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Abstract: Smart devices are used in the era of the Internet of Things (IoT) to provide efficient and
reliable access to services. IoT technology can recognize comprehensive information, reliably deliver
information, and intelligently process that information. Modern industrial systems have become
increasingly dependent on data networks, control systems, and sensors. The number of IoT devices
and the protocols they use has increased, which has led to an increase in attacks. Global operations
can be disrupted, and substantial economic losses can be incurred due to these attacks. Cyberattacks
have been detected using various techniques, such as deep learning and machine learning. In this
paper, we propose an ensemble staking method to effectively reveal cyberattacks in the IoT with
high performance. Experiments were conducted on three different datasets: credit card, NSL-KDD,
and UNSW datasets. The proposed stacked ensemble classifier outperformed the individual base
model classifiers.

Keywords: Internet of Things (IoT); fraud; cyberattack; machine learning; deep learning;
ensemble; stacking

1. Introduction

Technology has become an integral part of our lives. Our reliance on technology,
especially the Internet, is becoming more critical with the rapid advancements that make
technology and the Internet interfere in every aspect of our lives, and this increased
the attention toward Internet-based technologies, especially the Internet of Things (IoT).
The IoT allows connected devices to communicate and interact for a specific purpose
without the need for human intervention [1]. These devices include a variety of properties
and qualities that facilitate machine-to-machine interactions, paving the way for a wide
range of applications and technologies to arise [2]. Because of its ability to make people’s
lives easier, give better experiences for customers and organizations, and improve job
autonomy, the Internet of Things has become a hot topic in the last decade. Despite
all of these advantages, the IoT is challenged with several constraints and barriers that
could hinder its power to reach its full potential. User security and privacy are not fully
considered when designing most IoT apps, which is a significant problem, according to the
authors of [3]. There are two types of attacks in IoT systems: passive and active. Passive
attacks do not interfere with information and are used to extract sensitive data without
being identified. Active attacks target systems and carry out malicious acts that compromise
the system’s privacy and integrity.

Since IoT nodes and devices are expected to support most payments, fraud attacks
are among the most common. Financial fraud has become a severe problem with the rapid
growth of e-commerce transactions and the development of IoT applications. According
to the authors of [4], 87 percent of businesses and merchants allow electronic payments.
This percentage will rise with mobile wallets and the ability of IoT devices to conduct
payments, making systems more vulnerable to fraud attacks. Fraud in electronic payments
can occur in several ways, but unauthorized access to a certification number or credit
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card information is the most common. Fraud involving credit card access can either occur
physically by stealing the card and using it to make fraudulent purchases or by virtually
accessing the card or payment information and making fraudulent transactions. Virtual
credit card fraud is most common in IoT environments, where attacks do not require
the card to be physically present. Attackers are constantly looking for new ways to gain
information such as verification codes, card numbers, and expiration dates to conduct
fraudulent transactions, mandating the development of systems and models that can detect
and prevent fraud.

The problem of cyber and fraud attacks can lead to immeasurable damages. More
than 22 billion IoT devices are expected to be connected to the Internet in the next few
years, making it critical to find ways and develop models to provide secure and safe IoT
services to customers and businesses [5]. Thus, various machine learning and deep learning
models have been introduced to detect fraud and malicious attacks. Some models use
ensemble learning, which combines multiple classifiers in aggregate to provide better
overall performance compared with the used baseline models. Existing solutions were
analyzed, and the main limitations found were the lack of validation of the proposed
solutions and the uncertainty in generalization of the new data. Hence, this paper presents
a novel stacked ensemble model that uses several machine learning models to detect
different cyberattacks and fraud attacks efficiently. In our stacked ensemble approach,
we tested multiple machine learning algorithms and used the best-performing as well as the
worst-performing models to examine the improvement in performance when integrating
the baseline models in our stacked ensemble algorithm. Our method combines different
algorithms’ strong points and skills in a single robust model. In this way, we ensure that we
have the best combination of models to approach the problem and improve generalization
when making detections. We used three datasets to validate our ensemble algorithm.
The experimental results for the Credit Card Fraud Detection, NSL-KDD, and UNSW
datasets show that the proposed stacked ensemble classifier enhanced generalization and
outperformed similar works in the literature.

This paper is organized as follows. Section 2 discusses the related work. The stacking
methodology is discussed in Section 3. The experimental results are shown in Section 4.
Finally, Section 5 concludes the paper with a discussion on future directions.

