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Abstract: In recent years, the widespread deployment of the Internet of Things (IoT) applications
has contributed to the development of smart cities. A smart city utilizes IoT-enabled technologies,
communications and applications to maximize operational efficiency and enhance both the service
providers’ quality of services and people’s wellbeing and quality of life. With the growth of smart city
networks, however, comes the increased risk of cybersecurity threats and attacks. IoT devices within a
smart city network are connected to sensors linked to large cloud servers and are exposed to malicious
attacks and threats. Thus, it is important to devise approaches to prevent such attacks and protect
IoT devices from failure. In this paper, we explore an attack and anomaly detection technique based
on machine learning algorithms (LR, SVM, DT, RF, ANN and KNN) to defend against and mitigate
IoT cybersecurity threats in a smart city. Contrary to existing works that have focused on single
classifiers, we also explore ensemble methods such as bagging, boosting and stacking to enhance the
performance of the detection system. Additionally, we consider an integration of feature selection,
cross-validation and multi-class classification for the discussed domain, which has not been well
considered in the existing literature. Experimental results with the recent attack dataset demonstrate
that the proposed technique can effectively identify cyberattacks and the stacking ensemble model
outperforms comparable models in terms of accuracy, precision, recall and F1-Score, implying the
promise of stacking in this domain.

Keywords: smart city; Internet of Things; cybersecurity; anomaly detection; machine learning

1. Introduction

Internet of things (IoT) is an interconnected scheme which promotes seamless information
exchange between devices (e.g., smart home sensors, environmental sensors, automotive and road-side
sensors, medical devices, industrial robots and surveillance devices) [1]. Recently, the emergence of
the IoT has significantly increased its use in communities and services around the world, with the
number of the linked IoT devices reaching 27 billion in 2017, and the number is projected to hit about
125 billion in 2030 [2]. IoT devices use different types of services, technologies and protocols. As a
result, huge complexity will arise to maintain the future IoT infrastructures, which consequently leads
to undesirable vulnerability to the system [3,4].
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Since IoT devices are used in smart city applications, cyber-attacks can access in an unauthorized
manner the details of citizen’s everyday activities without the knowledge of the user or administrator
or reconfigure devices to an unsecured setting (e.g., in Miria botnet attack [5,6], a malware that
transforms Linux networked devices remotely). In 2019, Symantec recorded a 600% rise in attacks on
the IoT platform [7] where attackers tried to manipulate the linked nature of those devices.

Smart city applications pose several security challenges. Firstly, zero-day attacks can occur by
exploiting vulnerabilities in different protocols in smart city applications. Secondly, is it possible
to identify cyber-attacks from the network intelligently before it disrupts smart city operations?
Thirdly, the IoT devices used in smart cities are resource (e.g., memory) constrained, are typically
resource constrained, have limited onboard functionality for security operations and send captured
data to cloud servers for processing. Existing intrusion detection systems (IDS) do not take IoT devices
into account. Combining all these issues, is it is possible to design an IDS design an IDS that is tailored
for IoT networks?

The data collected from the IoT system is stored on the cloud computing environment which
has progressively advanced processors and adequate memory assets. However, the volume of data
transmitted from the IoT terminal layer to the cloud has increased rapidly with the recent increases in
IoT devices and this causes delay and congestion problems in the cloud. Fog computing is designed as a
possible solution to these problems [8]. The fog layer devices can share a greater amount of computing
load originally transferred to the cloud. This reduces energy consumption, network traffic and latency
and removes the data storage and transmission problem. It also aims to push the computation process
near the edge device, enabling a quick response to the IoT-based smart city applications. The benefits
of cyber attack detection in the fog layer are two folds [9]. Firstly, the ISP or network administrator can
take necessary steps to prevent large damage if attacks (e.g., infected devices) are identified early in
the fog layer. Secondly, it will not interrupt the normal flow of urban life.

In the literature, some techniques (e.g., signature base techniques) have been proposed to resolve
the above-mentioned issue. In the signature-based technique, a collection of previously produced
signatures (attacks) are checked against the current suspicious samples [10]. If the signature extraction
method is not fully able to capture the distinct feature of attacks or attack families, it may lead to
misdetection of an attack or produce false alarm [11]. This technique is not suitable is not suitable for
identifying unknown attacks and suffers from high processing overhead. Machine learning techniques
can detect attacks during runtime and take less processing time compared to other techniques.

In this paper, we explore a machine learning-based attack and anomaly detection technique
in IoT-based smart city applications. This technique is able to identify infected IoT devices which
is a major challenge in the cloud computing environment [12,13]. The technique is based on the
implementation of a training model in the distributed fog networks that can learn intelligently from
training near to IoT layer devices and detect attack and anomaly.

A single classifier is often insufficient to develop an effective IDS, motivating researchers to
build an ensemble model of classifiers. Taking a multitude of models into account, ensemble methods
combine those models to generate one final model. Research has demonstrated that the ensemble model
produces better performance compared to the single classifier [14]. However, there are many factors
(e.g., feature selection and base classifier) that need to be considered carefully to ensure enhanced
performance by the ensemble method. The most suitable ensemble techniques are bagging [15],
boosting [16] and stacking [17]. In this paper, we use individual classifiers as well as ensemble
techniques to achieve better IDS performance in terms of different evaluation metrics such as accuracy,
precision, recall and F1-Score.

The contributions of this paper are summarized as follows:

• We explore a machine learning based attack and anomaly detection technique through analyzing
network traffic in distributed fog networks over the IoT-based systems.

• Existing works have generally used signature-based techniques to detect attacks and anomalies.
These techniques suffer from high overheads and are vulnerable to known threats. In this paper,
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we explore the feasibility of ensemble based learning as compared to single model classifiers for
identifying cyberattacks in IoT-based smart city applications. Further, we consider a multi-class
classification setting as compared to binary class prediction considered in most relevant works.
On top of these, we consider an integration of feature selection and cross validation, which
even common machine learning approaches have not been well focused in existing literature for
this domain.

