
CyberDesk: A Framework for Providing Self-Integrating

Context-Aware Services

Anind K. Dey, Gregory D. Abowd

Graphics, Visualization, & Usability Center,

Georgia Institute of Technology

Atlanta, GA 30332-0280 USA

+1-404-894-7512

email: { anind, abowd } @cc.gatech.edu

ABSTRACT

Applications are often designed to take advantage of the

potential for integration with each other via shared

information. Current approaches for integration are limited,

effecting both the programmer and end-user. In this paper,

we present CyberDesk, a framework for self-integrating

software in which integration is driven by user context. It

relieves the burden on programmers by removing the

necessity to predict how software should be integrated. It

also relieves the burden from users by removing the need to

understand how different software components work

together.

Keywords

Context-aware computing, automated software integration,

dynamic mediation, ubiquitous computing

INTRODUCTION

Software applications often work on similar information

types such as names, addresses, dates, and locations.

Collections of applications are often designed to take

advantage of the potential for integration via shared

information. As an example, an electronic mail reader can

be enhanced to automatically recognize Web addresses,

allowing a reader to select a URL to automatically launch a

Web browser on that location. Even more complex and

useful integrating behavior is available in a number of

commercial suites of applications (e.g. Microsoft Office 97,

Lotus SmartSuite, WordPerfect Suite, and Netscape

Communicator).

We recognize the utility from the user’s perspective of

integrating the behavior of a number of software

applications. With the emergence of Web-based applications

and personal digital assistants (PDAs), there are even more

opportunities to provide integration of software applications.

There are some limitations, however, to the current

approaches for providing this integration. These limitations

impact both the programmer and the user.

Permission to make digital/hard copies ofall or part ofthis material for
personal or classroom use is granted without fee provided that the copies
rue not made or distributed for profit or commercial advantage, the copy-

right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy olhenvise.
to republish, to post on servers or to redistribute to Iii requires specific
permission an~or fee.

M 98 San Francisco CA USA
Copyright 1998 ACM 0.89791-955-6/98/01..$3.50

47

. Andrew Wood

School of Computer Science

The University of Birmingham

Edgbaston, Birmingham, B 15 2TT UK

email: amw@cs.bham.acuk

From the programmer’s perspective, the integrating behavior

between applications is static. That is, the behavior must be

identified and supported when the applications are built.

This means that a programmer has the impossible task of

predicting all of the possible ways users will want a given

application to work with all other applications. This usually

results in a limited number of software applications that are

made available in an integration suite.

From the user’s perspective, integrating behavior is limited

to the applications that are bound to the particular suite

being used. Further integration is either impossible to obtain

or must be implemented by the user. In addition, the

integrating behavior has a strong dependence on the

individual applications in the suite. If a user would like to

substitute a comparable application for one in the suite (e.g.

use a different contact manager, or word processor), she

does so at the risk of losing all integrating behavior.

The project described in this paper, CyberDesk, is aimed at

providing a more flexible framework for integrating

software behavior. We aim to reduce the programming

burden in identifying and defining integrating behavior,

while at the same time retaining as much user freedom in

determining how integration is to occur. The main objective

of the ubiquitous computing project CyberDesk is to provide

the infrastructure for self-integrating software in which the

integration is driven by actions of the user. We refer to this

as context-aware integration, and it is aimed at producing a

paradigm shift in human-computer interaction that is

fundamental to ubiquitous computing. Rather than settle for

the current situation, in which the user must seek out and

find relevant software functionality when she wants it, we

instead want the ubiquitous computing infrastructure to seek

out the user when and where she wants it. In this paper, we

demonstrate how CyberDesk supports this paradigm shift.

WHAT IS CYBERDESK?

CyberDesk is a component-based framework written in

Java, that supports automatic integration of software

applications. The framework is flexible, and can be easily

customized and extended. The components in CyberDesk

treat all data uniformly, as a Java object, regardless of

whether the data came from a desktop application, a PDA-

based application, or a Web-based application.

