
CyberDesk: a framework for providing self-integrating context-aware services

Anind K. Deya,*, Gregory D. Abowda, Andrew Woodb

aGraphics, Visualization and Usability Center, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA
b
School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Received 19 May 1998; accepted 1 June 1998

Abstract

Applications are often designed to take advantage of the potential for integration with each other via shared information. Current

approaches for integration are limited, affecting both the programmer and end-user. In this paper, we present CyberDesk, a framework

for self-integrating software in which integration is driven by user context. It relieves the burden on programmers by removing the necessity

to predict how software should be integrated. It also relieves the burden from users by removing the need to understand how to make different

software components work together. q 1998 Elsevier Science B.V. All rights reserved.

Keywords: Context-aware computing; Automated software integration; Dynamic mediation; Ubiquitous computing

1. Introduction

Software applications often work on similar information

types such as names, addresses, dates, and locations. Collec-

tions of applications are often designed to take advantage of

the potential for integration via shared information. As an

example, an electronic mail reader can be enhanced to auto-

matically recognize Web addresses, allowing a reader to

select a URL to automatically launch a Web browser on

that location. Even more complex and useful integrating

behavior is available in a number of commercial suites of

applications (e.g. Microsoft Office 97, Lotus SmartSuite,

WordPerfect Suite, and Netscape Communicator).

We recognize the utility from the user’s perspective of

integrating the behavior of a number of software applica-

tions. With the emergence of Web-based applications and

personal digital assistants (PDAs), there are even more

opportunities to provide integration of software applica-

tions. There are some limitations, however, to the current

approaches for providing this integration. These limitations

impact both the programmer and the user.

From the programmer’s perspective, the integrating

behavior between applications is static. That is, this

behavior must be identified and supported when the appli-

cations are built. This means that a programmer has the

impossible task of predicting all of the possible ways

users will want a given application to work with all other

applications. This usually results in there being a limited

number of software applications available in an application

suite, with limited integration behavior.

From the user’s perspective, integrating behavior is

limited to the applications that are bound to the particular

suite being used. Further integration is either impossible to

obtain or must be implemented by the user. In addition, the

integrating behavior has a strong dependence on the indivi-

dual applications in the suite. If a user would like to sub-

stitute a comparable application for one in the suite (e.g. use

a different contact manager, or word processor), the user

does so at the risk of losing all integrating behavior.

The project described in this paper, CyberDesk, is aimed

at providing a more flexible framework for integrating soft-

ware behavior. We aim to reduce the programming burden

in identifying and defining integrating behavior, while at the

same time retaining as much user freedom in determining

how integration is to occur. The main objective of the

ubiquitous computing project, CyberDesk, is to provide

the infrastructure for self-integrating software in which the

integration is driven by user actions. We refer to this as

context-aware integration, and it is aimed at producing a

paradigm shift in human–computer interactions that is

fundamental to ubiquitous computing. Rather than settle

for the current situation, in which the user must seek out

and find relevant software functionality when it is wanted,

we instead want the ubiquitous computing infrastructure to

seek out the user when and where it is wanted. In this paper,

Knowledge-Based Systems 11 (1998) 3–13

KNOSYS 1144

0950-7051/98/$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.

PII: S0950-7051(98)00053-7

* Corresponding author. Tel.: +1 404 894 5103; fax: +1 404 894 2970;

e-mail: anind, abowd@cc.gatech.edu



we demonstrate how CyberDesk supports this paradigm

shift.

First, we describe CyberDesk and motivate our research

with a sample scenario. In Section 3, we describe Cyber-

Desk’s architecture and show how it supports context-aware

computing. This is followed with a discussion on how

CyberDesk can be extended to include more applications

and integrating behavior. Finally, we summarize the contri-

butions of this research and discuss some future directions.

2. What is CyberDesk?

CyberDesk is a component-based framework written in

Java, that supports the automatic integration of software

applications. The framework is flexible, and can be easily

customized and extended. It is designed to allow ubiquitous

access to services and data, regardless of whether they came

from a desktop application, a PDA-based application, or a

Web-based application.

CyberDesk is able to provide this ubiquitous access by

having applications automatically provide their services to

the user. Rather than displaying all the available services to

the user at all times, the interface is limited to displaying

those services that are relevant to the user’s current context.

We define a service to be an action that an application can

perform. A user’s context is any information about the user

and the environment that can be used to enhance the user’s

experiences. This includes the data the user is working with,

the time of day, the user’s physical location, and user’s

emotional state, social environment, objects in the room,

etc. Initially, CyberDesk was able to work only with simple

strings that a user was working with in a desktop applica-

tion. Now, CyberDesk is also able to work with time and

location in a desktop environment, networked environment,

and mobile environment.

Desktop applications incorporated into CyberDesk

include e-mail browsers, notepads, schedulers, and contact

managers. Network applications include phone number

lookups, e-mail writing, mailing address lookups, Web

searches, Usenet searches, e-mail address lookups, map

lookups, and Web page browsing. PDA-based applications

include contact managers and notepads. All applications

make their services available to the user via a common

interface. The services available at any particular time

depend on the user’s context at that time. By providing

relevant suggestions and data to the user, CyberDesk

gives the user useful, and possibly unexpected, help in com-

pleting their tasks.

