to their host networks by, for instance,
overloading web servers and occupying the bandwidth [76].

10

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3202914

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



H. Sarjan et al.: Cyber-Security of Industrial Internet of Things in Electric Power Systems

7) Reverse Engineering
Attackers can gain sensitive information about a system by
reverse engineering its source codes. Using this strategy,
attackers can identify sensitive information left by software
programmers, such as hard-coded credentials and defects,
and exploit it to launch attacks. Extracted information can be
used to plan future assaults against the devices or to develop
and employ malicious malware for them [77].

8) FDIAs against application layer
FDIAs on the application layer differ from the same type of
attack against the perception layer, which was discussed in
the previous subsection. FDIAs in the previous subsection
occur in the perception layer, whereas in this case false infor-
mation is injected into the data or the controllers/applications
that utilize the data [78]. For instance, applications such as
control of renewable energy resources require a continuous
authenticated flow of data in order to make accurate deci-
sions. Therefore, an FDIA could prove fatal as it can mislead
the operator into making inefficient and cost-ineffective de-
cisions.

9) Firmware modification attacks
Taking advantage of this vulnerability, an attacker can
identify the weaknesses through firmware analysis and re-
program an IIoT device’s firmware in order to take its control
[63]. The attacker can also rewrite the internal memories
in the firmware [79]. By taking the control of the device
successfully, an attacker can infiltrate the system and perform
malicious activities. Several major factors influence the se-
curity of IIoT firmware upgrades, including (i) unauthorized
access to code-signing keys or firmware signing processes,
which can allow attackers to spoof trust and distribute mali-
cious upgrades to seemingly trustworthy devices; (ii) coding
weaknesses and vulnerabilities, which enable attackers to
cause unpredictable program behavior or crashes, and can
result in security breaches; and (iii) the lack of processes
to safeguard the supply chain and prevent unsecured open-
source components with embedded vulnerabilities in IIoT
devices [80].

C. NETWORK LAYER ATTACKS
Attackers can also target an IIoT system from its network
layer to gain important information about the system or ma-
nipulate the data. Such attacks become much easier if the data
is unencrypted. Additionally, similar to application and per-
ception layers, inadequate authentication and insufficient ac-
cess control are important vulnerabilities of the network layer
which can be exploited by attackers for malicious purposes.
Moreover, networking protocols that perform packet routing
and transmission at this layer are also breeding grounds
for security problems. Therefore, these vulnerabilities attract
attackers to the network layer. Major attacks against this layer
are summarized as follows.

1) Man in the Middle (MITM) attack
The communication between two victim IIoT devices may
be intercepted by a third agent or device that privately hands
over messages between the victims without letting them
know they are actually conversing with the agent. This way
the agent can either eavesdrop on the conversation or inject
malicious information [81]. This type of intrusion may occur
mostly when there is no or a poor encryption mechanism in
place [60].

2) DoS and DDoS on network layer
As described in previous sections, the compromised nodes
or devices can send large unwanted data traffic, so that the
gateways or routers become unreachable and critical services
become disabled [82]. Due to the wide deployment of net-
working protocols, DoS and DDoS attacks are very common
on the IIoT network layer. Another reason for abundance
of DoS and DDoS attacks against this layer is that IIoT
systems may use the networking protocols and media—for
communication and data sharing—that are already used in
other networks, so the same vulnerabilities threaten IIoT
ecosystems as well.

3) Spoofing
Spoofing occurs when an attacker succeeds to pretend itself
as a legitimate source and gains control over a data stream,
such as GPS and network time protocol (NTP) [64]. This
attack is carried out by disguising the attacker’s identity and
pretending as a trusted source instead. This type of attack
often leads to data leakage, and can be leveraged to design
more sophisticated attacks.

