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Abstract: In today’s Industrial Internet of Things (IIoT) environment, where different systems interact

with the physical world, the state proposed by the Industry 4.0 standards can lead to escalating

vulnerabilities, especially when these systems receive data streams from multiple intermediaries,

requiring multilevel security approaches, in addition to link encryption. At the same time taking into

account the heterogeneity of the systems included in the IIoT ecosystem and the non-institutionalized

interoperability in terms of hardware and software, serious issues arise as to how to secure these

systems. In this framework, given that the protection of industrial equipment is a requirement

inextricably linked to technological developments and the use of the IoT, it is important to identify

the major vulnerabilities and the associated risks and threats and to suggest the most appropriate

countermeasures. In this context, this study provides a description of the attacks against IIoT systems,

as well as a thorough analysis of the solutions for these attacks, as they have been proposed in the

most recent literature.
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1. Introduction

According to the Industry 4.0 standard [1], cyber-physical systems within partially
structured smart factories play a central role in monitoring and supervising natural pro-
cesses by taking autonomous and decentralized decisions in order to maximize the produc-
tion process. An important factor for achieving this target is the IIoT operational network,
where the logical systems communicate and collaborate in real time to implement all kinds
of intelligent production solutions, organizational services, and operational processes,
required to fulfil the production chain [2].

Specifically, IIoT refers to all interconnected sensors, instruments, and other devices,
which in combination with industrial applications, including production and energy man-
agement, create a complex network of services, which allows the application of automation
at a higher level (see Figure 1) [3].

This connectivity allows data collection, exchange, and analysis, as it facilitates the
performance improvement across the production chain. It also enables the manufacturing
sector to make huge innovative leaps, gain significant extroversion, and develop activities
that were previously impossible.

It should be emphasized that the complete transformation of the supply chain into a
truly integrated and fully automated process based on the IIoT presupposes the continuous
and uninterrupted exchange of information from every stage of the production scale.
For the implementation of this communication, IIoT systems are often combined in a
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multilevel architecture, in which at the hardware level are considered the physical systems
(for instance sensors, actuators, control systems, security mechanisms, etc.), at the network
level the physical networking media (wired and wireless), and finally at the upper layers
the protocols that collect and transmit information from the communications stack.

Figure 1. Generalised IIoT system architecture.

The continuous increase of connectivity and the use of standard communication proto-
cols, which are implemented under Industry 4.0 standard, however, creates a strong need
to protect critical industrial systems from cyber security threats [4]. The industrial systems
that control the production process and the operation of the smart factories have constant
access to the internet and the industrial networks, but in addition to the information and
data of the company to which they belong. Common devices of this type are called indus-
trial control systems (ICS) [5]. The most common ICS are SCADA (supervisory control
and data acquisition) systems and sensors used in control loops to collect measurements
and provide process automation [6]. These systems are interconnected within the IIoT
network; they are active devices in real-time industrial networks, which allow the remote
monitoring and control of processes, even when the devices are located in remote areas.

This networking and connectivity improve the operational efficiency of the system,
but at the same time, they pose significant challenges for the means of securing the infras-
tructure [7] in terms of confidentiality, integrity, and availability. Another very important
factor that further deteriorates systems’ integrity is that both the machines and the devices
in modern industrial facilities are designed initially to facilitate functionality and not to
provide a secure environment, which makes them particularly vulnerable to cyber-attacks.

Exploiting the vulnerabilities of the communication protocols that are widely used
in the Industrial IoT, as well as the vulnerabilities related to their operational control and
how to use them, may result in compromising the critical devices applications, the denial
or non-availability of essential services, or even their partial or total destruction, with
incalculable consequences [8].

Generally speaking, the most relevant studies conducted so far focus on the security
risks in IoT systems. For the particular environment of the Industrial IoT systems, however,
there is no available extensive research to our best of our knowledge. In addition, the
existing studies fail to contribute substantially to the awareness and clear understanding of
the risks associated with IIoT systems as well as the severity of the attacks against them,
which in most cases results in great damage and even loss of human lives.

In this sense, this paper presents an extensive study of the most popular ways of
attacking industrial applications, as well as the corresponding literature studies related
to them, with the aim to provide a more effective, cyber-security-oriented approach and
ultimately lead to a more resilient industrial environment.

The main contribution of this work is to provide researchers, but also organizations
dealing with Industrial IoT technologies in general, with a comprehensive study on issues
related to cyber threats on industrial equipment, as well as the latest countermeasures
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for the protection of the infrastructure in question, through a critical and benchmarking
framework. In this context, the main difference from the other IIoT surveys is the provision
of a complete, up to date, and valid reference framework for the identification and the
assessment of the risks related to the ever-evolving industrial environment.

The study is organized as follows: Section 2 reviews related work, and Section 3 gives
a detailed description of the main risks that can be found in the Industrial IoT environment,
the ways they operate, and the associated effective solutions that have been proposed in
the most recent literature. Section 4 presents the main results of our study, and finally the
last section draws the conclusions and outlines future research directions.

2. Metasurvey

In this section a literature review on the surveys works on the threats associated with
the industrial IoT systems. The main security risks are discussed, along with the suggested
countermeasures. In particular, we discuss their contribution in the field, and we raise
topics of interest that require further investigation and analysis.

Some of the modern attacks on critical infrastructure networks, such as power grids [9],
are related to undermining actuators or sensors located in the physical layer, attacks against
connections between different devices in the data-link layer, or more specialized attacks to
compromise specific control systems such as SCADA devices [10].

SCADA devices are industrial automation control and telemetry systems, consisting
of local controllers, which communicate through the industrial IoT network. In cases of
advanced cyber-attacks [11], actuators or sensors isolation strategies are usually performed
in order to falsify the normal values of the sensors and alter the mode of operation of
the cyber-physical systems in an advanced industrial environment. For example, in a
cyber-attack on a SCADA potable water disinfection system, the automations related to the
treatment and production of clean water, the special flow meters, level, conductivity, and
pH analysis, as well as the pumps that calculate the doses of chemicals, could be altered
with devastating results for public health.

This study in particular simply lists the building blocks of a functional SCADA archi-
tecture, while an analysis of the attacks in the physical layer is completely superficial. In
addition, the authors report five types of attacks and attack vectors (source code design
and implementation, buffer overflow, SQL injection, cross site scripting (XSS), and effective
patch management application), without providing information on the attacks against the
software and without giving detailed explanations that could focus on specific method-
ological approaches on mitigation or prevention. Finally, regarding the communication
layer of SCADA systems, the study is devoted to superficial references to the general
ways of attacking communication systems and specifically to the unnecessary ports and
services, communication channel vulnerabilities, and vulnerabilities of communication
protocols. In summary, this study fails to contribute substantially to the awareness and
clear understanding of the risks associated with SCADA systems as well as the severity
of the attacks against them, which in most cases results in great damage and even loss of
human lives.

