TECHNICAL NOTES

CHI 97 % 22-27 MARCH 199

CyberDesk: Automated Integration of
Desktop and Network Services

AndrewWood

School of Computer Science
The University of Birmingham
Edgbaston, Birmingham, B15 2TT UK
amw(@cs.bham.ac.uk

ABSTRACT

The CyberDesk project suggests a way to break the prevail-
ing assumption in personal computing that the user must
search out ways to integrate behavior between separate serv-
ices. We present a technique and prototype system for
automatic integration of desktop applications and network
services that requires no effortby either the designer or the
end-user.

Keywords
Adaptive interfaces, automated integration, future comput-
ing environments, ubiquitous services

INTRODUCTION

The expectation in personal computing is that the user
must search out and find the computer’s interfaceto access
a computational service, such as a calendar manager or an e-
mail browser. Future computing environments should
provide ubiquitous services that find the user by being
available on any device and that are automatically inte-
grated with a changing set of surrounding services. In this
note, we describe the CyberDesk project that addresses
automatic service integration.

One approach to integration is a tightly-integrated suite of
tools that take advantage of known services. This ap-
proach, available in many commercial personal productivity
products, is unsatisfactory for two reasons. First, it re-
quires the designer to predict how the user will want to
integrate a set number of services. Second, it forces the
user either to be satisfied with what the designer has pro-
vided or to program additional and sometimes complex
relationships between existing services. The CyberDesk
prototype shows that it is possible, however, to provide a
service integration framework that removes most of the pro-
gramming burden (of designer and end-user), provides
greater flexibility to the user and automatically suggests
how two services can be integrated based on natural user
input. For example, while the user is reading some mail,
simply highlighting someone’s name in the message can
trigger the system to inform the user of all of the services
available that are relevant to that name. The e-mail tool in

Netscape offers similar but limited functionality in auto-

matically recognizing URLs and e-mail addresses.

Permission to make digital/hard copies of all or part of this material for
personal.or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. To copy otherwise,
1o republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

CHI 97. Adanta GA USA

Copyright 1997 ACM 0-89791-802-9/97/03 ..$3.50

eco

Anind Dey, Gregory D. Abowd

Graphics, Visualization & Usability Center
Georgia Institute of Technology
Atlanta, GA 30332-0280 USA
+1-404-894-7512
{anind,abowd}@cc.gatech.edu

THE CYBERDESK PROTOTYPE

The current CyberDesk prototype consists of a set of per-
sonal productivity services, Java applets written by other
students at Georgia Tech, and several network services,
commonly used by Web surfers. The integration of these
services occurs automatically based on user interaction with
one of them. The user highlights some text in the window
of one service, and CyberDesk determines the type of the
text to suggest how the user can invoke behavior in the
other services using that text. The suggestions made by
CyberDesk appear as a dynamic button bar in a separate
“ActOn” window.

Future Computing Environments }
FROAL: Ary Wood- sewe gtech.udy
[TO: CytarDetk-cvhrdasar e gabuen sine

| SUBJECTF iwe Computing Environments
BATE:Wod, 11 Sep 1998 20:02:15 - 0400 (EOT)

Switchboard™
e ot G

[artn] Find a2 Perven
pl Browse the list below to find the person y

Found: 1 name

Abawd, D..3%27 Glecrose TriAtanta, GA XI341-57
Phasne: (7709349984

Figure 1 A sample interaction with the CyberDesk. Highlight-
ing a name in the e-mail browser suggests several other actions
that can be performed using that name.

For example, at the top left in Figure 1, is an e-mail mes-
sage informing Anind about the great work going on in the
Future Computing Environments group at Georgia Tech.
Anind is intrigued and decides to investigate further. High-
lighting “Gregory Abowd” causes the ActOn button bar to
suggest some actions (a). One suggestion is to look up the
name in an available contact manager (b). Anind discovers
that he doesn’t have Gregory’s phone number, so he de-
cides to follow another suggestion and initiates a search
using the Switchboard Web service (c).

