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Abstract
The uses of machine learning (ML) technologies in the detection of network attacks 
have been proven to be effective when designed and evaluated using data samples 
originating from the same organisational network. However, it has been very chal-
lenging to design an ML-based detection system using heterogeneous network data 
samples originating from different sources and organisations. This is mainly due to 
privacy concerns and the lack of a universal format of datasets. In this paper, we 
propose a collaborative cyber threat intelligence sharing scheme to allow multiple 
organisations to join forces in the design, training, and evaluation of a robust ML-
based network intrusion detection system. The threat intelligence sharing scheme 
utilises two critical aspects for its application; the availability of network data traffic 
in a common format to allow for the extraction of meaningful patterns across data 
sources and the adoption of a federated learning mechanism to avoid the necessity of 
sharing sensitive users’ information between organisations. As a result, each organi-
sation benefits from the intelligence of other organisations while maintaining the 
privacy of its data internally. In this paper, the framework has been designed and 
evaluated using two key datasets in a NetFlow format known as NF-UNSW-NB15-
v2 and NF-BoT-IoT-v2. In addition, two other common scenarios are considered in 
the evaluation process; a centralised training method where local data samples are 
directly shared with other organisations and a localised training method where no 
threat intelligence is shared. The results demonstrate the efficiency and effectiveness 
of the proposed framework by designing a universal ML model effectively classify-
ing various benign and intrusive traffic types originating from multiple organisations 
without the need for inter-organisational data exchange.
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1 Introduction

Network Intrusion Detection Systems (NIDS) are tools used to detect intrusive net-
work traffic as they penetrate a digital computer network [1]. They aim to preserve 
the three key principles of information security; confidentiality, integrity, and avail-
ability [2]. NIDSs scan and analyse the incoming traffic for malicious indicators that 
may present a threat or harm to the target network. There are two main types of 
NIDS; (1) signature-based NIDS, which operates by scanning for a set of previously 
known attack rules or Indicators Of Compromise (IOC) [3] such as source/desti-
nation IPs and ports, hash values or domain names in an incoming network feed. 
This traditional method works efficiently against known attack scenarios where the 
complete set of IOCs has been previously identified and registered within the NIDS. 
However, signature-based NIDSs have been vulnerable to zero-day attacks where 
there is a lack of knowledge of IOCs related to the occurrence of activity [4]. In 
addition, the detection of modern advanced and persistent threats such as Cobalt 
Strikes [5] requires a sophisticated depth of behavioural change monitoring [6], 
where the usage of traditional IOC is not sufficient in their detection. Therefore, 
the focus of NIDS development has shifted towards the modern type of NIDS with 
enhanced machine learning (ML) capabilities [7].

ML is a branch of Artificial Intelligence (AI) extensively used with great success 
to empower decision-making systems across various domains [8]. ML models oper-
ate by extracting and learning meaningful patterns from historical data during the 
training process. The models then apply the learnt semantics to classify or predict 
unseen data samples into their respective classes or values. The intelligence capa-
bility of ML has motivated its usage in many industries to provide a deeper level 
of analysis to automate and assist in complex decision-making tasks [9]. Overall, 
ML enhances the performance and efficiency of systems without being explicitly 
programmed [10], by learning complex patterns that are not trivial to recognize 
by domain experts. As such, ML has been welcomed in the development of NIDS 
to overcome the limitations faced by signature-based NIDS and to improve cyber 
attack detection using an intelligent defense layer [11]. ML-based NIDS capabilities 
have been widely adopted in the security of modern computer networks to detect 
zero-day and advanced cyber threats. ML models are capable of learning the distin-
guishing semantic patterns between intrusive and benign network traffic and using it 
to detect incoming traffic with malicious intent. Therefore, the focus on the network 
attacks’ behavioural patterns and the lack of dependency on identified IOCs [12] has 
attracted attention towards the development of ML-based NIDS to detect network 
attacks.

In this paper, we propose a federated learning-based methodology to enable col-
laboration between multiple organisations to share Cyber Threat Intelligence (CTI). 
The collaborative sharing of valuable CTI in a secure manner will facilitate the 
design of an effective ML-based NIDS [13]. This will increase the exposure of the 
learning NIDS model to a multitude of network environments, including various 
benign traffic and malicious attack scenarios that occur in different organisational 
networks [14]. This is an important aspect considering a real-world implementation, 
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as each computer network often incorporates a unique statistical distribution as 
demonstrated in [15]. Therefore, the performance of the ML models might not gen-
eralise across different organisational networks or attack types. Although the pro-
posed scheme has a great number of benefits, it also raises certain challenges, which 
we address in this paper. Unlike centralised learning approaches, federated learn-
ing enables collaboration between organisations while keeping training data samples 
secure and preserved internally within each organisation’s perimeter. Decoupling 
the ability to learn from other organisations’ network intelligence and attack experi-
ences from the need for explicit exchange of sensitive data is important.