• Extensive evaluation incorporating the above integrations shows that the ensemble of machine
learning-based classifiers works better in accurately identifying attacks and their types than
single classifiers.

The paper is organized in the following sections. Section 2 discusses the related works. Section 3
discusses the IoT-based Smart city framework. Section 4 presents the proposed anomaly detection
model. Sections 5 presents the experimental results. Section 6 gives concluding remarks.

2. Related Works

In the literature, many studies have been introduced to enhance the IDS performance. In this
section, we highlight the recent notable works that have used machine learning techniques as well as
ensemble methods.

2.1. IDS Based on Machine Learning Techniques

In [18], Pahl and Aubet introduced a machine learning based technique that can predict IoT service
behavior by only observing the communication between services in a distributed multi-dimensional
IoT microservices in an IoT site. This technique continually learns microservice models inside in an
IoT site where K-means and BIRCH based clustering techniques [19] are applied. In this case, if the
cluster centers are within the three times standard deviation gap, they are grouped into the same
one. The model revises cluster formation using an online learning communication model. The overall
accuracy for anomaly detection by this technique is 96.5% with 0.2% false positive rate.

In [20], a joint trust light probe based defense (TLPD) mechanism was introduced to detect On
and Off attack in an industrial IoT site, originated from malicious network nodes. Here, the On
and Off attack meant a malicious node might target the IoT network when it is in an On or Off state.
The framework was designed for the identification of anomalies using a light probe routing mechanism
with the measurement of confidence estimation for each neighbor node.

Diro and Chilamkurti [10] proposed a deep learning model to detect distributed attacks in a
social IoT network where they compared the performance of the deep model with a shallow neural
network using the NSL-KDD [21] open source dataset that captures attack data in the distributed and
centralized system. They evaluated the performance of the deep and shallow models with two-class
(normal and attack) and four-class (normal, DoS, Probe, R2L and U2R) categories. For binary-class and
multi-class identification, their model achieved accuracies of 99.2% and 98.27% as well as 95.22% and
96.75%, respectively, for the deep and shallow models.

In [22], Pajouh et al. proposed a two-stage dimension reduction and classification technique to
detect anomaly in IoT backbone networks where they detected low frequency attacks such as user
to root (U2R) and remote to local (R2L) attacks from NSL-KDD dataset because of their detrimental
consequences. They used principal component analysis (PCA) and linear discriminate analysis (LDA)
feature extraction method to reduce the feature of the dataset and then used naïve bayes and K-nearest
Neighbor (KNN) to identify anomaly and achieved 84.82% identification rate.

In [23], Kozik et al. introduced an attack detection technique that used extreme learning machine
(ELM) [24] method in the Apache Spark cloud architecture. ELM architecture and properties allow for
efficient computation and analysis of the Netflow formatted data that are collected from the fog computing
environment. This work concentrated on three main cases in IoT systems—scanning, command and
control and infected host—and attained accuracy levels of 99%, 76% and 95%, respectively.
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In [25], Hasan et al. proposed a data analysis-based method to detect attacks on IoT infrastructure
which overcomes the data processing overhead of signature based techniques. Their proposed
solution is able to identify and prevent the systems from attacks when it faces any irregular behavior.
They performed their experiment on the publicly available IoT dataset [18]. They explored several
machine learning techniques such as DT, RF, LR, SVM and ANN, among which RF classifier yielded
the best results.

In [26], a random forest-based anomaly detection model was proposed that can detect infected
IoT devices at distributed fog nodes. Experimenting with the UNSW-NB15 dataset [27], their binary
(normal and attack) random forest (RF) classifier considered only 12 out of 49 features from the dataset.
These 12 features were extracted by using ExtraTreeClassifer [28]. Performance analysis showed that
they achieved 99.34% accuracy with 0.02% false positive rate.

In [29], a deep learning model was studied on NSL-KDD, UNSW-NB15, WSN-DS [30] and CICIDS
2017 [31] datasets to identify cyberattacks. They concluded that the deep learning model performs
better compared to the other machine learning techniques.

2.2. IDS Based on Ensemble Techniques

In the literature, several ensemble methods based IDSs are proposed to enhance accuracy over
base classifiers. In [32], ANN and Bayesian net based ensemble method was proposed where they
used gain ratio (GR) feature selection technique and performance was evaluated on KDD’99 [33] and
NSL-KDD datasets where ensemble methods achieved 99.42% and 98.07% accuracy, respectively.

In [34], Haq et al. proposed an ensemble method that combines Naive Bayes, Bayesian Net
and decision tree classifier. They extracted the common features by using Best First Search, Genetic
and Rank Search feature selection techniques. The ensemble technique produced 98% true positive
rate when tested with 10-fold cross validation method. Gaikwad et al. [35] introduced a bagging
ensemble method where they used REPTree as a base classifier. Their model achieved 81.29% accuracy
on NSL-KDD dataset. In [36], Jabbar et al. proposed an ensemble method comprising alternating
decision tree (ADTree) and KNN, and the performance evaluation demonstrated that the proposed
ensemble achieved better detection rate (~99.8%) compared to the existing techniques.

In [37], Zhou et al. proposed feature selection and ensemble method based IDS model where a
combination of correlation-based feature selection (CFS) and Bat algorithm [38] were used for optimal
feature selection, followed by an ensemble method comprising DT, RF and Forest by Penalizing
Attributes (Forest PA) algorithms. Experiments were performed on NSL-KDD, AWID [39] and
CIC-IDS2017 datasets, achieving 99.8%, 99.5% and 99.8% accuracy, respectively.

In [40], a hybrid intrusion detection system was introduced comprising C5 classifier and One
class support vector machine. The main focus of this work was to identify the common instruction and
zero-day attack by using a Bot-IoT dataset [41] that contains IoT network traffic with several types of
attacks. Performance analysis demonstrated that the proposed hybrid model attained higher accuracy
to intrusion detection compared to Signature Intrusion Detection System (SIDS) and Anomaly-based
Intrusion Detection System (AIDS).