The intelligence in CyberDesk’s user interface comes from

applications automatically providing their services to the

user. Rather than displaying all the services to the user at all

times, the interface is limited to those services that are

relevant to the user’s context. A service is an action that an

application can perform or data that an application can

provide. A user’s context is any information about the user

and the environment that can be used to enhance the user’s

experiences. This includes the data the user is working with,

the time of day, the user’s physical location, emotional state,

social environment, objects in the room, etc. Initially,

CyberDesk was only able to work with simple strings that a

user was working with in a desktop application. Now,

CyberDesk is also able to work with time and location in a

desktop environment, networked environment, and mobile

environment.

Desktop applications incorporated into CyberDesk include

e-mail browsers, notepads, schedulers, and contact

managers. Network applications include phone number

lookups, e-mail writing, mailing address lookups, Web

searches, Usenet searches, e-mail address lookups, map

lookups, and Web page browsing. PDA-based applications

include contact managers and notepads. All applications

make their services available to the user via a common

interface. The services available at any particular time

depend on the user’s context at that time. By providing

relevant suggestions and data to the user, the user receives

useful, and possibly unexpected, help in completing their

tasks.

User Scenario

To illustrate this behavior, an actual user experience

follows.’ As seen in Figure 1, a user is checking his e-mail,

and reads one about some interesting research.

r

Future Computing Environments

J .
; ,j

:---- _...-- ---__-
dti Untnt~tedJ&‘aAtwk?tWnd~/

Figure 1. Content of User’s E-mail Message.

The user is interested in the research discussed, highlights

the URL in the message, and CyberDesk offers the

following suggestions through its interface (Figure 2):

search for the selected text using AltaVista, fmd pages that

reference this URL using AltaVista, and display the URL in

Netscape.

’ All the scenarios described in the paper can be executed at

http://www.cc.gatech.edu/fce/cyberdesWiui.

Figure 2. User selects the URL and is offered suggestions.

He chooses the last option and views the URL listed in the

message (Figure 3).

Figure 3. CyberDesk executes the service and displays the URL.

The user then selects the name of the person in charge of the

research and is offered the following suggestions (Figure 4):

search for the selected text using AltaVista, search for a

phone number and mailing address using Switchboard,

lookup the name in the contact manager. The user wants to

contact this researcher so he checks to see if the name is in

his contact manager, but it isn’t.

Figure 4: User selects name and chooses the Contact lookup service.

Figure 5. User selects the phone number lookup service.

So, he selects the phone number and mailing address lookup

service (Figure 5). He then creates a new entry in the contact

manager with this new information.

4 8

ARCHITECTURE

The CyberDesk system has a simple architecture, based on

an event-driven model, where components act as data

sources and/or data sinks. The system consists of four core

components: the IntelliButton, the ActOn Button Bar, the

applications, and the type converters. The IntelliButton

maintains the registry of data sources and sinks. It also fmds

services or data sinks that match the input data, a task

normally required of the system or service designer. The

IntelliButton displays the matches in the form of suggestions

to the user, via the ActOn Button Bar. It is through the

ActOn Button Bar that the user accesses the integrating

functionality of CyberDesk. The applications are the data

sources and sinks themselves, and are the tools the user

ultimately wants to use. When the user’s context changes,

either by working with new data or by a change in time or

position, the new context is passed to the CyberDesk system

(Figure 6). The type converters provide more powerful

integrating behavior by converting this data (a string in the

previous scenario) into other data types (e.g. name using

regular expression matching), allowing for a greater number

of matches.

Figure 6. Runtime architecture diagram.

All of the components have been implemented as Java

applets for simplicity of network programming. We also

chose Java for its promise of platform independence, ability

to execute within a Web browser, and object-oriented

nature. The first two features support our goal of ubiquity,

and the last feature made development easier. Also, most of

the integrated network applications are available via the

Web, so the natural access method was via a Web browser.

Inter-component communication was performed using

techniques based on the CAMEO toolkit [22], a C-+-t- toolkit

built previously by one of the authors to facilitate the

integration of application-sized components via the use of

agent-like components. More information on CyberDesk’s

architecture can be found in [7].