The outcome of the proposed method is a common and robust ML-based NIDS 
not limited to a single organisation’s experience and available local training sam-
ples. The enhanced model is trained on heterogeneous data collected over a variety 
of heterogeneous networks, each of which presents its unique behaviour of benign 
and malicious traffic. Similarly to traditional federated learning approaches, a single 
global organisation is required to orchestrate the whole process by initiating a global 
ML model. Each participating organisation downloads a copy of the global model 
and trains it using its local data samples locally. The updated model parameters are 
uploaded back to the global organisation where they are aggregated to improve the 
global model before sending it back to each organisation for deployment. This pre-
sents a single federated learning round and can be repeated several times to reach a 
reliable state of performance.

The key contributions of this paper are the proposal of a novel privacy-preserving 
CTI scheme and the evaluation of its performance using two key and non-Independ-
ent and Identically Distributed (IID) [16] NIDS datasets. The results are analysed 
and compared to centralised and localised learning approaches to demonstrate the 
effectiveness of the proposed scheme. In Sect. 2, the differences between each ML 
training approach adopted in this paper are illustrated. Section 3 explores some of 
the key related works and highlights their limitations. The motivations and benefits 
of the proposed intelligence sharing scheme are discussed in Sect. 4. In Sect. 5, we 
perform an empirical evaluation and comparison of a collaboratively designed ML-
based NIDS to demonstrate the robustness and benefits of the proposed framework. 
Finally, we conclude this paper in Sect. 6 and list some of the critical future works.

2  Background

ML technologies have been used widely across different domains and applica-
tions. As such, there are general guidelines and practises to be considered when 
designing a learning model. The choice of which process or technique to adopt 
depends on the available resources such as training data samples, data sensitiv-
ity, data heterogeneity, computing power, storage requirements, etc. Therefore, 
it is relatively easier to apply ML technologies in particular areas compared to 
the rest. In the application of ML-based NIDS, the privacy and security of data 
samples used in the training and testing stages are critical. Sharing user informa-
tion with third parties and other entities could present a significant breach of data 
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privacy. Therefore, data scarcity is often faced when designing ML-based NIDSs 
using real-world datasets, due to the limited amount of data samples collected or 
insufficient data classes available.

Moreover, heterogeneity in network data samples often causes the problem of a 
lack of generalisation. Consequently, a trained high-achieving model in a certain 
network structure might not be effective in detecting intrusions in another network 
environment. This is due to the unique Standard Operating Environments (SOEs) 
[17] in each organisational network and different types of experienced threats, which 
is reflected in the statistical distribution of the utilised NIDS datasets. ML models 
are highly dependent on the extraction of meaningful patterns to distinguish between 
benign and intrusive traffic. As such, a wider variety of data samples are required in 
the training of an intrusion detection model. Taking into account the data scarcity 
and heterogeneity in the application of ML-based NIDS, we discuss each of the gen-
erally adopted common ML scenarios.

2.1  Localised Learning

A localised learning method involves local data samples collected from a single 
source, the learning and testing occur locally [18], where it is generally more effec-
tive with a larger amount of data. This method often provides a high detection accu-
racy over IID data samples with a similar probability distribution to the training data 
samples. However, since network traffic is often heterogeneous in nature [19], due 
to a multitude of safe applications/services and malicious threats/intrusions, local-
ised learning approaches do not generalise or scale well with rapidly increasing and 
changing network traffic [20]. This is mainly due to the fact that the learning model 
is exposed to a limited variety of network traffic scenarios, hence it has a limited 
experience of other instances. As a result, modern research has adopted centralised 
learning methods to overcome some of the limitations faced by localised learning 
approaches.

2.2  Centralised Learning

Centralised learning is where local data samples are collected from various sources 
and transmitted to a central server [21]. The central entity holds all data samples, 
ideally reflecting an overall statistical representation of the organisational network 
structure. The learning and testing stages are carried out on the central server, where 
the learning models experience and extract useful patterns from heterogeneous net-
work traffic. Therefore, NIDSs can effectively detect network intrusions in non-IID 
data samples [22]. However, centralised learning requires direct sharing of data 
samples between participants and a central entity [23]. This presents serious privacy 
and security concerns due to the nature of the transmitted data. Network data often 
contain sensitive information related to users’ browsing sessions, applications, and 
services utilised, often revealing critical endpoint details.
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2.3  Federated Learning

Federated learning is an advanced technique of ML designed to address certain lim-
itations of centralised learning. A federated learning setup allows for the training 
of a model across multiple decentralised sources, each holding local data samples 
without exchanging them [23]. The key benefit of following a federated learning 
approach is to preserve and maintain the privacy and security of local data samples, 
as they are no longer shared with other entities [24]. In addition, due to a lack of 
a central entity storing all data samples, there is lower latency, power and storage 
requirements due to the reduced transmission of data [25]. This is often a motivation 
for usage in Internet of Things (IoT) networks where federated learning has been 
widely adopted [26]. In the context of NIDS, this enables the design of smarter ML 
models, as they are exposed to a large number of heterogeneous data samples gener-
ated using various sources, while ensuring the privacy of network users [27].

3  Related Works

A large number of research papers have aimed to adopt a federated learning 
approach in the design of ML-based NIDS. Although most of the papers focused on 
the structure and parameters of the adopted learning model, all training and evalu-
ation stages were conducted using a single organisational network dataset divided 
over several local endpoints. Therefore, the data samples used in the learning model 
are not very different in nature as they all originate from the same network environ-
ment. To the best of our knowledge, no paper has considered the requirements of 
designing an ML-based NIDS using several heterogeneous data sources collected 
across multiple non-IID NIDS datasets.