2. Related Work
2.1. IoT Layers

Developing an IoT architecture, a framework for various hardware services, makes it
possible to create a link and provide IoT services everywhere. There are primarily three
layers in IoT architecture: perception, application, and network [6,7].

2.1.1. Perception or Physical Layer

The IoT architecture begins with a physical layer and a medium-access control layer,
forming the perception layer [8]. The physical layer mainly deals with hardware, sensors,
and devices that share and exchange data using various communication protocols, such as
RFID, Zigbee, or Bluetooth. Physical devices are linked to networks in the MAC layer to
enable communication [9].

2.1.2. Network Layer

IoT systems rely on the networking layer to transmit and redirect data and informa-
tion through various transmission protocols. Local clouds and servers store and process
information in the network layer and between the network layer and the next layer [10].

2.1.3. Application or Web Layer

The third layer of IoT systems is where users receive services through mobile and web
applications. Considering the recent trends and uses of intelligent things, the Internet of
Things has numerous applications in today’s technologically advanced world. Thanks to
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the IoT and its infinite applications, living spaces, homes, buildings, transportation, health,
education, agriculture, business, trade, and even energy distribution have become more
intelligent [7].

2.2. Classification of Attacks

Cyberattacks and physical attacks are the two main categories of IoT security threats.
In a cyberattack, hackers manipulate the system to steal, delete, alter, or destroy information
from the users of IoT devices. On the other hand, a physical attack damages IoT devices
physically [11]. In the following subsections, various types of cyberattacks are discussed in
the three primary layers of the IoT [12–14]. Some common IoT attacks at different layers
are shown in Figure 1:

1. DoS attack: Denial of Service attacks (DoS attacks) disrupt system services by creating
multiple redundant requests. DoS attacks are common in IoT applications. Many of
the devices used in the IoT world are low-end, leaving them vulnerable to attacks [15].

2. Jamming attacks: Jamming attacks interfere with communication channels and are
a subset of DoS attacks. Wireless communication is disrupted by incoming signals,
causing the network to be overloaded and affecting the users [16,17].

3. Network injection: Hackers can use this attack to create their device, which acts as a
sender of IoT data and sends data like it is part of the IoT network [13].

4. Man in the middle attacks: In this scenario, attackers are trying to be a part of the
communication system, where the attack is directly connected to another device [16].
IoT network nodes are all connected to the gateway for communication. All devices
which receive and transmit data will be compromised if the server is attacked [17].

5. Malicious input attacks: In this case, an attacker can inject malicious scripts into an
application and make them available to all users. Any input type may be stored in a
database, a user forum, or any other mechanism that stores input. Malicious input
attacks lead to financial loss, increased power consumption, and the degradation of
wireless networks [18].

6. Data tampering: Physical access to an IoT device is required for an attacker to gain
full control. This involves physically damaging or replacing a node within the device.
The attackers manipulate the information of the user to disrupt their privacy. Smart
devices that carry information about the location of the user, fitness levels, billing
prices, and other essential details are vulnerable to these data tampering attacks [19].

7. Spoofing and Sybil attacks: The primary purpose of spoofing and Sybil attacks in
IoT systems is to identify users and access the system illegally. We find that TCP/IP
cannot provide a strong security protocol, making IoT devices particularly vulnerable
to spoofing attacks [20,21].

8. Data leakage: Devices connected to the Internet carry confidential and sensitive infor-
mation. If the data are leaked, the information could be misused. When an attacker is
aware of an application’s vulnerabilities, the risk of data stalling increases [22].

9. Malicious code: Malicious code can be uploaded if the attacker knows a vulnerability
in the application, such as SQL injection or fake data injection. Code that causes
undesired effects, security breaches, or damage to an operating system is maliciously
inserted into a software system or web script [23].

10. Reverse engineering model: An attacker can obtain sensitive information by reverse
engineering embedded systems. Cybercriminals use this method to discover data left
behind by software engineers, like hardcoded credentials and bugs. The attackers use
the information once they have recovered it to launch future attacks against embedded
systems [22].
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Figure 1. Cyberattack classification based on IoT layers.

2.3. Cyberattack Detection in IoT Systems

This section discusses several machine learning and deep learning methods as po-
tential solutions to detect cyberattacks for IoT applications. Tables 1 and 2 provide an
overview of the machine learning and deep learning techniques used in the IoT to detect
cyberattacks, respectively.

Table 1. A summary of machine learning methods for cyberattack detection.