2.1. User scenario

To illustrate this behavior, an actual user experience

follows.1 As seen in Fig. 1, a user is checking his e-mail,

and reads a message about some interesting research. The

user is interested in the research discussed and highlights the

URL in the message. CyberDesk offers the following ser-

vice suggestions through its interface (Fig. 2): search for the

selected text using AltaVista, find pages that reference this

URL using AltaVista, and display the URL in Netscape.

The user chooses the last option and views the selected

URL in a web browser (Fig. 3).

The user wants to get more information, so selects the

name of the person in charge of the research. CyberDesk

offers the following suggestions (Fig. 4): search for the

selected text using AltaVista, search for a phone number

and mailing address for the selected name using Switch-

board, lookup the selected name in the contact manager.

The user wants to contact this researcher so checks to see

if the name is in the contact manager, but it is not.

So, the user selects the phone number and mailing address

lookup service (Fig. 5), and then creates a new entry in the

contact manager with this new information.

1 All the scenarios described in the paper can be executed at http://
www.cc.gatech.edu/fce/cyberdesk/iui

Fig. 1. Content of user’s e-mail message.

Fig. 2. User selects the URL and is offered suggestions.

Fig. 3. CyberDesk executes the service and displays the URL.

4 A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



3. Architecture

The CyberDesk system has a simple architecture, based

on the previously developed CAMEO infrastructure [1].

CAMEO defines a component-based framework in which

individual components can observe the activities of other

components and manipulate their interfaces. A centralized

service allows for the dynamic registration of components

and run-time support for querying the interfaces of regis-

tered components. Observation and manipulation of other

components and the dynamic registry of CAMEO were suf-

ficient motivation for us to port it to Java and take advantage

of simpler cross-platform network access to a multitude of

Web-based, mobile and desktop information services.

The CyberDesk system consists of five main components:

the Registry, the information services, the type converters,

the Integrator, and the user interface. The Registry main-

tains a list of components in the system and the interfaces

that each supports. The information services are the tools

and functions the user ultimately wants to use, such as an

e-mail browser, a contact manager, or a Web-based search

engine. These services register their interfaces with the

Registry and announce events that provide data/information

to the rest of the system (e.g. the name selected in the e-mail

message in the scenario). The type converters accept

announced data from the system and convert it recursively

to other forms of data that may be useful (e.g. a string being

converted to a URL). The Integrator uses the Registry to

automatically find matches between user data and the ser-

vices that can use that data, a task that would normally be

performed by the system designer. The matched services are

then displayed to the user through the user interface.

The run-time relationship between the components from

the user’s perspective is depicted in Fig. 6. The components

are described in greater detail below.

3.1. Registry

The Registry maintains a directory of all the other com-

ponents in the system: what interfaces they can support and

what data they can provide, if any. As each component joins

the CyberDesk system, it provides this information to the

Registry. Some components, upon registration, tell the

Registry that they are interested in other components. Here-

after, whenever a component joins or leaves the system, the

Registry notifies these interested components. The Registry

also provides both a white pages and a yellow pages service.

When queried, the Registry acts as a white pages directory

by supplying information (object reference and interfaces)

on individual components. It can also act as a yellow pages

directory by providing a list of components that support a

particular interface.

3.2. Services

Services are end-user function calls that perform actions

on supplied data. Services can be stand-alone or part of a

larger application. Examples of stand-alone services are

network-based Web CGI scripts such as finding a phone

number and address using Switchboard or searching for

some text in AltaVista. Examples of services in larger appli-

cations are creating an entry or searching for a name in a

contact manager, or loading a schedule in a day planner.

Service wrappers are used to integrate existing services

into CyberDesk. These wrappers adapt the interfaces of the

existing services to conform to the CyberDesk registration

and communication requirements. They make the function-

ality of the services accessible to other components, and

provide methods for communicating with other components

and registering their interfaces with the Registry.

Services not only provide functionality to the user, but

they can also provide data to the system, as seen in the

Fig. 4. User selects name and chooses the Contact lookup service.

Fig. 5. User selects the phone number lookup service.

Fig. 6. The run-time architecture of CyberDesk. Arrows indicate the flow of

information a control in the system.

5A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



previous scenario. When users select data with a mouse in

an application, that data is observed by interested compo-

nents (a subset of the type converters and the Integrator

described below). This data is the contextual information

used by CyberDesk, as its origin is some user activity.

The author of the service wrapper determines what informa-

tion and functionality is made available to the CyberDesk

system.

3.3. Type converters

Type converters are components that take data in the

system and attempt to convert it to other forms of data.

They use simple techniques to provide complex and

intelligent-like behaviors to the system. For example, the

scenario showed an example of a conversion from a string

to a name. Data in the system can come from actions other

than selection with a mouse. For example, position services

provide location information such as coordinates within a

space. Type converters can be used to convert these coordi-

nates to a room within a building. This allows the user to see

services that are only available within a particular room.

Type converters create additional data types to match ser-

vices against.

The type converters provide a separable context-

inferencing engine with arbitrary power. As the conversion

abilities of the converters improve, the ability of the system

to make relevant service suggestions also improves. There-

fore, the apparent intelligence of CyberDesk is also

contained within the type converters. Since the type conver-

ters are represented as a collection of Java classes, it is a

simple matter to boost the overall power of this context-

inferencing engine without impacting any of the function-

ality of the rest of the system.

As mentioned in the section on the Registry, some com-

ponents are interested in the addition and removal of other

components. Type converters are an example of this. They

monitor which services are added and removed from the

system, so they can determine which components can pro-

vide data, and can then observe these components.