In [42], bagging and boosting ensemble methods were proposed where the authors used decision
tree and random forest tree as the base classifiers. Experiments were performed on the NSL-KDD
dataset and it was found that bagging with decision trees gives better results.

Table 1 summarizes the notable works addressing intrusion and anomaly detection in networks
using machine learning techniques and in some works their ensemble techniques.
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Table 1. List of notable works that use machine learning (ML) and ensemble techniques for intrusion
and anomaly detection. Note that not all the works deal with IoT datasets; however, they are presented
here for their use of traditional or ensemble ML techniques.

Author Year Dataset Type of Method Evaluation IoT
Classification Metric Dataset

Pahl et al. [18] 2018 Own Multi-class K-means ACC = 96.3%

Liu et al. [20] 2018 Synthetic Multi-class Light Probe IR = 0.80(>) ×
Routing

Diro et al. [10] 2018 NSL-KDD [21] Multi-class Neural Network ACC = 98.27% ×

Pajouh et al. [22] 2018 NSL-KDD Two-tier Naive Bayes IR = 84.82% ×
K-Nearest Neighbor

Kozik et al. [23] 2018 Netflow Multi-class extreme learning ACC = 99% ×
formatted data machine (ELM)

Hasan et al. [25] 2019 DS2OS traffic [18] Multi-class LR, SVM, RF, ANN ACC = 99.4%

Alrashdi et al. [26] 2019 UNSW-NB15 Binary RF ACC = 99.34%

Vinaykumar et al. [29] 2020 NSL-KDD, Multi-class Classical ACC = 93%, ×
UNSW-NB15, ML Learning, 63%,
WSN-DS [30], Deep 98% ×

CIC-IDS2017 [31] Learning 96%

Kumar et al. [32] 2014 KDD99 [33] Multi-class Ensemble ACC = 99.42%, ×
NSL-KDD 98.07%

Huq et al. [34] 2015 NSL-KDD Multi-class Ensemble FPR = 0.0021 ×

Gaikwad et al. [35] 2015 NSL-KDD Binary Ensemble ACC = 81.29% ×

Jabbar et al. [36] 2017 KDD99 Multi-class Ensemble DR = 99.8% ×

Zhou et al. [37] 2020 NSL-KDD, Multi-class Ensemble ACC = 99.8%, ×
AWID [39], 99.5%, ×

CIC-IDS2017 [31] 99.9%

Khraisat et al. [40] 2019 Bot-IoT [41] Multi-class C5 classifier ACC = 99.97%
One class SVM

Pham et al. [42] 2018 NSL-KDD Binary Ensemble ACC = 84.25% ×

Despite such a wide exploration, it is clear that different works have used different data and
achieved different performance outcomes, which is not surprising due to machine learning algorithms’
often dependence on data and differing contexts may result in different outcomes. However,
UNSW-NB15, the latest version of data covering intrusion detection in IOT devices, has found only
relatively less exploration. In this research, we used this dataset especially considering its concurrency.
Contrary to Alrashdi et al. [26], our work is not limited to binary classification or RF classifier alone.
Further, in this paper, we explore the multi-class problem. In other words, our focus is not limited
to only identify the normal/abnormal state of data but also to detect the exact type of attacks in fog
nodes within smart city infrastructure. Our work also differs due to analyzing the performance with
the base as well as ensemble classifier.

3. IoT-Based Smart City Framework

Smart city is an integrated framework where IoT technology, smart systems and information and
communication technology (ICT) are collectively used to enhance the quality and performance of the
different city services such as transportation, health systems, pollution control and energy distribution.
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A smart city framework, as based on existing literature [26], is shown in Figure 1 and consists of the
following three layers: terminal layer, fog layers and cloud layer.

Figure 1. Smart city framework.

The cloud layer contains storage resources (e.g., servers and virtual machines) to store as well as
maintain a large amount of data. The fog layer acts as a bridge between the terminal layer devices and
cloud layer and is responsible to ensure the computational process and management at the edges of the
network. The fog layer is more effective at identifying the different cyber-attacks than the centralized
cloud layer. The terminal layer consists of a set of IoT devices (sensors) that are installed within the
city to collect data.

For several reasons, IoT networks and applications are vulnerable against attacks. Firstly, most IoT
devices have limited resources (e.g., small processing power and memory) and as a result suffer from
limited processing capability. Secondly, IoT devices are interconnected to different protocols and the
increasing number of IoT devices further causes latency in cloud centers. Thirdly, sometimes IoT devices
are unattended, which makes it possible for an intruder to physically access them. Fourthly, the greater
part of the data communication is wireless, exposing it to eavesdropping.

As a consequence, conventional IDS systems often fail to detect the IoT attack accurately [43].
Thus, an attacker can successfully compromise vulnerable IoT devices to connect to smart city routers
and devices located at various places such as homes, shopping malls, restaurants, hotels and airports.
By doing so, an attacker who compromises these IoT devices may obtain sensitive data such as
information of credit card, stream video and similar personal information.

One of the key issues that smart city framework and infrastructure must ensure is its ability to
deliver services in a sustainable manner to meet the needs of the current and future generations of
citizens [44,45]. Some ongoing smart city projects such as those initiated in Hong Kong and Masdar
city in Abu Dhabi [46] have already been criticized because of the vulnerable urban development plan
and consequently doubts about sustainability of the services. The management of several facets of
sustainability programs inside smart cities are facilitated by IoT, and this exposes organizations to the
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risks of failure from the network unavailability, security breaches and damage of IoT infrastructure from
natural disasters [47]. Further, sustainable operation of services such as intelligent transportation systems,
smart buildings and sustainable usage of resources such as water and energy supply, garbage disposal,
etc. are highly dependent on IoT and related cyber-physical systems [48]. Machine learning techniques
are used to better manage those smart city services and resources in an autonomous manner [45,49].
In addition, machine learning techniques can well detect intrusion and cyberattacks in industrial IoT [50],
which therefore can enhance sustainability and ensure uninterrupted services in smart cities by thwarting
attacks and intrusion on respective IoT systems. However, there is a need for more research on machine
learning implementation and model verification in terms of security and privacy [51].