A more careful approach to the threats related to the industrial IoT systems is pre-
sented in [8], where the authors provide a detailed list of possible attacks per layer of the
five functional levels of the industrial IoT, with the first three being part of operational
technology (OT), while the other two are part of information technology (IT) (see Figure 2).
The first functional level includes systems that perform the physical processes of the IIoT,
such as embedded devices, sensors, actuators, transmitters, and motors. Attacks aimed at
this level require an excellent knowledge of the design of the IIoT system, and access to the
specifications of active devices, engineering plans, and detailed information about their
installation and operational functionality. The second functional level incorporates the
specialized equipment, which communicates and controls the devices of the first level, such
as distributed control systems (DCS), programmable logic control (PLCs) and gateways.
Attacks at this level aim at preventing legitimate communication between the two levels
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and controlling the flow of communication. The third functional level is the SCADA and
all related industrial automation control and telemetry systems, such as data acquisition
devices, master stations, and human machine interfaces, which communicate via the IP
protocol. Many of the attacks at the SCADA level rely on IP packet creation techniques with
false attributes such as the source address, in order to disguise the identity of the sender of
the packet, encouraging the recipient to think that it came from a legitimate network user.
The fourth functional level includes business planning services, such as office applications,
intranet, web, and mail services. Attacks targeted at this level exploit known or unknown
vulnerabilities of these services and enter malicious code where the application expects
legitimate data from the user in order to gain access with administrator privileges.

Figure 2. Layered IIoT architecture and possible attacks.

The fifth functional level includes high level services such as analytics, data mining
methods handled by the enterprise applications, and cloud computing services. Attacks at
this level include a set of malicious actions like interception and deception, but also more
advanced types such as adversarial attacks.

It should be noted that the authors of this study, between levels three and four, place a
demilitarized zone that includes service servers to which users connect on untrusted networks.

Although this study provides a solid approach on how the IIoT works and the corre-
sponding vulnerabilities associated with it, it is generally considered incomplete, as it does
not provide examples of similar attacks, or techniques that could prevent them. It is rather
a survey on the known types of attacks, which provides some minimal information that
can be easily extracted by the literature.

A holistic approach based on the business planning and the standardization on security
requirements designed by the standardization bodies Industrial Consortium and OpenFog
Consortium is presented in [12]. Given the complex nature of the IIoT ecosystem, the paper
examines the security requirements of industrial connection and communication protocols,
based on a three-tier architecture and whether these protocols used at each level provide
a certain level of security. In particular, it initially presents an abstract three-tier IIoT
architecture, which includes the main components of most IIoT developments, categorizing
it in a very clear way (Figure 3).

The edge tier consists of end-points and edge-based gateway devices, composing a
proximity network, which connects sensor devices, actuators, and control systems. The
gateway devices provide a grouping point for the network, allowing internal inter-level
communications, but also layered communications with the higher second level, the
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platform tier, where the connection is made as an access network for data transfer and
control between the levels, which is implemented as connectivity via internet or mobile
network. The platform tier contains service-based and middle-ware applications, such as
analytics services, data transformation, data integration, etc. The interface with the third
and higher level, which is called the enterprise tier, is done with a service network, which
is mainly based on the Internet. Finally, the enterprise tier is used for high-level services,
such as enterprise applications, cloud computing, domain services, hosting, etc. At this
level, end users can interact with the network through specially designed interfaces. Based
on this architecture, T. Gebremichael et al. proposed a set of connectivity protocols per level
and the security features required for the secure device implementation in IIoT networks.
The expansion of these implementation technologies also allows for the distribution of
security requirements between the different areas of the network and creates embankments
that could serve as backup protection in the event of wide scale breaches.

 

Figure 3. Three-tier architecture of IIoT connectivity and communications standards.

Finally, the authors of study [13] present a detailed study on SCADA attacks. SCADA
systems are the main hardware of the IIoT ecosystem, consist of various entities organized
in a hierarchical structure, and are used to monitor the various industrial processes. They
include techniques of integration of data acquisition systems, data transmission systems,
and human–machine interface (HMI). HMI is a user interface that connects a person to
a device, mainly used for data visualization and production time monitoring, while also
visualizing machine input and output information. The general description of SCADA
architecture includes the master station/terminal unit or master unit (MSU/MTU) which
is the control center of a SCADA network, the sub-MSU/sub-MTU acting as a sub-control
center, the remote station units/remote terminal units (RSUs/RTUs), acting as the intelli-
gent end devices (IEDs), and the programmable logic controller (PLC), used to monitor or
collect data from sensors and actuators. This study summarizes the most typical attacks
against SCADA systems, the ways in which they occur, and the tools commonly used.
More specific, the following modes of attack are presented.

1. Passive or Active Eavesdropping. By accessing the wired or wireless network [14]
between MTUs and sub-MTUs or RTUs, an attacker could install spyware [15] and
proceed to exploitation [16].
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2. Man-in-the-Middle (MitM). In this type of attack, the attacker intercepts and monitors
the network traffic, inputs manipulated data during transmission, and sends it to the
receiver [17,18]. In the event of a successful breach, he takes over the session and
maintains the connection from a spoofed IP to avoid detection [19,20].

3. Masquerade. The attacker uses a fake identity and IP spoofing to pretend to be a legit-
imate network user in order to steal information from the system or network [21,22].
Then, by launching a brute force attack, stolen passwords can be used to gain unau-
thorized access to important information [23].

4. Virus, Trojan Horse, and Worms. An attacker could send malicious code to MTU after
launching a MitM or Masquerade attack [24–26]. Malicious code can either allow
unauthorized users to access the infected system and use it to launch other attacks on
other infrastructure, or it could spread to the network and infect MSU/MTU, often
causing unstable behavior or even total system collapse [27,28].

5. Denial of Service (DoS) or Distributed Denial of Service (DDoS). Malicious RTUs send
random IP packets to the MTU in order to consume the system’s resources with the
final objective of making it inoperable [1,29–34].

6. Fragmentation. This is a type of DoS attack where the attacker exploits the weaknesses
of the network packet reassembly process, so when the size of the transmitted data
is larger than the maximum transmission unit, the MSU/MTU fails to service and
collapses [3,35–37].

7. Cinderella. This attack occurs when a malicious user, after attacking and gaining
access to a system, changes the internal clock of the network, resulting in the pre-
mature expiration of the security software, thus increasing the vulnerability of the
network [38,39].

8. Doorknob Rattling. It is related to the preparatory actions used to prepare for an
attack, including legitimate procedures for testing the system, for instance limited
attempts to access the system with random criteria in order to evaluate the readiness
and the responsiveness of security measures [40,41].

Given the complexity of the architectures associated with SCADA systems and related
prototypes, Ghosh and S. Sampalli provide a comprehensive study of the current security
standards (IEEE 1402, ISO 17799, ISO 15408, NERC security guidelines, NERC 1200, API
1164), the detection of SCADA mechanisms (including machine learning algorithms such
as Naïve Bayes, Random Forest, Decision Tree Algorithm, etc.), and prevention of SCADA
attacks which involve the adaptation of key management schemes such as cryptography
(SCADA key establishment (SKE)), SCADA key management architecture (SKMA), and
logical key hierarchy (LKH).