3.4. Integrator

The Integrator also observes components that can provide

data. It uses this information to find services that can act on

the data. In the user scenario, when the user selected a name

in the e-mail message, both a string and a name (via a type

converter) were made available to the system. The Integra-

tor took that data and found services that could act on both

strings and names.

When components register or remove themselves from

the Registry, the Integrator is notified. The Integrator uses

this information to update its list of components that can act

on various types of data. For example, when the Switch-

board service is added to CyberDesk at run-time, it registers

that it can perform a function on name information. The

Registry notifies all components interested in the addition

and removal of components: type converters and the Inte-

grator. The Integrator contacts the Registry to determine the

kind of interface the Switchboard service supports and finds

out that it can act on name data. When name data enters the

system, the Integrator makes the Switchboard service avail-

able to the user.

3.5. User interface

When the Integrator finds matching services for the data it

has observed, it makes these services available to the user.

We have experimented with creating buttons on a separate

window to display the suggested services to the user, as

shown in Fig. 1. Each button is associated with a service

and the data the service can act on. When a user clicks on a

button, the service is executed with this data.

The user interface, like the other components, is comple-

tely interchangeable. If the provided user interface does not

meet with the user’s approval, it can be easily replaced by

another user interface that better informs the user of the

connection to the current context and suggestions for future

actions based on that context.

4. Adding applications to CyberDesk

As discussed earlier, the applications used in CyberDesk

are the actual tools the user wants to use. CyberDesk pro-

vides an easier and faster way for users to access the func-

tionality of these applications and the data they contain (i.e.

their services). From the user’s perspective, adding an appli-

cation (or any CyberDesk component) to CyberDesk simply

requires the addition of HTML applet tags to a CyberDesk

Web page. From the programmer’s perspective, adding an

application requires a little more effort.

Currently, CyberDesk is unable to automatically deter-

mine the services an application provides. A service pro-

grammer must construct a wrapper around each application.

This wrapper performs two main functions [2]: registration

of the provided services with CyberDesk and execution of

the services when called. During the registration process,

each application registers with the Integrator giving a list of

services it provides: both actions it can perform on different

data types and the data types it can produce. Examples of

this from the user scenario are:

• the AltaVista wrapper declaring it can search the Web

for a string and find pages that reference a given URL;

• the Contact Manager wrapper declaring it can lookup a

given name, create a new entry, and can produce string

objects when a user selects data in the contact manager.

The second portion of the wrapper deals with actually

executing the services that were registered. When the user

selects a service from the interface, a method in the wrapper

is called to execute the service. This method takes the user’s

6 A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



context, retrieves the relevant parameters for the service and

calls a method that will execute the user-selected service.

All the Web-based applications employed by CyberDesk

use HTML forms. By analyzing the form, a programmer can

easily generate the service wrapper. These applications

generally have straightforward interfaces and require a

small set of input parameters. The parameters are passed

to a URL, which generates a resulting HTML page that

can be displayed in a Web browser. For example, the Alta-

Vista Web search service simply requires an input string and

returns a list of all Web pages that match this string.

A service writer program has been written to automati-

cally generate a wrapper for Web-based applications. This

program is intended for use by service programmers, but is

simple enough to be used by an end-user wanting to add a

service to CyberDesk. The program takes a URL containing

a form as input and presents an interface, as shown in Fig. 7.

The service programmer selects the data type the service

can act on, the values for the service parameters, and the

output data type, if any. Upon receiving this information, the

service writer program generates a wrapper for the service.

Other Georgia Tech students have written all of the desk-

top applications added to CyberDesk. This allows us access

to both the application programming interfaces (APIs) and

the source code. The APIs were needed to determine the

names of methods for services the applications provided and

the parameters that each method required. The source code

allowed the service programmers to add additional services

to the applications and add the data selection ability shown

in the original scenario (e.g. user selecting the URL). It

should be made clear that source code was only modified

to enhance the existing applications. If only the API were

available for an application, and not the source code, a

wrapper could still be written to take advantage of the appli-

cation’s existing functionality.

In addition, an automated service writer, similar to the

one mentioned, is being designed for applications that are

not Web-based. The service writer will be based on the

newest release of the Java language (version 1.1). It pro-

vides an automatic data selection feature, allowing for the

transfer of data between (Java and non-Java) applications

via a clipboard-style interface, and supports the use of

reusable software components called JavaBeans [3]. The

data transfer feature will eliminate the need for any applica-

tion source code. The use of JavaBeans would allow the

service writer to query an application and determine its

API at run-time, removing the need for a compile-time

API and allowing the use of third-party applications.

We have tested the scalability of CyberDesk by adding

more and more services and context types. Standard desktop

applications currently included in the CyberDesk prototype

include two e-mail browsers, a calendar, a scheduler, a con-

tact manager, and a notepad. Currently, there are over 70

Web-based applications that have been integrated into

CyberDesk.

4.1. Case study: accessing mobile data

LlamaShare [4], a research project at Georgia Tech, is an

architecture and set of applications that provide users and

programmers easy access to information stored on mobile

devices. There are two main goals for the LlamaShare pro-

ject. The first is to create an infrastructure that makes simple

for programmers to take advantage of mobile data in their

applications. The second is to provide applications that

demonstrate ubiquitous access to information, a goal shared

by CyberDesk. As a test of CyberDesk’s extensibility, we

integrated the LlamaShare project with CyberDesk.