In this paper, we hence explore the feasibility of both ensemble-based learning and single-model
classifiers for identifying cyberattacks in IoT-based smart city applications.

4. Proposed Anomaly Detection Model

Our proposed model is shown in Figure 2. The model tracks the network traffic that goes through
each fog node. Since fog nodes are closest to IoT sensors, they will be more effective at identifying the
cyber-attacks at fog nodes instead of the cloud center. In this way, an attack can be quickly detected,
and the IoT and network administrators can be notified of such attacks, which will then assist them to
evaluate and upgrade their systems.

Notably, IDS can be categorized as host-based IDS (HIDS) and network-based IDS (NIDS).
In this work, we choose anomaly-based NIDS. HIDS requires the installation of software on each
network-connected device to track and identify the malicious activity focused solely on that device and
is not suitable for most IoT devices which are resource constrained and support limited functionality
(e.g., smart lamps, watches and lock-doors). Again, signature-based NIDS suffers from higher
computational cost in storing attacks in a database and fails to detect a new attack in potential
network traffic [52], which makes anomaly-based NIDS most suitable in our case. Data collected
from this NIDS are used to build an ensemble of ML models to identify abnormal activities in the IoT
fog networks.

Figure 2. Proposal model for IoT machine learning-based IDS.

4.1. Description of Used Datasets

We used the UNSW-NB15 [27] and CICIDS2017 [31] datasets. The reasons for using these datasets
are two fold: firstly, they are relevant to the proposed smart city infrastructure concept of this paper,
and, secondly, both contain samples of the recent types of attacks observed in IoT infrastructure.
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4.1.1. UNSW-NB15 Dataset

The UNSW-NB15 dataset [27] is a recent and highly useful IDS dataset containing the modern
attacks. In 2015, the UNSW-NB15 dataset was developed to track and identify normal and attack
network traffic and the raw network packets were generated by the IXIA PerfectStorm tool in the
Australian Centre for Cyber Security (ACCS) cyber range lab [53]. The dataset has been preprocessed
through cleaning, visualization, feature engineering and vectorization. This original dataset contains
over 2.54 million samples, of which a random portion (175,341 samples) is used in our work.
The considered dataset contains 56,000 and 119,241 samples, respectively, representing the benign
and attack conditions. We divided our dataset into training set (140,272 samples) and test set
(35,069 samples), each set containing attack and benign samples in the same ratio as the original
dataset. The distribution of different attacks and anomaly across the dataset is shown in Table 2.

Table 2. Distribution of normal and attack samples of the UNSW-NB15 and CICIDS2017 datasets.

Class UNSW-NB15 Class CICIDS2017

Normal 56,000 Benign 148,777

Analysis 2000 Bot 1964

Backdoors 1746 DoS 8000

DoS 12,264 DDoS 8000

Exploits 33,393 FTP-Patator 7938

Fuzzers 18,184 SSH-Patator 5897

Generic 40,000 PortScan 8001

Reconnaissance 10,491 Web 2180

Shell code 1133 - -

Worms 130 - -

Total 175,341 Total 190,774

A brief description of the attack categories is below [27]:

• Fuzzers: It tries to cause a program or network to be suspended by feeding randomly generated data.
• Analysis: It includes various attacks of port scan, spam and html file penetrations.
• Backdoors: A security mechanism is bypassed stealthily to access a device or its data.
• Denial-of-service (DoS): The IoT network and smart city services are made inaccessible to

legitimate users through malicious attempts. Distributed denial-of-service attacks (DDoS)
overwhelm the target websites and online services with more traffic than the server or network
can accommodate.

• Exploits: The attacker learns the security flaws in the installed software and hardware and
leverages the vulnerabilities of the IoT devices and system.

• Generic: It is any technique that works against all blockciphers (with a particular block and key
size), without considering the block-cipher structure.

• Reconnaissance: All actions capable of simulating assaults that gather information about
vulnerabilities.

• Shellcode: It is a small code segment used as a payload to exploit vulnerability in the software.
• Worms: It replicates itself to spread to other devices and machines using connectivity.

4.1.2. CICIDS2017 Dataset

The CICIDS2017 dataset was generated by the Canadian Institute for Cybersecurity (CIC) in
2017. This dataset includes benign and most recent cyberattacks, namely, DoS, DDoS, PortScan, SQL
injection, Infiltration, Brute Force and Bot [31]. CICIDS2017 comprises of 2,830,743 records in eight
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files and each record includes 78 different features. In our experiment, we used 190,774 records where
148,777 are benign and 41,997 contain various types of attacks. Table 2 shows detailed information on
sample distribution.

4.2. Data Pre-Processing

Feature selection is one of the key principles that greatly impacts the model’s efficacy by selecting
only those features that are most relevant and thereby reduces over-fitting, improves accuracy and
reduces training time. We used information gain ratio, which is a ratio of information gain to the
intrinsic information proposed by Quinlan et al. [54], to select the top 25 features which are highly
relevant to the prediction for both datasets. The information gain score of the features of UNSW-NB15
dataset is shown in Tables 3 and 4. Out of 42 (UNSW-BC15) and 78 (CICIDS2017) features, the top
25 were selected based on their information gain ratio. A higher ratio for a feature can contribute
more to identifying the benign and malware applications. We only consider the features whose
information gain was greater than predetermined threshold 0.5 for UNSW-NB15 dataset and 0.85 for
CICIDS2017 dataset.

In feature engineering phases, at first, we identify the type of features in the datasets.
In UNSW-NB15 dataset, among the above mentioned 25 features, “proto” and “service” are categorical
features and the rest are numerical data. This categorical data are converted into vectors. While
categorical data can be translated to vectors in different ways such as ‘Label Encoding’ and ‘One Hot
Encoding’, ‘Label Encoding’ [55] technique was used in this research.