Ref. Method Application Dataset Evaluation Metric Limitation

[23] Semi-Supervised ML
(Latent Variable Model)

Recommender
Systems (Sequential

Attack)

MovieLens,
BookCrossing,

LastFM
Area under the curve

The accuracy of the
proposed method is

not shown

[24] Various Supervised ML
Intrusion Detection

System for
Smart Homes

Network activity
data

F-measure, precision,
and recall

Overall accuracy is
not measured

[25] Cognitive Machine
Learning

Cyberattack
Detection in
Healthcare

Information from a
trusted device

Prediction ratio,
accuracy,

communication cost,
delay, and efficiency

Evaluation methods
were not clear

[26] Artificial Neural
Network

Cyberattack
Detection for Smart

Cities
UNSW NB15

Accuracy, recall,
precision,

and F1 score

Methodology used
on a partial dataset

[27] Machine Learning

Cyberattack
Detection for
Multisource
Applications

MSRWCS Accuracy Not enough
validation metrics

[28] Machine Learning
(Fuzzy Clustering)

Cyberattacks on
IoT Networks UNSW-NB15 Classification rate Not enough

validation metrics

[29] Semi-Supervised
Algorithm

Detecting Attacks in
IoT Systems with

Distributed Security
NSL-KDD Accuracy, PPV,

sensitivity
No testing on

real-world data

Table 2. A summary of deep learning methods of cyberattack detection.

Ref. Method Application Dataset Evaluation Metric Limitation

[30]

Two-Level Decision
Tree-Based Deep
Representation

Learning and Deep
Neural Network

Cyberattack
detection and

attribution in gas
pipeline and water
treatment systems

SWaT and
Mississippi State
University Gas
Pipeline Data

Accuracy, recall,
precision,

and F-score
High computational cost
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Table 2. Cont.

Ref. Method Application Dataset Evaluation Metric Limitation

[31] Convolutional Neural
Network (CNN)

Multi-Classifier
Intrusion Detection

System (MCIDS)
UNSW-NB15 Accuracy and false

positives
No evaluation

data shown

[32]
Fibonacci p-Sequence

and Key-Based
Numeric Sequence

Tampered data
detection in water

distribution system
NSL-KDD

Accuracy, precision,
recall, and F1

measure

No information about
the shallow model

[33] Deep Learning Model Attack detection in
social IoT NSL-KDD Precision, recall, F1

score, and F2 score
Data are limited to a

single region

[34]

Systemic Neural
Network with

Autoencoder as
Feature Extractor

Cyberattack
detection for cloud
dew computing in

automotive IoT

NSL-KDD Accuracy Not enough
validation metrics

[35]
Correlated Set

Thresholding on Gain
Ratio (CST-GR)

Lightweight
intrusion detection

in IoT systems
BoT-IoT Accuracy and

processing time
Can only detect three

kinds of attacks

[36] Convolutional Neural
Networks (CNNs)

