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Data sharing is becoming more of a requirement as technologies mature and as global

research and communications diversify. As a result, researchers are looking for practical

solutions, not only to enhance scientific collaborations, but also to acquire larger amounts

of data, and to access specialized datasets. In many cases, the realities of data

acquisition present a significant burden, therefore gaining access to public datasets

allows for more robust analyses and broadly enriched data exploration. To answer this

demand, the Montreal Neurological Institute has announced its commitment to Open

Science, harnessing the power of making both clinical and research data available

to the world (Owens, 2016a,b). As such, the LORIS and CBRAIN (Das et al., 2016)

platforms have been tasked with the technical challenges specific to the institutional-level

implementation of open data sharing, including:

(1) Comprehensive linking of multimodal data (phenotypic, clinical, neuroimaging,

biobanking, and genomics, etc.)

(2) Secure database encryption, specifically designed for institutional and multi-project

data sharing, ensuring subject confidentiality (using multi-tiered identifiers).

(3) Querying capabilities with multiple levels of single study and institutional permissions,

allowing public data sharing for all consented and de-identified subject data.

(4) Configurable pipelines and flags to facilitate acquisition and analysis, as well as

access to High Performance Computing clusters for rapid data processing and

sharing of software tools.

(5) Robust Workflows and Quality Control mechanisms ensuring transparency and

consistency in best practices.

(6) Long term storage (andweb access) of data, reducing loss of institutional data assets.

(7) Enhanced web-based visualization of imaging, genomic, and phenotypic data,

allowing for real-time viewing and manipulation of data from anywhere in the world.
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(8) Numerous modules for data filtering, summary statistics, and personalized and

configurable dashboards.

Implementing the vision of Open Science at the Montreal Neurological Institute will be

a concerted undertaking that seeks to facilitate data sharing for the global research

community. Our goal is to utilize the years of experience in multi-site collaborative

research infrastructure to implement the technical requirements to achieve this level of

public data sharing in a practical yet robust manner, in support of accelerating scientific

discovery.

Keywords: neuroimaging, big data, open science framework, cyberinfrastructure, neuroscience, data sharing,

bids, workflow

INTRODUCTION

The challenge of reproducibility in science (Campbell, 2016)
has compelled the neuroscience research community to
adopt new approaches to ensure scientific reliability without
impeding innovation. The recent commitment by the Montreal
Neurological Institute (MNI) to Open Science aims to improve
replicability and transparency in research through collaboration,
and in doing so, accelerate scientific discovery (Owens, 2016a,b).

The MNI’s Open Science initiative calls for the free release
of research data, findings, analytical tools, and publications
from MNI-based researchers. Institutional sharing aims to
prevent data loss, increase sample size and statistical power,
and reduce acquisition costs by encouraging data re-use
(thereby maximizing returns on public funding). In addition to
these advantages, inviting external researchers to access these
institutional resources will expand the reach and impact of
research conducted at the institute (Poldrack and Gorgolewski,
2014).

Open Science initiatives have been spearheaded within the
bioinformatics and neuroscience communities by groups such
as the Center for Open Science (Asante et al., 2016), the Allen
Institute (Koch and Jones, 2016), the Human Connectome
Project (Van Essen et al., 2012), OpenfMRI (Poldrack et al., 2013),
the Consortium for Reliability and Reproducibility (CoRR) (Zuo
et al., 2014), and a multitude of independent data sharing and
open-source academic software initiatives such as BrainHack
(Craddock et al., 2016), Brainstorm (Baillet et al., 2011), SPM
(Friston et al., 1994), FSL (Jenkinson et al., 2012), ADNI
(Petersen et al., 2010), Nipype (Gorgolewski et al., 2011), and
BigBrain (Amunts et al., 2013). At the same time, emerging
definitions of common data sharing standards, practices, and
formats are being established via BIDS (Gorgolewski et al., 2016),
the Neuro-Imaging Data Model (NIDM) (Maumet et al., 2016),
FAIR principles (Wilkinson et al., 2016) and even extending to
data organization and citation strategies (Honor et al., 2016).
Meanwhile, governments and funding agencies in the USA
(National Institutes of Health, 2014; National Institute of Mental
Health, 2015), Canada (Tri-Agency Statement of Principles of
Digital Data Management, 2016), Europe (Horizon 2020, The
Wellcome Trust, 2016) and elsewhere encourage and increasingly
require research programs to establish data management and

sharing plans from the start of the research data lifecycle.
Despite these efforts, such initiatives are frequently constrained
to particular projects or focused collaborations rather than
institutional initiatives, as the sharing of data often remains at the
discretion of individual investigators whose technical resources
and expertise in data infrastructure may be limited.