In [28], Abdul Rahman et  al. evaluated the detection performance of NIDS 
designed using centralised, on-device (localised), and federated learning approaches. 
The comparison was carried out using safe and malicious network data samples 
from the NSL-KDD dataset, which is an outdated dataset (20+ years) and does not 
represent modern network characteristics and threats [29]. As a single dataset is 
used, the federated learning approach splits the dataset amongst several endpoints. 
The results show that federated learning outperforms the on-device learning method 
and achieves similar detection performance in a centralised manner while maintain-
ing the privacy of local data samples.

Mothukuri et al. [30] explored different parameters of a federated learning-based 
anomaly detection approach to detect IoT intrusions using decentralised data sam-
ples. The paper explored two deep learning models; Long Short Term Memory 
(LSTM) and Gated Recurrent Units (GRU) with various window sizes and an addi-
tional Random Forest ensemble component to combine the predictions from differ-
ent layers. The evaluation was carried out on the Modbus-based dataset which con-
sists of benign IoT telemetry traffic and four attack scenarios. The results show that 
their approach outperformed the centralised ML approach with an increased detec-
tion rate and reduced the number of false alarms. Similarly, this approach does not 
consider other attack scenarios or benign patterns in other network environments.
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In paper [31], Popoola et al. proposed a Deep Neural Network (DNN) model 
to detect zero-day botnet traffic with a high classification performance. By fol-
lowing a federated learning approach, the method guarantees to preserve data pri-
vacy and security, in addition, it has a lower communication overhead, network 
latency, and memory space for storage of training data. The paper explored six-
teen DNN models to determine the optimal neural architecture for efficient clas-
sification. The traditional FedAvg algorithm [32] is used for the aggregation of 
local model parameters. The performance of the federated learning methodology 
in the detection of zero-day botnet attacks is compared with centralised and local-
ised methods where the federated learning achieves similar performance to the 
centralised method while preserving data privacy.

Zhao et al. [33], proposed an LSTM-based framework to detect host intrusions 
using the user’s input of shell commands. The shell command block is fed into 
the network model to segment the word and convert it into a vector represen-
tation. The LSTM model maps the bidirectional semantic association between 
the words to improve the accuracy of predictions of malicious commands. The 
framework utilises a federated learning method to maintain the privacy of local 
datasets during training. The open-source SEA dataset is used to evaluate the 
proposed framework. The results are compared with standard LSTM and Con-
volutional Neural Network (CNN) models trained in a centralised method. The 
proposed method achieves a 99.21% accuracy compared to 99.51% and 95.48% 
by the LSTM and CNN modes, respectively.

In [34], a semi-supervised federated learning scheme (SSFL) via knowledge 
distillation for NIDSs is proposed. Unlabelled data samples are leveraged to 
enhance the classifier performance. A CNN model is built to extract deep fea-
tures from network traffic packets. A discriminator module is added to the CNN 
model to avoid the failure of distillation training caused by non-IID data. A com-
munication-efficient federated learning method that uses a combination of hard-
label strategy and voting mechanisms is adopted. The evaluation of the proposed 
scheme on the N-BaIoT dataset shows that it can achieve better performance and 
lower communication costs compared to three state-of-the-art models.

Recent research has addressed aspects of the federated learning process, which 
is an active research area, such as communication cost, privacy, security, and 
resource allocation. However, no papers have considered the application of CTI 
sharing in ML-based NIDSs. Each of the above related works considers a single 
network environment for the federated training and evaluation, where multiple 
endpoints hold IID data samples similar to the overall data. In the real world, an 
organisation’s network data is unique in its statistical distribution to its SOE and 
malicious threats experienced. Therefore, these approaches may neither general-
ise nor scale well with the rapid growth of network services and attacks available 
in other organisational networks. In this work, we investigate the applicability 
of collaborative CTI sharing based on federated learning for network intrusion 
detection. Several heterogeneous and non-IID datasets are used, each represent-
ing a unique network environment and attack classes.
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4  Cyber Threat Intelligence Sharing

Data are considered the most valuable and powerful tool an organisation could have 
in the 21st century. A lot of organisations in many sectors depend on data to provide 
insights and extract meaningful patterns through data analytic engines. ML has pro-
vided organisations with intelligent algorithms, capable of extracting and learning 
semantic attributes from historical data [10] to provide insights for the prediction 
or classification of data. As such, ML capabilities have been adopted in the design 
of NIDSs to monitor and preserve the digital perimeters of organisations’ networks. 
To achieve this goal, network data traffic has been captured from organisational net-
works to design an ML model. During the training process, the model learns the 
distinguishing patterns between benign and intrusive traffic, which can be used in 
future detection. ML-based NIDS has been proven to be reliable in the detection of 
zero-day and modern attacks by utilising the malicious behaviour and attack chains 
rather than a set of IOCs implemented in signature-based NIDS.