Intrusion detection
and classification in

IoT environment
NSL-KDD

K-fold
cross-validation, TP,

TN, FP, and FN

No testing results in
real-world applications

Anthi et al. [24] developed a three-layer intrusion detection system (IDS) for smart
homes using supervised learning. The model detects malicious packets through collab-
oration among the three layers in the proposed IDS architecture. To secure healthcare
data, Al Zubi et al. proposed the cognitive machine learning-assisted attack detection
framework (CML-ADF) [25]. They used Extreme Machine Learning (EML) as the detection
model to improve the accuracy, attack prediction, and efficiency compared with other
existing methods. Another study [26] proposed an attack and anomaly detection system to
detect cybersecurity attacks in IoT-based smart city applications. Another study proposed
an attack detection framework for recommender systems by developing a probabilistic
representation of latent variables for presenting multi-model data [23]. Comparing the
proposed framework against the current models showed its superiority in detecting anoma-
lies in recommender systems. One study introduced a linear classification incremental
algorithm to classify cyberattacks from multiple sources with high accuracy and low cost.
In [27], the authors used an incremental piecewise linear classifier on a multisource set of
real-world cyber security data to identify cyberattacks and their sources. Cristiani et al.
presented an intrusion detection system called the Fuzzy Intrusion Detection System for IoT
Networks (FROST) for preventing and identifying various types of cyberattacks. Despite
this, incorrect classification rates were high and needed to be improved [28]. On the other
hand, Rathore et al. [29] introduced a new detection mechanism with an ELF-Based Fuzzy
C-Means (ESFCM) algorithm that utilized the fog computing paradigm. This method can
detect cyberattacks at the network edge and tackles the issues of distribution, scalabil-
ity, and low latency. In another study, Jahromi et al. [30] offered a two-level ensemble
assault detection and attribution framework for industrial control systems. The first level
uses deep representational learning to detect imbalances in the control system, whereas
the second level uses DNNs to assign the observed attacks. Singh et al. [31] created a
Multi-Classifier Intrusion Detection System (MCIDS) based on a deep learning algorithm
to detect reconnaissance, analysis, DoS, fuzzers, generic, worms, and shellcode attacks with
great accuracy. Battista et al. [32] solved the problem of tampering data in communication
networks compromising cyber-physical systems. They used a novel method to protect the
control system by coding the output matrices using Fibonacci p-sequences and a key-based
numeric sequence to construct a secret pattern. In another study, Diro et al. [33] suggested
using a deep learning algorithm to uncover hidden patterns in incoming data to prevent as-
saults in the social Internet of Things. They believe this model is more accurate at detecting
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attacks than traditional ML models. Moussa et al. [34] identified cyber assaults during data
transfer between the cloud and end user dew devices in the automotive industry. To ac-
curately determine the described assaults, they employed a modified version of a stacked
autoencoder. In another article, Soe et al. [35] created a lightweight intrusion detection
system (IDS) based on the logistic model tree (LMT), random forest (RF) classifiers, J48,
and the Hoe ding tree (VFDT). They devised a novel technique known as correlated-set
thresholding on gain ratio (CST-GR), which employs just the features required for each
cyberattack. Lastly, Al-Haija et al. [36] created a machine learning-based detection and clas-
sification system called the IoT-Based Intrusion Detection and Classification System using
a Convolutional Neural Network (IoT-IDCS-CNN). Feature engineering, feature learning,
and traffic categorization are the three subsystems that make up the developed algorithm.

2.4. Fraud Attack Detection in IoT Systems

Mishra et al. [37] introduced a k-fold-based logistic regression technique for fraud
prevention and detection in IoT environments. Before implementing the logistic regression
algorithm, multiple folds of bank transactions are created using the k-fold method. The au-
thors in [38] presented an approach for anomaly detection in IoT economic environments.
The model detects malicious activities like Remote-to-Local (R2L) attacks by identifying
suspicious and fraudulent behaviors through a two-tier module that utilizes the certainty
factor of the K-Nearest Neighbor and Naïve Bayes classifier. Another paper [39] presents a
different approach to accurately detecting fraud in IoT systems which uses artificial neural
networks and machine learning models to process a large amount of financial data and
detect fraud. In [40], the authors implemented a Node2Vec algorithm to learn and represent
financial network graph features in a low-dimensional dense vector. This allowed the
proposed model to accurately predict and classify data samples from big datasets with
neural networks efficiently and accurately. A deep convolution neural network model
that detects fraud is categorized into three stages [41]: before model application, which
includes processing the data, model application, which applies the convolutional neural
network, and the post-model application, where the output is received. Another study [42]
presented an unsupervised self-organized mapping algorithm trained to produce a dis-
cretized representation of the input training samples with lower dimensions. This model
is built on the behavior of cardholders. The work in [43] proposed a novel approach that
uses decision trees to combine Hunt’s algorithm and Luhin’s algorithm. The credit card
number is validated using Luhn’s algorithm. The correct billing address is checked through
the address matching rule and checks if it matches the shipping address. If the shipping
and billing addresses match, then the transaction is given a high probability to be genuine.
In [44], the authors used several data mining techniques such as Support Vector Machines,
Feedforward Neural Networks, Logistic Regression, Genetic Programming, and Probabilis-
tic Neural Regression. A system was developed in [45] that used agglomerative clustering
of fraudulent group orders that belonged to the same category. A comparative analysis of
fraud detection applications is presented in Table 3.

Table 3. Comparative analysis of fraud detection applications.

Ref. Method Application Dataset Evaluation
Metric

Metric
Value Limitation

[37]

Logistic
Regression and
k-Fold Machine

Learning

Fraud prediction
in IoT smart

societal
environments

2015 European Data
Accuracy,

recall mean, and
recall score

(%97.0),
(%61.90),
(%96.11)

High
computational cost
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Table 3. Cont.