ADDING APPLICATIONS TO CYBERDESK

As discussed earlier, the applications used in CyberDesk are

the actual tools the user wants to use. CyberDesk provides

an easier and faster way of accessing the functionality of

these applications and the data they contain (i.e. their

services). From the user’s perspective, adding an application

(or any CyberDesk component) to CyberDesk simply

requires the addition of HTML applet tags to a CyberDesk

HTML page. From the programmer’s perspective, adding an

application requires more effort.

Currently, CyberDesk is unable to automatically determine

the services each application provides. A service

programmer must construct a wrapper around each

application. This wrapper performs two main functions:

registration of the provided services with CyberDesk and

execution of the services when called. During the

registration process, each application registers with the

IntelliButton giving a list of services it provides, both

actions it can perform on different data types and the data

types it can produce. Examples of this from the previous

scenario are:

l the AltaVista wrapper declaring it can search the Web

for a string and fmd pages that reference a given URL

l the Contact Manager wrapper declaring it can lookup a

given name, create a new entry, and can produce string

objects when a user selects data in the contact manager.

The second portion of the wrapper deals with actually

executing the services that were registered. When the user

selects a service from the interface, a method in the wrapper

is called to execute the service. This method takes the user’s

context, retrieves the relevant parameters for the service and

calls a method that will execute the user-selected service.

All the Web-based applications employed by CyberDesk use

HTML forms. By analyzing the form, a programmer can

fairly easily write the wrapper. These applications generally

have straightforward interfaces and require a small set of

input parameters. The parameters are passed to a URL,

which generates a resulting HTML page that can be

displayed in a Web browser. For example, the AltaVista

Web search service simply requires an input string and

returns a list of all Web pages that match this string.

Currently, there are 68 Web-based applications that have

been integrated into CyberDesk. A service writer program

has been written to automatically generate a wrapper for

Web-based applications. This program is intended for use by

service programmers, but is simple enough to be used by an

end-user wanting to add a service to CyberDesk. The

program takes a URL containing a form as input and

presents an interface as shown in Figure 7.

Figure 7. Service Writer interface.

The service programmer selects the data type the service can

49

act on, the values for the service parameters, and the output

data type, if any. Upon receiving this information, the .

service writer program generates a wrapper for the service.

Other Georgia Tech students have written all of the desktop

applications added to CyberDesk. This provided access to

both the application APIs and the source code. The APB

were needed to determine the names of methods for services

the applications provided and the parameters that each

method required. The source code allowed the service

programmers to add additional services to the applications

and add the data selection ability shown in the original

scenario (e.g. user selecting the URL). It should be made

clear that source code was only modified to enhance the

existing applications. If only the API were available for an

application, and not the source code, a wrapper could still be

written to take advantage of the application’s existing

functionality. Currently, there are 6 desktop applications that

have integrated into CyberDesk.

In addition, an automated service writer, similar to the one

mentioned above, is being designed. The service writer will

be based on the newest release of the Java language (version

1.1). It provides an automatic data selection feature,

allowing for the transfer of data between (Java and non-

Java) applications via a clipboard-style interface, and

supports the use of reusable software components called

JavaBeans [9]. The data transfer feature will eliminate the

need for any application source code. The use of JavaBeans

would allow the service writer to query an application and

determine its API at run-time, removing the need for a

compile-time API and allowing the use of third party

applications.

ADDING TYPE CONVERTERS TO CYBERDESK

CyberDesk applications can generate changes in the data

(generally strings) the user is working with. As described

above, CyberDesk uses type converters to convert this user

context (or location or time information, as will be shown in

an upcoming section) into other useful forms of user

context. For example, in the user scenario, a StringToUFU

converter took the data selected by the user and successfully

converted it to a URL. This resulted in two pieces of data

being sent to the IntelliButton, a string and a URL. The

IntelliButton sought integrating behavior for both these

types, allowing the user to access URL-relevant services

where originally they wouldn’t have had the option.