4.1  Motivation

A large amount of research work has been carried out to improve the overall perfor-
mance of ML-based NIDS. Current traditional systems have generally been designed 
in a localised ML manner where models learn traffic patterns from a single network 
environment. This method provides the learning model with high visibility into a 
target organisational network’s SOE activities and malicious threats encountered in 
the past. However, as an ML model only knows what it learns, traditional ML-based 
NIDS are limited to an organisation’s experience independently and might be inca-
pable to generalise across non-IID network sources. There is a high chance of vary-
ing distributions in different networks due to the unique SOEs and their associated 
threats implemented within organisations. This presents a significant risk to organi-
sations due to the rapidly changing network environments caused by modern work 
practices, such as new services or an incoming advanced threat such as zero-day 
attacks.

Therefore, the current method of ML-based NIDS design does not scale with the 
rapid growth of network benign and attack variants as there is a requirement to col-
lect the corresponding training data samples. We used the change of networks as a 
baseline in our experiments, that is, when an ML model is trained on one network 
source and evaluated in a different network environment. This measures how well 
a learning model generalises across other networks. Another key limitation of cur-
rent approaches is the requirement to collect a large amount of training data samples 
to increase the performance and generalisation of the ML model and avoid over-
fitting over a few data samples [35]. Therefore, particularly in the design of ML-
based NIDSs, following a supervised method adopted in this paper, a large number 
of benign and attack-labelled data samples are required. The lack of labelled train-
ing data is a major challenge for small organisations aiming to effectively design an 
intrusion detection model.
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Due to the lack of shared intelligence, organisations can not benefit from the 
usage patterns of safe traffic or malicious intrusions occurring in other organisations. 
Therefore, a collaborative ML approach between organisations is necessary for the 
design of enhanced NIDS. Three ML scenarios are considered for this purpose. The 
localised learning method is inapplicable as it involves a single source of organisa-
tional data. This is used for comparison purposes in this paper as a non-collaborative 
scenario where an organisation does not share intelligence. The centralised learning 
scenario requires a direct sharing of data between organisations and a central entity 
to allow for the training of an ML model. This method enables the learning model 
to extract useful patterns from various data samples collected over the participat-
ing organisational networks to overcome the issues faced in the localised learning 
scenario.

However, network data often present sensitive information such as user browsing 
sessions, applications accessed, and critical endpoint details, e.g. domain controllers 
and firewalls. Therefore, following a centralised learning approach poses privacy, 
security, and transactional risks that organisations would generally avoid. Moreo-
ver, recent strict laws such as the General Data Protection Regulation (GDPR) [36], 
Health Insurance Portability and Accountability Act (HIPAA) [37], and Payment 
Services Directive Two (PSD2) [38] are enforced to protect consumer data privacy 
and address concerns related to unauthorised sharing of user-related information. 
The violation of privacy conserving regulations often presents serious legal con-
cerns and hefty fines of up to $20 million [39] in the case of a GDPR breach. Unfor-
tunately, centralised learning requires a central entity to collect, store, and analyse 
network data samples collected from participating organisations, which could make 
it unfeasible to conduct in the real world.

It is important to note that the sharing of CTI is not uncommon in the security 
field. In fact, many organisations using signature-based NIDS heavily rely on CTI 
platforms, such as Malware Information Sharing Platform (MISP) [40] a widely-
used open-source platform. CTI platforms develop utilities and documentation for 
more effective threat intelligence by sharing IOCs related to external threat actors. 
Organisations generally integrate a threat intelligence feed with their traditional sig-
nature-based NIDS to provide high detection accuracy against associated attacks. 
However, in ML-based NIDS, there is a requirement to share both benign and mali-
cious network data samples for the learning model to extract the distinguishing pat-
terns. The sharing of network data samples often reveals information related to the 
targeted user, endpoint or application depending on the attributes provided.

4.2  Collaborative Federated Learning

To overcome the limitations mentioned above, the sharing of CTI between organ-
isations via a federated learning approach is required to increase the knowledge 
base of the learning models while maintaining the privacy of user information. 
The learning model is exposed to a wider range of benign and attack variants 
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to achieve reliable detection accuracy across previously unseen traffic in a given 
organisation. The proposed framework allows organisations to join forces by 
sharing their cyber intelligence and insights. In addition, organisations that do 
not collect and store a sufficient amount of network traffic required for the train-
ing of a learning model are now able to design an effective ML-based by col-
laborating with other organisations. As each participant contributing with a mini-
mum amount of data samples would permit the design of a successful system, 
our approach tackles the data scarcity problem and makes it possible to design an 
ML-based NIDS without the need to collect a large amount of training data. The 
three learning scenarios considered in this paper are illustrated in Fig. 1.

Moreover, by adopting a federated learning approach, the local network data 
samples remain distributed across the organisations, hence persevering the pri-
vacy and integrity of sensitive users’ network information. A federated learning 
setup includes a global server that coordinates and orchestrates the independent 
training of the local models. In this paper, the global server is hosted within a 
participant organisation, however, this framework enables it to be hosted exter-
nally within a trusted mediator such as cloud computing. One of the main require-
ments of this framework is for each participating organisation to hold its local 
network data traffic in a common logging format. The benefits of having a stand-
ard feature set are many and are explained here [41] and [42]. In this framework, 
a common feature set enables streamlined federated learning as the global model 
can extract meaningful patterns across a standard set of data features. The global 
model structure and parameters are designed to be compatible with the agreed 
network logging format.