Currently, it is very difficult to retrieve information from

a mobile device (a PDA like a Newton, for example) both

for programmers and for users. From a user’s perspective, it

is also very difficult to deal with information stored on a

mobile device. The current method of accessing this data is

typically through a ‘synchronization’ process, which does a

reasonable job of copying the data to a user’s desktop

machine, but does nothing to aid the users in actually

doing anything with that information, such as integrating

relevant pieces in their daily tasks. The LlamaShare infra-

structure, consisting of a central server called the Llama-

Server, provides routing for information requests between

any mobile device on the network (wired or wireless) and

any desktop machine on the Internet.

There were two reasons for integrating CyberDesk with

LlamaShare. First, we wanted to illustrate the platform-

neutrality and language-neutrality of the LlamaServer,

which CyberDesk allows us to do. More importantly, how-

ever, CyberDesk’s vision of ubiquitous information access

was the deciding factor. While LlamaShare provides a con-

crete, visible object to represent the data on a mobile device,

CyberDesk takes the approach that information is distribu-

ted throughout a rather nebulous space (consisting of Inter-

net, desktop, and mobile data) that can be retrieved at any

moment depending on the context in which a user is cur-

rently working. This new metaphor of seamless integration

between mobile data and Internet (remote) data that Cyber-

Desk supports, was a good match with LlamaShare.

Adding services and viewers to CyberDesk was quite

simple. CyberDesk already supported the most commonFig. 7. Service writer interface.

7A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



data types that users would be interested in on their PDA

(text, names, phone numbers, and dates), so nothing new

needed to be added.

The next task involved adding the services that recog-

nized the appropriate data types and created appropriate

user actions for them. We added two services (Newton-

Names and NewtonNotes) which request contact informa-

tion from a Newton about a selected name and request notes

from the Newton containing selected text in the body or

title. The results of the integration between CyberDesk

and LlamaShare can be seen in Fig. 8.

Here are some other examples of how we are using Lla-

maShare and CyberDesk.

• A user is writing an e-mail and needs to retrieve some

relevant text from the Newton. The user selects a key-

word and searches Newton for all the notes containing

that text and chooses the appropriate one for inclusion in

the message.

• A user receives an e-mail message from a colleague and

wants to call that colleague back. The user has the sender’s

phone number on Newton, so simply selects the sender’s

name and retrieves the contact entry from the Newton.

• While a user is in a meeting, his/her assistant takes down

the number of someone who called, but not the caller’s

name. The user can select the phone number and let the

Newton search its name database. The Newton returns

the name of the person/company with that phone number.

• A user needs to schedule a meeting with two other col-

leagues. To find a time when all three parties are avail-

able, the user can select each of their names and lets

CyberDesk display their calendars. The user can sche-

dule the meeting and make the change effective imme-

diately in the colleagues’ Newton calendars.

5. Adding type converters to CyberDesk

CyberDesk applications can generate changes in the data

the user is working with. As described above, CyberDesk

uses type converters to convert this user context (or location

or time information, as will be shown in an upcoming sec-

tion) into other useful forms of user context. For example, in

the user scenario, a StringToURL converter took the data

selected by the user and successfully converted it to a URL.

This resulted in two pieces of data being sent to the Inte-

grator, a string and a URL. The Integrator sought integrating

behavior for both these types, allowing the user to access

URL-relevant services where originally they would not

have had the option.

The type converters work in a recursive fashion. That is,

the new data is generated from a successful conversion is

sent to the type converters. This process continues until no

new data is created, or a cycle is found.

Initially, applications were hardcoded to generate differ-

ent data types. For example, the e-mail browser declared

that it could generate strings when text is highlighted, but

also EmailAddress objects when the ‘To:’ or ‘From:’ field in

an e-mail message was selected. When EmailAddress

objects were generated, they were passed through the

CyberDesk system, as described before, to the user inter-

face, which displayed services that could consume Email

Address objects (e.g. send an e-mail message to this

e-mail address using Netscape). However, this required

the applications themselves to be aware of the CyberDesk

type system. It was also limiting since e-mail addresses

could also appear in the unformatted body text of an

e-mail message but would only be recognized as a string

selection.

Consequently, a decision was made to use type conver-

ters. Using simple heuristics, it is possible to identify poten-

tial text strings that might be e-mail addresses. It would have

been desirable to augment the e-mail browser with this

capability, so that any time text was selected in it, it

would try to convert the text to an e-mail address and create

an EmailAddress object rather than just a string. But, instead

of just giving this type conversion capability to the e-mail

browser, that ability should be added to the system once, and

allowed to be used in every application where e-mail

addresses might appear. The type detection ability was

removed from the individual applications and type conver-

ters, an independent and extensible layer in the architecture,

were created.

For the programmer, writing a type converter involves

writing a method that accepts one data type and converts

it to another. For the user, adding type converters to a

CyberDesk session allows for the use of a wider variety of

user context. When user context changes (change in

time, location, or data selection), type converters improve

the list of suggested actions given by CyberDesk by

providing services specific to the content of the user context,

not relying simply on the type of user context that has

changed.

Currently the list of CyberDesk types includes Strings,

Dates, PhoneNumbers, MailingAddresses, Names, URLs,

EmailAddresses, GPSPositions, and Times. For each data

Fig. 8. Screenshot of LlamaShare being used in CyberDesk. The user

selects a name (a) in the e-mail tool. CyberDesk offers a number of inte-

grating suggestions (b), including four that access data from a remote New-

ton. The user chooses the second suggestion and sees the results (c),

obtained from a remote Newton.