4) FDIA through the network layer
Insertion, manipulation, and replay are different types of
FDIA in the network layer [58]. An attacker can insert mali-
cious packets into the network such that they appear authentic
and be hard to detect. Additionally, using an FDIA in the
network layer, an attacker can manipulate existing packets by
changing their header and data. In more sophisticated FDIAs,
an attacker can replace the packets previously recorded dur-
ing an event with the actual ones, so faking the event when it
is not actually happening [57], [58]. It should be mentioned
that since IIoT networks do not often enjoy sophisticated
authentication protocols, FDIAs in these networks are easier
to perform.

5) Sinkhole attacks
This type of threat is the most destructive routing attack in
an IIoT paradigm, in which messages/communications in a
system are routed to anywhere the attacker pleases [83]. In
a sinkhole attack, false information is sent to surrounding
nodes by a malicious node. This malicious node can suc-
cessfully connect and blend into the network, due to poor
authentication, and announces that it is the shortest path for
messages to reach the destination. Thus, the attacker can gain
the full control of communications [84].
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VI. SECURITY ENHANCEMENT OF IIOT SYSTEMS IN
EPSS
A. PREVENTING CYBER-ATTACKS IN IIOT SYSTEMS
This subsection elaborates on the techniques that can prevent
cyber-attacks in IoT systems in general, and in IIoT networks
in particular.

1) Edge protection
As seen in the vulnerabilities section earlier, there are various
weaknesses that can be potentially exploited when it comes
to edge nodes/devices that are responsible for interacting
with the physical environment and the system [57], [85]. The
first step to prevent cyber-attacks in the perception layer is
to design the IIoT systems physically secure. For instance,
IIoT devices need to have secure chips, chip connections,
radio-frequency circuits, data acquisition, and antennas [86].
Additionally, IIoT devices can be further protected in various
ways, such as by trojan activation, circuit modification, and
securing their firmware.

• Trojan activation: Trojans are malware that disguise
themselves as legitimate. They are known to change the heat
distribution of a system. Hence, a trojan activation is an
approach that continuously compares the heat distribution in
the current system with the recorded heat distribution of a
trojan-/malware-free system [87]. Similarly, when an edge
node is under brute force/DoS attack, it would be utilizing
a lot more power, which can be detected when the system is
regularly monitored and its power consumption is compared
with normal operation [88].

• Circuit modification: Modifying the circuit of edge
devices, e.g., installing sleep/kill or self-destruction mecha-
nisms, can protect edge devices against cyber-attacks. When
there is unauthorized access to or tampering with a device,
the sleep/kill or self-destruction mechanism would automat-
ically kill or destroy the device, so it cannot work anymore
and be controlled by an attacker. Additionally, it could put
the node to turn inactive for a duration of time or until
a security team looks into it. Circuit modification could
also include adding randomized delay [69] or intentionally
generated noise [89] during normal operation of a device so
an attacker cannot find out what the process or device is, so
preventing side-channel attacks.

• Secure firmware update: Securely updating firmware
is a way to avoid malicious firmware modification to IIoT
devices. To securely update a firmware, the server can issue
a command to broadcast that there is a new version of
firmware available. A node with the new firmware already
installed would announce an advertisement which would
alert its neighboring nodes that an update is available. The
nodes that received the advertisement would then proceed
to check whether they have the new version or not; if not,
they would broadcast a request to receive the updates from
the server. The nodes need to authenticate that the received
update packets are from a legitimate source [57].

2) Patch management techniques
Manufacturers of the majority of IIoT devices do not often
supply security fixes for customers, or even the customers do
not put in enough efforts to install the security updates. As a
result, a huge number of IIoT devices have been deployed
with known vulnerabilities [90]. Patching all devices in a
timely manner is essential for securing the IIoT system,
since it removes vulnerabilities and therefore reduces the risk
of attacks against industrial processes [91]. Thus, internal
mechanisms for patching vulnerabilities, without waiting for
the next scheduled maintenance time, must be reinforced in
many firms [92]. Manufacturers must also provide security
fixes for all their devices on a regular basis throughout the
prolonged lifespan of such devices. Automated patch instal-
lation may make this procedure easier for a large number
of IIoT devices. Patching industrial systems, on the other
hand, usually involves a thorough testing step prior to instal-
lation to ensure that the patch is compatible with the present
configuration. To enhance safety and limit the possibility of
process downtime, the National Institute of Standards and
Technology (NIST) advises regression testing as a part of a
systematic patch management approach [93]. Additionally,
the Internet Engineering Task Force (IETF) on software
updates for IoT offers an automatic firmware upgrade method
for resource-constrained devices in the context of the IoT and
IIoT [94], [95]. This approach ensures a consistent descrip-
tion of the relevant entities, security threats, and assumptions
for each update, as well as secure end-to-end transfer of new
firmware to devices.