3. Cyber Threats and Its Countermeasures

Automation and remote control are today the most important methods by which criti-
cal infrastructures [42] improve the productivity and quality of their services. Under this
spectrum, the efficient management of IIoT systems requires maximum accuracy, reliability,
and security. The digital technologies that are part of the IIoT ecosystem undoubtedly
improve the efficiency of critical infrastructures, but at the same time, they are associated
with significant challenges related to the ongoing threats to the digital security of the infras-
tructures in question [43]. In this spirit, the protection of the IIoT is now paralleled with the
general need to protect the critical infrastructure of a country, such as telecommunications,
water and energy networks, government infrastructure, etc., as the systems emerged in
these infrastructures are directly related to the IIoT environment, which is an ideal target
for large-scale cyber-attacks.

In the following subsections, we classify the IIoT threats in five generic categories:
phishing attacks, ransomwares, protocol, supply chain, and system attacks [44]. This
separation enables a clear and comprehensive presentation of the security risks and the
associated counter-measures as specialized in the Industrial IoT environment.
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3.1. Phishing Attacks

This is a very popular type of attack often used to steal user sensitive data. It occurs
when an attacker, pretending to be a trusted entity [45], misleads users into entering
personal information into a fake website or downloading an attachment, which results
in the installation of a malware or the disclosure of sensitive information. For critical
infrastructures, specialized phishers use advanced techniques, called compromised attacks,
that combine social engineering, aiming at both the lack of specialized active security
measures by systems, and the lack of information or vigilance of users. The techniques
include zero-days malware, link manipulation, filter evasion, obfuscating brand logos,
website forgery, covert redirect, etc., aimed primarily at vendor/remote websites and then
the breach of IIoT systems and in general the control of operation systems that linked to it.
In general, the malicious user tries to enter or access the IIoT through a front-end level. He
remains there for a period of reconnaissance and mapping of the general network, until
the most appropriate time is found to start the extensive attack and then with pivoting
(the action of moving from one system to another) to apply the appropriate exploits and
compromise ICS systems.

In general, there are several papers that focus on malicious website crawling based
on specialized techniques. Madhusudhanan et al. [46] propose a new technique called
PHONEY, which automatically detects and analyzes phishing attacks. The main idea
behind this technique is a web browser extension, which provides information on the
quality of the sites, the security certificates they have, and information that they have been
confirmed to contain malicious code or misleading URLs (see Figure 4).

 

Figure 4. Block diagram of PHONEY architecture.

McRae and Vaughn [47] introduced a new method to detect sites that contain phishing
content using honey tokens. Accordingly, Ajlouni et al. [48] use a methodology based
on association rules and the classification and detection of phishing sites. This algorithm
generates correlations between objects and then creates correlation rules between objects,
where each correlation rule signals the dependence of a set of objects on another set
of objects, for the purpose of final ranking and locating content that indicates if a site
is relevant with deceptive actions. It should be noted that the authors applied these
algorithms to phishing data sets, and the obtained result was very accurate and surpassed
more advanced algorithmic standardizations such as the SVM algorithm. Finally, Jain and
Richariya [49] implemented a prototype web browser used as an agent to process data from
phishing attacks. The user uses the web browser to open the email in a secure environment,
and if an attack is detected, they will be notified and asked to delete the email.

An advanced machine learning technique is proposed by the work of [50] and specifi-
cally the intelligence web application firewall (IWAF) to critical infrastructure protection
(CIP), an advanced phishing attacks detection system. It is an extremely innovative and
fully automated active security tool, which uses an evolving Izhikevich spiking neuron
model for the automated identification of phishing web sites and builds group policy
objects (GPO) and pushes them into Windows domain. This system optimally imple-
ments a decision rule for the categorization and detection of phishing attacks, while at the
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same time, this knowledge is translated into firewall rules to enhance the active response
capabilities of critical infrastructure.

In particular, IWAF initially receives network traffic between Industrial IoT devices
as a PCAP (packet capture) file, from which the features of interest are extracted and are
able to detect phishing attacks. The proposed Izhikevich spiking model algorithm uses the
exported features and performs categorization to detect phishing attacks. When such an
attack is detected, a list of indicators of compromise (IoCs) is created. IoCs are forensic
data, such as data found in system logs or file logs, that detect potentially malicious activity
on a system or network. IoCs are converted to group policy objects (GPOs). GPOs are a
set of settings that determine what a system will look like and how it will behave for a
defined group of users in the Windows environment. With a scheduled task, these policies
are forwarded to specific organizational units (OUs) of Windows Active Directory and are
applied to all users, effectively creating rules to prevent and limit phishing attacks.

A promising technique called URL embedding (UE) was introduced by Yan et al. [51].
This new algorithm is used to investigate the correlations between different domain names,
in order to calculate correlation coefficients between different URLs. Obviously, this
technique creates serious demands on computing resources, especially when analyzing
domains with sparse representations, as URLs can be distributed over the Internet. In
this case, the distributed representation is transformed into a small vector with the help
of a neural network, and thus the mapping between the URLs and their distributed
representations is stored without much trouble. An obvious disadvantage of the method
is the complexity of the space, and it takes a lot of space to store the domain integration
model, as many dimensional vectors have to be stored. To solve this problem, the authors
suggest that malicious websites be treated as words and then use intelligent machine
learning algorithms to locate the words in question in DNS queries, so that misleading
malicious addresses are detected before they are even executed.

Gu et al. [52] proposed a method for detecting botnets by mapping a sequence model
based on extracting URLs from spam mails. Additionally, Ma et al. [53] studied various
machine learning methods for classifying sites based on their characteristics and the content
they included. Features such as IP addresses, WHOIS records, and lexical features of phishing
URLs have been analyzed by McGrath and Gupta in their work [54], with their findings
constituting an index of heuristic methods for filtering phishing-related emails, but also more
generally in detecting suspicious domain registrations. Xie et al. [55] focus on detecting
spamming botnets by developing regular signatures based on expressions from a set of spam
address data. Stalmans [56] proposed a technique for detecting and mitigating botnet infection
on a network, using features from DNS queries such as multiple Address (A) and NS Records,
IP ranges, Time-To-Leave (TTL), and alphanumeric characters from domains.

Finally, the work of [50] proposes the creation of an innovative protection system
from fast-flux botnets, which use as communication points domain names created with
the domain generation algorithm (DGA) technique. Unlike other techniques that have
been proposed and focus on DNS traffic analysis, this system proposes the creation of a
Smart URL Filter in a zone-based policy firewall for detecting algorithmically generated
malicious domain names. It is a biologically inspired artificial intelligence computer
security technique, as it uses the evolving spiking neural network (eSNN), which is the
third and most advanced generation of neural networks, which simulates in the most
realistic way the functioning of the human brain.

The superiority of the proposed method was demonstrated after a thorough compari-
son of the prediction accuracy and the ability to generalize to new data, with corresponding
evolving and bio-inspired learning methods.