As the first leading academic research institution to develop
an Open Science framework at the institutional level1, the MNI’s
cyberinfrastructure platform will play a critical role in this
initiative. To fulfill this vision, several key implementational
challenges must be met, including policy, security, and ethics,
as well as infrastructural design, software interoperability, data
harmonization, validation, processing, and provenance capture.
The solutions to these issues must adhere to open data
sharing principles and respect domain-specific best practices
(Honor et al., 2016; Nichols et al., 2016; Wilkinson et al.,
2016).

For effective data sharing at an institutional level, it is
imperative to use a cyberinfrastructure that can incorporate
heterogeneous datasets acquired frommultiple sources over time
as well as across modalities – and to do so in a way that
is robust. Data collected by investigators in multiple studies
across the institute span diverse data types from many domains,
including clinical/behavioral measures, biological samples from
the MNI biobanking collections, genomic data, and a growing
multimodal repository of brain imaging data. The institutional
cyberinfrastructure housing these datasets must also be able to
integrate workflows from all stages of the research data lifecycle,
and interoperate with platforms that capture and disseminate
large datasets.

To this end, the MNI has selected LORIS (Das et al.,
2011) to serve as the core data management platform for
this initiative, coupled to the CBRAIN distributed high-
performance computing environment (Sherif et al., 2014). These
two platforms, combined with embedded data visualization
utilities (Sherif et al., 2015), constitute an “ecosystem” capable
of supporting Open Science at an institutional level (Das et al.,
2016).

1Open Science (Open Access). HORIZON 2020, The EU Framework Programme
for Research and Innovation. Retrieved from https://ec.europa.eu (Accessed on
August 29, 2016).
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This paper describes the ethical and policy challenges,
the technical infrastructure used for storage and curation of
the various data types, and the workflows and processing
environment for the implementation of Open Science at the
MNI.

METHODS

Four cornerstones of the MNI’s Open Science framework
and cyberinfrastructure are discussed below: (1) ethics
(including subject privacy, consent and security), (2) multi-
modal data entry, (3) workflows and quality control, and
(4) high-performance data processing and software-systems
interoperability.

Ethics, Privacy and Security
Embarking on the endeavor of institutional Open Science poses
unique challenges, particularly with regard to respecting ethical
guidelines. One critical component is that personally identifiable
information (PII) of all subjects must be protected and the data
itself must be de-identified and secured within the context of
private and independent databases—but will also be reconcilable
into a single subject record in the Open Science platform.

Since the creation of the first human cell-line (Lucey et al.,
2009), the ethical considerations surrounding the distribution
and use of human subject data have been manifold (Nelson,
2015). In accordance with local Quebec law and research ethics,
informed consent must be obtained from subjects in order to
collect and study tissue and data. The Canadian Tri-Council has
also provided clear criteria to protect the privacy of subjects, and
these criteria must be met in order for researchers to have access
to sensitive data (Canadian Institutes of Health Research Natural
Sciences and Engineering Research Council of Canada and Social
Sciences and Humanities Research Council of Canada, 2014).
Accordingly, a proposal was submitted and approved by the
MNI Research Ethics Board (REB) for the Neuro OpenScience
Clinical Biologic Imaging and Genetic Repository, or C-BIG-R,
addressing the implementation of an infrastructure technically
compatible with these ethics policies. A dual-level governance
structure was created to oversee these ethical concerns via the
REB as well as a newly-established “Tissue and Data” committee.
The REB is tasked with the identification of best practices
employed by comparable initiatives, and the Tissue and Data
committee is responsible for determining what materials are
deposited into the bank, the storage mechanisms, and how
they can be accessed for research. Participating studies may
profit from this governance model throughout the research
data lifecycle, since matters of storage, security, inclusion, and
exclusion criteria, disposal of samples etc., will already be covered
by this ethical framework.

Data sharing at any level requires nuanced procedures
and consent processes, and involves particular technological
constraints. These technical considerations include how to
share data (i) within a single study as well as (ii) between
collaborating investigators, and finally (iii) at an institutional
and public level such that subject data from multiple studies
are linkable and queryable in a unified manner. From its

inception, the MNI’s platform design allows researchers to first
store and share data internally and privately, while ultimately
allowing data to be selectively pushed to the public-facing
platform for dissemination (Figure 1). Both de-identification and
reconciliation of subject records must be carefully designed in
view of the Open MNI platform.