There are also methods for actively detecting security
problems and vulnerabilities in IIoT installations, such as
evaluating IIoT devices during their idle moments or as-
sessing vulnerabilities using an IIoT network graph [96],
[97]. Idle intervals have little effect on industrial operations,
making them especially helpful for safety- and mission-
critical activities [96]. These methods form the first step in
identifying existing security defects and their consequences
for the systems, as well as taking appropriate actions, such as
isolating susceptible devices.

3) Access control and provision of trusted execution
environments
Even if IIoT devices are patched regularly, the existence of
vulnerabilities cannot be totally ruled out, since manufactur-
ers may not be aware of some security defects in their prod-
ucts, known as zero-day vulnerabilities. Furthermore, man-
ufacturers may terminate support for outdated equipment.
Thus, additional protection techniques are required to avoid
attacks on IIoT devices and subsequent assaults on other
linked devices. To this aim, NIST recommends a defense-in-
depth design, which uses internal firewalls and demilitarized
zones to reduce the effects of assaults. Furthermore, fine-
grained security policies that restrict access to computing
and networking resources for each device, and even inside
a device for particular applications and tasks, can minimize
the risk of attacks.
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Various techniques have recently been developed to par-
ticularly address the implementation of hardware-security
technologies, such as trusted execution environments, in in-
dustrial cases [98], [99]. The ability to serve time-critical
applications is a key barrier when considering such tech-
nologies in the context of IIoT. First prototype assessments
indicate that with the support of trusted execution environ-
ments, even resource-constrained devices may safely conduct
safety- and mission-critical activities. However, such meth-
ods are only relevant to future device generations if the neces-
sary hardware is available. Enforcing security policies within
the network is a possible approach for outdated and non-
patchable systems. This is an appropriate approach to prevent
follow-up attacks from infected devices to other portions of
the network, in addition to providing extra security against
unauthorized access to such devices.

The IETF has also suggested Manufacturer Usage Descrip-
tion (MUD) [100], in which the manufacturers of IIoT de-
vices establish networking rules based on device functionali-
ties, i.e., most IIoT devices have a very defined purpose and
hence do not require full network access to complete their
functions. All connections that do not conform with the set
of MUD rules are subsequently blocked by a central enforcer
within the local network, limiting the potential for assaults. It
is also demonstrated that automated techniques may be used
to construct MUD rules, and thus this approach supports pre-
viously deployed devices, even when manufacturers do not
offer the necessary rules [101]. Software Defined Networking
(SDN) approach can be also used to implement regulations in
industrial networks [102], [103].

4) Cryptography and authentication mechanisms
Encryption is a critical tool for ensuring data secrecy and
may also be used to provide authentication. However, a large
number of IIoT devices are resource-constrained, necessitat-
ing the usage of lightweight symmetric-key encryption tech-
niques rather than computationally more-costly public-key
cryptographic methods. However, symmetric-key cryptogra-
phy often lacks a secure and scalable management infrastruc-
ture, making the secrecy of participants difficult [104]. Fur-
thermore, both public-key and symmetric-key cryptographic
approaches often produce unacceptable delays for safety-
and mission-critical procedures, preventing factory operators
from using encryption and authentication at all. Additionally,
the increasing data transmission between devices in IIoT
systems, as well as the rising reliance of such systems on
cloud services, necessitate robust data security against un-
wanted access. As a result, new encryption and authentication
technologies that are specially adapted to the IIoT paradigm
are necessary.