The complete process is defined in Algorithm 1, where w is the set of initial-
ised parameters, t is the federated learning round, K represents the participant 
organisations indexed by k, and m is the global learning rate. B is the size of the 
local training batch, E is the number of local epochs, P is the local training set, 
l is the prediction loss in example (xi, yi) and n is the local learning rate. Simi-
lar to standard federated learning approaches; Step 1: the process is triggered 
by a global server initiating an ML model with a pre-defined architecture and 

(a)

(b) (c)

Fig. 1  Machine learning scenarios
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parameters. Step 2: the model is forwarded to each participant. Step 3: the model 
is trained and enhanced locally using the internal network data samples. Step 
4: the updated weights are sent back to the global server. Step 5: the FedAvg 
technique [32] is followed, where the server aggregates the weights uploaded 
by each organisation to generate an enhanced intrusion detection model with an 
improved set of parameters designed over each participant’s network. The Fed-
Avg process is defined as

These five steps present a single federated learning round and can be repeated sev-
eral times to achieve better detection performance in all network environments.

In this paper, we take the application of federated learning a step further, 
where each local client is observed as a single organisation with a unique net-
work of heterogeneous data samples. The key outcome is the design of a robust 
ML-based NIDS obtained from a collaboration between organisations with-
out the need to share data with other participants to preserve data privacy. The 
final model is capable of detecting a wider range of attacks originating from 
several sources, which are crucial in an organisational defence system. This 
provides a robust learning model with global intelligence and insights capable 
of distinguishing between benign and attack heterogeneous traffic. Such smart 
models would possibly lead to a lower false alarm rate in case of a variation of 
the benign traffic distribution caused by a modification of the SOE due to the 
learning from several networks’ safe usage. Moreover, a higher detection rate of 

(1)wt+1 ←

K
∑

k=1

mk

m
wk
t+1
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advanced and zero-day attacks is promising due to the extraction of malicious 
patterns from a wider range of attacks targeting several organisational networks.

5  Experiments

To evaluate the feasibility and performance of our proposed collaborative CTI shar-
ing scheme based on federated learning for NIDS, we use two widely used key NIDS 
datasets. Each dataset has been collected over a different network, each consisting 
of a different set of benign applications and malicious attack scenarios. Therefore, 
each dataset represents a certain organisational network with a unique SOE and 
malicious events encountered. The datasets also hold a very distinctive statistical 
distribution as presented here [15]. This matches the assumption of obtaining non-
IID datasets collected over different real-world networks. Although the datasets are 
unique in their applications, protocols, and attack scenarios, they share a common 
set of features based on NetFlow v9 [43], a de facto standard protocol in the net-
working industry. In this paper, the NF-UNSW-NB15-v2 and NF-BoT-IoT-v2 data-
sets are used to simulate two organisations collaborating in the design of a universal 
ML-based NIDS. By following a federated learning-based technique, each dataset 
is preserved internally in the learning and testing stages. The datasets’ structure and 
format are explained below and compared in Table 1;

• NF-UNSW-NB15-v2 [44]: A NetFlow-based dataset released in 2021 containing 
nine attack scenarios; Exploits, Fuzzers, Generic, Reconnaissance, DoS, Analy-
sis, Backdoor, Shellcode, and Worms. The dataset is generated by converting the 
publicly available pcap files of the UNSW-NB15 dataset [45] to 43 NetFlow v9 
features using the nprobe tool [46]. The total number of data flows is 2,390,275 
out of which 95,053 (3.98%) are attack samples and 2,295,222 (96.02%) are 
benign. The source dataset (UNSW-NB15) is a widely used NIDS dataset in the 
research community. UNSW-NB15 was released in 2015 by the Cyber Lab of 
the Australian Center for Cyber Security (ACCS). The IXIA Perfect Storm tool 
was configured to simulate benign network traffic and synthetic attack scenarios.

• NF-BoT-IoT-v2 [44]: An IoT NetFlow-based dataset released in 2021 contain-
ing four attack scenarios; DDoS, DoS, Reconnaissance, and Theft. The dataset 
is generated by converting the publicly available pcap files of the BoT-IoT [47] 

Table 1  Dataset comparison Dataset NF-UNSW-NB15-v2 NB-BoT-IoT-v2

Attack samples 95,053 37,628,460
Benign samples 2,295,222 135,037
Total samples 2,390,275 37,763,497
Attack classes 9 4
Tools IXIA Perfect Storm Ostinato and Node-red
Format NetFlow v9 NetFlow v9
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dataset to 43 NetFlow v9 features using the nprobe [46] tool. The total number 
of data flows is 37,763,497 network data flows, where the majority are attack 
samples; 37,628,460 (99.64%) and 135,037 (0.36%) are benign. The source data-
set (BoT-IoT) is generated by an IoT-based network environment that consists of 
normal and botnet traffic. BoT-IoT was released in 2018 by the Cyber Range Lab 
of the ACCS. The non-IoT and IoT traffic was generated using the Ostinato and 
Node-red tools, respectively, and Tshark is used to capture network packets.

