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Abstract: The Internet of Things (IoT) is a technological revolution that enables human-to-human
and machine-to-machine communication for virtual data exchange. The IoT allows us to identify,
locate, and access the various things and objects around us using low-cost sensors. The Internet of
Things offers many benefits but also raises many issues, especially in terms of privacy and security.
Appropriate solutions must be found to these challenges, and privacy and security are top priorities
in the IoT. This study identifies possible attacks on different types of networks as well as their
countermeasures. This study provides valuable insights to vulnerability researchers and IoT network
protection specialists because it teaches them how to avoid problems in real networks by simulating
them and developing proactive solutions. IoT anomalies were detected by simulating message
queuing telemetry transport (MQTT) over a virtual network. Utilizing DDoS attacks and some
machine learning algorithms such as support vector machine (SVM), random forest (RF), k-nearest
neighbors (KNN) and logistic regression (LR), as well as an artificial neural network, multilayer
perceptron (MLP), naive Bayes (NB) and decision tree (DT) are used to detect and mitigate the attack.
The proposed approach uses a dataset of 4998 records and 34 features with 8 classes of network traffic.
The classifier RF showed the best performance with 99.94% accuracy. An intrusion detection system
using Snort was implemented. The results provided theoretical proof of applicability and feasibility.

Keywords: cyberthreat; IoT security; embedded subsystems; MQTT protocol

1. Introduction

The Internet of Things (IoT) has revolutionized technology in many areas of life. The
Internet of Things model aims to connect people to everything, everywhere, all the time.
In general, the Internet of Things is characterized by a three-layer architecture consisting
of perception, network, and application layers. To ensure the stability of the Internet of
Things, security principles must be applied at each layer [1]. Moreover, the number of
vulnerabilities in embedded subsystems increases with technological progress. Therefore,
embedded security is an integral part of embedded system design. With a technological
revolution that enables human-to-human and machine-to-machine communication, the
Internet of Things (IoT) will allow us to develop new online applications and services
for all living beings to improve our quality of life. Trust is critical in the context of IoT
devices and services. In addition, IoT security devices and networks must be monitored
and investigated to prevent damage to system components from posing unacceptable risks
and to ensure effective security by analyzing the social behavior and ethical use of IoT
technologies [2].

The Internet of Things IoT systems have been found to have vulnerabilities that make
them susceptible to various types of attacks. In addition to the risk of losing important
information, other security issues such as confidentiality, privacy, and accessibility also pose
a threat. By monitoring IoT devices and vulnerable resources, it is possible to determine
what types of attacks are likely to occur against low-cost IoT devices [3].
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In recent years, the number of IoT devices in our homes and lives has increased
significantly. Technology is advancing rapidly, and the number of computers connected
to the Internet is increasing. It is expected that in the next few years, this number will
multiply and become much larger than it is today. There will be more devices, but they will
be different. The fear is that hackers will take advantage of the growth of this technology to
launch attacks. They will rely largely on discovered vulnerabilities and inadequate user
security settings. This means that not only is this device vulnerable, but so are other devices
on the network. Vulnerabilities in IoT systems can be a problem and lead to devices being
exposed to many types of attacks, including the risk of denial of service and security issues
such as confidentiality, privacy, availability, and vulnerability to attack [4,5].

MQTT is a protocol that can be vulnerable to many forms of cyberattacks and is
used in this study to address issues related to IoT and embedded systems [6]. It helps
in the transmission of low-bandwidth data connection, authentication, communication,
and termination and also the publish/subscribe model [7]. The problem occurs when the
MQTT protocol receives messages or requests from nearby nodes in the same area of the
network, especially in networks where authentication has not been performed. The most
well-known of these attacks is the HELLO flooding attack, which targets an IoT device and
floods it with contact requests until the service is discontinued [8]. To enable routing and
data transfer between IoT devices, the Cooja IoT simulator was used to simulate HELLO
flooding attacks in this paper.

In recent years, machine learning has made significant progress as machine intelli-
gence has evolved from a laboratory curiosity to practical machines in several important
applications. IoT device intelligence provides important solutions to new or zero-day
attacks, as these devices can be monitored. Using powerful data exploration methods
(ML), the “normal” and “abnormal” behavior of IoT devices and components in their
environment can be determined [9]. These methods are, therefore, of great importance for
transforming the security of IoT systems into a security-based intelligent system and not
only for secure communication between devices.

This research is also a step forward in identifying cybersecurity threats in modern
technology and identifying vulnerabilities in organizations that deploy technologies and
systems. We identify key areas where vulnerabilities may occur within the system to
develop a hardened cybersecurity defense methodology, analyze various classifiers used
for DDOS attack detection, including support vector machine (SVM), random forest (RF),
k-nearest neighbors (KNN), and logistic regression (LR), as well as an artificial neural
network, multilayer perceptron (MLP), naive Bayes (NB), and decision tree (DT), and
propose a cybersecurity incident response plan to help organizations efficiently and quickly
respond to security incidents and also implement intrusion detection systems using Snort to
monitor server and system activities in real-time. The key details of the experiment include
protocol analysis, network flow analysis, intrusion detection, vulnerability scanners, cyber-
attack defense, and return to normality. The experimental results are compared with the
existing works [9–12] for validation. The results show that the random forest algorithm
(RF) has high accuracy in detecting DDoS attacks compared to existing research work.

The DDoS accuracy detection rate reported in [9–12] using support vector machines
(SVM), random forest (RF), k-nearest neighbors (KNN), and logistic regression (LR) clas-
sifier artificial neural networks (ANN) is in the range of 63% to 98%. In this research, we
investigated whether machine learning techniques, including support vector machines
(SVM), random forest (RF), k-nearest neighbors (KNN), logistic regression (LR), naive
Bayes (NB) and decision tree (DT) classifiers can be useful tools to support DDoS attack
detection. Additionally, an artificial neural network-based approach called Multilayer
Perceptron (MLP) has been investigated. These techniques could detect malicious activities
and attacks, improve human analysis, and automate repetitive security tasks. The dataset
used in this research was collected by Al-Kasassbeh et al. [13]. The results obtained in
this research suggest that random forest (RF) is more suitable for anomaly detection using
machine learning techniques.
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The main objectives of the study are to:

• Identify issues related to the MQTT protocol and possible attacks in different types of
networks and their countermeasures using ML;

• Simulate and analyze different network attacks in IoT networks by simulating MQTT
over a virtual network, which allows us to analyze and detect anomalies;

• Identification of the best classifier with high accuracy using some types of DDoS
attacks and one or two machine learning algorithms.