De-identification of subject data is an integral requirement:
the identifier must ensure privacy and ethically-compliant data
sharing, while also preventing data duplication. For this purpose,
a system of hashed identifiers has been designed to safeguard
subject identity at every stage and prevent reconstructive subject
identification. This process encodes identifying information and
is incorporated into LORIS such that PII is never transmitted
over a network; only the encoded information is used (Figure 2).

A one-way cryptographic hash function is employed to
uniquely refer to individual subjects without revealing any of
their identifying information. A given subject’s first, middle
and last names, date of birth and mother’s maiden name are
concatenated and passed through the PBKDF22 (“Password-
Based Key Derivation Function 2”) algorithm to generate a
unique hash value, created by iteratively applying a SHA13

(Secure Hash Algorithm 1) hashing function one million
times. The resulting hashed value (a 125-character string)
is then mapped onto a unique MNI-internal identifier (e.g.,
“StudyA1007”), distinctly generated for every study in which the
subject is a participant. These study-specific identifiers can be
disseminated without compromising the subject’s privacy. The
internal hash is only accessible by database administrators and
is therefore also kept secret within the institution.

Research platforms or researchers that have access to a
subject’s private information will never store PII directly in
the database; rather, they will automatically trigger this hashing
function when registering subject data in LORIS. The function
was selected for its efficiency given a sufficiently short execution
time to perform mass registration of data, yet long enough such
that brute-force attackers cannot identify subjects by repeated
attempts to guess subject names. The entire process of hashing
takes approximately 7 seconds on a current CPU.

Datasets can be shared (at the owner’s discretion) by
uploading to the public-facing Open MNI repository. The
sharing process entails additional data curation steps for further
de-identification, such as transforming images via de-facing to
avoid identification based on facial features (Bischoff-Grethe
et al., 2007). Another of these transformations is an encryption
performed on the locally hashed identifiers. This encrypted hash
is used to detect non-unique subjects for the sole purpose of
avoiding redundancy (i.e., same subject appearing in different
datasets). When a subject is determined to be unique within the
Open Science repository, they are assigned a unique public ID
which unifies their de-identified data from disparate studies.

2PBKDF2 is a key derivation function that applies a pseudo-random function to
a specified input, repeating the process multiple times, to produce a derived key
(https://en.wikipedia.org/wiki/PBKDF2).
3SHA-1 a cryptographic hash function designed as a one-way function to
map data of arbitrary size to a fixed data size, making it unfeasible to
invert. It is considered a U.S. Federal Information Processing Standard
(https://en.wikipedia.org/wiki/SHA-1).
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FIGURE 1 | MNI data flow from internal institutional repository to public-facing Open Science platform. At the institutional level, data are organized within

individual studies and are only accessible by users approved by the study’s principal investigator. Subjects participating in multiple studies are assigned unique IDs for

each study. When data are shared to the Open MNI repository, a subject’s data will be linked across all studies by a new unique subject ID.

In the event that a subject revokes consent, a database
administrator has the capability of removing that subject from
the Open MNI LORIS database using the unique public subject
ID. Upon revocation, the physical data as well as the computer
records will be destroyed and deleted. However, any derived
datasets or results obtained through the analysis of biospecimens
and data for which consent has been withdrawn will not be
destroyed. This process complies with NIH-NDA standards and
methodology regarding Global Unique Identifiers (Johnson et al.,
2010), and is explicitly outlined in the biobank consent form.

Loris Functionality: Multi-Modal Data
Entry, Provenance, Storage, and Linking
The LORIS system (Das et al., 2011, 2016) was designed
specifically for heterogeneous data acquisition, curation and
dissemination. It is a web-based PHP/MySQL database, freely
available on GitHub4 as open-source software. Its modular
organization and support for multiple data modalities (including
behavioral/clinical, neuroimaging, and genetic summary data)
provide a flexible and robust platform for many types of multi-
site studies and projects.

Within LORIS, data are organized based on subject profiles
and longitudinal data-collection timepoints within a given study.
After creating a de-identified profile of a subject, multiple
modalities of data are associated to that subject and their

4https://github.com/aces/Loris

corresponding timepoints. For example, data collected at a
particular subject timepoint may include the acquisition of MRI
and PET volumes, a collection of biospecimens, and a variety of
other clinical measures. All of this information is associated to
the subject within LORIS and can be easily retrieved, reviewed,
and exported.