8 A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



type, there is a corresponding StringTo (data type) type

converter.

6. Chaining

By making a simple extension to the service wrappers,

applications can gain the same advantages as type conver-

ters. Most of the services provided by applications require

data types as input parameters and display their results

through a graphical interface. This was seen in the scenario

when the user searched for a phone number and mailing

address (a Web page was displayed) and when the user

looked for a name in the contact manager (a contact entry

was displayed). Through the use of simple parsing, this data

encoded in the graphical interface can be obtained. In the

phone number search, the HTML page returned can be

examined and parsed to retrieve a matching phone number.

Similarly, if the name being looked up in the contact

manager had an existing entry containing an e-mail address,

the e-mail address could be easily retrieved. This additional

data is part of the user’s context and is made accessible to

CyberDesk.

When applications are able to generate additional pieces

of context and perform user-selected actions, they are

behaving both as type converters and as applications, pro-

viding the advantages of both. Now, applications can asyn-

chronously suggest both actions directly related and

indirectly related to the change in user context, reducing

the effort required by the user to find these services. This

process of generating additional context for the purpose of

increasing integrating behavior is called chaining.

A sample user scenario is described below. A user is

reading an appointment in the scheduler and elects the

name of the person he/she is supposed to be meeting (Fig.

9). As an experienced user, he/she expects to be presented

with a list of all possible services that can use a Name:

search for a phone number, mailing address, look for an

entry in the contact manager, search for the name on the

Web, etc. However, by using chaining, more powerful sug-

gestions can be provided. The WhoWhere Web application

takes a name as input and returns a Web browser showing a

list of possible e-mail addresses corresponding to that name.

If we make the assumption (not always a good one) that the

first e-mail address returned in the list is the correct one, we

can now use this service to convert the name to an e-mail

address. The service now creates a related EmailAddress

object, and the user is supplied with all possible suggestions

for both a Name and an EmailAddress.

Chaining is potentially a very powerful tool for the user to

take advantage of. It provides another dimension of sugges-

tions for each data type that the user context can be con-

verted to.

7. Combining

Along the same line of thought, chaining can be used

along with the concept of combining to make services

more powerful. The services previously described were

designed to only operate on a single data type (at a time).

With data being converted to multiple types via chaining,

we should enable services to take advantage of these multi-

ple types. They can, through a process we call combining.

Combining, in CyberDesk terms, is the ability to collect

multiple data types and dynamically bind them together, as

needed, to create meta-objects which services can use.

These meta-objects can be used to perform substantially

more powerful actions.

Using the above example of a user reading an appoint-

ment in the scheduler, the user selects a name, and a chain-

ing service like Four11 is used to obtain a mailing address

(and create a related MailingAddress object) for that name.

Using combining, a meta-object containing both the name

and the mailing address may now be used as input to a phone

number lookup service like Switchboard. Switchboard can

find phone numbers when given simply a name, but it can

perform a more accurate search when provided with both a

name and a mailing address.

Most services will perform better when provided with

pertinent, additional context to work with. CyberDesk deter-

mines how to bind data together based on the data it cur-

rently has (the sum total of the current user context) and on

the services available. It will not offer a suggestion to use

Switchboard with just a name as input, when it can suggest it

with both a name and mailing address.

Now that the concept of combining has been explained, a

more complete example demonstrating its power is given

below. Again, we will use the example of the user reading

an appointment in the scheduler (Fig. 10). The user selects

the name of a person to meet tomorrow. Immediately, the

user is offered suggestions of actions that can be performed

with the selected string and name. As the chaining-enhanced

applications return their data, this suggested list of actions is

asynchronously augmented with actions that can use an

e-mail address (via WhoWhere), phone numbers and mail-

ing addresses (via Switchboard) and URLs (via AltaVista).

At the same time, the Integrator is dynamically binding

these individual pieces of data for services that benefit

from multiple data inputs.

The user chooses to create a new entry in the contactFig. 9. Chaining example.

9A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



manager. This results in a rich entry (Fig. 11), containing the

original name selected, an e-mail address, a URL, a phone

number, and a mailing address.

Combining, like chaining, can be very powerful to the

user. It does not inhibit the list of options for individual

pieces of user context, while at the same time it combines

those pieces, improving the available services and their

results. In essence, chaining and combining enhance the

context-inferencing engine in CyberDesk.

8. Other forms of context

In a mobile setting, there are additional forms of context

that are not necessarily available in a desktop environment.

Examples include a user’s changing location, the changing

objects in the environment, and the familiarity with the

environment. As described earlier, CyberDesk has inte-

grated services that allow access to data and applications

on mobile devices. Now, we are looking at integrating ser-

vices that are available when the user is mobile, to take

advantage of these other forms of context.

Up until now, all of the examples shown have only used

changes in context based on the data the user is currently

working with. CyberDesk can deal with other forms of con-

text in the same way as it deals with the user’s data. Inte-

grated examples include significant changes in time and

position. One application that has been added to CyberDesk

is a clock that updates the system time every 5 min. Cur-

rently, only one service that can use time has been integrated

into CyberDesk. This service is part of the scheduler and it

acts as a reminder service for events listed in the scheduler.

When the time input into the system is within 15 min of an

event, the scheduler offers a suggestion to the user to check

their scheduler. Another, but more intrusive option would be

to create a window displaying the relevant information to

the user. Ideally, the user would be able to set the type of

feedback desired, and the event windows (i.e. how often the

time service updates and how close to an event should a user

be warned).