3.2. Ransomware Attacks

This type of attack inserts a malware into the IIoT system in order to cause denial of
service (DoS) or access to personal files and demands the users pay a fee in order to regain
access. In contrast with the conventional ransomwares, which are distributed massively,
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IIoT ransomwares are usually targeted, i.e., they focus on critical system entities in order
to cause as much damage as possible. Due to this limitation, the research conducted on
the common ransomwares cannot be considered as applicable in IIoT ransomwares. The
authors of [57] offer a detailed and systematic analysis of the various threats imposed
by IIoT ransomwares and recommend some potential countermeasures. Their analysis
suggests that the IIoT edge gateways are very vulnerable to ransomware attacks in IIoT
systems. In an industrial environment, the IIoT gateways have some common properties,
despite their partial differences in functionality and architectures. A typical IIoT edge
gateway acts as a bridge between the external world and the critical IIoT infrastructure,
that is, program logic controllers (PLCs) or input/output (I/O) devices. When an attacker
launches a successful ransomware attack against an IIoT gateway, it can take full access
of it by replacing the gateway’s password with a new one and then updating the existing
firmware with a malicious one. Even if the user bypasses the locking, the attacker can still
access and encrypt all user and data files, including those collected from the PLCs and I/O
devices, and those exchanged between the cloud and the enterprise. Then the attacker can
ask for ransom in order to decrypt the data, or threaten the victim to gradually delete the
data if the ransom is not paid.

To analyze the vulnerabilities of IIoT edge systems, M. Al-Hawawreh et al. built an
experimental testbed of an IIoT system, which follows the industrial internet reference
architecture (IIRA) (see Figure 5) [26].

Figure 5. IIoT system Testbed for the analysis of ransomware attacks.

Their platform consists mainly of three parts: the IO devices (IoT sensors, controllers,
and actuators), the cyber world entities (maintenance operators, mail and cloud servers
for processing the collected IoT data, and SCADA web monitoring devices), and the
IIoT gateways. Then they conducted proof of concept (PoC) ransomware attacks on this
platform using python scripts resembling the well-known Erebus Linux Ransomware
attack. This targeted IIoT ransomware attack affected a big number of web services and
database and multimedia files of a web hosting company when launched [55]. According
to Reference [58], the main steps of this attack include sniffing for data and system files
in predefined directories of the IIoT edge gateway, data encryption and deletion of the
original files, sending the stolen data as an attachment in a message to a fake email address
via simple mail transfer protocol (SMTP), and eventually sending notification messages
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to the user that a ransom is requested. In the compromised IIoT edge gateway, M. Al-
Hawawreh et al. collected and processed data related to the system’s activities in terms
of CPU, memory, and I/O device usage and CPU processing load, and they compared
with the corresponding data collected by the system when no ransomware attack is carried
out. Their results suggest that the targeted ransom attack at the IIoT edge gateway caused
much higher usage and processing power of system resources in comparison with a similar
ransom attack in a workstation. Based on these observations and measurements, the
authors concluded that the monitoring of the kernel-related activity parameters can be a
significant indicator of a crypto-ransomware attack launched towards IIoT edge gateways.
Then M. Al-Hawawreh suggested some countermeasures that should be taken to protect
more efficiently the IIoT infrastructure from these attacks, including the deployment of
Next-Generation firewalls with improved traffic filtering capabilities, the employment of
monitoring tools, such as intrusion detection systems (IDSs), for detecting attacks in the
early stage, and the separation of the IIoT edge gateway from the other IIoT infrastructure,
by placing the IIoT edge gateway in a specific trusted zone.

Apart from the conventional methods for identifying ransomware attacks, there are
many studies that have utilized machine and deep learning techniques for ransomware
detection. The authors of [59] introduced a detection model using dynamic machine
learning techniques, such as conversation-based network traffic features, for consistent
detection of windows ransomware network attacks. Their experiments demonstrated that
the database created by these features achieves a high performance in terms of accuracy.
The authors of [60] implemented a network-based intrusion detection system, by employing
two independent classifiers operating in parallel on two different levels: packet and flow
levels for detecting the Locky ransomware. Experimental evaluation of the proposed model
found very efficient in tracking ransomware attacks with high detection accuracy.

Finally, the authors of [24] suggested a hybrid detection model combining classical
auto-encoding (CAE) and variational auto-encoding (VAE) deep learning techniques to
reduce data dimension and obtain a precise representation of the activities. The extracted
features were combined to form a new vector used to train a deep neural network (DNN)
classifier. The proposed model was compared with other models including random for-
est [61], decision trees [59], logistic regression (LR), support vector machine (SVM) [62],
and DNN [63] and it was found that it achieves the best performance as measured by the
detection rate (DR) and the false negative rate (FNR).

3.3. Protocols Attacks

The OSI networks structure consists of five layers for IoT: physical, data-link, network,
transport, and application layer (see Figure 6) [64].

Figure 6. An example of IoT protocol stack compared to TCP/IP stack.

The IIoT systems may use the same protocols with the common IoT systems for
implementing the first four layers of the stack, like for instance IEEE 802.15.4 6LoWPAN,
Bluetooth Low Energy (BLE), IEEE 802.11 (used by WiFi), Long-Term Evolution (LTE), and
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UDP/TCP (see also Figure 5). In our review, we provide a brief overview of the threats and
countermeasures at the first four layers and focus on the fourth (application) layer, which
is particularly applicable for the IIoT applications.

3.3.1. Attacks in Physical, Data-Link, Network, and Transport Layers

There are many works devoted to the attacks towards the layers and suggest the
appropriate countermeasures [64–67]. Amongst the most common threats in physical and
data-link layers is the denial of service (DoS) attacks. In this type of threat, the malicious
device degrades the processing ability of the nodes, to make the system unavailable.
Jamming, collision, exhaustion, and unfairness are the three most important methods in
DoS attacks [67] In jamming DoS attacks, the attacker jams the signal by transmitting at the
same frequency, whereas in tampering, the attacker takes over the control of the sensor node
by physical means, for instance by wiring on the electronic board, or by attaching cables
to the circuit board. For the detection of jamming DoS attacks, the authors of [65,67,68]
propose a cross-layer security detection mechanism and a jammed area mapping model
(JAM), which avoids the jammed part of the wireless sensor network (WSN) by re-routing
the packets to alternative routes. Tampering threats can be identified and prevented by
physical checking of the WSN by eye or with the use of special equipment.

In collision DoS attacks, the malicious device starts transmitting packets on the victim’s
frequency, causing collisions and packet retransmissions. If the collision attack continues
until the energy resources of the targeted node are exhausted [69], it is also known as an
exhaustion attack. The unfairness attack is caused when the exhaustion attack results in
degrading the system ability in the advantage of the malicious users. Efficient defense
against jamming and collision attack involves the employment of frequency-hopping
spread spectrum (FHSS) technique [70,71] Data transit attacks are very common in physical
and data-link layers of the IoT systems involving wireless sensor networks (WSN) and RFID
sensor networks (RRSN) and include packet sniffing and Man in the Middle (MitM) attacks.
Countermeasures to this type of threat include applying data encryption algorithms, such
as asymmetric encryption standard (AES) in IEEE 802.15.4 and 6LoWPAN networks [72],
wired equivalent privacy (WEP), and Wi-Fi Protected Access II (WPA2) in Wi-Fi and LTE
networks [73].