5.1  Experimental Methodology

Three different approaches are considered in the evaluation process; federated, cen-
tralised and localised learning scenarios, as shown in Fig. 1. In the federated learn-
ing approach, there are two participating clients (organisations), and a single global 
server. Each client holds a unique network traffic dataset collected from their respec-
tive environment. This represents a real-world scenario with two organisations are 
participating in the CTI operation. Client 1 represents the NF-UNSW-NB15-v2 
dataset and client 2 represents the NF-BoT-IoT-v2 dataset. The traffic data distribu-
tion is illustrated in Table 1. Each organisation downloads an initialised ML model 
from a global server to be trained on its local data samples locally. The global server 
receives the updated parameter set from each organisation and averages the weights 
together into a global model. For the centralised learning scenario, each participat-
ing organisation sends their local data samples to a central server for the training 
and testing of the ML model on the complete set of aggregated data. In the localised 
learning scenario, there are no collaborations between organisations; therefore, the 
model is trained on each organisation’s limited local data samples.

The evaluation metrics used to evaluate the performance of the ML models are 
defined in Table 2. The metrics are calculated in a binary format based on True Posi-
tive (TP) and True Negative (TN), representing the number of correctly classified 
attack and benign data samples, respectively. In addition to the False Positive (FP) 
and False Negative (FN) represent the numbers of incorrectly classified benign and 

Table 2  Evaluation metrics

Metric Definition Equation

Accuracy The percentage of correctly classified samples TP+TN

TP+FP+TN+FN
× 100

Detection rate (DR) The percentage of correctly classified total attack 
samples

TP

TP+FN
× 100

False alarm rate (FAR) The percentage of incorrectly classified benign 
samples

FP

FP+TN
× 100

Area under the curve (AUC) The area underneath the DR and FAR plot curve N/A
F1 score The harmonic mean of the model’s precision and DR 2 ×

DR × Precision

DR + Precision

Time The time required in seconds to complete the training 
of the ML model

N/A
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attack data samples, respectively. The experiments were conducted using Google’s 
Tensorflow Federated (TFF) framework for the federated learning scenario and Ten-
sorflow framework [48] for the centralised and localised scenarios. The datasets are 
pre-processed by dropping the flow identifiers, such as source/destination IP and 
port attributes, to avoid bias towards the attacking and victim end nodes. Undersam-
pling has been used to address the extreme imbalance of the datasets. Each dataset 
has been divided into training and testing sets in a ratio of 70% to 30%, respectively. 
A Min-Max scaler has been applied to normalise each dataset’s values, defined as

where X∗ is the output value ranging from 0 to 1, X is the input value and Xmax and 
Xmin are the maximum and minimum values of the feature respectively. The param-
eters used in this paper to design the ML experiments are represented in Table 3.

It is important to note that, while the discovery stage was conducted by explor-
ing a large number of hyperparameter sets to obtain reliable detection performance, 
the full exploration of the parameter space is not covered in this paper. The perfor-
mance of the ML models and the overall proposed scheme can be further improved 
by optimising the set of parameters adopted. Two key ML models adopted in the 
ML-based NIDS have been designed to demonstrate the effectiveness of the 

(2)X∗ =
X − Xmin

Xmax − Xmin

Table 3  Training parameters

*Only applies to federated learning

Parameter Value

Local epochs 3
Batch size 2048
Local optimiser Adam
Local learning rate 0.001
Loss function Binary 

crossen-
tropy

Federated learning rounds* 10
Server optimiser* Adam
Server learning rate* 0.05

Table 4  Hyperparameters for 
both DNN and LSTM

Nodes Activation function

Input layer 39 (number of input 
features)

N/A

Hidden layer 1 12 Relu
Hidden layer 2 6 Relu
Hidden layer 3 3 Relu
Output layer 1 Sigmoid
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proposed framework. The same parameters were used across the three scenarios for 
a fair comparison. A Deep Neural Network (DNN) and Long Short-Term Memory 
(LSTM) have been used with their parameters defined in Table 4. The hyperparam-
eters were identically designed to provide a fair comparison of their performance. In 
both models, there is a dropout of 40% of the input units between each hidden layer 
to help prevent overfitting of the local client’s data.

In the DNN model, the data is fed forward via an input layer through three hidden 
layers and the predictions are calculated in the output layer. Each dense layer con-
sists of multiple nodes, each performing the Relu activation function, with randomly 
initialised weighted connections. During the training stage, the connections are opti-
mised using the Adam algorithm to map the high-level features to the desired out-
put through a process known as back-propagation. In the LSTM model, sequential 
information in the input data can be captured through an internal memory that stores 
a sequence of inputs. The input is converted to a 3-dimensional shape to be compat-
ible with the requirements of the LSTM layer, and passed through three hidden lay-
ers made up of interconnected nodes, each performing the Relu function.

(a) (b)

Fig. 2  Federated learning using a DNN model

(a) (b)

Fig. 3  Federated learning using an LSTM model
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5.2  Results

The results in this section are collected over the test sets after the training has been 
conducted using the respective training scenario. We start with federated learning 
separately in Figs. 2 and 3, where the detection performance of the DNN and LSTM 
models, respectively, is evaluated in each dataset. The caption of each sub-figure 
identifies the test dataset used in the evaluation process. A set of results was col-
lected after each federated learning round to analyse the improvement of the ML-
based NIDS after each aggregation process. The results are plotted on line graphs, 
where the percentage value is presented on the y-axis, the number of federated 
learning rounds is listed on the x-axis, and each line presents a different evaluation 
metric.