Position information has also been incorporated into

CyberDesk, for use in a mobile setting. The current system

uses global positioning system (GPS) data and is intended

for outdoor use. The application providing GPS data updates

the system position whenever the GPS coordinates change.

Again, how often the application updates will be a user-

controlled parameter. A service has been written that

accepts GPS information for a location on the Georgia

Tech campus and returns a URL corresponding to that loca-

tion. CyberDesk then suggests all the activities it can per-

form with a URL, including displaying it in a Web browser.

An example of this is shown in Fig. 12.

A prototype of an indoor positioning system has been

built at Georgia Tech [5]. This prototype could be used as

an application offering information on a user’s location

within a building, updated as a user moves between

rooms. Possible services that incorporate both indoor and

outdoor positioning information are real-time mapping

and directions, access to equipment in the environment,

and providing information on important landmarks (wash-

rooms, ATMs, etc.). If these services were combined with

knowledge of a user’s history, the services could be made

even more useful to the user. When a user approaches a

building or room they have never been to, the CyberDesk

system should offer introductory information on the loca-

tion. If the user has been there before, different sets of

information should be offered.Fig. 11. Combining example—user creates rich contact entry.

Fig. 12. Screenshot of position service: GPS coordinates are being input (a),

causing changes in the user interface (b) when the coordinates correspond

to a different Georgia Tech building. The user is keeping track of his trip in

the scratchpad (c), and is able to view the building URLs in the Web

browser (d).

Fig. 10. Combining example—user selects a name and is offered many

integrating suggestions.

10 A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



Additional forms of context can be used to generate new

and more appropriate suggestions to the user. As Cyber-

Desk’s knowledge of the user’s context grows, it is able to

create more informed suggestions for the user. We are inter-

ested in using CyberDesk’s context-inferencing engine as

the basis for context-aware applications that we are devel-

oping-applications that take advantage of knowing a user’s

position, history, behavior, etc.

9. Background and related work

The underlying framework of CyberDesk that allows

integration of isolated services is based on the concept of

dynamic mediation. Mediation consists of two basic steps:

registration of components and handling of events. Other

systems that use mediation include UNIX pipes, Field [6],

Smalltalk-80 MVC [7], Common Lisp Object System

(CLOS) [8], and APPL/A [9]. UNIX pipes act as mediators

that integrate UNIX programs. They are limited to reading

and writing streams of data, where stream outputs can only

be input to one stream, and they use only a single event.

Field (and its extension Forest) integrate UNIX applications

that have events and methods which can be manipulated

through a method interface. Like CyberDesk, it uses cen-

tralized mediation and implicit registration, allowing greater

run-time flexibility. However, it suffers from the use of

special object components, creating inconsistencies in the

way that data is handled. Smalltalk uses a general event

mechanism like CyberDesk, but it merges relationships

between components into the components themselves,

limiting flexibility. CLOS uses wrappers to access data

and methods within objects, much like CyberDesk. But it

limits the action a component can perform to a simple

method call and return, thereby limiting its usefulness.

Sullivan et al. [10] have developed a very flexible dynamic

mediation system. However, their system allows only one-

to-one relationships between components and requires

explicit registration of event–action pairs, while CyberDesk

allows one-to-many relationships and allows a looser, more

flexible, registration process.

CyberDesk also depends on the use of component soft-

ware and network objects. These concepts are important for

system flexibility and reuse. Other systems that provide for

these concepts are CORBA (Common Object Request

Broker Architecture) [11] and IIOP [12] (Internet Inter-

ORB Protocol), IBM’s DSOM [13] (Distributed System

Object Model) and Microsoft’s OLE and DCOM [14].

These are object models that allow cross-network and

cross-language integration of applications.

There are three systems that provide functionality similar

to CyberDesk. They are OpenStep’s services facility [15],

Intel’s Selection Recognition Agent [16], and Apple

Research Lab’s Data Detectors [17].

The OpenStep computing environment uses a uniform

object-messaging interface between objects in all of its

applications, similar to CyberDesk. Using this ability, appli-

cations can declare the types of data they can generate and

are integrated with services that can operate on that data.

The largest difference between CyberDesk and OpenStep

services is that CyberDesk acts on both the content and

data type being used, rather than just the data type. Open-

Step services are primarily used to convert file formats,

create dynamic links between objects (i.e. updating an

object updates the linking documents), and providing global

services such as spell checking and printing. It works only

with data the user is attending to, limiting the context types

it can use, and does not support the concepts of chaining or

combining.

Intel’s Selection Recognition Agent attempts to address

the same issues as CyberDesk. Unlike CyberDesk, it uses a

fixed data type–action pair, allowing for only one possible

set of actions for each data type recognized. The actions

performed by the agent are limited to launching an applica-

tion. When a user selects data in an application, the agent

attempts to convert the data to a particular type, and displays

an icon representative of that type (e.g. a phone icon for a

phone number). The user can view the available option by

right clicking on the icon with a mouse. For applications that

do not ‘reveal’ the data selected to the agent, the user must

copy the selected data to an application that will reveal it. It

does not support any of the advanced features of Cyber-

Desk, like chaining or combining, nor does it use any

other forms of context like time or position.