The first group of studies concentrates on resource-
constrained devices and suggests techniques to minimize
latency and hence allow lightweight authentication and en-
cryption in industrial communication settings. For instance,
to allow authentication of resource-constrained devices, the
authors of [105] use a lightweight authentication technique

based on only hash and XOR operations. In this method,
smart sensors with secure elements and routers with trusted
platform module are taken into account. The proposed au-
thentication mechanism is performed in two steps: (a) the
registration phase, in which each smart sensor registers with
an authentication server and the routers are given secure
pre-shared keys issued by the server; and (b) the mutual
authentication phase, in which the sensor and the router
establish mutual authentication. The second group of studies
concentrates on protecting IIoT communications with other
entities, such as cloud services [106]–[109]. These methods
use certificateless searchable public-key encryption, which
allows for easy key management across a wide number of
IIoT devices. The core concept is that data is encrypted
before being sent to a cloud service, and the encrypted data
is searchable, such that data is only decrypted after being
retrieved from the cloud. Such techniques, however, might
endanger the confidentiality and integrity of the information,
since secrecy and authenticity of outsourced data cannot
be guaranteed when dealing with an expanding number of
devices and connections [110]. Finally, the last group of stud-
ies focuses on user authentication, and develops techniques
for authorizing users to access IIoT devices. For instance,
researchers have proposed an anonymous lightweight user
authentication approach for IIoT paradigms [111]. This ap-
proach performs authentication using personal biometrics,
passwords, and smart cards with the fuzzy extractor to con-
firm the user’s biometrics. It also includes phases for smart
card revocation, password/biometric update, and IIoT device
addition. Additionally, the authors of [112] have developed
a privacy-preserving biometric-based authentication protocol
using elliptic curve cryptography. In this method, when a user
desires to access a node’s sensory data, their authentication
should be approved by a gateway and agree on a session
key that will encrypt future interactions. Similarly, a Context
Sensitive seamless Identity Provisioning (CSIP) architecture
is developed in [113] for IIoT devices to validate users. The
CSIP presents a two-part mutual authentication technique
based on hashes and mutual authentication values.

5) Securing Communication
Secure and reliable communication is necessary for trans-
mitting vital information across all the layers of an IIoT
system, and also for operating it safely and smoothly [57].
In addition to cryptographic strategies and IDSs, there are
several other techniques to secure the communication of in-
formation in IIoT-based systems, which include • Role-based
authorization: A role-based authorization mechanism needs
to be implemented in order to verify requests and messages
being sent from various sources. Only legitimate sources,
such as those devices that are part of the system, must be
allowed to interact with each other, and other outside sources
should be prohibited. This barricades attackers, since no
message/packet will be passed without authorization [114].

• Security routing protocol Routing is a process in which
the best path between a data source and its destination is de-
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termined. The routing information, however, is often accessi-
ble to attackers, since it is not encrypted. This problem can be
addressed by implementing an authentication process based
on lightweight cryptographic algorithms to secure routing
protocols [115].

6) Training and assessing of employees
Successful attack protection does not rely solely on tech-
nology; it also relies heavily on people, such as workers
and managers, as well as implementing security policies
and procedures within corporations. Enhancing the aware-
ness of employees, as well as training and assessing them
are more difficult in IIoT paradigms than in consumer IoT
contexts, since a higher number of employees are involved.
Thus, improving employees’ cyber situational awareness—
i.e., making them aware of possible security threats and haz-
ards, and the need for security measures—is a necessary step
toward securing corporations against cyber-attacks [116]. For
instance, Open Web Application Security Project (OWASP)
foundation presents generic security principles to improve
the awareness of manufacturers, developers, and users in the
context of IIoT [117]. Additionally, as demonstrated in [118],
merely transferring information is insufficient to enhance
users’ behaviors. Yet, practical awareness via direct contact
and hands-on experience through security testbeds can make
the employees aware of security challenges and counter-
measures in IIoT systems, and can change their long-term
behaviors more effectively [119], [120]. Finally, a periodical
security review of the current system is required to determine
whether the security measures are appropriate. There are
a number of tools, such as the cyber-security evaluation
tool [94] and the IIoT analysis framework [121] to make it
easier to examine the security of bigger installations, and are
therefore particularly useful for strengthening and evaluating
the security of IIoT systems.