Table 3. Information gain ratio for different features on UNSW-NB15 dataset.

Feature Feature Ratio Feature Feature Ratio
Number Name Number Name

7 sbytes 1.64 27 smean 1.33

12 sload 1.268 8 dbytes 0.918

28 dmean 0.789 9 rate 0.752

35 ct_dst_sport_ltm 0.750 41 ct_sr_dst 0.733

1 dur 0.726 32 ct_state_ttl 0.707

11 dttl 0.705 3 service 0.697

36 ct_dst_src_ltm 0.695 31 ct_srv_src 0.694

2 porto 0.687 10 sttl 0.674

34 ct_src_dport_ltm 0.673 6 dpkts 0.671

13 dload 0.667 33 ct_dst_ltm 0.658

17 dinpkt 0.658 16 sinpkt 0.598

40 ct_src_ltm 0.562 25 synack 0.544

24 tcprtt 0.541
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Table 4. Information gain ratio for different features on CICIDS2017 dataset.

Feature Feature Ratio Feature Feature Ratio
Number Name Number Name

53 Average Packet Size 1.1761 41 Packet Length Mean 1.16387

42 Packet Length Std 1.13817 43 Packet Length Variance 1.1381

19 Flow IAT Max 1.1175 2 Flow Duration 1.09606

37 Fwd Packets/s 1.06422 15 Flow Bytes/s 1.04735

16 Flow Packets/s 1.04504 17 Flow IAT Mean 1.03965

5 Total Length of Fwd Packets 1.01074 63 Subflow Fwd Bytes 1.01074

40 Max Packet Length 0.9991 7 Fwd Packet Length Max 0.99204

1 Destination Port 0.9871 9 Fwd Packet Length Mean 0.9729

54 Avg Fwd Segment Size 0.9729 38 Bwd Packets/s 0.95401

6 Total Length of Bwd Packets 0.90374 65 Subflow Bwd Bytes 0.90374

24 Fwd IAT Max 0.90163 21 Fwd IAT Total 0.90043

55 Avg Bwd Segment Size 0.9004 13 Bwd Packet Length Mean 0.9004

67 Init_Win_bytes_backward 0.87893

4.3. Theoretical Consideration

Several machine learning techniques and ensemble methods were used for model building and
performance evaluation. We used LR [56], SVM [57], DT [58], RF [59], KNN [60] and ANN [10] machine
learning algorithms, which are widely used in the literature to design IDS scheme.

Ensemble methods are a widely used approach in machine learning that combines several base
models to generate one optimal predictive model [14]. Taking a multitude of models into account,
an ensemble method combines those models to generate one final model. It is based on the principle
that a group of weak learners (models) comes together to form a strong learner, thereby increasing the
model’s accuracy. There are three types of ensemble techniques used in the literature. Bagging [15] is a
parallel ensemble technique where the base learners are generated in parallel to improve the strength
and accuracy of machine learning algorithms. Boosting [16] is a sequential ensemble technique where
the base learners are generated in sequence to reduce bias and variance of supervised machine learning
techniques. Stacking [17] is an ensemble learning technique incorporating predictions of several base
classification models into a new dataset and used as the input for another classifier which is then used
to solve the problem.

4.4. Evaluation Criteria

In this subsection, we describe some performance matrices such as accuracy, precision, recall,
F1-Score and ROC curves which are widely used in evaluating the model performance in anomaly
detection applications.

These performance metrics are defined by using the following parameters:

• tp = true positive
• tn = true negative
• fp = false positive
• fn = false negative
• p = total positive = tp + fn
• n = total negative = tn + fp

Accuracy indicates the overall performance of the model with respect to both benign and attack
classes and is defined as follows:

Accuracy =
t_p + t_n

p + n
(1)
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Precision gives the information about how many selected items are relevant among the retrieved
items and can be defined as follows:

Precision =
t_p

t_p + f _p
(2)

Recall gives the information about how many relevant items are selected from the total number of
relevant items and is defined as follows:

Recall =
t_p

t_p + f _n
(3)

F1-Score can be derived from both precision and recall as follows:

F1 − Score = 2 × Precision × Recall
Precision + Recall

(4)

The Receiver operating characteristic (ROC) curve is utilized to summarize a classifier’s
performance over all possible decision thresholds in a graph, and it is generated by plotting the
true positive rate (tpr) against the false positive rate (fpr). Equations (5) and (6) show the calculation of
true positive rate and false positive rate, respectively.

tpr =
t_p

t_p + f _n
(5)

f pr =
f _p

t_p + f _n
(6)

5. Experimental Results

Experiments were implemented using Python programming language and several libraries such
as Pandas, Numpy, Matplotlib, sklearn and Keras on a HP (ELITEBOOK) laptop where the operating
system was Windows 10 Education 64-bit and the processor was Intel(R) Core(TM) i5-8350U CPU @
1.70 GHz 1.9 GHz with 16 GB RAM.

To test the performance of the base classifier as well as the ensemble classifier, 10-fold
cross-validation (CV) was used where the provided dataset was randomly divided into 10 equal
size subsets. Out of these 10 subsets, nine were used to build the model classifier and the remaining
one was used as a test set. The same procedure was repeated ten times to ensure that each subset was
used once as the test dataset. Finally, the mean accuracy summarized from each classifier in each fold
was noted. Figure 3 represents different evaluation metrics for different classifiers on the training and
test datasets.