Ref. Method Application Dataset Evaluation
Metric

Metric
Value Limitation

[38]

Two-Tier
Dimension

Reduction and
Classification

Model

Anomaly
detection in
financial IoT

environments

NSL-KDD dataset
Detection rate

and false
alarm rate

(%84.86),
(%4.86)

Prone to missing
information

[39]

Machine
Learning and

Artificial Neural
Networks Model

Fraud detection
in financial IoT
environments

Real transaction data
in IoT environment

in Korea
F-measure (%74.75) Not enough

validation metrics

[40] Node2vec
Fraud detection
in telecommuni-

cations

Fraud samples
obtained from a large

Chinese provider

Precision,
recall,

F1-score, and
F2-score

(%75),
(%65),

(%70), (%68)

Data are limited to
a single region

[41] CNN Fraud detection
in credit cards

Real-time credit card
fraud data Accuracy (%96.9) Not enough

validation metrics

[42] Self-Organized
Map

Fraud detection
in credit cards

Single credit
card data NA No performance

evaluation

[43,
44]

Decision Tree
Model

Fraud detection
in credit cards

Single credit
card data NA No performance

evaluation

[45] Clustering Fraud detection
in e-commerce

Real-world orders
placed on an

e-commerce website

Recall,
precision, and

FPR

(%26.4),
(%35.3),
(%0.1)

Falsely classifies
cancelled orders

As can be seen in the comparative analysis tables for both the cyber and fraud attack
detection applications, the main limitations are not using any or using only one validation
metric and using a single dataset. This decreases the credibility of those applications, as it
is not made clear how the models perform with the test data. Additionally, using a single
dataset does not validate the model’s performance, as cyberattack and fraud data are very
dynamic with high variety, making it possible that a model performs well on one dataset
and does not perform well on another dataset that contains different or more features.
In addition, most of the work in the literature tuned a single model to achieve the best
performance on the test data. We perceived that as a gap where we could use several
high-performance models to create a stronger model or combine several weak models to
enhance their performance through our proposed stacked generalization algorithm.

3. Methodology

Stacking is a machine learning algorithm that combines different machine learning
models to make predictions. Stacking exploits the fact that machine learning algorithms can
have different skills for the same problem. Therefore, instead of trusting a single model to
make predictions, stacking allows us to use different models to build a single robust model
based on all the individual base models. Stacking ensemble models consist of the base
models and the meta-learner. The base models are individual machine learning models that
fit and make predictions on the training data. The second layer of the stacking ensemble
model is the meta-learner. The meta-learner takes input from the base models’ output
and learns how to make new predictions based on the predictions of the base models.
The flowchart of our stacking algorithm is presented in Figure 2.
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Figure 2. The stacking algorithm flowchart.

We tested several machine learning algorithms as base models, including K-Nearest
Neighbor (KNNs), Decision Trees (DTs), Gaussian Naive Bayes (GB), Support Vector
Machines (SVMs), AdaBoost (AB), Gradient Boosting (GB), Random Forest (RF), Extra
Trees (ET), Multi-Layer Perceptron (MLP), and XGboost classifier. To choose our base
models, we tested multiple machine learning algorithms on a credit card fraud dataset and
two cyberattack data sets separately. On each dataset, the performance of each model was
recorded, and the experiment was conducted with the best-performing models and the
worst-performing models to examine the performance change when using the stacking
ensemble models. Moreover, we experimented with different meta-learners to identify if
this resulted in any change in performance and used the best performing meta-learner on
each data set. The results of several machine learning algorithms, including MLP Classifier,
XGBoost, and Gradient Boosting, were recorded, and the fastest and most accurate model
was selected for each experiment as the meta learner.

In our stacking method, the computational complexity depends only on the base model
with the highest computational time (i.e., Tmax). The computational cost of the stacking
model is O(Tmax + t), where t is the additional linear time taken by the meta-learner. Thus,
the overall stacking model scales well for large-scale datasets.

Preprocessing

We followed similar procedures to preprocess all datasets. First, the content of each
dataset was visualized and analyzed to know the number of features, records, null val-
ues, and categorical features. The correlation between features was analyzed to remove
redundant features from the datasets. We encoded the categorical features and applied
normalization to put the features on the same scale. We had to split the data into training
and testing for the fraud dataset using the 75–25% split, while the cyberattack datasets were
already split. Moreover, the fraud detection dataset was highly imbalanced, in which the
fraud class was significantly less than the non-fraud class in the dataset. Hence, we used
undersampling to balance the number of classes in the dataset. We used 10-fold cross-
validation when preparing the train set. The fold predictions from the base models were
used to train the meta-model on the training datasets.