The type converters work in a recursive fashion. That is, the

new data that is generated from a successful conversion is

sent to the type converters. This process continues until no

new data is created, or a cycle is found.

Initially, applications were hardcoded to generate different

data types. For example, the e-mail browser declared that it

could generate strings when text is highlighted, but also

EmailAddress objects when the “To:” or “From:” field in an

e-mail message was selected. When EmailAddress objects

were generated, they were passed through the CyberDesk

system, as described before, to the ActOn Button Bar, which

displayed services that could consume EmailAddress objects

(e.g. Send an E-mail to this E-mail Address using Netscape).

However, this required the applications themselves to be

aware of the CyberDesk type system. It was also limiting

since e-mail addresses could also appear in the unformatted

body text of an e-mail message and only be recognized as a

string selection.

Consequently, a decision was made to use type converters,

Using simple heuristics, it is possible to identify potential

text strings that might be e-mail addresses. It would have

been desirable to augment the e-mail browser with this

capability, so that any time text was selected in it, it would

try to convert the text to an e-mail address and create an

EmailAddress object rather than just a string. But, instead of

just giving this type conversion capability to the e-mail

browser, that ability should be added to the system once, and

allowed to be used in every application where e-mail

addresses might appear. The type detection ability was

removed from the individual applications and type

converters, an independent and extensible layer in the

architecture, were created.

For the programmer, writing a type converter involves

writing a method that accepts one data type and converts it

to another. For the user, adding type converters to a

CyberDesk session allows for the use of a wider variety of

user context. When user context changes, (change in time,

location, or data selection) type converters improve the list

of suggested actions given by CyberDesk by providing

services specific to the content of the user context, not

relying simply on the type of user context that has changed.

Currently the list of CyberDesk types includes Date,

PhoneNumber, MailingAddress, Name, URL,

EmailAddress, GPSPosition, and Time. For each data type,

there is a corresponding StringTo (data type) type converter.

CHAINING

By making a simple extension to the application wrappers,

applications can gain the same advantages as type

converters. Most of the services provided by applications

require data types as input parameters and display their

results through a graphical interface. This was seen in the

above scenario when the user searched for a phone number

and mailing address (a Web page was displayed) and when

the user looked for a name in his contact manager (a contact

entry was displayed). Through the use of simple parsing,

this data encoded in the graphical interface can be obtained,

In the phone number search, the HTML page returned can

be examined and parsed to retrieve a matching phone

number. Similarly, if the name being looked up in the

contact manager had an existing entry containing an e-mail

address, the e-mail address could be easily retrieved. This

new data is part of the user’s context and is made accessible

to CyberDesk.

When applications are able to generate additional pieces of

context and perform user-selected actions, they are behaving

both as type converters and as applications, providing the

50

advantages of both. Now, applications can asynchronously

suggest both actions directly related and indirectly related to

the change in user context, reducing the effort required by

the user to find these services. This process of generating

additional context for the purpose of increasing integrating

behavior is called chaining.

A sample user scenario is described below. A user is reading

an appointment in her scheduler and selects the name of the

person she is supposed to be meeting (Figure 8). As an

experienced user, she expects to be presented with a list of

all possible services that can use a Name: search for a phone

number, mailing address, look up in the contact manager,

search name on the Web, etc. However, by using chaining,

more powerfbl suggestions can be had. The WhoWhere

Web application takes a name as input and returns a Web

browser showing a list of possible e-mail addresses

corresponding to that name. If we make the assumption (not

always a good one) that the first e-mail address returned in

the list is the correct one, we can now use this service to

convert the name to an e-mail address. The service now

creates a related EmailAddress object, and the user is

supplied with all possible suggestions for both a Name and

an EmailAddress.

Figure 8. Chaining example.

Chaining is potentially a very powerful tool for the user to

take advantage of. It provides another dimension of

suggestions for each data type that the user context can be

converted to.

COMBINING

Along the same line of thought, chaining can be used along

with the concept of combining to make services more

powerful. The services previously described were designed

to only operate on a single data type (at a time). With data

being converted to multiple types via chaining, the idea is

that the services should be able to take advantage of these

multiple types, They can, through a process we call

combining.