B. INTRUSION DETECTION IN IIOT NETWORKS
Detecting attacks against IIoT systems requires broad net-
work, data, and equipment inspections for identifying the
signs of abnormal behaviors or malfunctions based on the
network behavior. IDSs are critical for identifying malicious
activities in a timely manner, and for preventing their subse-
quent damage to IIoT systems. They are especially impor-
tant when preventative security measures are not properly
deployed. In most cases, existing IDSs for traditional IT
networks cannot be used in IIoT paradigms, due to reasons
such as lack of interoperability [122]. For instance, ICSs are
dominated by real-time processes and resource-constrained
devices, which are less frequent in traditional IT networks.
Additionally, since not all the data traffic flows via a single
central point, IIoT networks generally require numerous van-
tage points for IDSs. Apart from these complications, there
are some privileges for deploying IDSs in IIoT systems. For
example, in contrast to random communication in IT net-
works, predictable industrial operations enjoy more regular
network traffic patterns, making identification of anomalies

easier [123]. The following subsections elaborate on avail-
able IDSs for IIoT-based applications in EPSs.

1) Traditional IDSs
Traditionally, IDSs observe and analyze the network for
attacks mainly by looking for attack signatures and traffic,
anomalous activities, or system specifications. Signatures are
patterns that under-attack networks display, and specifica-
tions are the rules for valid and correct operation of the
system [124], [125]. Traditional IDSs can be signature-based,
anomaly-based, or specification-based.

Signature-based IDSs attempt to model the malicious be-
havior of an attack, i.e., its signature, for detecting them.
Therefore, signature-based IDSs can only detect attacks
whose signatures are known, since they lack the ability
of generalization. Additionally, modeling the signature of
attacks might be challenging in some cases. Anomaly-based
IDSs, on the other hand, detect attacks by probing the be-
haviors of nodes, such as their usual message emanations,
and comparing them with previously known valid behaviors.
In fact, an anomaly-based IDS learns the natural behavior
of a system, and detects attacks when the system behavior
deviates from natural. An anomaly-based IDS can be either
model-based—if the attack-free operation can be accurately
modeled by physical equations—or learning-based, if the
natural behavior is modeled by using Artificial Intelligence
(AI). It should be noted that only the former type is cate-
gorized as traditional anomaly-based IDS [126]. The system
model used for traditional model-based methods can be (i)
differential, algebraic, or a combination of both, (ii) linear
or non-linear, and (iii) parameter-varying or -invariant. A
model-based anomaly detection method can be used in con-
junction with the traffic information anomaly detection tech-
niques to improve the attack detection accuracy [127]. Even
though anomaly-based IDSs are able to identify previously
unknown attacks, they have relatively high false alarm rates,
since previously unseen behaviors might be confused with
attacks.

A specification-based method is a type of traditional IDS,
which reduces the false alarm rates of anomaly-based detec-
tion techniques by distinguishing natural unknown behaviors
of the system from attacks. System specifications, which sig-
nify the system’s expected behaviors, are key components of
specifications-based IDSs. In this type of methods, abnormal
behaviors of a system are detected as a breach of security.
When sufficient information about a system’s behaviors is not
available, a specification source is developed by simulation.
This source is then used to identify intrusions by monitoring
the deviation of system behaviors from simulated attack-free
specifications [128].