Data can be imported into LORIS from external software
systems, such as laboratory information management systems
(LIMS) that handle sample registration, tracking, and storage.
Such systems export data in various formats, demonstrate
different data transfer capabilities, and implement varying
configurations in their Application Programming Interfaces
(APIs). To ensure interoperability across this diverse range of
systems, a series of processing scripts have been created in order
to bridge the gap between LORIS and the heterogeneous outputs
of these platforms.

Importation of data is best illustrated through examples from
two contexts: imaging volumes and biospecimen information.
The transfer, insertion and processing of imaging data is
performed via a sequence of open-source scripts5 native to the
LORIS platform. These scripts form a software “pipeline” that
is installed on the server to automate the pre-processing and
insertion of imaging datasets. In addition, a web-based imaging
uploader integrated with these server-side scripts handles image
uploading, filename anonymization validation, and interactive

5https://github.com/aces/Loris-MRI
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FIGURE 2 | Information Flow for De-identification: Identifying subject information is encrypted and protected at each step. Subject information is

collected (1) and then iteratively hashed (2) by a PBKDF2 algorithm using a SHA1 function to generate an Internal Hash value. This Internal Hash is mapped to a

unique subject ID for each study (3); this mapping is stored in a database only accessible by database administrators (Internal MNI LORIS). Users of the Internal MNI

LORIS platform will reference each study participant by this unique private ID, such that an individual enrolled in different studies will be registered under different

subject IDs. For datasets that are selected for sharing via the Open MNI LORIS platform, (4) the Internal Hash value for each subject is encrypted again using a secure

key known only to database administrators, such that data cannot be easily linked back to private subject IDs. At the same time, (5) data are further anonymized and

images de-faced (facial features removed) during transfer from the Internal MNI platform to the public-facing Open MNI LORIS data platform.

flagging of protocol verification checks. Once loaded in the
database, imaging volumes become searchable and sortable in
the Imaging Browser module. 3D visualization of volumes and
morphological surfaces is natively embedded in the interface via
the BrainBrowser6 tool used for quality control review of images
(Sherif et al., 2015).

Another approach is presently being explored for LORIS to
directly import multimodal data organized according to the
emerging BIDS convention (Gorgolewski et al., 2016): data
volumes would be pushed automatically from their respective
acquisition sources (MRI scanners, PET cameras, MEG, and EEG
arrays) into a central BIDS-compliant file system. This consists
of structured folders containing raw and metadata information
in simple JSON files. The new data entries would then be
systematically imported and registered into the database after
being detected by an automated daemon process that monitors
further updates to the BIDS system.

For biospecimen data, a similar automated workflow has been
implemented. Biosamples are collected and processed in a lab, at
which time information about the sample collected (e.g., sample
type, date of collection, etc.) and its current status (e.g., stage of
processing, storage location) are registered within a third-party

6https://github.com/aces/brainbrowser

LIMS data system. Custom scripts are used to extract data based
on archives of these data systems, simultaneously converting and
normalizing the data for use within LORIS.

Once data are acquired and loaded in LORIS (through either
manual data entry or automated pipeline scripts), researchers will
be able to review and curate information using quality control
tools and procedures assuring quality inputs to their analysis
pipelines. Following data acquisition, review and curation,
researchers can download, query, and disseminate datasets via
LORIS’ Data Querying Tool (DQT) which is built on a NoSQL
framework (Katz et al., 2005) to enable fast and precise extraction
of large datasets. Via the DQT, users can construct complex
queries and apply custom filters in order to target populations
and subsets of interest.

Common data description vocabularies are required to
properly address the challenges of Open Science at a large
scale. However, implementing a common vocabulary covering
the range of concepts involved in studies conducted across the
MNI will be a significant undertaking, and will be driven by the
MNI’s researchers as they seek to share their data in a common
Open Science framework; convergence upon a usable solution
will be challenging. LORIS is committed to the standardization
of ontologies, and currently adopts a practical approach where (1)
all the (DICOM) fields related to imaging data are preserved and
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FIGURE 3 | Imaging workflow from subject registration to data sharing in Open Science detailing processes for radiological reviews, quality control,

and dissemination.

made queryable, and (2) terms used for behavioral variables and
biobanking studies are defined on a study-by-study basis, while
their re-utilization is also promoted across studies, compliant
(where possible) with conventions such as BIDS (Gorgolewski
et al., 2016) or NDAR (Hall et al., 2012). Prospectively, LORIS
plans to adopt ontologies under development by the NIDM
initiative to formally and uniformly describe raw data, terms,
workflows and derived data (Maumet et al., 2016), as well as open
data citation standards such as those developed for neuroimaging
(Honor et al., 2016). Further integration of domain-specific
standards, such as MIABIS 2.0 developed for biobanking data
by the BBMRI-ERIC network (Merino-Martinez et al., 2016), is
a priority for integration of data dissemination formats for the
Open Science platform.