The most popular threats at the network layer of IoT systems include routing and DoS,
data transit attacks, and the attacks at the neighbor discovery protocol (NDP) [65] In routing
attacks, the malicious device forwards the ongoing messages to the wrong paths, while in
DoS, it causes traffic congestion and resource exhaustion by injecting a big amount of data
into the network. Effective countermeasures at these types of attack include egress filtering,
authorization, and monitoring tools, such as intrusion detection system (IDS) solutions
specifically adapted for IoTs like SVELTE [74] Data transit attacks affect data integrity and
confidentiality. Countermeasures include the use of compressed transport protocols, for
instance datagrams transport layer security (DTLS) [72]. The threats against the neighbor
discovery protocol (NDP) are presented in [75]. In this work, a detailed description of
the operation and the most common attacks towards NDP is performed. In addition, the
protection mechanisms for NDP have been thoroughly analyzed in this work, including
the tunneling (IPSec) and the secure neighbor discovery (SEND) protocols. The analysis
results indicate that for NDP, SEND is the most efficient protection mechanism against DNP
protocol attacks, but it still lacks good support levels by most of the operating systems.

The most popular IoT attacks at the transport layer include de-synchronization, SYN-
flooding, and message queue telemetry transport (MQTT) exploit attacks [65]. In de-
synchronization attacks, the intruder injects packets with fake sequence numbers of control
flags that de-synchronize endpoints. Effective countermeasures include message authen-
tication [76–78]. In SYN-flooding attacks, the malicious device sends a large volume of
SYN packets to the victim. The victim responds with SYN-ACKs, but the spoofed device
does not send acknowledgements (ACKs). As a result, the victim’s queue is filled up
and cannot receive and process legitimate SYN requests. Defense against SYN-flooding
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attacks involves interventions and optimizations on the transport protocols themselves,
by making the memory and the queue management more efficient in handling of SYN
packets and by hardening the network security with the employment of packet filtering and
proxy techniques [79]. The deficiencies of the message queue telemetry transport (MQTT)
protocol are presented by the authors of [80]. MQTT is a simple messaging protocol, which
adapts the publish-and-subscribe messaging approach and is specifically designed for
the remote control of devices with bandwidth constraints, such as the IoT applications.
MQTT is, however, very vulnerable to attacks, since it does not provide by default any data
encryption and authentication mechanism. Defense against MQTT exploit includes the
adaption of scalable and robust security mechanisms, such as the secure MQTT protocol,
which enforces the security features of the attribute based encryption (ABE) algorithm. ABE
supports broadcast encryption for secure message delivery to multiple intended recipients,
which is a desired feature in IoT applications [81]. Table 1 summarizes the most common
protocol attacks in IIoT, the threats, and the proposed countermeasures.

Table 1. Common attacks in the first four layers of IoT stack and possible countermeasures.

Layer/Level Protocols Threats Countermeasures

Physical Layer and
Data Link layer

IEEE 802.15.4
BLE
WiFi
LTE

Jamming DoS attacks Packets’ rerouting to alternative routes [68]

Collision/Exhaustion/
Unfairness attacks

FHSS techniques [70,71]

Data Transit Attacks Data encryption algorithms [72,73]

Network Layer
IPv4/IPv6

RPL
6LoWPAN

Routing and DoS Attacks Ingress filtering and IDS solutions [65,74]

Data Transit Attacks
Compressed Transport protocols

(for instance DTL) [72]

Threats to Neighbor Discovery
Protocol (IPv4/IPv6)

Use of IPsec, SEND protocols [75]

Transport Layer

De-Synchronization
Sending control flags that

synchronize endpoints
Message authentication [77]

SYN-flooding
System flooding during the SYN

handshaking phase
Optimizations in transport layer apply

network filtering [79]

MQTT
Data Transit Attacks, Scalable Key

management
Secure MQTT, ABE algorithm [81]

3.3.2. Attacks in Application Layer

Among the most popular attacks towards the application layer of IIoT systems is
related with the Modus protocol used by SCADA systems and is studied by the authors
of [82]. In particular, they present a very specialized study, a model in the way of attacks
against the sensors, used by the control loops for the collection of measurements in SCADA
infrastructure in gas pipeline and water storage tank implementations. Sensors, which
are active devices in the infrastructure network, are PLCs that are conveniently intercon-
nected to allow remote monitoring and control of high-speed response processes, even in
cases where the devices are distributed between different remote points. Communication
(sending and receiving data) is achieved with the widely used SCADA Modbus messag-
ing protocol, which provides client–server communication between devices connected to
different types of bus or network, via serial lines.

In the simulation performed in this study, Modbus Masters devices request informa-
tion on the transfer of discrete, or analog IO communication and the recording of data by
a slave Modbus. A simple request–response scheme is used for all executed transactions,
where the master device starts a request and the slave responds. The authors, considering
that the implementation of the Modbus protocol contains many vulnerabilities, simulate
these vulnerabilities, in a context of recording and evaluating the different types of attacks
that can take place.
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A vulnerability lies in protocol’s inability to recognize a forged slave–master IP address
in the SCADA network. An unauthorized, remote intruder performing a Man in the Middle
(MitM) attack exploits this vulnerability, by sending queries containing invalid addresses,
and then collects information about the network MSUs/MTUs from the returned messages.

Another vulnerability is the lack of adequate security checks and control of the physical
identity/certification address to validate the communication between the Modbus master
and slave devices. This defect allows remote intruders to issue arbitrary commands without
authentication towards any slave device, via a Modbus master. The SCADA Modbus
protocol is also vulnerable due to the protocol implementation errors when processing
request messages and separate input read responses. Thus, an unauthorized, remote
intruder can perform a DoS or DDoS attack on a SCADA network, by sending request or
response parameters containing malicious values to select a data field on the system that
contains a vulnerable Modbus application.

Finally, Modbus TCP is the protocol commonly used in SCADA networks for process
control. Modbus limits the PDU size to 253 bytes to allow the package to be sent in serial
RS-485 interface. Modbus TCP adds 7 bytes to the Modbus protocol header. This sets a
limit on the legal package size. When an attacker creates a specially designed packet larger
than 260 bytes and sends it to a Modbus master–slave, if the devices for rejecting such
packets are not properly configured, it leads to a successful buffer overflow attack.