This paper is divided into six sections. The Section 1 provides the purpose of the study,
its background, and detailed information about the topics covered in the study. Through
this particular study, questions need to be answered. The Section 2 presents the literature
review of related work by analyzing and reviewing the previous research on this topic,
especially explaining the main gaps in the study. The Section 3 deals with an overview
of the IoT and the MTTQ protocol, and the proposed methods to be used in the research
process are discussed in Section 4. The Section 5 deals with the experimental setup, analysis,
results and discussion, conclusions, and future scope of the work discussed in Section 6.

2. Related Work

With thousands of new devices being connected every day, the wireless IoT infras-
tructure is growing significantly. This has enabled the introduction of numerous smart
applications that are transforming people’s lifestyles. However, as security has always
played a secondary role in innovation, significant questions have been raised about the
security of these infrastructures. The Internet of Things (IoT) integrates almost all objects in
the environment to create new digitized services that improve people’s lifestyles, whether
physically or virtually, via the Internet. Currently, many IoT technologies, including smart
wearable devices, connected health services, connected cars, and others, have a direct
impact on people’s daily activities. This raises many security issues, even as the IoT offers
myriad benefits. Addressing these challenges should be a top priority for IoT manufac-
turers to continue the successful adoption of IoT applications. IoT device owners should
ensure that their devices are equipped with appropriate security mechanisms. The number
of security threats and cybercrimes has increased significantly with the development of
the IoT [14].

Improper device updates, active device monitoring, inadequate and insecure protocols,
and user ignorance are some of the challenges facing IoT [15]. Using approaches to the
security of IoT components, environments, and systems, existing security solutions, best
privacy models, and the need for different layers of IoT applications, the authors in [16]
discuss the background of IoT systems and security measures.

In [17], an edge/cloud-based IoT layered model was proposed, implemented, and
evaluated. In the lowest layer, Amazon’s Web Service (AWS) IoT nodes are represented by
virtual machines. A hardware kit for Raspberry Pi 4 with AWS support was used for the
middle layer (edge). AWS can be used to run the IoT environment on the upper layer (the
cloud). Between these two layers, a security protocol and a critical management session
have been established to ensure user privacy. In the proposed cloud/edge-enabled IoT
model, security certificates have been implemented to enable data transmission between
the layers. It is proposed to use the best security techniques at each layer—edge, cloud, and
IoT layer—to close potential security gaps and protect against cybersecurity threats.

Objects and devices in the IoT environment can be addressable, identifiable, and locat-
able via low-cost sensors. Although the IoT offers countless benefits, there are also many
challenges, especially related to privacy and security. Addressing these issues and ensuring
protection and privacy for IoT services and products must be a fundamental priority. IoT-
related services must be secure, and users must trust the devices. The IoT brings together a
significant number of smart devices and components that communicate with each other
with minimal human intervention. The security measures used for IoT devices, such as
authentication, network security, encryption, access control, and application security, are
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ineffective, and their vulnerabilities are deeply rooted. Therefore, existing security methods
need to be improved to ensure that the IoT ecosystem is indeed secure [18,19].

IoT uses special protocols for communication and information transfer. IoT devices
of different structures use these protocols for communication and data exchange. To
secure IoT networks, it is necessary to monitor protocol behavior and data traffic. The
most important protocols for IoT networks include Wi-Fi, Zigbee, Bluetooth, and MQTT.
MQTT is a lightweight protocol for exchanging simple data streams between sensors and
applications. The MQTT protocol is the most widely used and is expected to become the de
facto standard for IoT communication. It uses the TCP/IP network to enable simple data
transmission. A publisher/subscriber model facilitates communication between devices
using MQTT, resulting in lightweight message exchange [20].

In the paper [21], the authors discussed three types of attacks (DoS attack, RPL rank
attack, and wormhole attack) on sensor networks using the Cooja simulation system
running on Contiki OS. The tool contains many types of nodes. In Cooja simulations, “sky
node” and client server were used as node types. Multiple nodes can be added, including
the source code of the new node. Adding the source code may require a high level of
knowledge and experience in dealing with the implemented network. A packet viewer
can be used for devices such as temperature sensors, motion sensors, and light sensors.
In the case of an attack, a large dataset has already been created by combining normal,
network, and dataset traffic. This introduced a new dataset that can be used as a basis for
learning-based intrusion detection systems (IDS) designed to attack IoT devices.

A moving target defense (MTD) removes the biggest attack advantage of static com-
puter systems - which is a major advantage held by attackers. In order to analyze this
impact, MTD as well as cyber-attack concepts need to be formalized. A theory of cyber-
attacks is presented in [22], to support the understanding and analysis of how MTD systems
interact with attacks. In order to find interactions between attackers and MTD systems, the
relation between attack parameters and MTD configuration parameters is usually exploited.

A distributed denial-of-service (DDoS) attack is a self-imposed mechanism to disrupt
normal network traffic by flooding the network to the point where the network or associated
resources are significantly slowed or crippled. Many studies [13,23,24] have used Simple
Network Management Protocol (SNMP-MIB) data. Sometimes, statistical analysis of
Management Information Base (MIB) data is also used. Other approaches have recently
used machine learning techniques and artificial neural networks for network attacks and
other anomalies. The algorithms used are support vector machine (SVM), random forest
(RF), k-nearest neighbors (KNN), and logistic regression (LR).

In [9], researchers analyzed the DDoS detection in the SDN using the proposed algo-
rithm DDAML and compared the result with the KNN and SVM algorithms. Experimental
results demonstrated that the proposed algorithms perform better in comparison to other al-
gorithms. In [10], researchers used UNBS-NB 15 and KDD99 Botnet DDoS attack detection
using SVM, ANN, naïve Bayes (NB), decision tree (DT), and unsupervised learning (USML)
investigated for performance measures (accuracy, sensitivity, and specificity). In [11], re-
searchers used machine learning (SVM, KNN) and neural network (ANN) algorithms to
detect DDoS attacks in software-defined networks. Using SVM, 92.6%, KNN, 95.67%, ANN,
91.07%, and NB, 94.48% of DDoS attacks were successfully detected. In [12], researchers
used machine learning (SVM) for SDN self-defense systems, and detection accuracy was
found to be in the range of 97–98%.