Workflows and Quality Control for Imaging,
Clinical/Behavioral and Biobanking
To support data review processes, multiple tiers of quality control
tools are embedded in LORIS, enabling researchers to standardize
data collection, which in turn facilitates reproducible results
and compatible data-sharing in an Open Science environment.
Validating the reliability of assessments for data collected at
different sites and over time enables researchers to control for
variability (Van Essen et al., 2013; Ducharme et al., 2015; Orban
et al., 2015). Figures 3–5 show domain-specific procedures that
allow for data to be both standardized within a study and across
studies in the context of Open Science for imaging (Figure 3),

biobanking (Figure 4), and clinical/behavioral (Figure 5) data
collection.

LORIS implements these new frameworks, techniques, and
procedures, both automatic and manual, to ensure that the
integrity, validity and reliability of data are not compromised
from the collection stage through to data sharing.

High-Performance Data Processing
Open Science at the MNI is further facilitated by the interface
between LORIS and CBRAIN’s high performance computing
(HPC) capabilities (Das et al., 2016). CBRAIN is a web-
based collaborative research platform developed in response to
the challenges raised by data-heavy, computationally-intensive
neuroimaging research (Sherif et al., 2014). It offers transparent
access to remote data sources, distributed computing sites, and
an array of processing and visualization tools within a controlled,
secure environment. The framework code is entirely open-source
and available on GitHub7.

CBRAIN promotes Open Science in several ways by
providing: (1) web access to a wide range of data processing
pipelines, (2) an API open to other systems such as LORIS, (3) a
full provenance trail of software versions, processing logs and all
data manipulations, (4) strong security features, (5) a mechanism
of tool containers and descriptors to facilitate the integration and
open distribution of new analysis tools/pipelines (Glatard et al.,
2015), and (6) connections to new private or shared data sources

7https://github.com/aces/cbrain
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FIGURE 4 | Biobanking workflow from subject registration to data sharing in Open Science detailing data collection, sample tracking, quality control,

and dissemination.

FIGURE 5 | Clinical/Behavioral workflow from subject registration to data sharing in Open Science detailing data validation, range checks, data

integrity flags, and interactive statistics interface at the study and institutional levels.

for research groups. An overview of CBRAIN’s integration with
LORIS is shown in Figure 6 and further detailed in “The MNI
data-sharing and processing ecosystem” (Das et al., 2016).

While LORIS stores and manages the data gathered and
distributed by the institute, the CBRAIN platform provides an
interface to the tools and high-performance computing and

processing capabilities needed by the researchers. CBRAIN and
LORIS each have APIs and can be connected such that data files
managed by LORIS can be transferred to CBRAIN and processed
on its computing ecosystem. When submitted workloads are
completed, the resulting data files can be transferred back and
registered in LORIS under the proper subject profile. This
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FIGURE 6 | LORIS and CBRAIN interaction (Das et al., 2016). Datasets hosted in LORIS’ data-sharing platform are pushed to, processed by, and returned to the

central LORIS repository from the CBRAIN distributed computing platform. Data can be downloaded or disseminated at any stage. Custom tools and pipelines can be

packaged and mounted on CBRAIN for use by a research group or larger community of investigators.

eliminates the complexity of manual multi-site data transfers and
saves the researchers from having to deal with the peculiarities
of each computing center (e.g., queueing system and library
environment, site policies, number of usable cores per nodes,
queue limits, downtime, etc.).

A built-in mechanism allows for extensive provenance
recording of any entity managed by CBRAIN, in particular for
all operations on files, tasks, user groups, data, and computing
resources, as well as the full standard and error logs provided by
the analysis tools during processing. This audit trail is essential
to ensure future reproducibility of results, and is also useful for
troubleshooting and debugging.

CBRAIN’s capabilities integrate well with the institutional
requirements of privacy when dealing with files that are not yet
openly releasable. All CBRAIN data traffic to and from the high
performance computing centers is encrypted. Secure connections
between authorized resources are transient, and temporary files
can be configured to be automatically purged after processing is
finished. Fine-grained access rights can be defined on any data
file via user groups. Strict access permissions can also be defined
for complete data servers, for analysis tools and for computation
sites.