Figure 2 continues the scenario. After speaking with Greg-
ory, Anind wants to visit Georgia Tech, but first he will do
some research. He selects the first part of the URL given in
the message, and the ActOn buttons change (d). Anind
decides to view the URL (e) and use AltaVista to retrieve a
list of Web pages that referencethe URL (f). He is pleas-

CHI 97 x 22-27 MARCH 1997/

TECHNICAL NOTES

i Future Computing Environments
FROM: Andy Woos- amwédcc gatech ooy

Enviconments
OATE:Woe, 11 Sop 1990 202215 - 0400 (EOT)

Svarch (1ha Wek 23| wowd Display the Rasulta | in

[M Bty /v, cc. qatach. s/

; Tip: To nd & bod i stuey: Yalry s ety
4 Decuments 11-28 of sheut 10000 metching the quary, In)
m‘_mm irving & {12Jun96] ORORGIA TECN CC

e dagsis [137ms4] G Bes
iastio S Seniss {133m0| Fieze Youe wwas
. g Taaka. {15Hmd] 05/2 Warewers
{153um%%] Tou aeo vaower
SEG (Tinn] waleame 5o ¥ L
1Tapc9%| Offica of Inter

Figure 2 Continuing the scenario with CyberDesk. Selecting
only part of 8 URL in the e-mail message suggests further inte-
grating behavior.

antly surprised by this last option, as he was not aware that
such a service even existed.

INTEGRATION ARCHITECTURE

CyberDesk services are Java applets collected on a single
Web page. The applets are either local services, such as
the e-mail browser and contact manager shown in the sce-
nario, or simple wrappers around network services, such as
Switchboard or AltaVista. A service can generate (display)
and/or consume (accept) data of different types, as shown in
Figure 3. Also included on this page are a set of type con-
version components that specialize in translating generated
data from one type to another. A final applet on the page
provides CyberDesk’s integrating behaviour: the dynamic
ActOn button bar.

e fext AliaVisio
T il
bt T e e R
e-mail L—wd
_I e Contos
display | convert | soggest ! w;

Figure 3 The run-time architecture of CyberDesk.

When the user selects information displayed by one service,
say some text from the e-mail message, the type converters
try recursively to see if the data can be converted to other
types used in the system (e.g. a name in Figure 3). In the
case of plain text, this could be done by comparing the
string to common formats for representing the various
types; for names you might use title firstname lastname,
and similar patterns can be used for dates, URLs, e-mail
and mailing addresses. The type converters do not have to
be overly clever, as the user provides a very focused subset
of the data to look at by explicitly selecting it.

Finally, the user’s selection, plus any extra type informa-
tion generated by the conversion process, is observed by
the ActOn integrating applet and a set of potential actions
for that data is suggested. For example, a name is accepted

as input by the Switchboard service, and so ActOn creates a
button that suggests that integrating behaviour. Clicking
on the button invokes the Switchboard service, completing
the integration without requiring any change to the func-
tionality of either service and without any programming
effort from the user.

ISSUES

Though we have demonstrated a novel integration mecha-
nism for personal and network services, some system and
user issues still remain. The integration scheme requires
no programming by the end-user or the original designer of
the service, but at this point some programming effortis
required to complete the integration of a service into Cy-
berDesk. Currently, this is simple wrapper code that in-
forms the type converter and ActOn applets of the types the
service displays and accepts. Ultimately, this service in-
formation will be automatically detectable at runtime by
adherence to component software initiatives, such as Java
Beans [1].

From the user's perspective, CyberDesk offerstight integra-
tion between differentservices, but with the freedom to
introduce new services, and upgrade old services without a
loss of integrating power. Integrating behavior is actively
suggested by the system, removing the need for the user to
remember how services work together. It is fairly clear from
our use of CyberDesk that it suffers from the potential prob-
lem of having too many ActOn buttons generated; the user
could be swamped by too many choices in an ever-
expanding button bar. We can certainly investigate differ-
ent interface representations of the button bar to help man-
age this. It will be more interesting to apply some intelli-
gence to the ActOn applet to use contextual information
and user history in determining the relevance of potential
future actions and reduce the number of suggestions.

Another potential user problem is the reaction to a con-
stantly changing interface. There is a clear link between
our work and the adaptive user interface community. How-
ever, most of that literature concentrates on adapting a
computer interfaceto the changing capabilities of the user,
not changing capabilities of the software environment [2].

CONCLUSIONS

The CyberDesk project is a shift away from the traditional
view of the desktop as a static collection of applications
that the user switches between to complete a task, transfer-
ring data between them as required; in effect, chasing the
required functionality through a user interface maze. In-
stead, our approach is to present the user with an environ-
ment in which the required functionality comes to find the
user. This environment requires no extra programming
burden for the designer or user of a service. It is a more
flexible and useful paradigm for interaction in future com-
puting environments.

REFERENCES
1. JavaSoft. Java Beans Homepage.
http://splash.javasoft.com/beans/.

2. Schneider-Hufschmidt, M., Kuhme, T., Malinowski,
U. (eds.) Adaptive User Interfaces: Principles and Prac-
tice. North-Holland Elsevier Science, 1993.

Available at

[f 4o}