2) Machine-learning-based IDSs
Attack detection has experienced a great evolution with re-
cent advancements in Machine Learning (ML) and AI. ML-
based techniques can address the shortcomings of anomaly-
and signature-based IDSs by exploiting an intelligent model
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trained based on the data collected from IIoT systems in
attack-free conditions and during attacks. Thus, ML IDSs
are able to detect both previously seen and unseen cyber-
attacks [129], [130]. In general, ML-based IDSs for IIoT
systems can be categorized into supervised, unsupervised,
semi-supervised, and Reinforcement Learning (RL) methods
[131], [132].

a: Supervised ML methods
Supervised learning happens when a large amount of labeled
data is used to train a model for either classification or regres-
sion. Classification can determine whether or not an attack
has occurred, whereas regression gives the probability of
attacks. Classification models include, but are not limited to,
Neural Network (NN), Support Vector Machine (SVM), and
K-Nearest Neighbor (KNN) methods. These algorithms can
be employed to analyze IIoT network data or nodes, and find
out malign ones using a model that is trained based on the
previously seen instances of attack and attack-free operation
[133]. More information about supervised ML methods can
be found in [134].

• NNs: This ML-based technique comprises several layers
of neurons, and can be trained to estimate a function that
maps the set of input features (or data) to attack/normal clas-
sifications [135]. Multi-Layer Perceptron (MLP) networks
are a category of NNs that can be augmented with some
layers, such as convolutional layers to form the Convolutional
NN (CNN) [136]. Recurrent NN (RNN) [137], Long Short
Term Memory (LSTM) [138], and gated recurrent units [139]
are other types of NNs that can be used for detecting attacks
in IIoT systems. Additionally, thanks to technological ad-
vancements in parallel processing, deep learning—which is
a term used for both CNNs and MLPs with a relatively large
number of layers—has received great attention for detecting
cyber-attacks against IoT and IIoT systems [136].

• SVM: This supervised ML technique detects intrusions
against IIoT networks by classifying data into two categories,
i.e., attack and attack-free. SVM-based IDSs are efficient,
since they are (i) suitable for low-power devices, such as
those used in the IIoT systems, and (ii) extremely scalable,
due to their simplicity and the ability of intrusion detection in
real-time. The challenge of using SVM is in finding support
vectors, which are used to classify unknown traffics as either
attack-free or malicious [140].

• KNN: This supervised ML algorithm can be used for both
classification and regression. In this method, new data points
are assigned a value and classified depending on how closely
they resemble the data of the training set. One criterion for
measuring resemblance between a new data point and the
ones in the training set is the Euclidean distance between
them. This method can identify suspicious activities in IIoT
systems in EPSs [141].

b: Unsupervised ML methods:
These ML models extract information and hidden patterns
from the raw data without requiring the label of data. Un-

supervised models that are able to cluster the input data
include, but are not limited to, Principal Component Analysis
(PCA) and K-means Clustering [133]. More information
about semi-supervised ML methods can be found in [134].

• PCA: This unsupervised ML method computes the prin-
cipal components of a dataset and usees them to reduce the
dimension of the data. In fact, PCA generates uncorrelated
features from the initial correlated ones to lower the feature
space. Thus, due to its dimension reduction capability, PCA
is appropriate for IIoT systems with massive data. Integrating
PCA with other ML techniques can result in stronger IDSs
[142].

• K-means clustering: This approach divides the data into
k clusters and assigns each observation to a cluster whose
mean is nearest to the observation. Hyper-parameter K is
usually selected manually to control the learning process, and
the centroids are found iteratively using some initial random
points. The fact that K-means clustering method does not
require data labels makes it suitable for IIoT dataset, which
is often unlabeled [143].

c: Semi-supervised ML methods

This family of ML techniques trains the model using a small
amount of labeled data and a large quantity of unlabeled data.
In fact, semi-supervised ML is a special instance of weak
supervision. Semi-supervised techniques are useful when the
costs of labeling are relatively high, and a good learning ac-
curacy is required. One example of semi-supervised learning
is to combine clustering and classification algorithms. The
former method categorizes the most relevant samples of the
and into several clusters, and the latter approach labels the
unlabeled data based on the clusters and uses it to train the
model. Self-training, co-training, multi-view learning, and
generative adversarial network, are other examples of semi-
supervised ML techniques that can be used for developing
IDSs [144]. More information about semi-supervised ML
methods can be found in [145].