Extensibility is an important component of the CBRAIN
architecture, and includes software and processing pipelines,
data sources and data formats, and computational backends.
Researchers can provide different software packages that make
a vast number of processing tools available to authorized
users. Standardized processing pipelines can be integrated either
by writing dedicated CBRAIN plugins, or by leveraging the

open Boutiques8 framework (Glatard et al., 2015). Boutiques
provides a high-level specification to describe command-line
tools without writing any code, and to install these tools
uniformly on computing systems through Docker9 containers.
CBRAIN is designed to provide a generic data processing
framework, accepting different data-types from various sources
as determined by the data-processing software. This is achieved
by the creation of data models that associate each data-type
with its own processing software and corresponding visualization
tool. Finally, CBRAIN provides a meta-scheduler and adaptors
to common cluster systems (PBS, Torque, SGE, MOAB, LSF,
Amazon EC2 or simple UNIX prompt submission) in order
to extend the computational backends needed to process large
amounts of data through these diverse processing pipelines.

Currently, CBRAIN deploys Docker containers on a 20,000-
node computing cluster provided by Compute Canada, and on
Amazon Elastic Compute Cloud (EC2) using its cloud support
plugin. Several data analysis tools and processing pipelines are
currently deployed in these clusters (CIVET, FreeSurfer, FSL,
etc.), and data models for viewing and processing common
file types (csv, txt) and various neuroimaging data formats
are defined (MINC, NIfTI, BIDS). In the future, other types
of containers, for instance Singularity10, can further facilitate
sharing of new tools in an Open Science context. Other
scheduling systems can be easily added using the modularity

8http://boutiques.github.io
9https://docker.com
10http://singularity.lbl.gov
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of the resource access framework to further extend the
computational backend.

RESULTS

The cyberinfrastructure for Open Science at the MNI consists
of three primary components: the technical infrastructure that
facilitates acquisition, storage, querying, processing, and data
analysis; the workflows, procedures and best practices associated
with data integrity and privacy at each step; and the data
themselves.

Technical Infrastructure
Numerous large-scale projects have already employed LORIS
for multi-site use (Evans and Brain development cooperative
group, 2006; Wolff et al., 2012; Amunts et al., 2013; Paolozza
et al., 2014; Foster et al., 2015; Orban et al., 2015), and
several institutions have chosen or planned for LORIS as their
institutional infrastructure (e.g., PERFORMCentre at Concordia
University, University of Edinburgh’s Brain Research Imaging
Centre). LORIS is used across 150 acquisition sites in numerous
countries with over 500 instruments, over 75,000 variables, and
40 TB of data.

The CBRAIN service deployed at the MNI11 currently
provides over 460 collaborators in 20 countries with web access to
several systems, including six clusters of the Compute Canada12

high-performance computing infrastructure (totalling more than
100,000 computing cores and 40PB of disk storage) and Amazon
EC2. Presently, CBRAIN transiently stores about 10 million
files representing over 50TB distributed over 42 servers. 56
data processing tools are integrated and over 340,000 processing
batches have been submitted since 2010.

Workflows
One of the most important aspects in constructing large-scale
data sharing initiatives is the incorporation of properly-designed
user workflows, which are vital to ensuring effective usability
and viability. Creating software that provides a seamless user
experience for a subset of functionalities is a widely understood
best practice; however, incorporating diversified workflows into
a complex infrastructure, such as institutional Open Science,
requires more than wizardry in programming or knowledge of
the latest code libraries.

To that end, detailed workflows have been created to
facilitate procedures involved in acquiring, storing, and analyzing
neuroscience data including clinical, imaging, genetic, and
biobanking information. These workflows, outlined in the
Methods section of this paper (Figures 3–5), are designed to
improve consistency within studies and are critical in an Open
Science model across studies. Such procedures help ensure
consistency and compliance with data collection standards
(i.e., naming, data collection, and imaging pipelines), and
coupled with proper and intuitive data organization, provide the
foundation of data sharing, for easier interoperability between

11https://portal.cbrain.mcgill.ca
12http://www.computecanada.ca

software systems. Consistent application of such workflows also
serves to reduce time spent manually identifying and addressing
variability in data formatting. These systems are augmented
by a comprehensive set of previously-discussed QC procedures
ensuring validation of data and flagging of data for correction.
As imaging, clinical, or biospecimen information proceeds from
registration through analysis, these streamlined workflows save
significant time and energy for researchers as well as developers,
all while producing a robustly documented and well-validated
dataset.