We first show the performance of the different classifiers in terms of accuracy which is presented
in Figure 3a. Here, the task was to classify an unknown sample into one of the ten categories for
UNSW-NB15 dataset and eight categories for CICIDS2017 dataset, as shown in Table 3. For UNSW-BC15
and CICIDS2017 datasets, the accuracy of the machine learning algorithms LR, SVM, DT, RF, ANN
and KNN on the test dataset are 72.32% and 93.60%, 71.49% and 92%, 80.69% and 99.7%, 81.77% and
99.7%, 78.89% and 94.2% and 78.23% and 99.7% respectively. The accuracy of ensemble methods bagging
(RF as the base-learner), boosting (DT as the base-learner), stacking (base-learners of RF and ANN
and Meta-learner of DT) are 82.36% and 99.7%, 83.30% and 99.8% and 83.84% and 99.9%, respectively.
Among the algorithms, SVM shows poor and least performance while DT and RF shows better results
compared to others. On the other hand, stacking ensemble, constructed from base- and meta-classifiers,
shows better performance compared to others.
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(a) (b)

(c) (d)

Figure 3. Performance evaluation of the proposed method in terms of: (a) accuracy; (b) precision;
(c) recall; and (d) F1-score.

We show the performance measure in terms of precision in Figure 3b. The precision for LR, SVM,
DT, RF, ANN and KNN on test dataset are 72% and 92%, 70% and 94%, 81% and 99.8%, 82%, and 99.8%,
78% and 94.5% and 79% and 99.7%, respectively. The precision of ensemble methods bagging, boosting
and stacking are 82% and 99.7%, 83% and 99.8% and 83% and 99.9%, respectively. Similar to the
accuracy metric, SVM shows the least precision for UNSW-NB15 dataset. However, LR shows the
least precision for CICIDS2017 and RF shows better results compared to others. On the other hand,
the stacking ensemble method performances better compared to others.

The performance in terms of recall is shown in Figure 3c. The recall for LR, SVM, DT, RF, ANN
and KNN on test dataset are 72% and 94%, 71% and 92%, 81% and 98%, 82% and 99.8%, 79% and 94.3%
and 78% and 99.7%, respectively. The recall values of the ensemble methods bagging, boosting and
stacking are 82% and 99.8%, 83% and 99.9% and 83% and 99.9%, respectively. Once again, ensemble
techniques yield better performance compared to the base classifier and the stacking ensemble method
outperforms others. Finally, we demonstrate the performance measure in terms of F1-score in Figure 3d.
The F1-score for LR, SVM, DT, RF, ANN and KNN on test dataset are 71% and 92%, 70% and 94%, 80%
and 99.7%, 81% and 99.7%, 78% and 94% and 78% and 99.7%, respectively. The F1-score of ensemble
methods bagging, boosting and stacking are 81% and 99.8%, 81% and 99.9% and 83% and 99.9%,
respectively. Once again, ensemble techniques show better performance than base classifier and the
stacking ensemble method outperforms other classifiers considered in this research.

The results show that the ensemble of learning models provides better performance than the
single model classifiers on both test datasets. This implies, while existing works on the data have
focused on single learning model, ensemble classifiers such as stacking represent a promising approach
for application in this domain.

We also experimented with how the classifier performs when applied in a multi-class classification
context. More precisely, we considered each type of attack as a separate class and then assessed the
classifiers’ ability in identifying the attack from a normal situation. The results are shown in Tables 5
and 6 for UNSW-NB15 and CICIDS2017 datasets, respectively. The results illustrate that, for various types
of attack, DT and RF perform better in comparison to other algorithms. On the other hand, the stacking
ensemble technique shows significant improvement compared to bagging and boosting in some cases.
For example, on the UNSW-NB15 dataset, in the DoS attack, stacking yields an F1-score of 0.45 vs. 0.24 for
bagging and boosting, while, in the Worm attack, these scores are 0.57, 0.37 and 0.33, respectively. In most
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of the other types of attacks, stacking attains an F1-score of above 0.75. On the other hand, on CICIDS2017,
in the Bot attack, stacking ensemble achieved 0.950 vs. 0.898 and 0.942 for bagging and boosting.

Table 5. Detection of various classes in multi-class scenario on UNSW-NB15 dataset.

Normal Generic Exploits Fuzzers

Algorithm TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score

LR 0.81 0.04 0.85 0.98 0.02 0.97 0.70 0.12 0.64 0.70 0.008 0.55

SVM 0.81 0.052 0.84 0.98 0.013 0.97 0.72 0.121 0.64 0.66 0.09 0.53

DT 0.92 0.037 0.92 0.98 0.002 0.99 0.79 0.18 0.70 0.68 0.028 0.71

RF 0.91 0.027 0.93 0.98 0.001 0.99 0.84 0.11 0.972 0.73 0.031 0.73

ANN 0.91 0.055 0.90 0.98 0.019 0.99 0.84 0.083 0.71 0.61 0.019 0.62

KNN 0.92 0.029 0.91 0.98 0.0 0.99 0.71 0.093 0.68 0.64 0.037 0.66

Bagging 0.92 0.027 0.93 0.98 0.0 0.99 0.85 0.116 0.73 0.74 0.027 0.75

Boosting 0.93 0.035 0.93 0.98 0.001 0.99 0.83 0.112 0.72 0.69 0.029 0.71

Stacking 0.993 0.029 0.93 0.98 0.001 0.99 0.83 0.091 0.75 0.74 0.029 0.74

DoS Reconnaissance Analysis Backdoor

Algorithm TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score

LR 0.24 0.034 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SVM 0.14 0.02 0.20 0.33 0.035 0.37 0.0 0.0 0.0 0.0 0.0 0.0

DT 0.25 0.044 0.27 0.74 0.005 0.81 0.18 0.001 0.26 0.12 0.0 0.20

RF 0.20 0.035 0.25 0.74 0.004 0.82 0.17 0.001 0.25 0.13 0.0 0.22

ANN 0.20 0.017 0.25 0.63 0.002 0.67 0.08 0.0 0.13 0.0 0.0 0.0

KNN 0.37 0.06 0.34 0.63 0.012 0.69 0.15 0.005 0.17 0.0.6 0.003 0.09

Bagging 0.19 0.03 0.24 0.74 0.005 0.82 0.14 0.0 0.23 0.11 0.0 0.19

Boosting 0.20 0.034 0.24 0.74 0.005 0.81 0.16 0.001 0.25 0.12 0.001 0.20

Stacking 0.40 0.029 0.45 0.76 0.007 0.819 0.25 0.003 0.338 0.20 0.002 0.30

Shellcode Worm

Algorithm TPR FPR F1-Score TPR FPR F1-Score

LR 0.0 0.0 0.0 0.0 0.0 0.0

SVM 0.0 0.0 0.0 0.0 0.0 0.0

DT 0.63 0.002 0.64 0.41 0.0 0.46

RF 0.57 0.002 0.58 0.19 0.0 0.27

ANN 0.20 0.0 0.31 0.19 0.0 0.38

KNN 0.32 0.0 0.40 0.21 0.0 0.32

Bagging 0.68 0.002 0.68 0.24 0.0 0.33

Boosting 0.65 0.002 0.59 0.28 0.0 0.37

Stacking 0.69 0.002 0.68 0.41 0.0 0.57
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Table 6. Detection of various classes in multi-class scenario on CICIDS2017 dataset.