The most common security countermeasure is the use of intrusion detection and
prevention systems with deep packet inspection capabilities or industrial firewalls that have
the ability to detect and stop highly specialized attacks hidden deep in the communication
flow [83]. For example, Liang et al. [84] propose an industrial network intrusion detection
algorithm based on a multi feature data clustering optimization model. The novel features
are twofold: to rapidly select a node with high-security coefficient as the cluster center, and
match the multi feature data around the center into a cluster. The detection accuracy of
abnormal data reaches 97.8%, and the fault positives of detection are decreased by 8.8%.
Additionally, a novel network intrusion prevention system that exploits the benefits of
incremental machine learning frameworks that utilizes a self-organizing incremental neural
network along with a support vector machine is proposed by Constantinides et al. [85].
The results show that the proposed framework can achieve on-line updated incremental
learning in a fast and efficient manner, making it suitable for efficient and scalable industrial
applications. Moreover, intrusion detection methods are based on machine learning to
access the Modbus TCP protocol development by Deng et al. [86]. It is a data preprocessing
method based on the frequency of Modbus protocol function code and coil that appears in
Modbus TCP traffic in order to detect the abnormal Modbus TCP traffic by a support vector
machine model. On the other hand, cloud-based intrusion and prevention systems for
industrial networks are promising solutions to secure these infrastructures. Brugman et al.)
propose a highly accurate novel cloud based intrusion detection and prevention architecture
to identify and prevent cybersecurity threats in industrial networks using software defined
networking to route traffic to the cloud for inspection using network function virtualization
and service function chaining. The proposed method uses Amazon Web Services to create a
virtual private cloud for packet inspection that ensures scalability, resilience, and visibility.

3.4. Supply Chain Attacks

Supply chain attacks are particularly dangerous. The major challenge for IIoT integra-
tion in the Industry 4.0 supply chain is security. Hardware chips with embedded malicious
code are hard to find, since this code has the ability to be executed without being easily
noticed for a long period of time. One of the causes of security vulnerabilities in the IIoT
environment is the involvement of many stakeholders. This means that there are different
components of devices being manufactured by different vendors, everything getting as-
sembled by another vendor, and finally being distributed by yet another one. This situation
today, which is not easy to avoid, usually leads to security issues (backdoors installed) that
can put an entire production line at risk (see Figure 7). In general, what is today called
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third party is gaining the attention of risk management more and more. M. Farooq, in their
study [87], presents and highlights the supply chain threats, and they suggest approaches
concerning the risk management procedures. They present and describe the IoT supply
chain risk landscape, characterizing it as extremely diverse.

 

Figure 7. Key interactions between different players in the supply chain ecosystem of the IoT.

This work may describe the IoT, but the situation is similar in the Industrial IoT
environment, since they share a number of protocols. A vendor has the ability to embed
backdoor channels in their devices, inject viruses, or provide faulty chips. The supply chain
risks are hard to observe and hard to control. The risk propagates from one device to the
other and gets amplified as the IoT ecosystem becomes more complex. Another issue is
to dissect the supply chain links in IoT, meaning that the interactions between devices,
between suppliers, and among them are always difficult to determine. Further, they
highlight the IoT risk implications and consequences, and finally as a countermeasure, they
propose to view the ecosystem from a supply chain viewpoint and then take appropriate
measures to control the risks. They describe two approaches, the top-down approach,
which is more centralized, and the bottom-up approach, which focuses on decentralization.

This work gives a general understanding of the supply chain risks, but it does not
provide technical countermeasures to deal with these types of attack for an environment
that already faces this threat and does not have the ability to change the whole risk
management approach.

Petar Randaliev [88], in their study, presents a dynamic and self-adapting supply
chain system supported with artificial intelligence (AI), machine learning (ML), and real-
time intelligence for predictive cyber risk analytics. This approach is used to develop
a transformational roadmap for the Industrial Internet of Things in Industry 4.0 supply
chains of small and medium enterprises (SMEs), because these types of companies usually
lack the resources needed to effectively mitigate the high risks that the cyber threats are
posing. One interesting point of discussion from the main findings is the weakness of
existing cyber risk impact assessment models to calculate the impact of supply chain
infrastructure. Additionally, there is an inconsistency in measuring the supply chain cyber
risks, caused by the lack of understanding of supply chain operations in Industry 4.0.

Timothy Kieras et al. [89] presented in their study the RIoTS (risk analysis of IoT
supply chain threats), which is risk analysis methodology in networked systems such as
the IoT that emanate from the suppliers of individual components. They argue that risk
analysis must shift from a vulnerability-centered approach to the modeling of suppliers
and components as a system. They propose an adaptation of the attack tree techniques in
order to include the risk associated from suppliers and supplier groupings. Their intention
is to highlight and reveal hidden threats posed to the IoT ecosystem from potential supplier
collusion. As we see, most studies focus on risk management approaches for supply
chain attacks.
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3.5. Systems Attacks

One of the most common attacks on industrial infrastructure is related to SCADA
systems, which due to their proliferation and usability are found in many industrial infras-
tructures worldwide. Given the complexity of the devices in question, the heterogeneity of
industrial networks, and the seriousness of the implementations in which these systems are
located, such as water, energy, etc., networks, ref. [90] presented a study of how to attack
SCADA devices, while at the same time they studied, applied, and proposed a specialized
solution for their timely and valid detection. They deal in particular with the case where the
attacker is taking advantage of the fieldbus communication in the industrial EtherNet/IP
protocol, after performing a Man-In-the-Middle (MitM) attack in an Ethernet ring using
the device level ring (RLR) protocol, and finally they carry out a stealthy sensor attack.
Fieldbus is an industrial network system for distributed real-time control. It operates on a
network structure that typically allows daisy-chain, star, ring, branch, and tree network
topologies. In fieldbus communication in the industrial EtherNet/IP protocol, devices use
IO settings, messages that do not follow specific formats and sizes, as they are specified
by the controller designer. Additionally, the analog sensor control signals are coded using
4–20 mA measurements. This means that the attacker must have, in addition to detailed
knowledge of the system design, access to the specifications of the devices, engineering,
and installation drawings in order to fully understand the information exchanged and
rearrange the sensors to his advantage.

Wireless communication between sensors and control devices is performed via mul-
ticast EtherNet/IP connection over user datagram protocol (UDP). While only devices
that subscribe to a specific multicast address will receive multicast packets, multicast is
IP-level, so all UDP packets arriving at a specific destination address will be accepted. The
IP version 4 (IPv4) multicast service uses Class D address space (224.0.0.0–239.255.255.255).
The data transmission in IPv4 multicast is done without ensuring the accurate transmission
of data to the information receivers, unlike what happens to the other datagrams of the
Class A–Class C address spaces. As IPv4 multicast is organized, the data are transferred to
UDP datagrams. Each address in the Class D address space represents the group of those
who wish to receive the data. A host joins the group by sending a JOIN Internet Group
Message Protocol (IGMP) message. He can then participate in the group without time
restrictions (there is no concept of group ownership). Additionally, in order to send data
to a group, it is not necessary to be a member of the group, or to monitor the transmitted
information, so it is generally very easy to install an intruder as MItM.