The literature review has shown that there Is a need to increase the level of protection
in embedded subsystems and IoT devices. Several authors have investigated this using
different methods, techniques, and research tools. The physical and technical aspects are
also mentioned. Compared to all the research mentioned in the relevant study and after in-
vestigating their methods, this research takes the approach of extracting and analyzing data
in and from networks of embedded subsystems, which are very valuable for researchers.
This has been studied by several authors using different approaches, tactics and research
tools. The technical and physical aspects are also discussed.
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3. MQTT: Threat Model

The default configuration of MQTT does not support authentication or payload encryp-
tion schemes because it is a lightweight, simple, and generic protocol. Wildcard support
appears to be a glaring oversight since it creates a flaw that allows an adversary to listen
in on any data passing through the broker. The MQTT is not designed with security as a
primary concern [6,25]. In order to enable bidirectional communication and remote control
of IoT devices, middleware based IoT application protocols are indispensable. MQTT is
one of the most widely adopted IoT application protocols. Identifying possible threats is
necessary before implementing countermeasures in MQTT-based IoT environments. The
MQTT threat model is presented, and the attack against MQTT brokers is evaluated. That
protocol used the publish-subscribe model. This paradigm demonstrates how the “broker,”
a crucial element in MQTT, separates the “publisher,” a client that publishes messages,
from the “subscribers,” which are other clients that receive the messages. This task involves
receiving messages from the publisher and sending them to the subscribers. Figure 1 shows
the MQTT threat model. As one of the most popular IoT application protocols, Patel, C.
et al. [6] outlined the threat model for MQTT and examined the denial of service (DoS)
attack encountered when MQTT brokers are attacked. A virtual machine testbed was set up
for the investigation of the performance of an MQTT broker server during a DDoS attack.
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The proper identification of possible threats is needed to apply any countermeasure
to the MQTT. Formally, attacks are related to the attacker’s knowledge and are known
as information parameters. The relation between the attack’s parameters and the MTD
configuration parameters is usually exploited to find an interaction between the attackers
and the MTD system [22]. The information parameters as a name-value pair for the
proposed system can be described as follows.

An information parameter (ψ) can take a value (v) based on its type (n) and can be
represented as ψ = (n, v).

1. An assumed information parameter (ψ̂)= {ψ1, ψ2, ψ2, . . . , ψn, . . .} refers to a domain
of all possible values (v) assigned to m represented as m = (ψ.v).

2. A composite parameter (ψ) refers to a set of all sub-information parameters given as
ψ = 〈n, {ψ1, ψ2, . . . , ψn}〉.

Attacker: The attacker effectively attacks the publisher by using internal user launching
and reverse engineering. In reverse engineering, without having much (if any) knowledge
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of the mechanics of how it does so, one attempts to understand how a previously established
item, process, system, or piece of software executes a task. It basically involves opening up
or dissecting a system in order to learn how it functions in order to duplicate or enhance
it. Depending on the system being examined and the technologies being utilized, the
information collected through reverse engineering can help with learning how something
works, reusing outdated items, doing security checks, and carrying out other activities.
Data is manipulated in MIM attacks through eavesdropping. On both the broker and the
subscriber, attackers utilize brute force and execute DoS/DDoS attacks. The planner’s IP
address, server port number, and operating system must all be known to the attackers.
Attacker knowledge in the form of information parameters can be used to gain these. A
broad grasp of captures as well as specialized knowledge, such as how to use mmap (), a
POSIX-compliant Unix system function that maps devices or files into memory, are also
necessary for the attacker. A memory-mapped file I/O method is used. Since file contents
are not immediately read from the disk and initially do not use any physical RAM at all,
demand paging is used.

Attack Type: We assume that earlier attacks have provided the attacker with knowl-
edge of the planner’s OS system, IP address, and port number. There are several types of
assaults, including MIM (man-in-the-middle), brute-force, DoS (denial of accommodation),
and DDoS attacks. An attack is defined as the effect on the system information. By monitor-
ing the impact of information change, an attack can easily be identified. An attack (a) is a
tuple of information parameters Ω = (Ωpre, Ωpost) that, when executed, copies the value
of ψ2 into ψ1, which is denoted as (ψ1.v = ψ2.v). Formally, the execute operation as execute
(a)⇔ (a.ψ1.v = a.ψ2.v). Different types of attack specifications discuused in [22] are shown
in Table 1.

Table 1. Types of attack specification.

Type Ωpre Ωpost

φ1 ψd1.ip 6= ψx
d1.ip 〈ψx

d1.ip, ψd1 .ip〉

φ2 ψx
d1.ip = ψd1 .ip ∧ ψx

d1.port . 6= ψd1 . port 〈ψx
d1.port, ψd1 .port〉

φ3 ψx
d1.ip = ψd1 .ip ∧ ψx

d1.port . = ψd1 . port ∧ ψx
d1.os 6= ψd1 .os 〈ψx

d1.os, ψd1 .os〉

φ4
ψx

d1.ip = ψd1 .ip ∧ψx
d1.port . = ψd1 . port ∧ ψx

d1.os = ψd1 .os ∧ ψx
d1.vul

6= ψd1 .vul
〈ψx

d1.vul, ψd1 .vul〉

φ5
ψx

d1.ip = ψd1 .ip ∧ψx
d1.port . = ψd1 . port ∧ ψx

d1.os = ψd1 .os ∧ ψx
d1.vul

= ψd1 .vul
〈ψd1.exa, ψx .exa〉, 〈ψx

d1.exa, ψx .exa〉

φ6
ψx

d1.ip = ψd1 .ip ∧ψx
d1.port . = ψd1 . port ∧ ψx

d1.exa = ψd1 .exa ∧ ψx
d1.root

6= ψd1 .root
〈ψx

d1.root, ψd1 .root〉

The Table 1. Shows that types of attack specification on the network. In the proposed
system, it is assumed that x has the goal to exploit the target system privileges, and it can
do it by following a sequence of different types of attacks, (ϕ = ϕ1, ϕ2, . . . , ϕ5), where

ϕ1—captures the IP address of the target;
ϕ2—captures the port number of an application;
ϕ3—captures the features of the OS;
ϕ4—exploits the dynamicity of the application;
ϕ5—deploys an agent on the target to exploit.