Combining, in CyberDesk terms, is the ability to collect

multiple data types and dynamically bind them together, as

needed, to create meta-objects which services can use. These

meta-objects can be used to perform substantially more

powerful actions. Using the above example of a user reading

an appointment in her scheduler, the user selects a name,

and a chaining service like Four1 1 is used to obtain a

mailing address (and create a related MailingAddress object)

for that name. Using combining, a me&object containing

both the name and the mailing address may now be used as

input to a phone number lookup service like Switchboard.

Switchboard can find phone numbers when given simply a

name, but it can perform a more accurate search when

provided with both a name and a mailing address.

Most services will perform better when provided with

pertinent, additional context to work with. CyberDesk

determines how to bind data together based on the data it

currently has (the sum total of the current user context) and

on the services available. It will not offer a suggestion to use

Switchboard with just a name as input, when it can suggest

it with both a name and mailing address.

Now that the concept of combining has been explained, a

more complete example demonstrating its power is given

below. Again, we’ll use the example of the user reading an

appointment in her scheduler (Figure 9). She selects the

name of a person she is meeting tomorrow. Immediately,

she is offered suggestions of actions that she can perform

with the selected string and name. As the chaining-enhanced

applications return their data, this suggested list of actions is

asynchronously augmented with actions that can use an e-

mail address (via WhoWhere), phone numbers and mailing

addresses (via Switchboard) and URLs (via AltaVista). At

the same time, the IntelliButton is dynamically binding these

individual pieces of data for services that benefit from

multiple data inputs.

Figure 9. Combining example - user selects a name and is offered

many integrating suggestions.

The user chooses to create a new entry in the contact

manager. This results in a rich entry (Figure lo), containing

the original name she selected, an e-mail address, a URL, a

phone number, and a mailing address.

I

Figure 10. Combining example - user creates rich contact entry.

Combining, like chaining, can be very powerful to the user.

It does not inhibit the list of options for individual pieces of

51

user context, while at the same time it combines those

pieces, enhancing the available services and their results. In

essence, chaining and combining create a context inference

engine in CyberDesk.

OTHER FORMS OF CONTEXT

In a mobile setting, there are additional forms of context that

are not necessarily available in a desktop environment.

Examples include a user’s changing location, the changing

objects in the environment, and the familiarity with the

environment. CyberDesk has integrated services that allow

access to data and applications on mobile hevices [16] (a

Newton MessagePad, in particular). Now, we are looking at

integrating services that are available when the user is

mobile, to take advantage of these other forms of context.

Up until now, all of the examples shown have only used

changes in context based on the data the user is currently

working with. CyberDesk can deal with other forms of

context in the same way as it deals with the user’s data.

Integrated examples include significant changes in time and

position. One application that has been added to CyberDesk

is one that updates the system time every five minutes.

Currently, only one service that can use time has been

integrated into CyberDesk. This service is part of the

scheduler and it acts as a reminder service for events listed

in the scheduler. When the time input into the scheduler is

within fifteen minutes of an event, the scheduler offers a

suggestion to the user to check their scheduler. Another, but

more intrusive, option would be to create a window

displaying the relevant information to the user. Ideally, the

user would be able to set the type of feedback desired, and

the event windows (i.e. how often the time service updates

and how close to an event should a user be warned).

Figure 11. Screenshot of position service. (a) is where GPS coordinates

are being input, causing changes in the ActOn Button Bar (b) when the

coordinates correspond to a different Georgia Tech building. The user

is keeping track of his trip in the scratchpad (c), and is able to view the

building URLs in the Web browser (d).

Position information has also been incorporated into

CyberDesk, for use in a mobile setting. The current system

uses Global Positioning System (GPS) data and is intended

for outdoor use. The application providing GPS data updates

the system position whenever the GPS coordinates change.

Again, how often the application updates will be a user-

controlled parameter. A service has been written that accepts

GPS information for a location on the Georgia Tech campus

and returns a URL corresponding to that location.