4. Experimental Results
4.1. Datasets

We trained our models using three different datasets. The ensemble model for cyberat-
tack detection was trained on two different datasets: NSL-KDD and UNSW-NB15. On the
other hand, the fraud detection ensemble model was only trained with one dataset due
to the unavailability of any other dataset with sufficient records to train a complex model.
All the datasets used in this paper are discussed below.
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4.1.1. NSL-KDD

The NSL-KDD dataset comprises records of Internet traffic viewed by a rudimentary
intrusion detection network. These records are the phantoms of traffic seen by a genuine
IDS. The dataset has 43 attributes per record, with 41 relating to the traffic input and the
remaining 2 being labels. One label indicates whether it is normal or an attack, and the
second one indicates the traffic input’s severity. The NSL-KDD dataset is an improved
version of the original KDD’99 dataset, which contained many redundant records. For the
ease of the users, the NSL-KDD dataset has been split into the training and test sets by the
authors. The train set comprises 125,973 records, and the test set contains 11,272 records.
These data were collected as part of the Knowledge Discovery and Data Mining competition
in 1999 to collect real network traffic data [46]. Moreover, the NSL-KDD train and test sets
have a reasonable quantity of records, making it possible to execute the tests on the entire
set without having to pick a tiny sample at random. Therefore, the assessment outcomes of
various research projects will be uniform and easily comparable.

4.1.2. UNSW-NB15

The UNSW-NB15 dataset comprises raw network packets generated using the IXIA
PerfectStorm tool in the University of New South Wales Canberra’s Cyber Range Lab to
create a combination of real modern regular activities and synthetic recent attack behaviors.
In it, 100 GB of raw traffic was captured using the tcpdump software. Fuzzers, analysis,
backdoors, DoS, exploits, generic, reconnaissance, shellcode, and worms are among the
nine types of attacks in this dataset [47]. There are a total of 2,540,044 records available in
this dataset. A subset of the data was used as the training set, including 175,341 records.
Another subset was configured as the testing set comprising 82,332 records. These sets
contain records representing normal data and various types of attacks.

4.1.3. Credit Card Fraud Detection Dataset

This dataset covers credit card transactions performed by European cardholders in
September 2013. There are 492 fraudulent records out of 284,807 transactions over 2 days
in this dataset. Since it is a very unbalanced dataset, with fraudulent records accounting
for just 0.172 percent of all transactions, we needed to preprocess the steps to balance the
records between both classes. These data were collected as part of a significant data mining
and fraud detection research cooperation between Worldline and the Machine Learning
Group at Université Libre de Bruxelles (ULB) [48]. Due to data confidentiality issues,
the data were transformed using PCA analysis and only contained the numerical values
of principal components, except for two columns (“Amount” and “Time”). The “Time”
column shows the elapsed time of each transaction from the first transaction, whereas
the “Amount” column contains the transaction amount, which can be helpful for cost-
sensitive analysis. The actual attributes and transactions data were inaccessible due to
their sensitivity.

4.2. Experimental Results

Table 4 represents the results for credit card fraud detection using ensemble stacking.
The experiments were performed based on the top and poor performance of machine learn-
ing algorithms. We built different baseline models and performed 10-fold cross-validation
to filter the top performing and poor performing baseline models to be used in level 0 of the
stacked ensemble method. Various machine learning algorithms were chosen for different
datasets as baseline models. For example, the top-performing machine learning algorithms
for credit card fraud detection were Random Forest, XGBoost, MLP, and Gradient Boosting
classifiers. However, for the NSL-KDD and UNSW datasets, the top-performing ML algo-
rithms were Decision Tree, XGBoost, and Random Forest classifiers. The training time was
also calculated for each individual model and ensemble stacking, as shown in Tables 4–7.
Figure 3 illustrates the ROC curves for the NSL-KDD dataset, and Figures 4 and 5 illustrate
the ROC curves for the UNSW, and credit card dataset, respectively. Tables 4–7 showed
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higher training times for the top-performing ML algorithms than the low-performance
baseline models. The ROC curve and accuracy were improved, but which method is most
appropriate for a particular problem will depend on its circumstances. In the case where
time is of utmost importance, we can use faster but poor-performing ML algorithms, and in
the case where performance is of the utmost importance, we can use the top-performing
ML algorithms.

Table 4. Credit card fraud detection using ensemble stacking.