4. Research Methodology

The methodology used for this research is quantitative and qualitative. In our reviews
of the previous research, this study served to collect and analyze information related
to cyber issues and include threats to IoT networks that have taken the communication
protocols on which IoT devices depend, as well as detection measures using techniques
based on the simulation of Internet of Things networks. The suggested methodology of
this research work is shown in Figure 2.
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The research process is as follows:

Step 1: Build a virtual network, specifically a virtual network created to monitor the normal
or abnormal behaviour of the network.

Step 2: Simulate the traffic flow.

• In the first scenario, the legitimate nodes were distributed, and normal commu-
nication was established between them. We collected data using the features
available in the tool, such as temperature, battery voltage, packet consumption,
and loss rate.

• In the second scenario, an attacking node was created using the flooding attack,
which attacks the neighboring nodes.

The subsequently extracted data can be useful to assist IDS in the early detection of
abnormal behavior attack communications in the Internet of Things.

Step 3: Classify the traffic and extract the feature.
Step 4: Conduct packet analysis.
Step 5: Train the network for attack detection and mitigation.
Step 6: Conduct a classification and performance analysis.
Step 7: Execute the IDS scheme.

4.1. Intrusion Detection Classifier

Below are the steps to obtain the dataset and elements of the IoT environment. In this
case, an attack on the server was launched from another computer. The CSV data were
generated by recording, dissecting, and tagging all traffic through the router. The steps to
create the attack dataset are shown in Figure 3.
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To address the security issues of MQTT, one-classification techniques have been
introduced using a classifier approach.

4.1.1. Description of the Dataset and Preprocessing of the Data

An MQTT brute-force attack, as well as network scanning attacks, are included in the
dataset. The training dataset [13] contains 4998 records with 8 classes and 34 attributes.
Data preprocessing steps were performed before the classification task. We removed the
redundant columns with a high correlation of 0.9. Missing values in the data were treated
with mean imputation, and scaling of the characteristics was also performed [26,27].

4.1.2. Cross-Validation Procedure

Cross-validation procedures (CV) [28] were used to evaluate the predictive models.
Two cross-validation procedures were investigated: k-fold and leave-one-out. In the k-fold
method, 5-fold cross-validation was performed with 80% of the data as the training set and
20% as the test set without replacement.

4.1.3. Artificial Neural Network (ANN)

One type of feed-forward ANN is the multilayer perceptron (MLP) class. It consists of
an input channel, a hidden channel, and an output channel. MLP is based on backprop-
agation for supervised learning training. MLP can distinguish data that are not linearly
separable. Rectified linear unit (ReLU) is used as the activation function for the input and
hidden layers, and adaptive moment estimation (Adam) [29] was used as an optimizer.

4.1.4. Performance Measure

Each model’s performance was evaluated using measurements such as sensitivity,
specificity, and accuracy. For accuracy, completeness, and balance between precision and
recall, other parameters such as precision, recall, and F1 score are required [30].

5. Experimental Setup and Analysis

We assumed that the attacker has started to launch cascading attacks on the broker to
receive messages sent to and from the devices connected to it and that it can be exploited and
corrupted. Since the broker used in IoT devices is designed to receive messages from any
sending device in its vicinity, and the attacker can consume and corrupt IoT devices without



Processes 2022, 10, 2673 9 of 22

revealing its command, they easily fall into the trap of this type of attack. Therefore, there
are operating systems and simulation tools that help us create virtual networks, observe
the network and monitor the anomalies that may occur in its behavior. Taking these factors
into account helps us investigate the cause of this anomaly, find out what is behind it, and
find a solution. This is done before the anomaly occurs in a real network.

For this purpose, we created a virtual environment by installing VMware as a virtual
operating system (ContikiOS) and then used the IoT simulation tool Cooja, which has many
features to monitor network traffic and analyze the details that appear in it, which we relied
on in this study. This experiment was also conducted for some types of attacks on IoT, but
the type of HELLO flooding attack was not so much in focus. This is one of the network
attacks where links or nodes become unavailable by generating a large amount of traffic.
This can exhaust all network resources. Such attacks can be carried out by both internal
and foreign attackers. To carry out a HELLO flooding attack, prompt messages are used.

This is also the contribution of the author, who has conducted many studies to define
the problem and formulate a hypothesis to find a solution. Wireless Sensor Nodes (WSN) OS
is an open-source operating system for an event-driven kernel underlying this lightweight
and compact operating system. Preemptive multitasking at the system level is possible with
this OS. Typical Contiki OS configurations require 40 kilobytes for ROM and 2 kilobytes for
RAM. Prototype threads, preemptive multithreading, TCP/IP networking, and IPv6 are
included in a full Contiki installation, as are an Internet browser and private web server,
and various other utilities such as a screen saver and virtual network computations. Contiki
has two types of communication stacks (Rime and uIP). uIP is a small communication
stack of TCP/IP RFC-CONFORME, which simplifies Internet communication. Rime is a
communication stack that has a low-power radio. It is said to be lightweight. It provides a
set of basic communication options. Contiki OS Architecture 4.3.2.1. The attacker sends
DODAG Information Solicitation (DIS) messages to neighboring nodes, which must reset
their trickling timer, or sends unicast DIS messages to each node, which must respond with
a DODAG Information (DIO) Object message to perform flooding attacks at the transport
layer. Table 2 shows the simulation parameters.

Table 2. Simulation parameters.

Simulation Parameters Value

Simulation time 3 Min
Simulation area 200 × 200 m

Mac protocol IEEE 802.11
Number of motes 12

Number of mote types 3
Radio medium UDGM: Distance Loss

Transmission range 50 m
Interference range 100 m
Number of sources 11

Number of destinations 1

5.1. Test Results

There were two scenarios for this simulation; the first was to evaluate the power
consumption and the number of packet losses. The second was to detect anomalies in the
WSN due to DoS attacks (HELLO flood attacks) to detect the hacker among many clients.
With some skill in using the tools, we can achieve this simulation result. We performed
this simulation process based on three criteria [31,32]. These criteria were battery voltage,
average power consumption, and packet loss over time.