CyberDesk then suggests all the activities it can perform

with a URL, including displaying it in a Web browser. An

example of this is shown in Figure Il.

A prototype of an indoor positioning system has been built

at Georgia Tech [l 11. This prototype could be used as an

application offering information on a user’s location within a

building, updated as a user moves between rooms. Possible

services that incorporate both types of positioning

information are real-time mapping and directions, access to

equipment in the environment, and providing information on

important landmarks (washrooms, ATMs, etc.). If these

services were combined with knowledge of a user’s history,

the services could be made even more useful to the user.

When a user approaches a building or room they’ve never

been to, the CyberDesk system should offer introductory

information on the location. If the user has been there

before, different sets of information should be offered.

Additional forms of context can be used to generate new and

more appropriate suggestions to the user. As CyberDesk’s

knowledge of the user’s context grows, it is able to create

more informed suggestions for the user. We are interested in

using CyberDesk as the basis for context-aware applications

that w.e are developing - applications that take advantage of

knowing a user’s position, history, behavior, etc. While there

has been a lot of research in context-aware applications

[1,17,21], we are not aware of a general toolkit which

supports such a wide variety of user context and integration

behavior like CyberDesk does.

BACKGROUND AND RELATED WORK

The underIying framework of CyberDesk that allows

integration of isolated services is based on the concept of

dynamic mediation. Mediation consists of two basic steps:

registration of components and handling of events. Other

systems that use mediation include UNIX pipes, Field [S],

Smalltalk- MVC [IO], Common Lisp Object System

(CLOS) [4], and APPLIA [20]. UNIX pipes act as mediators

that integrate UNIX programs. They are limited to reading

and writing streams of data, stream outputs can only be

input to one stream, and they use only a single event. Field

(and its extension Forest) integrate UNIX applications that

have events and methods which can be manipulated through

a method interface. Like CyberDesk, it uses centralized

mediation and implicit registration, allowing greater runtime

flexibility. However, it suffers from the use of special

object components, creating inconsistencies. Smalltalk uses

a general event mechanism like CyberDesk, but it merges

relationships between components into the components

themselves, limiting flexibility. CLOS uses wrappers to

access data and methods within objects, much like

CyberDesk. But it limits the action a component can

perform to a simple method call and return, thereby limiting

its usefulness. Sullivan and Notkin [191 have developed a

--

very flexible dynamic mediation system. However, their

system allows only one-to-one relationships between

components and requires explicit registration of event-action

pairs, while CyberDesk allows one-to-many relationships

and allows a looser, more flexible, registration process.

CyberDesk also depends on the use of component software

and network objects. These concepts are important for

system flexibility and reuse. Other systems that provide for

these concepts are CORBA (Common Object Request

Broker Architecture) and IIOP [13] (Internet Inter-ORB

Protocol), IBM’s DSOM [12] (Distributed System Object

Model) and Microsoft’s OLE and DCOM [12]. These are

object models that allow cross-network and cross-language

integration of applications.

There are three systems that provide functionality similar to

CyberDesk. They are OpenStep’s services facility [14],

Intel’s Selection Recognition Agent [15], and Apple

Research Lab’s Data Detectors [2].

The OpenStep computing environment uses a uniform

object-messaging interface between objects in all of its

applications, similar to CyberDesk. Using this ability,

applications can declare the types of data they can generate

and are integrated with services that can operate on that

data. The largest difference between CyberDesk and

OpenStep services is that CyberDesk acts on both the

content and data type being used, rather than just the data

type, OpenStep services are primarily used to convert file

formats, create dynamic links between objects (i.e. updating

an object updates the linking documents), and providing .

global services such as spell checking and printing. It works

only with data the user is attending to, limiting the context

types it can use, and does not support the concepts of

chaining or combining.