Apple Data Detectors is another component architecture

that supports automatic integration of tools. It works at the

operating system level, using the selection mechanism and

Apple Events that most Apple applications support. It

allows the selection of a large area of text and recognizes

all user-registered data types in that selection. Users view

suggested actions in a pop-up menu by pressing a modifier

key and the mouse button. Like CyberDesk, it supports an

arbitrary number of actions for each data type. It does not

support chaining and supports only a very limited notion of

combining. When a data type is chosen, a service can collect

related information and use it, but this collected information

is not made available to other services. The Apple Data

Detectors system does not support the use of other forms

of context. Its focus appears to be desktop applications, as

opposed to CyberDesk’s ubiquitous services, existing either

locally or remotely.

The three systems discussed deal only with informational

context, i.e. the data a user is working with. The majority of

context-aware computing to date has been restricted to

location-aware computing for mobile applications. This

includes the PARCTab [18] from Xerox PARC, the InfoPad

project at Berkeley [19], and the Olivetti Active Badge sys-

tem [20]. A more general programming framework for

describing location-aware objects was the subject of

Schilit’s thesis [21] and reflected a lot of the work done at

PARC. While there has been a lot of research in context-

aware computing [22], we are not aware of a general toolkit

11A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



that supports such a wide variety of user context and inte-

gration behavior like CyberDesk does.

There has been some interesting work recently directly

related to context-aware computing. Essa and Pentland [23]

have used computational perception techniques in an

attempt to match actual facial expressions with some pre-

scribed expressions indicating the state of the human (e.g.

smiling, frowning, surprized, etc.). Though this work does

not claim to be a way to predict human emotions, there is a

clear suggestion of how this and related perception research

can improve the quality of contextual information that can

be gathered. Picard’s work on affective computing [24]

suggests a similar objective, only through the use of bio-

electric signals, coupled with theories on emotion and cog-

nition. The wearable computing community is also looking

at the use of context-aware computing. As with mobile

computing, a wearable computer user’s context is constantly

changing. Applications in this area have ranged from under-

standing sign language [25] to tour guides [26] to airplane

maintenance [27]. In all these applications, context has been

used to improve the user’s experience.

10. Issues and future work

The CyberDesk framework was designed to be easily

extensible and easy to use; however, it suffers from a few

limitations. There is still a programming burden involved

with integrating services into CyberDesk. This process is

not yet entirely automated. This issue is being addressed

through the efforts of the Web-based service writer and

the investigation of JavaBeans.

CyberDesk is still limited by the number of different

types of user context it utilizes. Note that this is not a

limit imposed by the CyberDesk infrastructure. The use of

history, personal preferences, and the location of physical

objects and landmarks is currently being examined for inte-

gration into CyberDesk.

Perhaps the biggest limitation of the system is the user

interface. It consists of a window that displays a list of

suggested user actions. Although the system looks for

repeated suggestions, it is clear that the number of possible

suggestions could quickly become overwhelming to the

user. Possible methods for limiting the number of sugges-

tions are:

• before displaying a suggestion, contact the service cor-

responding to the suggestion and ensure that it can suc-

cessfully perform the action;

• pass the service name along with the data it generates, to

see if the service has already acted on the data;

• use user history and preferences to select suggestions

most likely to be accepted;

• use context to filter out suggestions.

For example, if a user selects a name in an e-mail mes-

sage and the system knows that the name is not in the

contact manager, CyberDesk should not offer a suggestion

to lookup the name in the contact manager, but instead

should suggest to create a new entry in the contact manager.

Another example is when the system has access to a user’s

history, it could determine the most likely actions a user is

likely to take, and limit the suggestions to those, or at least

order the suggestions accordingly.

We are currently looking at different ways to adapt the

interface to initially show actions that the user is likely to

take, while providing a way for the user to see other possible

actions as well. We are also looking at different presentation

methods for the suggestions, including pop-up hierarchical

menus, having menus associated with each individual appli-

cation, and document lenses [28].

CyberDesk has also shown the potential for supporting

more complex forms of context. For example, if an e-mail

message contains information about a meeting, and the user

selects the message content, a type converter could poten-

tially convert the text to a Meeting object to be inserted in

the user’s Calendar Manager. Of course, retrieving context

from arbitrary text is a very difficult problem being inves-

tigated by the artificial intelligence learning community.

But the power of CyberDesk supports the ability to use

this richer context, if available.

We will continue to add services to expand CyberDesk’s

library of components but this will not be our main focus.

We are more interested in the following research areas.

• Examining the use of advanced techniques like chaining

and combining and searching for others.

• Investigating learning-by-example techniques [29] to

allow the CyberDesk system to dynamically create

chained suggestions based on a user’s repeated actions.

• Incorporating rich forms of context into CyberDesk,

other than time, position, and meta-types. This will

allow us to use CyberDesk as the platform for develop-

ing context-aware, mobile applications.

• Experimenting with adaptive interfaces and different

interface representations in order to determine better

ways of presenting suggestions to our users.

• Applying CyberDesk’s context-inferencing engine to

build other context-aware applications. This will include

the use of both physical and emotional context, and

group context (as opposed to that of a single individual).

11. Conclusions

Providing intelligence in a ubiquitous environment can be

achieved by taking advantage of the user’s context. Context

includes the information a user interacts with on a desktop

or mobile device, location, time, etc. We have developed a

framework for integrating software services based on a

user’s context. CyberDesk eases the burden on program-

mers by relieving the necessity to determine all integrating

possibilities and eases the burden on users by relieving the

12 A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13



necessity to understand how applications work together.

Through the use of advanced techniques like chaining and

combining, we have shown the potential for integrating

behavior that is too complicated for a programmer to stati-

cally design. Context-aware integration changes the

paradigm of interaction from a user seeking out functional-

ity in software applications to the infrastructure seeking out

the user at relevant times.