5.1.1. Scenario 1: Normal State of the Network (Power Consumption and Packet Loss)

Node 1 was a sink node (green color) that acted as a border router, and the other nodes
were transmitting nodes that acted as normal sensors. Note that nodes (2, 4, and 5) were all
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within the range of node 12. Figure 4 shows the normal state of the network, and Figure 5
shows the average power consumption. Node 1 and the nodes in yellow have the same
roles as before. Node 12 became a malicious node that performed a flooding attack and
directly affected nodes 2, 4, and 5. Figure 6 shows the steps to create the attack dataset.
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5.1.2. Scenario 2: Network under Attack (Attacks on WSNs to Detect Anomalies)

Figure 6 shows the network under attack, and Figure 7 shows the average power
consumption during the attack. All sender nodes (2 to 12) consumed almost the same
current, which is at a low level of about 1.2 mW. If we compare nodes (2, 4, 5) and 12
(attacker) with other nodes, we see that they have a much higher power consumption of
about 30 mW. The power consumption of the other nodes is also higher than before and
is about 2.5 mW or even higher. For node 12 (attacker), we found that radio transmission
accounts for a large part of the power consumption since it is constantly sending messages
to nodes 2, 4, and 5. For nodes 2, 4, and 5, the simulation shows that listening accounts
for a large portion of the power consumption since they constantly receive requests from
node 12.
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As a result of monitoring the network battery and voltage during the attack simulation,
the effects of the attack are shown in Figure 8. Figure 9 shows the lost packets over time,
and Figure 10 shows the state of the packets during the attack.
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Figure 10. Packet states under the attack.

Node information under normal and attack conditions is shown in Tables 3 and 4,
respectively. Through Contiki, we can determine how much time was spent in each location
in the following states. Corresponding energy consumption (CPU power, LPM power,
transmission power, and listening power) is high during the attack, as shown in Table 4.

Table 3. Node information during normal conditions.

Node Received Dups Lost Hops Rtmetric Ext Churn Beacon
Interval Reboot CPU

Power

Low
Power
Mode
(LPM)
Power

1.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 min, 08 s 0.00 0.00 0
2.2 5.00 0.00 0.00 1.00 521.00 16.00 0.00 2 min, 32 s 0.00 2.01 0.103
3.3 4.00 0.00 0.00 1.00 560.00 16.00 0.00 0 min, 08 s 0.00 0.54 0.147
4.4 4.00 0.00 0.00 1.00 512.00 16.00 0.00 0 min, 08 s 0.00 2.02 0.102
5.5 4.00 0.00 0.00 1.00 512.00 16.00 0.00 0 min, 08 s 0.00 2.00 0.103
6.6 2.00 0.00 0.00 1.00 1005.00 16.00 0.00 1 min, 21 s 0.00 0.50 0.148
7.7 3.00 0.00 0.00 1.00 1039.00 16.00 0.00 1 min, 38 s 0.00 0.50 0.149
8.8 2.00 0.00 1.00 2.00 1498.00 32.00 0.00 0 min, 24 s 0.00 0.91 0.136
9.9 3.00 0.00 0.00 1.00 1048.00 16.00 0.00 2 min, 32 s 0.00 0.55 0.147

10.1 2.00 0.00 1.00 2.00 1936.00 32.00 0.00 2 min, 43 s 0.00 1.04 0.132
11.11 2.00 0.00 1.00 1.50 1389.00 24.00 1.00 0 min, 48 s 0.00 0.72 0.142
Avg 2.82 0.00 0.27 1.14 910.91 18.18 0.09 1 min, 14 s 0.00 1.08 0.119

Table 4. Node information during attack conditions.

Node CPU
Power

LMP
Power

Listening
Power

Transmission
Power Power On-time Listen

Duty Cycle
Transmit

Duty Cycle

1.1 0.458 0.075 0.000 0.000 0.000 0.000 0.000
2.2 2.018 0.903 25.323 1.021 28.400 1 min 42.205 1.923
3.3 1.543 0.847 1.638 0.707 3.035 0 min 2.73 1.331
4.4 2.219 0.512 24.816 0.891 27.800 1 min 41.359 1.679
5.5 2.802 0.623 25.537 0.971 28.600 1 min 42.562 1.829
6.6 1.500 0.343 1.513 1.028 3.190 0 min 2.522 1.936
7.7 1.495 0.547 1.417 0.709 2.769 0 min 2.362 1.335
8.8 1.506 0.438 2.371 3.500 6.913 0 min 3.951 6.591
9.9 0.946 0.344 1.721 1.179 3.593 0 min 2.869 2.220

10.1 1.639 0.635 2.843 3.812 7.827 0 min 4.739 7.179
11.11 1.823 0.444 2.167 2.209 5.241 0 min 3.612 4.160
Avg 1.631 0.519 8.122 1.457 10.670 0 min 13.537 2.744
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Compared to other tools (such as Wireshark and Omnet+), Cooja is easier to use and
better suited for simulations as an operating system. To conclude the empirical analysis,
it is important to reiterate the importance of attack detection to protect IoT networks
from attackers. Any cybercriminal will try to gain access to an IoT device to harm its
network by exploiting the loopholes that keep appearing in embedded subsystems and IoT
networks. From the related study, it can be seen that while conducting this research work
after a comprehensive study, the authors reveal various trends that affect these different
capabilities. This might be a small problem for researchers, as most of them have no
experience in programming. Therefore, this research takes the approach of using digital
forensic tools to detect network anomalies and collect data and variables. The results are
compared to determine whether the network traffic is normal. Then, the culprit in the
hypothetical scenario that exploited the network is identified.

5.2. Classifier Approach: Dataset Description and Processing

The dataset used in this study was collected from Al-Kasassbeh et al. [13]. The
computed results showed that the method of the random forest (RF) algorithm is better for
anomaly detection using machine learning techniques.

Procedure:

1. The first step is to describe the dataset and how it was preprocessed.
2. In the second step, the different models are cross-validated to see which model is

most predictive.
3. The third step is to process the data using machine learning algorithms.
4. In the fourth step, each model is evaluated for performance.