Intel’s Selection Recognition Agent attempts to address the

same issues as CyberDesk. Unlike CyberDesk, it uses a

fixed data type-action pair, allowing for only one possible

set of actions for each data type recognized. The actions

performed by the agent are limited to launching an

application. When a user selects data in an application, the

agent attempts to convert the data to a particular type, and

displays an icon representative of that type (e.g. a phone

icon for a phone number). The user can view the available

option by right clicking on the icon with a mouse. For

applications that do not “reveal” the data selected to the

agent, the user must copy the selected data to an application

that will reveal it. It does not support any of the advanced

features of CyberDesk, like chaining or combining, nor does

it use any other forms of context like time or position.

Apple Data Detectors is another component architecture that

supports automatic integration of tools. It works at the

operating system level, using the selection mechanism and

Apple Events that most Apple applications support. It allows

the selection of a large area of text and recognizes all user-

registered data types in that selection. Users view suggested

actions in a pop-up menu by pressing a modifier key and the

53

mouse button. Like CyberDesk, it supports an arbitrary

number of actions for each data type. It does not support

chaining and supports only a very limited notion of

combining. When a data type is chosen, a service can collect

related information and use it, but this collected information

is not made available to other services. The Apple Data

Detectors system does not support the use of other forms of

context. Its focus appears to be desktop applications, as

opposed to CyberDesk’s ubiquitous services, existing either

locally or remotely.

ISSUES AND FUTURE WORK
The CyberDesk framework was designed to be easily

extensible and easy to use, however it suffers from a few

limitations. There is still a programming burden involved

with integrating services into CyberDesk. This process is

not yet entirely automated. This issue is being addressed

through the efforts of the Web-based service writer and the

investigation of JavaBeans.

CyberDesk is still limited by the number of different types

of user context it utilizes. Note that this is not a limit

imposed by the CyberDesk infrastructure. The use of

history, personal preferences, and the location of physical

objects and landmarks is currently being examined for

integration into CyberDesk.

Perhaps the biggest limitation of the system is the user

interface implemented by the ActOn Button Bar. It consists

of a window that displays a list of suggested user actions.

Although the system looks for repeated suggestions, it is

clear that the number of possible suggestions could quickly

become overwhelming to the user. Possible methods for

limiting the number of suggestions are:

l before displaying a suggestion, contact the service

corresponding to the suggestion and ensure that it can

successfully perform the action

l pass the service name along with the data it generates,

to see if the service has already acted on data

. use user history and preferences to select suggestions

most likely to be accepted

. use context to filter out suggestions

For example, if a user selects a name in an e-mail message

and the system knows that the name is not in the contact

manager, CyberDesk should not offer a suggestion to lookup

the name in the contact manager, but instead should suggest

to create a new entry in the contact manager. Another

example is when the system has access to a user’s history, it

could determine the most likely actions a user is likely to

take, and limit the suggestions to those, or at least order the

suggestions accordingly.

We are currently looking at different ways to adapt the

interface to initially show actions that the user is likely to

take, while providing a way for the user to see other possible

actions as well. We are also looking at different presentation

methods for the suggestions, including pop-up hierarchical

menus, having menus associated with each individual

application, and document lenses [3].

CyberDesk has also shown the potential for supporting more

complex forms of context. For example, if an e-mail

message contains information about a meeting, and the user

selects the message content, a type converter could

potentially convert the text to a Meeting object to be inserted

in the user’s Calendar Manager. Of course, retrieving context

from arbitrary text is a very difficult problem being

investigated by the AI learning community. But the power

of CyberDesk supports the ability to use this higher level

context, if available.

We will continue to add services to expand CyberDesk’s

library of components but this will not be our main focus.

We are more interested in the following research areas:

0 examining the use of advanced techniques like chaining

and combining and searching for others.

0 investigating learning-by-example techniques [6] to

allow the CyberDesk system to dynamically create

chained suggestions based on a user’s repeated actions.

. incorporating rich forms of context into CyberDesk,

other than time, position, and meta-types. This will

allow us to use CyberDesk as the platform for

developing context-aware, mobile applications.

. experimenting with adaptive interfaces and different

interface representations in order to determine better

ways of presenting suggestions to our users.