Benign DDoS DoS Web

Algorithm TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score

LR 0.99 0.17 0.97 0.81 0.003 0.86 0.53 0.003 0.66 0.01 0.0 0.01

SVM 0.980 0.177 0.970 0.810 0.003 0.586 0.860 0.003 0.660 0.0 0.01

DT 0.995 0.003 0.995 0.995 0.0 0.995 0.996 0.0 0.995 0.997 0.0 0.997

RF 0.995 0.006 0.995 0.995 0.0 0.996 0.996 0.0 0.996 0.997 0.0 0.997

ANN 0.993 0.175 0.940 0.968 0.0 0.863 0.894 0.001 0.933 0.80 0.004 0.749

KNN 0.994 0.006 0.994 0.994 0.0 0.994 0.994 0.0 0.995 0.995 0.0 0.995

Bagging 0.999 0.006 0.999 0.999 0.0 0.999 1.0 0.0 0.999 1.0 0.0 1.0

Boosting 0.999 0.003 1.0 0.999 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0

Stacking 0.999 0.003 1.0 0.999 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0

Algorithm TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score TPR FPR F1-Score

LR 0.97 0.0 0.97 0.97 0.0 0.85 0.97 0.0 0.97 0.0 0.0 0.0

SVM 0.96 0.001 0.970 0.96 0.014 0.850 0.96 0.001 0.960 0.0 0.0 0.0

PortScan FTP-Patator SSH-Patator Bot

DT 0.98 0.0 0.98 0.98 0.0 0.99 0.98 0.0 0.98 0.925 0.001 0.925

RF 0.98 0.0 0.98 0.98 0.0 0.99 0.98 0.0 0.98 0.884 0.001 0.897

ANN 0.600 0.0 0.746 0.80 0.002 0.870 0.80 0.001 0.878 0.628 0.0 0.768

KNN 0.97 0.0 0.97 0.97 0.0 0.97 0.98 0.0 0.98 0.883 0.002 0.871

Bagging 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.878 0.001 0.898

Boosting 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.935 0.001 0.942

Stacking 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.950 0.001 0.950

Figure 4 shows the Receiver Operating Characteristic Curves for base and ensemble classifiers
on UNSW-BC15 dataset. We found that, among the base classifiers, ANN shows better performance.
On the other hand, among the ensemble techniques, boosting and stacking demonstrate almost the
same results.

Tables 7 and 8 show a comparison of the multi-class classification performance attained by
ensemble approaches to a recent work [29] on UNSW-BC15 and CICIDS2017 datasets, respectively.
The accuracies attained in our work using LR, SVM, DT, RF and KNN are 72.32% and 93.6%, 71.49%
and 92%, 80.69% and 99.7%, 81.77% and 99.7% and 78.23% and 99.6%, respectively, while those in [29]
are, respectively, 53.8% and 87%, 58.1% and 79.9%, 73.3% and 94%, 75.5% and 94.4% and 62.2%
and 90.0%, albeit with some differences in the way the datasets were used. In [29], the researchers
experimented with the boosting ensemble technique and achieved accuracies of 60.8% and 64.1 %,
which are significantly lower than the accuracies attained in our work (83.3% and 99.9%) using
stacking ensemble.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. ROC Curve of: (a) LR ; (b) SVM; (c) DT; (d) RF; (e) ANN; (f) KNN, (g) Bagging; (h) Boosting;
and (i) Stacking.

Table 7. Comparison of multi-class classification performance on UNSW-NB15.

Proposed Method Existing Method [29]

Algorithm Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.7232 0.72 0.72 0.71 0.538 0.414 0.538 0.397

SVM 0.7149 0.70 0.71 0.70 0.581 0.586 0.581 0.496

DT 0.8069 0.81 0.81 0.80 0.733 0.721 0.733 0.705

RF 0.8177 0.82 0.82 0.82 0.755 0.755 0.755 0.724

ANN 0.7889 0.78 0.79 0.78 - - - -

KNN 0.7823 0.79 0.78 0.78 0.622 0.578 0.622 0.576

Bagging 0.8263 0.82 0.82 0.81 - - - -

Boosting 0.833 0.83 0.83 0.81 0.608 0.502 0.608 0.526

Stacking 0.8384 0.83 0.83 0.83 - - - -
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Table 8. Comparison of multi-class classification performance on CICIDS2017.

Proposed Method Existing Method [29]

Algorithm Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.936 0.92 0.94 0.92 0.870 0.889 0.870 0.868

SVM 0.92 0.94 0.92 0.94 0.799 0.757 0.799 0.727

DT 0.997 0.997 0.997 0.997 0.940 0.965 0.940 0.949

RF 0.997 0.997 0.997 0.998 0.944 0.970 0.944 0.953

ANN 0.942 0.945 0.943 0.940 - - - -

KNN 0.996 0.997 0.997 0.997 0.909 0.949 0.909 0.922

Bagging 0.997 0.998 0.998 0.998 - - - -

Boosting 0.998 0.999 0.999 0.999 0.641 0.691 0.641 0.653

Stacking 0.999 0.999 0.999 0.999 - - - -

The results of individual classifiers as well as ensemble methods for the binary class classification
are shown in Tables 9 and 10 on UNSW-BC15 and CICIDS2017 datasets, respectively. We used the same
metric as the multi-class classification. The highest accuracies of 95.45% and 99.7% and F1-scores of 95%
and 99.8% by an individual classifier were achieved with RF classifier and the values of those metrics
rose to 96.83% and 99.9% and 97% and 99.9%, respectively, when the stacking ensemble technique
was used.