A dataset collected by Al-Kasassbeh et al. [13] was used. The dataset contains 4998
records with 8 classes and 34 attributes, as shown in Table 5. Data for the variables were
collected and divided into the Interface, IP, TCP, and ICMP groups. The 34 attributes were
collected during attack testing, in which the server (victim) was subjected to various sorts
of attacks. The information gain ratio for each feature was used to rate each characteristic
included in the data, making it possible to distinguish between features that are necessary
and those that are not.

Data preprocessing steps were performed before the classification task. We removed
the redundant columns with a high correlation of 0.9. Missing values in the data were
handled using mean imputation. Scaling of the characteristics was also performed. A
standard scalar was used to transform the data to have a mean of zero with a standard
deviation of one [26]. The proper selection of SNMP-MIB variables is crucial to detecting
anomalies on networks because no one variable can capture all anomalies. To detect
anomalies more accurately, we focused on using effective variables. Router devices were
used to collect MIB variables. A total of 34 MIB variables were selected from five MIB
groups: IP, TCP, UDP, and ICMP (variables collected from specific router interfaces). A
counter 32 is a non-negative four-byte integer that is continuously incremented from 0 to
232, and wraps back to 0 when it reaches its maximum value. As a result of a comprehensive
investigation, we selected these variables among other MIB variables in the groups because
they are more affected by attack traffic and are continuously updated based on the incoming
and outgoing traffic over the network; therefore, they are more effective in detecting attacks.

By demonstrating the identification of as many of the most prevalent and contempo-
rary attacks that can occur on various network layers as is practical, we demonstrate the
strength and usefulness of SNMP-MIB data in network anomaly detection (network layer,
transport layer and application layer). Using categorization techniques, we are currently
testing the SNMP-MIB data in tests. In the first method, we divided the MIB variables
into five categories with 34 attributes (Interface, IP, ICMP, TCP, and UDP), with a number
of MIB variables belonging to each category. Then, each MIB group was subjected to the
classification algorithms separately in order to demonstrate how each group is impacted
by attacks and, ultimately, to identify the group or groups that are most successful at
spotting anomalies. According to the preliminary findings of this strategy, each classifier
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performs differently across the MIB groups, with a range of accuracy rates for the employed
classifiers between high and low.

Table 5. All dataset attributes.

Ranked Attribute Name Description

0 ifInOctets Total number of octets received.
1 ipOutDiscards IPv4 output datagrams that were rejected despite no issues hindering their delivery.
2 icmpOutDestUnreachs The volume of messages sent to an ICMP destination that is unreachable.
3 ipInDiscards Quantity of IPv4 datagrams received as input but deleted due to no issues found.

4 ifInDiscards The number of incoming packets that were rejected despite there being no issues
preventing their delivery to a higher layer.

5 ifoutDiscards Dropping outgoing packets even when there were no problems to prevent them.
6 icmpOutMsgs Total number of ICMP messages sent by this entity.
7 udpNoPorts Total number of UDP datagrams received for destinations with no applications.

8 udpInErrors Amount of UDP datagrams received but unable to be sent due to lack of
applications at the destination.

9 ifOutUcastPkts Total number of packets sent by higher-level protocols without being directed at a
multicast or broadcast address.

10 ipInAddrErrors The number of input datagrams that were rejected because their IPv4 address in
their IPv4 header was incorrect and could not be received.

11 tcpEstabResets TCP connections that have moved directly from an ESTABLISHED or CLOSE-WAIT
state to a CLOSED state.

12 tcpInSegs Segment count, including misdirected segments.

13 tcpOutSegs Segments sent, excluding those solely retransmitted octets, including those on active
connections.

14 tcpPassiveOpens The number of times a TCP connection has moved directly into the SYN state.

15 ipForwDatagrams The number of input datagrams that were intended for an IPv4 destination other
than this entity, for which a route-finding effort was made.

16 ipInReceives Datagrams received from interfaces, including any delivered incorrectly.
17 tcpActiveOpens TCP connections that have moved directly from the CLOSED to the SYN-SENT state.

18 tcpRetransSegs TCP segments that contain one or more previously sent octets or the number of
segments sent repeatedly.

19 ifInUcastPkts A measure of how many packets this sublayer sent to a higher (sub-)layer that were
not addressed to a multicast or broadcast address at this sub-layer.

20 tcpOutRsts RST-tagged TCP segments sent.
21 icmpInEchos ICMP Echo (request) messages received.
22 icmpOutEchoReps The number of ICMP Echo Reply messages sent.
23 icmpInMsgs The total number of ICMP messages received by the entity.

24 ifOutNUcastPkts Packets that higher-level protocols requested to be sent to multicast or broadcast
addresses at this sublayer.

25 icmpInDestUnreachs The number of ICMP Destination Unreachable messages that were received.
26 ipOutNoRoutes In IPv4, the number of datagrams dropped due to a route not being determined.
27 ifOutOctets Transmitted octets, including framing characters.

28 ifInNUcastPkts Counts the number of packets sent to a higher layer that do not address a multicast
or broadcast address.

29 udpInDatagrams Count of UDP datagrams sent to UDP clients.
30 ipInDelivers IPv4 input datagrams transmitted successfully (including ICMP).
31 udpOutDatagrams The total no. of UDP datagrams sent by this object.

32 ipOutRequests The total no. of IPv4 datagrams that local IPv4 user protocols, including ICMP, sent
to IPv4 in requests for transmission.

33 tcpCurrEstab The number of TCP connections whose status is either ESTABLISHED or
CLOSE-WAIT at the moment.

The cross-validation (CV) method was used to evaluate the models. The K-fold
method and the leave-one-out method were examined for cross-validation. An analysis
of K-fold cross-validation was conducted using 80% of the data as the training set and
20% as the testing set without replacing 80% of the training data with 20% of the testing
data. The original sample’s observation was used as testing data for the leave-one-out
cross-validation of the K-fold (k = 5) method, and the remaining observations were used as
training data. As a result, every observation in the sample was used as testing data once.
Table 6 shows the collected sample.

Supervised machine learning algorithms can best be understood through the lens of the
bias-variance trade-off. Some popular examples of supervised machine learning algorithms
are linear regression (LR) for regression problems, random forest (RF) for classification
and regression problems, support vector machines (SVM) for classification problems, and
k-nearest neighbors (KNN) for both regression and classification. Data are predicted into
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discrete class labels through the classification process. Alternatively, regression creates a
model that predicts continuous quantities. In this research, we investigated support vector
machine (SVM), random forest (RF), k-nearest neighbors (KNN), and logistic regression
(LR) classifiers for support DDoS attack detection.