CONCLUSIONS

Providing intelligence in a ubiquitous environment can be

achieved by taking advantage of the user’s context. Context

includes the information a user interacts with on a desktop

or mobile device, location, time, etc. We have developed a

framework for integrating software services based on a

user’s context. CyberDesk eases the burden on programmers

by relieving the necessity to determine all integrating

possibilities and eases the burden on users by relieving the

necessity to understand how applications work together.

Through the use of advanced techniques like chaining and

combining, we have shown the potential for integrating

behavior that is too complicated for a programmer to

statically design. Context-aware integration changes the

paradigm of interaction from a user seeking out

functionality in software applications to the infrastructure

seeking out the user at relevant times.

REFERENCES

1. Abowd, G. et al. Context-awareness in wearable and ubiquitous
computing. Technical Report, GVU Center, Georgia Institute

of Technology. GIT-GVU-97-22, 1997.

2. Apple Research Labs. Apple Data Detectors homepage.

Available at http://www.research.apple.com/research/tech-

/AppleDataDetectors/.

3. Bier, E.A. et al. ToolGlass and Magic Lenses: The See-

Through Interface. Computer Graphics Proceedings, Annual

Conference Series, 1993. ACM SIGGRAPH. 73-80.

4.

5.

6.

7.

8.

9.

10.

Bobrow, D. et al. Common Lisp Object System Specification

X3JI3 Document 88-02R. ACM SIGPLAN Notices 23.

September 1988.

Brando, T. Interoperability and the CORBA specification,

MITRE Document MP-95B-58. February, 1995.

Cypher, A. EAGER: Programming repetitive tasks by example,

In Proceedings of CHI’ 91. ACM Press.

Dey, A.K., et al. CyberDesk: A Framework for Providing Self-

Integrating Ubiquitous Software Services. Technical Report,

GVU Center, Georgia Institute of Technology. GIT-GVU-9F

20, 1997.

Garlan, D. et al. Low-cost, Adaptable Tool Integration Policies

for Integrated Environments. Proceedings of SIGSOFT 90:

Fourth Symposium on Software Development Environments,

Irvine, CA, 1990.

JavaSoft. JavaBeans homepage. Available at

http://splash.javasoft.com/beans/.

Kramer, G. et al. A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of

Object Oriented Programming 1,3 (August/September 1988),

pp. 26-49.

Il. Long, S. et al. CyberGuide: Prototyping Context-Aware

Mobile Applications. In Proceedings of CHI ‘96 (Vancouver,

Canada, March 1996), ACM Press.

12. Microsoft. OLE Development homepage. Available at

http://www.microsoft.com/oledev.

13. Object Management Group homepage. Available at

http://www.omg.org.

14. OpenStep. Topics in OpenStep Programming. Available at

http://www.next.com/PubslDocuments/OPENSTEP/-

ProgrammingTopics.

15. Pandit, M. and Kalbag, S. The Selection Recognition Agent:

Instant Access to Relevant Information and Operations. In

Proceedings of Intelligent User Interfaces ‘97. ACM Press.

16. Pinkerton, M. Ubiquitous Computing: Extending access to

mobile data. Masters Thesis, Georgia Institute of Technology,

June, 1997.

17. Schilit, B. A Context-Aware System Architecture for Mobile

Distributed Computing. Ph.D. Thesis, Columbia University.

1995.

18. SOM Object homepage. Available at http://www.soAware.-

ibm.com/ad/somobjects!.

19. Sullivan, K. et al. Reconciling Environment Integration and

Component Independence. Proceedings of SIGSOFT 90:

Fourth Symposium on Software Development Environments.

Irvine, CA, 1990.

20. Sutton, S. et al. APPL/A: A Prototype Language for Software

Process Programming. University of Colorado Technical

Report CU-CS-448-89, University of Colorado, Boulder, 1989.

21. Want, R. et al. An Overview of the PARCTAB Ubiquitous

Computing Experiment. IEEE Personal Communications 2 (6).

1995.28-43.

22. Wood, A. CAMEO: Supporting Observable APIs. Position

Paper for the WWW5 Programming the Web Workshop,

(Paris, France, May, 1996).

54