In Fig. 2, the DNN model achieves a reliable performance across the two data-
sets, where it rapidly converges to its maximum performance after the second round 
and fairly stabilises thereafter. There is a slight drop in FAR in both datasets after 
the first federated learning, where the remaining metrics increase by around 5% in 
the NF-UNSW-NB15-v2 and NF-BoT-IoT-v2 datasets. In Fig. 3, the LSTM model 
requires a larger number of federated learning rounds to reach a reliable detection 
performance. During the first three rounds, the model was achieving a poor perfor-
mance of 50% accuracy in both datasets. However, the performance increased rap-
idly between the fourth and seventh rounds until it converged to its maximum reli-
able performance. The FAR dropped from 100% to almost 8% during the 10 rounds 
of federated learning in both datasets.

Tables  5 and 6 compare the three training scenarios showing the complete set 
of evaluation metrics achieved in the NF-UNSW-NB15-v2 and NF-BoT-IoT-v2 test 
datasets, respectively. The results are grouped by the ML used and the scenario fol-
lowed in the training process. In addition, the time required to complete the training 
stage is measured in seconds. In the federated learning scenario, the results achieved 
after the tenth round are presented in tables. It is important to note that for the fed-
erated learning scenario, the time is measured over ten rounds, which might not be 
required to achieve a reliable performance as demonstrated in Fig. 2.

Table 5  NF-UNSW-NB15-v2: binary-class detection

ACC (%) AUC (%) F1 (%) DR (%) FAR (%) Time (s)

DNN
Federated 91.16 96.50 90.51 84.32 2.00 31.2
Centralised 99.38 99.47 99.38 99.42 0.67 5.83
Localised 51.34 59.89 7.89 4.17 1.48 3.77
LSTM
Federated 88.92 94.00 88.38 84.27 6.43 51.92
Centralised 95.80 98.46 95.65 92.55 0.96 9.57
Localised 52.32 79.75 10.82 5.78 1.15 7.19
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In Table 5, the binary class detection results achieved in the NF-UNSW-NB15-v2 
dataset are presented, where the federated and centralised learning scenarios achieve 
a reliable performance of 91.16% and 99.38% accuracy using the DNN model and 
88.92% and 95.80% using the LSTM model, respectively. The lower performance 
noted in the federated learning approach was mainly due to a higher number of 
FAR of 2.00% and 6.43% using the DNN and LSTM models compared to 0.67% 
and 0.96% in the centralised scenario. In the localised learning scenario, the lowest 
training time was achieved due to the smaller number of training samples by a sin-
gle organisation. However, the model was unable to detect most of the attacks pre-
sent in the NF-UNSW-NB15-v2 dataset after training in the NF-BoT-IoT-v2 dataset 
achieving an inadequate DR of 4.17% and 5.78% using the DNN and LSTM models, 
respectively.

In Table 6, the results of the detection of intrusion of the binary class collected 
on the NF-BoT-IoT-v2 test set are presented. A similar pattern is observed in the 
NF-UNSW-NB15-v2 dataset, where federated and centralised learning scenarios 
achieve reliable intrusion detection performance. The accuracy achieved by the 
federated and centralised learning methods is 93.08% and 93.83% using DNN and 
92.57% and 93.90% using LSTM, respectively. The attack DR is slightly higher 
using both ML models in the federated learning method compared to the centralised 
learning method. Surprisingly, the localised learning approach achieved significantly 
better results on the NF-BoT-IoT-v2 test set when trained on the NF-UNSW-NB15-
v2 dataset. This was not the same case the other way around. This could indicate the 
presence of meaningful patterns in NF-UNSW-NB15-v2 to help the model identify 
attacks in NF-BoT-IoT-v2. The accuracy achieved is 86.21% using the DNN model 
and 88.52% using the LSTM model, the performance drop is mainly caused by a 
high FAR of 19.25% and 14.62%, respectively.

In Tables 7 and 8, we deep dive into the results of the NF-UNSW-NB-v2 and NF-
BoT-IoT-v2 datasets to measure each attack DR separately in a multi-class manner. 
The multi-class performances have been statistically calculated based on the binary 
classification tasks, where the detection rate of each attack class is measured. The 
results are grouped by the ML used and the scenario followed in the training pro-
cess, and the federated learning results are measured after the tenth training round. 

Table 6  NF-BoT-IoT-v2: binary-class detection

ACC (%) AUC (%) F1 (%) DR (%) FAR (%) Time (s)

DNN
Federated 93.08 95.95 93.01 91.92 5.74 31.2
Centralised 93.83 96.74 93.84 93.99 6.32 5.83
Localised 86.21 86.89 86.92 91.66 19.25 3.10
LSTM
Federated 92.57 95.18 92.52 91.90 6.75 51.92
Centralised 93.90 94.76 93.76 91.71 3.92 9.57
Localised 88.52 88.87 88.87 91.66 14.62 6.62
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Furthermore, we calculate the average of the attack DR to compare the three scenar-
ios based on the number of attack behaviours detected. In Table 7, the highest DR 
is achieved by the centralised method in the NF-UNSW-NB15-v2 with an almost 
perfect DR of 99.41% using the DNN model and 96.48% using the LSTM model. 
Analysis, shellcode, and worm attacks were fully detected using both models. The 
federated learning approach came in second with an average DR of around 85% 
using both models. As seen in previous results, the localised scenario is unreliable in 
the detection of any attacks in the NF-UNSW-NB15-v2 dataset with an average DR 
of 6.70%.