Acknowledgements

AD is supported by Motorola Corporation through the

University Partnerships in Research (UPR) Program, spon-

sored by Dr Ron Borgstahl. The authors would like to thank

the members of the Future Computing Environments Group

and the numerous other undergraduate and graduate stu-

dents at Georgia Tech who have provided much inspiration

and support in the development of the initial CyberDesk

prototype and have offered us a lot of evidence for the

scalability of the infrastructure.

References

[1] A. Wood, CAMEO: Supporting Observable APIs. Position paper for

the WWW5 Programming the Web Workshop, Paris, France, May 1996.

[2] A.K. Dey et al., CyberDesk: a framework for providing self-integrat-

ing ubiquitous software services, Technical Report, GVU Center,

Georgia Institute of Technology, GIT-GVU-97-20, 1997.

[3] Java Soft, JavaBeans homepage. Available at http://splash.javasoft.-

com/beans/.

[4] M. Pinkerton, Ubiquitous computing: extending access to mobile data,

Masters Thesis, Georgia Institute of Technology, June 1997.

[5] S. Long et al., CyberGuide: prototype context-aware mobile applica-

tions, in: Proceedings of CHI ’96, ACM Press, Vancouver, Canada.

[6] D. Garlan et al., Low-cost, adaptable tool integration policies for

integrated environments, in: Proceedings of SIGSOFT 90: Fourth

Symposium on Software Development Environments, Irvine, CA,

1990.

[7] G. Krasner et al., A cookbook for using the model-view-controller

user interface paradigm in Smalltalk-80, Journal of Object Oriented

Programming 1 (3 August/September) (1988) 26–49.

[8] D. Bobrow et al., Common Lisp Object System Specification X3J13,

Document 88-02R, ACM SIGPLAN Notices 23, September 1988.

[9] S. Sutton et al., APPL/A: A prototype language for software process

programming. University of Colorado Technical Report CU-CS-448-

89, University of Colorado, Boulder, CO, 1989.

[10] K. Sullivan et al., Reconciling environment integration and compo-

nent independence, in: Proceedings of SIGSOFT 90: Fourth Sympo-

sium on Software Development Environments, Irvine, CA, 1990.

[11] T. Brando, Interoperability of the CORBA specification, MITRE

Document MP-95B-58, February, 1995.

[12] Object Management Group homepage. Available at http://www.

omg.org.

[13] SOM Object homepage. Available at http://www.software.ibm.com/

ad/somobjects/.

[14] Microsoft, OLE development homepage. Available at http://www.

microsoft.com/oledev.

[15] OpenStep, Topics in OpenStep programming. Available at http://

developer.apple.com/techpubs/rhapsody/system/Documentation/

Developer/YellowBox/TasksAndConcepts/ProgrammingTopics/

services.pdf.

[16] M. Pandit, S. Kalbag, The selection recognition agent: instant access

to relevant information and operations, in: Proceedings of Intelligent

User Interfaces ’97, ACM Press, Atlanta, GA.

[17] Apple Research Labs, Apple Data Detectors homepage. Available at

http://www.research.apple.com/research/tech/AppleDataDetectors/.

[18] R. Want et al., An overview of the PARCTAB ubiquitous computing

experiment, IEEE Personal Communications 2 (6) (1995) 28–43.

[19] A.C. Long, Jr., et al., A prototype user interface for a multimedia

terminal, in: Proceedings of CHI ’95, Interactive experience demon-

stration, ACM Press, Atlanta, GA, 1995.

[20] R. Want et al., The active badge location system, ACM Transactions

on Information Systems 10 (1) (1992).

[21] B. Schilit, A context-aware system architecture for mobile distributed

computing, Ph.D. Thesis, Columbia University, 1995.

[22] G.D. Abowd et al., Context-awareness in wearable and ubiquitous

computing, Technical Report, GVU Center, Georgia Institute of Tech-

nology, GIT-GVU-97-22, 1997.

[23] I. Essa, A. Pentland, A vision system for observing and extracting

facial action parameters, in: Proceedings of the Computer Vision

and Pattern Recognition Conference, IEEE Computer Society, 1994,

pp. 76–83.

[24] R. Picard, Affective computing, Technical Report 321, MIT Media

Lab, Perceptual Computing, November 1995. Available as MIT

Media Lab Perceptual Computing Techreport 362.

[25] T. Starner et al., A wearable computing based American sign language

recognizer, in: Proceedings of the IEEE International Symposium on

Wearable Computers, Cambridge, MA, 1997.

[26] S. Feiner et al., A touring machine: prototyping 3D mobile augmented

reality systems for exploring the urban environment, in: Proceedings

of the IEEE International Symposium on Wearable Computers, Cam-

bridge, MA, 1997.

[27] L. Bass et al., The design of a wearable computer, in: Proceedings of

CHI ’97, ACM Press, Atlanta, GA, 1997.

[28] E.A. Bier et al., ToolGlass and Magic Lenses: the see-through inter-

face, in: Computer Graphics Proceedings, Annual Conference Series,

ACM SIGGRAPH, 1993, pp. 73–80.

[29] A. Cypher, EAGER: Programming repetitive tasks by example, in:

Proceedings of CHI’91, ACM Press, Atlanta, GA, 1991.

13A.K. Dey et al. / Knowledge-Based Systems 11 (1998) 3–13