The Data
Various data types are stored in LORIS including phenotypic,
clinical, demographic, imaging, and genomic data. The MNI’s
Open Science platform will initially consist of contributions
of imaging and biobanking data from two key institutional
resources. Within the MNI, biospecimens will be housed and
tracked in the institutional biobank component of the C-BIG
Repository. Neuroimaging data will also be contributed to the C-
BIG Repository by researchers using the MNI’s McConnell Brain
Imaging Centre (BIC) Imagebank platform. The resulting unified
repository (see Table 1) will serve the MNI with an enriched data
platform, providing multi-modal data querying via the DQT, and
enabling visualizations and analyses of more complex datasets
(European Society of Radiology, 2015).

Imagebank Infrastructure

In its pilot phase, the MNI’s Imagebank will serve as a central
repository of scans primarily collected at the BIC’s MRI unit.
Scans transferred to the Imagebank server will be loaded through
a series of software scripts into LORIS, and automatically made
available for download through the Imagebank’s web-based
browser interface. This repository allows all images, whether
raw or processed, to be available for visualization, quality
control, and download/export. Currently, this database links
to a compressed archive of every MRI dataset sent to the
server, which will grow considerably as the infrastructure is
further deployed and usage grows. Expansion for other imaging
modalities across the MNI, such as PET and MEG (Niso et al.,
2016), is underway. Imaging volumes stored in this LORIS-
based repository can be pushed to CBRAIN for image processing
and returned in an automated manner into the Imagebank.

TABLE 1 | C-BIG repository overview.

MNI C-BIG Centralized LORIS Repository

Type Description Data

Imagebank Multi-modal, raw/processed

neuroimaging data

MRI, PET, MEG, EEG,

Spectroscopy

Biobank Biospecimen data Blood, saliva, skin, muscle &

nerve biopsies, whole brains,

cerebrospinal fluid

Genetic Summary genetic data SNPs, CNVs, CpG, GWAS

Phenotypic Behavioral, clinical data Instruments, Assessments,

Questionnaires

Data types and description of data that will be stored in the MNI’s C-BIG Repository.
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In addition to storing, processing, archiving, and retrieving
data, investigators will have the option of releasing their scans
to the Open MNI platform in accordance with institutional
ethical and policy constraints as discussed in the Methods
section.

Biobank Infrastructure

Biosamples or biospecimens collected from subjects at the
MNI are stored within an infrastructure of freezers and
labs. This physical infrastructure, together with the software
modules within LORIS which retrieve and process data
related to these biospecimens, are collectively referred to
as “The Biobank.” Biosample types collected on-site include
blood, saliva, skin, muscle, and nerve biopsies, whole brains,
and cerebrospinal fluid. LORIS logs specimen information
- including sample type, specimen quantity and availability,
methodology employed, and so on - beginning at the stage
of collection and initial storage and continuing through
successive stages of analysis in the research data lifecycle.
During these stages, samples may also be located offsite in
any number of collaborating institutions or facilities, such
as the Genome Quebec Innovation Centre. Results from the
assays and analysis performed on these specimens are stored in
LORIS.

Both qualitative and quantitative outputs - such as cell counts,
protein expression, or diagnostic information—can be captured
for each biospecimen. Precisely which input fields are used
depends on the study and can be extended and customized on
a per-project and/or per-methodology basis. All of these data are
queryable in conjunction with clinical/behavioral data which are
also stored in LORIS.

LORIS contains a wide range of data collected from physical
biospecimens, including skin, blood and saliva. In addition to
these common sample types, a key strength of the MNI biobank
is enabling access to data obtained via complex, invasive or
rare procedures, such as muscle, brain and nerve biopsies,
cerebrospinal fluid, and whole brain specimens. Information and
analyses collected by one researcher (including data acquisition
log files, observations, models, outcomes, etc.) can be added
to the biobank for review and reuse by others. In providing
access to a large online dataset, LORIS greatly facilitates
optimal use and data re-analysis of rare specimens. This
has clear benefits for the acceleration of new discoveries in
neuroscience.

DISCUSSION

Open Science, at an institutional level, is a concept that has
not yet been widely adopted across the scientific community.
In tandem with the deployment of a robust cyberinfrastructure,
key enhancements to organizational practices are necessary for
Open Science to truly proliferate. Beginning with obtaining
subject consent for data sharing, protecting subject privacy
and complying with ethical regulations, there are challenges
in ensuring that all such considerations are executed properly,
securely, and effectively.