Table 6. Collected sample.

Network Date (Traffic) Total Number of Records

Complete set data 4998
Normal 1190
DDoS Attack 3808

Additionally, an artificial neural network-based approach called multilayer perceptron
(MLP) has been investigated. These techniques could detect malicious activities and attacks,
improve human analysis, and automate repetitive security tasks. The implementation was
done using Python and related libraries such as Scikit-learn, Pandas, Numpy, TensorFlow,
and Keras [33]. Before the classification task, the data were preprocessed. The redundant
columns with a high correlation of 0.9 were removed. Missing values in the data were
handled by mean imputation. The results show that the random forest (RF) algorithm has
high accuracy in detecting DDoS attacks. Moreover, the performance using a multilayer
perception (MLP) is generally ideal and very similar to RF. This work provides a robust and
efficient approach to predict DDoS attacks from the dataset SNMP MIB. Collected sample
records are shown in Table 6. The calculated values for sensitivity, specificity, accuracy,
precision, recall and F1-measure for different classes with different algorithms are shown
in Table 7.

Table 7. Detection evaluation results.

Method Sensitivity% Specificity% Accuracy % Precision % Recall % F1-Measure%

SVM 96.27 99.65 99.41 97.63 97.82 97.72

RF 99.92 99.84 99.94 99.87 99.83 99.85

KNN 98.71 99.82 99.73 98.71 98.75 98.73

LR 96.71 99.67 99.43 97.74 97.73 97.72

MLP 99.92 99.25 99.47 99.73 98.76 99.24

NB 98.80 95.14 96.96 95.86 95.82 95.65

DT 94.32% 94.05% 94.12% 94.42% 94.57% 94.09%

High sensitivity, specificity, and accuracy are all hallmarks of a good test. The results
of our classification performance with traditional machine learning algorithms and mul-
tilayer perceptrons (MLP) and USML. We compare the model performance of machine
learning algorithms (SVM, RF, KNN, LR) and the results obtained with the multilayer
perceptron (MLP).

We compared several traditional machine learning algorithms using all the features
from the SNMP-MIB dataset. SNMP-MIB is used to detect patterns of DDoS attacks.
Machine learning algorithms, including support vector machine (SVM), random forest (RF),
k-nearest neighbors (KNN) and logistic regression (LR), and an artificial neural network,
multilayer perceptron (MLP), naive Bayes (NB) and decision tree (DT) are used to classify
the dataset. Random forest (RF) is the best classifier with the highest accuracy for detecting
DDoS attacks when traditional machine learning algorithms and MLP are used in the
experimental analysis. Machine learning algorithms were evaluated based on sensitivity,
specificity, accuracy, precision, recall and F1 score. The results presented in this section are
based on the use of a 5-fold CV and hyper-parameter tuning with a grid search. RF has
high accuracy in detecting DDoS attacks. For validation, these algorithms are used in a
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binary classification test, and their performance is statistically measured and compared
with the existing literature (Table 8) [9–12].

Table 8. Results compared to similar studies.

Dataset Used An Algorithmic Approach to Machine Learning Accuracy Percentage

[9] Dataset
SVM 98.5

KNN 98.5

[10] KDD99 Dataset

SVM 91.55

ANN 97.44

USML 98.08

[10] UNBS-NB 15 Dataset

SVM 84.32

ANN 63.97

USML 94.78

[11] Dataset

SVM 92.11

KNN 95.67

ANN 91.07

NB 94.48

[12] Dataset SVM 98.52

Proposed System

SVM 99.41

RF 99.94

KNN 99.73

LR 99.43

MLP 99.47

NB 96.96

DT 94.12

According to the results, the RF algorithm proved to be very accurate in detecting
DDoS attacks. The random forest (RF) algorithm is an ensemble algorithm that contains
multiple decision tree algorithms. Moreover, the performance using multilayer perceptions
(MLP) is generally ideal and very similar to RF. This work provides a robust and efficient
approach for predicting DDoS attacks from the SNMP MIB dataset.

5.3. Intrusion Detection Schemes

The details of the experiment given in this section provide a clear overview of the
response framework and its associated benefits. Key details of the experiment include
log analysis, net flow analyzers, intrusion detection, and mitigation. We implement an
intrusion detection system using Snort. A snort is an open-source software that can run
in three different modes, i.e., packet capture, packet sniffer mode, packet logger, etc. In
packet logger, these packets are written to the disk, or we can run it in intrusion detection
mode, using the rule sets available in Snort and IDS (compares packets with rule base) [34].
Snort is on a network, so it listens for traffic coming over the network. Therefore, it is a
network-based intrusion detection system. Generally, a network-based intrusion detection
system is deployed at a single point of entry into a network. They use simple rules, which
are signatures for detection. Snort rules, including malicious traffic, exploit, scan, FTP,
telnet, DOS, DDOS, etc., are enabled in Snort. Snort rules are either site-specific policies or
are required in most environments to avoid false positives.

The more rules that need to be matched, the slower the IDS, and the more packets
are dropped. Snort has three main uses. It can be used as a pure packet sniffer such as
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tcpdump, a packet logger used to debug network traffic. Snort logs packets in tcpdump in
binary format and names them by their IP address. In packet capture mode, Snort received
142 packets, analyzed 70 packets (49.2%), and discarded 0 (0%), 63 UDP packets, 0 TCP
packets, 2 ARP packets, and 6 fragmented packets. In packet logging mode, Snort analyzed
17 packets (47.2%), dropped 0 (0%), logged 17, and issued 0 alarms. In alert mode, Snort
analyzed 4 out of 4 packets and discarded 0 (0%). In sniffer mode, Snort analyzed 14 packets
and discarded 0 (0%) (Table 9). Figure 11 shows the analysis of packets in the different
Snort modes. Network throughput increases with average packet arrival (packets/time
slot) and maximum buffer size. This reflects the effectiveness of the rules applied to ensure
that as many packets as possible successfully arrive at their destination.

Table 9. Packet analysis in different Snort modes.