After establishing MItM, the attacker launches a stealthy sensor attack. This attack
configures the sensors and actuators settings, in order to change the operation of specific
mechanisms, but this is not perceived by the monitoring mechanisms of the system. More
specifically, in this attack, there is a raw water storage tank, which includes a water level
sensor, a valve that opens when a sensor shows the level <0.5 m and closes when the level
is >0.8 m, and a pump whose action depends on the UF process, in which forces such as
pressure or concentration gradients lead to separation through a semipermeable membrane.
If the water level in the tank is below 0.25 m, the pump is immediately switched off, which
is interpreted as a safety mechanism. The attacker’s goal is to exaggerate the water without
being detected by a typical detection mechanism based on the detection of anomalies. This
is achieved by modifying the sensor and actuator information by constructing appropriate
packets, which are adapted so that the fieldbus communication can change the functionality
of the devices.

F. Mercaldo, et al. operate in a very intelligent and simple way, as through a time logic
and specifically taking advantage of high-level features related to SCADA infrastructure
and modeling the system logs in a network of synchronous automata, they characterize
the behavior of SCADA system, whether it accepts an attack or not. More specifically, the
process initially involves distinguishing logs from SCADA system logs. The record values
are associated with the actual measurements performed by the system operating personnel.
The received distinguished values are then classified into three classes (up, basal, and
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low). The values in question are then entered into an automated system (The automated
systems implement automata, i.e., mathematical objects that maintain abstract finite state
machines for resolving complex problems. In an automated system, specific transitions
are allowed among the states.). As the automaton sees an input symbol, it performs a
transition to another state, depending on the transition function. For each discrete situation,
an automatic is implemented, which is synchronized with a specific clock. For every status
change, a status table is implemented, in which the system states are presented in time
format. To detect overflow or underflow, the automatons are checked at random times,
and if there is a deviation from the status table, then they are related to the attacks against
the system.

Although various intelligent techniques have been proposed for the analysis of In-
ternet traffic between IIoT devices and which have achieved very high success [91–93], a
specialized standardization is proposed in the work blockchain security architecture for
IIoT [94], which is based on deep learning smart contracts for the security and functionality
of industrial applications, providing a decentralized, reliable, peer-to-peer network for
communication between SCADA devices. In essence, this architecture is called upon to
fill a key gap in the way IIoT operates, in the context of the convergence of heterogeneous
infrastructures based on blockchain. More specifically, this system takes advantage of
the functions of the blockchain network by implementing advanced anomaly recognition
functions through the two-way, bilateral agreement provided by smart contracts, ensuring
in the most efficient and intelligent way the secure network communication between the
trading devices in the trading system. The proposed deep learning smart contract, which
incorporates a sophisticated deep autoencoder into its code, provides an intelligent mecha-
nism that can categorize with great precision the harmful irregularities in IIoT transactions,
which in most cases involve advanced cyber-attacks.

Autoencoder is a neural network that is divided into a pair of two connected networks,
one of which acts as an encoder and the other as a decoder. The encoder network takes in
the data of the network traffic between master/slave devices and converts it into a smaller,
denser representation, which can be used by the decoder’s second network to convert it
to the original input. Essentially, Autoencoder aims at the realistic representation of the
inputs and outputs of the network, compressing the input to latent representation and then
rebuilding the output from this representation.

In this way, it learns to compress the original data from the input layer into an abstract
form, which it then decompresses, turning it into something that fits perfectly with the
original data. This forces Autoencoder in addition to reducing the size of an initial problem
and learning how to ignore noise and thus recognize any vulnerabilities associated with
attacks in the SCADA Modbus protocol.

Attacks on industrial control systems (ICS) are aimed at mechanically controlling the
dynamically rearranging centrifugation, or reprogramming the complex programmable
logic controller (PLC) devices in order to speed up or slow down their operations, driving
overall industrial equipment in its destruction or permanent damage. Such an attack
scenario is described in [95], where the optimal power flow (OPF) algorithm is maliciously
applied, which is widely used in power system control centers, in order to find the optimal
power system control strategy, while minimizing the overall cost while ensuring security
of the system.

Power system safety is usually defined by a set of lower and upper limits for various
system parameters, such as power line power and minimum/maximum allowable power
frequency 59.5–61 Hz (60 Hz is the rated power grid frequency in the US). The control
strategy is essentially a set of control commands that the PLC sends to the actuators, e.g.,
output control points on the generators that determine the power to be generated by each
generator, the margin of error to be ensured for system security, on/off commands, etc.

Luis et al. apply the OPF control algorithm to PLC, after making three malicious
modifications: they removed the state that ensures that the system is within safe margins,
replaced the cost minimization function with maximizing so that the hostile impact is
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maximized, and added predefined hidden conditions to ensure that malicious actions are
not detected or detected by operators on local imaging devices as well as on the SCADA
device overview website.

To solve behavioral deviations, abnormality detection techniques have been proposed
in the literature, which can work even when the nature of the attack is new and therefore
unknown, as they are based on a tactic of comparing the current situation with a model
or more generally with a set of parameters that are considered to describe the normal
operation of the system. To achieve these results, behavioral analysis related to basic
network parameters such as operating specifications, average power per time window, etc.,
is widely used. Additionally, the detection of anomalies is related to other technical or
heuristic forms of analysis, in order to identify patterns that help detect, identify, and predict
their appearance, without leading to false alarms [96,97]. In general, types of anomalies
are considered patterns that show different or deviant behavior from the expected and can
be categorized into point anomalies, contextual anomalies, collective anomalies, protocol
anomalies, etc. [98–100].

In cases of highly specialized attacks such as those simulated by Luis et al., a simple
anomaly detection system is not enough, but it requires more sophisticated and obviously
complex methods. On the contrary, the method proposed by [101] is an extremely simple
and at the same time dynamic methodology, which as it turns out is able to detect with
great precision advanced attacks like the one described. Specifically, the CUmulative
SUM (CUSUM) algorithm is used, which works intuitively, based on the idea of adding
the difference between a variable and the expected value over time. If this cumulative
amount exceeds a certain threshold, then the decision is made that a change has been made.
More specifically, CUSUM uses Equation (1) to detect a change, where Sn represents the
cumulative value in sample n, xn represents the value monitored in sample number n, and
wn is the usual mean of the monitored value. A change is detected when Sn rises above a
predetermined threshold, which is a function of the relative magnitude of the change and
the noise of x.

S0 = 0, Sn+1 = max(0, Sn + xn − wn) (1)

This anomaly detection algorithm is used and tested with great success in the detection
of anomalies performed by the experiment of Luis et al., where x is a scan cycle execution
time detector. Essentially, this simple change detection algorithm allows the monitoring of
the execution time of the deterministic PLC control program in real time and implements
alerts for changes, in order to detect early anomalies that are usually associated with cyber-
attacks. It is important to note that with very high percentages of correct alerts, almost all
abnormalities were detected within seconds and within up to five minutes in the worst
case, significantly limiting the attackers’ ability to damage equipment. Finally, another
important advantage of this algorithm is its simplicity, which reinforces the hypothesis
that it can be integrated into PLCs that lack resources to provide stronger guarantees of the
overall security of the IIoT ecosystem.