Model Accuracy Precision Sensitivity Specificity F1 Score Training Time (Second)

Ensemble Stacking (Poor) 0.934959 0.968504 0.911111 0.963964 0.938931 8.42

Extra Trees Classifier 0.906504 1.000000 0.82963 1.000000 0.906883 8.34

Decision Tree Classifier 0.886179 0.879433 0.918519 0.846847 0.898551 0.19

Gaussian NB 0.914634 0.983051 0.859259 0.981982 0.916996 0.05

Ensemble Stacking (Strong) 0.930894 0.968254 0.903704 0.963964 0.934866 21.71

Random Forest Classifier 0.922764 0.991525 0.866667 0.990991 0.924901 3.06

MLP Classifier 0.934959 0.96124 0.918519 0.954955 0.939394 11.86

XGB Classifier 0.922764 0.946154 0.911111 0.936937 0.928302 1.37

Gradient Boosting Classifier 0.918699 0.952756 0.896296 0.945946 0.923664 2.1

Table 5. Cyberattack detection using ensemble stacking for 20% of the NSL_KDD dataset.

Model Accuracy Precision Sensitivity Specificity F1 Score Training Time (Second)

Ensemble Stacking (Poor) 0.812819 0.804843 0.884194 0.719406 0.842655 37.95

Random Forest Classifier 0.778665 0.877789 0.708138 0.870968 0.783889 4.5

Extra Trees Classifier 0.74562 0.965017 0.571987 0.972862 0.718251 14.33

Gaussian NB 0.512752 0.542305 0.900235 0.005632 0.676864 0.89

Ensemble Stacking (Strong) 0.791306 0.965497 0.655859 0.969215 0.781112 273.84

Decision Tree Classifier 0.779774 0.966092 0.634375 0.970754 0.765857 1.32

Ada Boost Classifier 0.770016 0.932916 0.641016 0.939456 0.759898 90.96

Gradient Boosting Classifier 0.772233 0.962583 0.623047 0.968189 0.756462 12.46

Table 6. Cyberattack detection using ensemble stacking for the NSL_KDD dataset.

Model Accuracy Precision Sensitivity Specificity F1 Score Training Time (Second)

Ensemble Stacking (Poor) 0.776215 0.969723 0.626432 0.974153 0.761161 849.76

Random Forest Classifier 0.766723 0.968225 0.610224 0.973535 0.748626 22.14

Extra Trees Classifier 0.730216 0.973223 0.540949 0.980332 0.695382 67.65

Gaussian NB 0.450319 0.936634 0.036858 0.996705 0.070925 0.61

Ensemble Stacking (Strong) 0.78349 0.960398 0.646303 0.964782 0.772649 1669.04

Decision Tree Classifier 0.78868 0.969948 0.648874 0.973432 0.77757 8.71

XGB Classifier 0.794668 0.969659 0.659939 0.972711 0.785367 112.53

Random Forest Classifier 0.769029 0.968543 0.614198 0.973638 0.751705 84.79
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Table 7. Cyberattack detection using ensemble stacking for the UNSW dataset.

Model Accuracy Precision Sensitivity Specificity F1 Score Training Time (Second)

Ensemble Stacking (Poor) 0.951536 0.964738 0.959357 0.937624 0.96204 565.65

Random Forest Classifier 0.951521 0.964737 0.959333 0.937624 0.962027 69.65

Extra Trees Classifier 0.87291 0.836791 0.995659 0.65456 0.909339 94.49

Gaussian NB 0.634471 0.919672 0.470039 0.926969 0.622117 1.39

Ensemble Stacking (Strong) 0.95062 0.963758 0.95892 0.935855 0.961333 690.82

Random Forest Classifier 0.951722 0.964476 0.959939 0.937106 0.962202 155.37

XGB Classifier 0.933032 0.943711 0.952179 0.898973 0.947926 108.76

Decision Tree Classifier 0.93741 0.952274 0.949827 0.915322 0.951049 12.82
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5. Discussion