Protocol by Breakdown

Snort Mode No. of Packets TCP UDP ICMP ARP EAPOL IPv6 Ethloop IPX FRAG Other

Packet Capture 71 0 63 0 2 0 0 0 0 6 0
% 0 90 0 2.87 0 0 0 0 8.57 0

Logging Mode 17 0 17 0 0 0 0 0 0 0 0
% 0 100 0 0 0 0 0 0 0 0

Alert mode
4 2 0 0 2 0 0 0 0 0 0
% 50 0 0 50 0 0 0 0 0 0

Sniffer Mode
14 0 11 0 3 0 0 0 0 0 0
% 0 78.5 0 21.5 0 0 0 0 0 0
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The attack detection rate decreases with the number of packets or nodes, bandwidth
consumption increases with the number of nodes, and throughput increases with the
number of nodes. When Snort runs in packet logger mode and collects each packet, it
arranges the packets in a directory. When running in IDS mode, it uses the rules available
in the snort.conf file that specify suspicious network activity and sends an alert if the
rules match the actual activity. Network traffic is analyzed using sFlow- RT. It is used for
bandwidth analysis, network traffic analysis, and network performance monitoring. As
seen in Figure 12, a higher peak indicates flood traffic from random IP addresses. Malicious
traffic that saturated the victim was reduced after the network was trained. Lower peaks
after 00.24.50 s indicate that mitigation was performed quickly and successfully.
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5.4. Discussion

This research is conducted in a virtual environment where a virtual attack is carried
out, and then it uses the situation to collect data and measure the extent of the benefits
obtained based on criteria that the previous researchers did not analyze. Considering the
relevant study and the findings from the empirical analysis, the most important finding is
the weak protection of systems in many IoT devices. The Cooja tool revealed anomalies
that could not have been observed without using the tool. Thus, it is an excellent tool
for this type of testing. The tool was found to provide several auxiliary methods for the
simultaneous comparison of the collected data. The theoretical significance of the results
of this study lies in the fact that they will help identify a body of knowledge related
to cybersecurity issues associated with networks and embedded subsystems of the IoT.
Consequently, the results of this study should be of interest to future researchers studying
IoT issues and how to appropriately address them.

The results of this study are relevant to vulnerability researchers and IoT network
protection specialists because they guide how to avoid problems that may occur in real
networks by first simulating them and then developing proactive solutions to them. In
addition to avoiding short-term problems, there are also long-term solutions. It was stated
that the IoT has become a material and moral part of our lives, and the weak protection in
it may become a real threat to our lives, so it is necessary to search and investigate the areas
of its security as much as possible after identifying a few in the relevant study related to
the attack that was implemented, which is the Flooding attack, compared to other types of
attacks. For the quantitative portion, the environment is configured to default in a preset
scenario where M2M traffic monitoring using MQTT is attacked twice, once in normal
mode and again after a default attack is run on it and is set up to measure the impact of
malicious activity. The regulators and research experts use the findings of this study to
detect vulnerabilities for IoT/embedded subsystems in a systematic manner so that the
application process can be carried out successfully.

The performance of the prominent machine learning algorithm used in binary is
evaluated based on sensitivity, specificity, accuracy, recall, precision, and F1-measure. In
this study, we compared the model performance of machine learning algorithms (SVM,
RF, ANN, LR) with results obtained with multi-layer perceptron (MLP). The results are
based on the use of a five-way CV with a grid search and hyper-parameter tuning. The
intrusion detection schemes implemented with Snort include protocol analysis, network
flow analysis, intrusion detection, cyber-attack mitigation, and returning to normal.
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Every study has its limitations, but this one has so far succeeded in identifying
a flooding attack. However, it was utilizing a technology that had its limits, as while
analyzing the virtual network, it took several minutes before the anomaly was discovered,
which might have had major repercussions and losses if it had occurred. While simulation
has been very helpful in gathering data and identifying abnormalities, there are still many
other routes to explore to enhance this research and allow for an additional examination of
pertinent papers.

6. Conclusions

This study proposes a practical framework and guidance for vulnerability investi-
gation and discovery in IoT networks/embedded systems using Contiki OS and data
extraction and analysis with Cooja. The analysis finds some attacks related to the imple-
mented attack, namely flood attacks, compared to other types of attacks that identify the
Internet of Things as an integral part of our lives, both material and moral. For the quanti-
tative analysis, a predefined scenario is used in which the monitoring of M2M traffic over
MQTT is exploited once in normal mode and once after a standard attack has been carried
out to evaluate the impact of the malicious behavior. Machine-to-machine transmission
in IoT uses a network analysis system that allows an authorized person to examine the
network traffic. In IoT, the behavior of message traffic is monitored and recorded using
the simulation method. As a result of the simulation, flood attack records of RPL triage
attacks were obtained. This has implications for network status, brightness, speed, power,
and battery consumption. A larger dataset was created by combining traffic, attack, and
normal network data. This created a new dataset that can be used to detect and explore
vulnerabilities in IoT devices based on intrusion detection systems (IDS). Flooding attack
detection was the main objective of this research. However, a tool with limitations was
used because, in the case of virtual network analysis, it took several minutes to detect the
anomaly, which could lead to serious losses. In further studies, the dataset will be extended
to include attack periods, the packet and increment types of attacks, and the creation of
characteristics of the recorded data.

This study also provides DDoS detection in a network with supervised machine
learning. Several traditional machine learning algorithms have been implemented, all
using features from the SNMP MIB dataset. The results show that the random forest
(RF) algorithm has high (99.94%) accuracy in detecting DDoS attacks. Moreover, the
performance using multilayer perception (MLP) is generally ideal and very similar to
RF. The intrusion detection schemes implemented with Snort include protocol analysis,
network flow analysis, intrusion detection, cyber-attack mitigation, and returning to normal.
The datasets for traffic, attacks, and typical network activity were combined to create a more
extensive dataset. As a result, a fresh dataset was amassed that might serve as a source
for learning and vulnerability detection based on IoT device assault intrusion detection
systems (IDS). Attack times, packet and increment types of attacks, and the creation of
recorded data aspects can all be added to the dataset in future research to make it richer.
sFlow-RT helps in examining the actual traffic on the network; it identifies any intrusion.
Future work will focus on Blockchain-based security and cyber threat cognitive intelligence
to provide accurate, easy-to-use, and actionable common vulnerabilities and exposures
(CVE) information.
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