A possible reason for the proposed model’s significantly better performance compared to
Vinayakumar et al. [29] is that they did not consider any feature selection. The existing work
experimented with all features for both datasets. However, our proposed model considers an
information gain-based feature selection technique and finally uses only 25 most important features
based on their information gain ratio.

Table 9. Comparison of binary classification performance on UNSW-NB15.

Proposed Method Existing Method [29]

Algorithm Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.9173 0.92 0.92 0.92 0.7430 0.955 0.653 0.775

SVM 0.9197 0.92 0.92 0.91 0.653 0.998 0.492 0.659

DT 0.9502 0.95 0.95 0.95 0.897 0.982 0.864 0.919

RF 0.9545 0.95 0.95 0.95 0.903 0.998 0.867 0.924

ANN 0.940 0.94 0.94 0.94 - - - -

KNN 0.9437 0.94 0.94 0.94 0.81 0.926 0.905 0.915

Bagging 0.9574 0.96 0.96 0.96 - - - -

Boosting 0.9562 0.95 0.95 0.95 0.90 0.985 0.866 0.922

Stacking 0.9683 0.97 0.97 0.97 - - - -
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Table 10. Comparison of binary classification performance on CICIDS2017.

Proposed Method Existing Method [29]

Algorithm Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.936 0.92 0.94 0.92 0.839 0.685 0.850 0.758

SVM 0.92 0.94 0.92 0.94 0.799 0.992 0.328 0.493

DT 0.997 0.997 0.997 0.997 0.935 0.839 0.965 0.898

RF 0.997 0.997 0.997 0.998 0.940 0.849 0.969 0.909

KNN 0.997 0.998 0.998 0.998 0.910 0.786 0.968 0.865

Bagging 0.998 0.999 0.999 0.999 - - - -

ANN 0.940 0.94 0.94 0.94 - - - -

Boosting 0.998 0.999 0.999 0.999 0.914 0.887 0.918 0.902

Stacking 0.999 0.999 0.999 0.999 - - - -

Notably, a question may be raised as to the complexity of using ensemble models as compared
to a single classifier. With technological advances, however, processing units such as mobile devices
are becoming increasingly faster and memory resources are becoming increasingly cheaper—a reason
fog computing potentially has seen application of a wide range of algorithms including ensemble
techniques [61,62]. There are also active investigation on efficient allocation of resources in fog
computing [63]. Further, research has devised fog system architecture that can exploit ensemble
learning without increasing latency of the system substantially [62]. Arguably, the stacking approach
considered in this article can be rolled out using the architecture and efficient resource allocation
mechanism. Thus, despite some increases in complexity, the finding that stacking can outperform
single classifiers for counterattacks detection in IoT smart city applications has thus a notable value,
especially with missing a cyberattack being linked to a high cost.

For example, the model building time for ten runs for each of the base classifiers (DT, RF and
ANN) and the stacking ensemble technique on both datasets are shown in Table 11. The table shows
that the model building times by the classifiers are 1.4, 2.17, 6.8 and 25.6 s for the UNSW-NB15 dataset
and 5.3, 4.35, 7.4 and 27.09 s for the CICIDS2017 dataset, respectively, which shows that DT takes
the least time to build the model for UNSW-NB15 while RF is the fastest for CICIDS2017. On the
other hand, since the stacking ensemble model deals with more complexity by combining several base
classifiers, it takes longer time to build the model for the both datasets. The time taken to test the
model on a single sample by the classifiers is, respectively, 0.48, 2.53, 1.91 and 5.70 µs for UNSW-NB15
and 0.42, 1.57, 1.80 and 4.19 µs for CICIDS2017, suggesting that DT and RF take the least amount of
time compared to others in both datasets. Thus, the model takes very little time, in the range of µs,
to test whether an activity is malicious or not.

Table 11. Mean model building time and per sample test time for the base and Stacking classifier on
UNSW-BC15 and CICIDS2017 datasets. The value within the bracket indicates the standard deviation
among ten trails.

UNSW-NB15 CICIDS2017

Algorithm Model Build Time Test Time Model Build Time Test Time
(s) (µs) (s) (µs)

DT 1.4 (±0.0017) 0.48 5.3 (±0.0044) 0.42

RF 2.17 (±0.0019) 2.53 4.35 (±0.0003) 1.57

ANN 6.8 (±0.0044) 1.91 7.4 (±0.0055) 1.80

Stacking 25.6 (±0.0017) 5.70 27.09 (±0.0040) 4.19
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6. Conclusions

In this paper, we explore the feasibility of an ensemble based learning with single model classifiers
for identifying cyberattacks within the IoT-based smart city applications. Our experiments with the
most recent IoT attack database show that our ensemble approach, especially stacking, performs better
than single models in identifying attacks from benign samples. Our approach employs an information
gain based feature selection technique to identify the most influential features before building the
model. Furthermore, in classifying attack types, our ensemble approach with stacking also leads to
better performance than the single or other ensemble models used in recent works in terms of accuracy,
precision, recall and F1-score metrics. Our future work will explore deep learning techniques to further
enhance IoT attack detection performance.

Lastly, with automation and smart cities becoming increasingly popular, they are also increasingly
being exposed to cyber threats. A denial of access or privacy intrusion within an automated system
can greatly harm individual citizens and carry a substantial cost at both individual and jurisdiction
levels. There can also be health risks if systems handling emergency events (e.g., accident and fire)
are compromised. Our results indicating that stacking of classifiers can better detect cyberattacks in
the smart city systems go beyond technical contributions and carry economic and social implications.
Future research will provide further insights in this respect.
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