For an institution to go completely open, it requires
considerable buy-in from investigators who will share data and
tools, and a comprehensive institutional policy contingent upon
full support and leadership across the organization. Naturally
there are some risks and challenges associated in the adoption of
an Open Science framework. On an individual level, researchers
may be concerned about the ownership of data they have
generated, or autonomy over their research findings. However
the realities of any such risks are far outweighed by increasing the
outreach of the research and the number of citations (Piwowar
and Vision, 2013) and recognition that is attributed to shared
data, as initiatives such as ADNI (Petersen et al., 2010), the
Human Connectome Project (Van Essen et al., 2012), ABIDE (Di
Martino et al., 2014), FCP (Biswal et al., 2010), ADHD (ADHD-
200 Consortium, 2012), OpenfMRI (Poldrack et al., 2013), and
CoRR (Zuo et al., 2014) have demonstrated. From an institutional
perspective, there is often a fear that foregoing potential patent
royalties will result in lost revenue and recognition of innovation
(David, 2004). However, open access initiatives can result in
greater funding opportunities, increased efficiency, and greater
institutional recognition (Poldrack and Gorgolewski, 2014).

The MNI’s commitment to move toward an Open Science
model of data sharing (Owens, 2016a,b) leverages the benefits
of increased access to datasets in sample sizes and variability
while advancing the data lifecycle toward enriching exploratory
analyses and hypothesis formulation, which allows for new
questions to be asked. Increased sample size and sample variation
also improves reproducibility and reliability of inference testing
as well as publication quality and impact. While simply
releasing data under an Open Science context does not in
itself address all the concerns regarding reproducibility (such as
selective reporting and analysis, processing pipeline deviations,
proper documentation, etc.), it does push toward principles
of replicability by pressuring for improved descriptions and
provenance, allowing for increased analysis and re-analysis, and
facilitating collaborative quality control and validation (Zuo et al.,
2014; Zuo and Xing, 2014).

It is important to note that by facilitating collaborations
through data sharing, the cost of entry for many researchers
will be lowered (Edwards et al., 2009; Abboud, 2016; Owens,
2016a,b), thus maximizing the return on public science funding
and research investments (Poldrack and Gorgolewski, 2014).
Emerging interoperability between specialized data systems,
such as XNAT (imaging, Marcus et al., 2007), REDCap
(clinical/behavioral, Harris et al., 2009) and LIMS systems, as
well as LORIS, will also serve to lower technical barriers to the
federation of datasets across modalities and repositories.

Another important consideration for Open Science at the
MNI is its foundation on an established software infrastructure—
i.e., the combination of LORIS and CBRAIN—that has been
already operational for several years. Over the lifecycle of
these applications, these platforms have been designed and
developed in close collaboration with researchers and have grown
according to their needs and goals. This infrastructure is used
internationally, operating across the full life-cycle of data-sharing
(i.e., acquisition to analysis), and is proven to be scalable for
large-scale datasets. This wealth of experience is key to the

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2017 | Volume 10 | Article 53

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Das et al. Cyberinfrastructure for Open Science at the MNI

cyberinfrastructure of the Open Science initiative as it addresses
many of the major hurdles that this endeavor could involve.
However, as the first of its kind, the MNI’s institutional Open
Science initiative has necessitated the addition of the following
features and functionalities.

In LORIS:

(1) A complete de-identificationmechanism has been developed
that allows publication of data beyond the usual confines of a
particular study, while at the same time ensuring ethics and
privacy.

(2) Support for several data modalities is being added, including
PET, EEG/MEG, and biosamples. This is of particular
importance since the range of modalities used at an
institutional level is much wider than in a single project.

(3) Quality control tools have been extended and made more
robust, based on 15 years of experience in a number of data
acquisition project lifecycles.

In CBRAIN:

(1) Tighter integration with the LORIS database to allow for
compute-intensive processing of Open Data.

(2) Streamlined account creation process and handling of
access permissions, so that various user profiles can be
easily handled by administrators. This will be particularly
important when the MNI’s Open Science initiative reaches
its full potential, as users with a wide range of profiles are
expected to access the data and to have various processing
requirements.

(3) Facilitated tool integration, so that external researchers could
contribute their tool to the CBRAIN ecosystem without
expert knowledge of its internal mechanisms.

CONCLUSION

Open Science is a simple concept that masks a daunting
set of ethical, conceptual, and technical challenges. As the
scale of scientific data collection and scope of discovery
increase with technological advancement, the promise of
collaboration through Open Science presents a potential
solution to limits faced by institution-based science, including
statistical power and resource constraints. This Open Science
cyberinfrastructure at the MNI, comprised of the LORIS
and CBRAIN platforms, intends to increase transparency
in data curation, dissemination and analysis, reduce data
loss, facilitate innovation and collaboration, and efficiently
accelerate the discovery and the application of neuroscience

at the Montreal Neurological Institute and across the greater
research community.
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