4. Discussion

The universal protection of the infrastructure and the reliability of the proposed
solutions presented should not be taken for granted, because the cyber security of the IIoT
ecosystem is a multifactorial problem, as described above [102].

In particular, due to the nature of the IIoT and the wide range of vulnerabilities that
can arise from the complexity of the systems involved in it, important features related
to complex patterns, systems, or processes are identified and maintained, which do not
evolve in parallel with the overtime and which are potential vulnerabilities of the overall
network [103]. More generally, the problem lies in the fact that in the particular high com-
plexity environment under examination, while standardization systems are multivariate,
high heterogeneity exists and is maintained, as this can be attributed to the age of systems
that have not been upgraded, to the complex relationship that describes them, and the
subtle differences that distinguish them [7].
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An overview of the discussed cyber threats and countermeasures is presented in Table 2.

Table 2. Cyber Threats and their countermeasures.

ID Cyber Threats Countermeasures

1
Phishing attacks
The attacker, masquerading as
a trusted entity.

Breach of IIoT systems
Control of operation systems that are
linked to it

PHONEY for auto detection and analysis
of phishing attacks [46]
Intelligence Web Application Firewall
(IWAF) [104]
URL Embedding (UE) [51]
Detecting botnets by mapping a sequence
model based on extracting URLs from
spam mails [56]
Smart URL Filter in a zone-based policy
firewall for detecting algorithmically
generated malicious domains names [50]

2

Ransomware attacks
Type of malicious software, or
malware, designed to deny
access to a computer system
or data until a ransom is paid.

DoS attacks, data encryption

Next Generation firewalls with improved
traffic filtering capabilities [57]
Machine learning techniques [59]
Intrusion detection system [60]
Hybrid detection systems [105]

3
Protocols Attacks
Any threat in protocol stack
of IIoT

Jamming DoS attacks Packets’ rerouting to alternative routes [68]

Collision/exhaustion/unfairness attacks FHSS techniques [70,71]

Data transit attacks Data encryption algorithms [72,73]

Routing and DoS Attacks Ingress filtering and IDS solutions [65,74]

Data transit attacks
Compressed transport protocols (for
instance DTL) [72]

Threats to neighbor discovery protocol
(IPv4/IPv6)

Use of IPsec, SEND protocols [75]

Sending control flags that synchronize
endpoints

Message authentication [77]

System flooding during the SYN
handshaking phase

Optimizations in transport layer apply
network filtering [79]

Data transit attacks, scalable key
management

Secure MQTT, ABE algorithm [81]

SCADA modbus attacks
Intrusion detection and prevention
system [106,107]

4

Supply chain attacks
A cyber-attack that seeks to
damage an industry or
organization by targeting
less-secure elements in the
supply chain.

Backdoors installation
Very hard to detect

View the ecosystem from a supply chain
viewpoint and control the risk [87]
Self-adapting supply chain system with
artificial intelligence (AI), machine learning
(ML), and real-time intelligence for
predictive cyber risk analytics [88]

5

Systems Attacks
Unauthorized access into an
industrial system in order to
cause harm.

Man-in-the-Middle attacks
Mechanically control the dynamically
rearranging centrifugation, or
reprogram the complex programmable
logic controller (PLC) devices in order
to speed up or slow down
their operations

System logs modelling [90]
Deep learning smart contracts for the security
and functionality of industrial applications,
providing a decentralized, reliable,
peer-to-peer network for communication
between SCADA devices [90]
Hybrid network anomaly and intrusion
detection approach based on evolving
spiking neural network classification [108]
CUmulative SUM (CUSUM) algorithm [101]
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Among the threats discussed, the supply chain attacks are becoming a serious concern,
because significant factors like complexity and stealth do not provide easy solutions [109].
To mitigate these types of attacks, usually risk management approaches are utilized. An-
other major drawback is the fact that older industrial systems, which in most cases do not
have security as a prerequisite in their construction specifications, are turning points of
the overall security of the system, significantly increasing the overall risk of attacks, even
if access control or encryption techniques are added in them [110,111]. In addition, the
standardization and harmonization procedures with the existing institutionalized stan-
dards raise serious concerns, as most of the existing IIoT systems have a high degree of
dependence on their development company, which creates problems of rearrangement or
adaptation of their mechanisms, such as functions that they include or can support [7].

Furthermore, due to the real-time operation and development of the IIoT [88,90,94],
the management of data with time difference, taking into account correlations and inter-
dependencies from other devices that may be included in the data flow sequence, creates
additional requirements in the ways of ensuring accuracy and integrity of information. The
encryption [102] and key management techniques that have been proposed and used in the
IIoT environment, while providing strict specifications, lag behind in the implementation
of mechanisms that will be executed quickly and without much complexity, so that they
can be used by low-resource devices.

Finally, another important conclusion drawn from the use of most of the machine
learning methods presented in this study is the fact that only statistics on the operation of
devices or network traffic are used [96,104] with the result that smoothing is ineffective, as
the parameters trained do not include a variety of elements from different usage or behavior
parameters of the overall system. The problem stems from the erroneous assumption that
the original model and all its updated replicates had similar feature distributions, and
therefore the current statistics could be shared with all the intelligent learning inner loop
updates. Obviously, this hypothesis is not correct. A better alternative, which was applied
to the proposed method, is to store statistics during steps and to read the optimization
parameters step by step for each of the internal loop iterations.

5. Conclusions

Given the growing complexity of threats in the ever-changing environment of the
Industrial IoT and the parallel weakness of traditional security systems to detect seri-
ous threats of escalating depth and duration, it is necessary to acknowledge the risks
that threaten the specific infrastructures and provide confidentiality of industrial infor-
mation [110]. Similarly, while there is a risk that cybercriminals may gain access to the
production process, with serious, perhaps incalculable consequences, most industrial com-
panies seek security know-how in order to secure their infrastructure. It should be noted
that IIoT architectures, and industrial systems in general [5,6,13,90], need a different kind
of protection from standard networks, as conventional security solutions, such as virus
scanners or conventional firewalls, do not meet industry standards and requirements.

In this study, a thorough description of attacks against Industrial IoT systems was
carried out, taking into account the most important features and vulnerabilities that they
incorporate, while at the same time a thorough analysis of indicative solutions against these
vulnerabilities, as proposed in the most recent literature. In this context, it is a validated
reference framework and an indicative scientific presumption for the identification and
assessment of risks related to the ever-evolving industrial environment.

One element that could be considered in the direction of the future expansion of this
research is the investigation of unconventional methods of attacks or advanced methods of
combination methodology of unknown attacks such as zero-days attacks. Additionally, an
important development in this study, concerns the bibliographic investigation of methods with
possibilities of self-improvement and self-adaptation to new unknown threats in IIoT systems.
Finally, the research could be expanded by the search for special protection techniques against
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the physical security of IIoT devices, from malicious configuration of mechatronic subsystems
that are part of this network, with the aim of their exploitation by third parties.
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