From the results in Table 4. we see that our stacked ensemble model performed
better than all the base models and could detect frauds in credit card transactions with an
accuracy of 93.5%. When comparing the two ensemble models based on strong and weak
base models, we can see that they both performed equally, with the poor base ensemble
model slightly edging out the strong base ensemble model. Moving on to the stacked
ensemble models for cyberattack detection, we can see the performance of our model
when trained with different datasets in Tables 5–7. The ensemble model trained with
20% of the NSL-KDD dataset performed better (81.28%) than the model trained with the
entire NSL-KDD dataset (78.87%). This could be due to the overfitting problem when
training with large datasets. Overfitting occurred when our machine learning model tried
to cover all of the data points in a dataset or more than the required data points. As a
result, the model began to collect noise and incorrect numbers in the dataset, reducing
the model’s efficiency and accuracy. On the contrary, the capacity of a machine learning
model to deliver an acceptable output by adapting to the provided set of unknown inputs
is known as generalization. This indicates that training on the dataset can give accurate
and dependable results. Therefore, we can conclude that the model trained on the entire
NSL-KDD dataset overfit the training data and performed poorly on the test data, whereas
the model trained on only 20% of the NSL-KDD dataset generalized well and could detect
attacks accurately when tested on unknown data. When comparing the performance of our
stacked ensemble model for cyberattack detection, we see that the UNSW-NB15 dataset
achieved higher accuracy (95.15%) than the NSL-KDD dataset (81.28%).

Overall, we observed that the stacked ensemble models based on poor base models
tended to give a higher accuracy than the ensemble model with strong base models. This
could be because, with poor base models, there is more to learn for the meta-learner from
each poor base model compared with the strong base models, since they are already very
accurate. This pattern persisted in all the experiments except for one case. In Table 6,
the ensemble stacked model with the strong base models performed slightly better than
those with poor base models. We saw the same pattern in the training time of the stacked
ensemble models. All the stacked models with poor base models had lower training
times than the ensemble models with strong base models. Upon further observation, we
concluded that the training time of the stacked ensemble model was directly correlated
to the combined training time of its base models. Since the poor base models had lower
training times than the strong base models in each case, the poor base stacked ensemble
model also had a lower training time. Lastly, we saw from the ROC curves of each stacked
ensemble model that the area under the curve (AUROC) was either higher or the same as
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all their respective base models. Hence, this proves that our stacked ensemble classifier
performed better than the classifiers we used as base models.

6. Conclusions and Future Work

Due to the rapid growth in the development and usage of the IoT, its interconnectivity
has also increased the amount of data processed [49–53], thus subjecting the application to
being vulnerable to various kinds of cyberattacks. Cyber security continues to be a serious
issue in every sector of cyberspace. Therefore, there is a strong need to protect this data
from intrusion attacks and enhance the industry detection systems to ensure the end users’
safety. Our literature review shows that cyberattacks are a significant threat in all industries
where IoT applications are deployed. Furthermore, we classified the primary attacks in the
three major layers of the IoT, followed by different state-of-the-art methods being used in
the industry today in IoT applications to detect and attribute these attacks. For this purpose,
we highlighted and discussed multiple machine learning and deep learning models and
identified their strengths and limitations. After reviewing the main methods from recent
papers, we concluded that deep learning approaches for detecting and attributing attacks
tended to perform better than traditional machine learning models. Similarly, the best
and most widely used datasets to train and test one’s model for this purpose are the NSL-
KDD and UNSW-NB15 datasets because they provide flexibility and comprise most of the
primary attacks found in the industry. Moreover, we also highlighted various methods of
detecting fraud attacks in IoT systems, because this is a growing problem in the finance
industry and needs to be addressed soon. We saw a wide range of techniques used in
this sector to detect fraud and summarized their strengths and weaknesses in Table 3.
Therefore, we have presented a unique approach in this paper to detecting cyberattacks
and credit card fraud in IoT systems. The method presented in this paper solves the
problem of cyberattack detection in network traffic and can also detect fraud in credit card
transactions with a high accuracy. Our most accurate model for cyberattack detection was
“ensemble stacking (poor) on UNSW-NB15” with an accuracy of 95.15% and training time
of 565.65 s. Similarly, our “ensemble stacking (poor) model for credit card fraud detection”
performed with an accuracy of 93.50% and training time of only 8.42 s. These results show
a significant improvement compared with most of the papers reviewed and discussed
in Section 2. We believe that using the ensemble stacking method to solve cyberattacks
and credit card fraud problems has immense potential and could be further optimized
by testing different combinations of base models and the number of folds in the model.
For future work, we would like to train our algorithm using distributed learning, which is
expected to decrease the training duration of developing our proposed model significantly.
In addition, we can test more models and analyze their performance to experiment with
whether we can construct higher-performing ensemble models. Finally, we can examine
the performance of different ensemble algorithms. Transfer learning is considered a future
direction for this research.
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