As demonstrated in Table 8, the federated learning approach is superior to other 
approaches in the detection of attacks available in the NF-BoT-IoT-v2 dataset with 
an average DR of 93.40% using the DNN model and 94.61% using the LSTM model. 
The centralised and localised learning approaches achieved 84.94% and 81.84% 
using the DNN model and 82.56% and 81.55% using the LSTM model, respectively. 
The reason for the average drop in DR is only due to the lack of recognition of 
reconnaissance attack samples, where the centralised and localised learning meth-
ods achieved 44.46% and 36.33%, respectively, compared to 91.96% detected by the 
federated learning method using the DNN model. Similarly, using the LSTM model, 
39.01% and 34.67% reconnaissance attack samples were detected using centralised 
and localised learning methods, whereas the federated learning approach detected 
92.88%.

Table 8  NF-BoT-IoT-v2: multi-
class detection

DDoS DoS Recon Theft Average

DNN
Federated 91.66 92.24 91.96 100.00 93.40
Centralised 99.98 95.31 44.46 100.00 84.94
Localised 98.04 92.97 36.33 100.00 81.84
LSTM
Federated 92.40 93.16 92.88 100.00 94.61
Centralised 98.14 93.07 39.01 100.00 82.56
Localised 98.05 93.47 34.67 100.00 81.55

Fig. 4  Binary-class comparison
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In Figs. 4 and 5, a summary of the key results is presented in bar graphs to com-
pare the binary- and multi-classes detection results following each ML scenario. In 
Fig.  4, the accuracy evaluation metric is used to compare the three methods, where 
the centralised learning method achieved the best performance using both ML mod-
els, followed by the federated learning method achieving a very similar overall detec-
tion performance. In a localised learning scenario, both models were able to transfer 
the information learnt from NF-UNSW-NB15-v2 to NF-BoT-IoT-v2. However, this 
was not the case in the reverse direction, where both models failed to achieve relia-
ble detection performance. In Fig. 5, the average attack DR is displayed on the y axis, 
where centralised learning and federated learning approaches were the most effective 
in detecting attacks available in the NF-UNSW-NB15-v2 and NF-BoT-IoT-v2 datasets, 
respectively. The localised learning method did not detect most of the attacks available 
in the NF-UNSW-NB-v2 dataset.

The collected results demonstrate certain benefits and limitations in each of the three 
approaches adopted in this paper. In the federated and centralised learning approaches, 
both models achieved reliable detection performance on both datasets, which can be 
improved by tuning and optimising the hyperparameters. In the case of localised learn-
ing, the models were effective in transferring the information learnt from one dataset 
but not the other. Explainable AI [49] techniques could be used to provide insight into 
this behaviour. Furthermore, the proposed methodology could face certain limitations, 
such as that it may not be efficient with extremely heterogeneous data and certain 
domain adaptation techniques [50] may be required to deal with statistical variations. 
Additional verification steps can be performed, such as t-tests to measure the similarity 
between test and training sets prior to the training stage, although that would increase 
training resources, cost, and time.

Overall, a large number of experiments were conducted to evaluate and compare the 
performance of three ML scenarios, i.e., federated learning, centralised and localised 
learning. For a fair evaluation, two different ML models were used in the training and 
testing stages. The results demonstrate that the best performances were often achieved 
by following the centralised learning approach. However, this is not possible without 
breaching network users’ privacy and sharing sensitive data with third parties. In the 

Fig. 5  Multiclass comparison
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real world, this might make centralised learning approaches unfeasible and costly for 
organisations. Therefore, the proposed scenario of a collaborative federated learning 
approach, which achieves similar performance to the centralised learning approach, 
makes it superior in terms of feasibility and preserving user privacy.

6  Conclusion

In this paper, a collaborative federated learning scheme is proposed to allow the 
sharing of CTI between organisations to design a more effective ML-based NIDS. 
The collaboration between organisations attracts many benefits including the design 
of a robust learning model capable of detecting intrusions effectively across various 
organisational networks. The heterogeneity of the network data samples exposes the 
model to a wider variety of SOEs and attack scenarios. This reflects the real-world 
behaviour where each network accounts for a unique statistical distribution that 
ML model performance might not generalise across. The detection performance of 
the models is compared to centralised and localised learning scenarios. The results 
demonstrate that the performance of federated learning is superior to the local-
ised learning approach and similar to the centralised learning approach. However, 
the centralised method can not be used without breaching data privacy and secu-
rity which renders it unfeasible in the real world. Therefore, we sacrifice a relatively 
small amount of classification performance for privacy and hence enable practical 
inter-organisational information sharing for collaborative ML-based NIDS. Future 
work involves improving the detection performance against lateral movement and 
persistent attacks using the temporal aspect of the network data features. In addition, 
the issue of maintaining the privacy in the context of Federated Learning represent 
another important direction for future work. For example techniques such as Differ-
ential Privacy or homomorphic encryption present promising solutions.
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