d: RL techniques

RL is a mixture of both supervised and unsupervised learning
methods, where the output is improved in every iteration
based on trial and error [146]. An RL model learns the
optimal actions in an environment, e.g., in an IIoT system,
which is usually modeled by a Markov Decision Process
(MDP) [147]. In this process, the environment is described
with a number of states and a set of actions for each state.
Therefore, in each state, the RL model has a number of
actions to take, and is rewarded or penalized based on its
state and chosen action. States also change according to
actions, usually probabilistically and according to a transition
matrix that shows the probability of going from one state to
another under each of actions. RL is useful when the clas-
sification boundary between attack-free and malicious traffic
may change depending on attack parameters and strategies.
In such situations, RL continuously updates the classification
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boundaries, allowing the model to adapt to new intrusions
[148].

C. INTEGRATION OF BLOCKCHAIN FOR SECURING
IIOT SYSTEMS IN EPSS
Blockchain is an emerging technology that can benefit IIoT
systems in EPSs by enhancing their security requirements for
interconnection, permission control, and data exchange [12].
In Blockchain systems, data is protected by cryptographic
encryption, and devices in the network are protected by their
unique identifiers [149]. The architecture, challenges, and
applications of Blockchain in the energy industry are re-
viewed in [150]. Additionally, implementation of Blockchain
in smart grids has been investigated in [151]–[153]. The
authors of [151] discuss the need for security in smart grids,
and use Rainbowchain, which employs seven authentication
methods, to provide enhanced performance and security than
the conventional Blockchain architectures. This approach,
however, can reveal the personal information of consumers.
To address this problem, a privacy-preserving and efficient
data aggregation technique that splits users into groups is
developed in [152]. In this method, each group has its own
private Blockchain to record the data of its members.

Blockchain is also proposed for IIoT-based peer-to-peer
energy trading in smart grids and microgrids, since the lack
of trust and transparency in the energy market raises concerns
regarding the safety and privacy of users. The authors of
[153] have developed a safe and secure energy trading sys-
tem, known as the energy Blockchain, using the Consortium
Blockchain technology. They have also devised a credit-
based payment system to eliminate transaction delays and
facilitate fast payment and frequent energy trading. In this
technique, energy transactions are signed and audited by
other parties, making them verifiable and secure. In another
study, researchers have developed an efficient and secure
decentralized keyless signing technique based on the Con-
sortium Blockchain [154].In this technique service providers
are able to monitor each other on a Blockchain without the
need for a Trusted Third Party (TTP). Similarly, a peer-to-
peer electricity trading system with Consortium Blockchain
has been developed in [155] to strengthen the transactions’
security without relying on a TTP. In this method, local
aggregators use the Blockchain to publicly audit and share
transaction records without relying on a TTP. Additionally,
electricity pricing and the amount of traded electricity are
solved via an iterative double auction process that iterates
over time. In another study, a new Blockchain-based algo-
rithm, known as Hyper Delegation Proof of Randomness
(HDPoR), has been proposed in [156]. This study also devel-
ops an efficient and secure peer-to-peer transaction service
model for renewable energy sources.

VII. CONCLUSION
IIoT deployment has brought about various opportunities for
EPSs, such as enhancing asset visibility, energy management,
and control of distributed generation, as well as reducing

energy losses. However, the security challenges of IIoT sys-
tems have barricaded large-scale deployment of IIoT-based
applications in EPSs. This paper, first elaborated on IIoT-
based applications in EPSs, and discussed the most common
IIoT architectures for implementing these applications. It
also highlighted the major security requirements of IIoT-
based systems. Afterwards, the vulnerabilities of IIoT sys-
tems were explained, and the attacks that can take advantage
of such vulnerabilities were classified based on their entry
layer. Additionally, the paper examined various prevention
and detection strategies for addressing the vulnerabilities of
IIoT systems in EPSs and mitigating intrusions before they
damage the system. Finally, to improve the security of IIoT-
based applications in EPSs, possibilities for implementing
technologies such as Blockchain, ML, and AI were dis-
cussed.
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