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Abstract 

The object of this study is to propose a statistical model for predicting the Expected Path Length 

(expected number of steps the attacker will take, starting from the initial state to compromise the 

security goal—EPL) in a cyber-attack. The model we developed is based on utilizing vulnerability 

information along with having host centric attack graph. Utilizing the developed model, one can 

identify the interaction among the vulnerabilities and individual variables (risk factors) that drive 

the Expected Path Length. Gaining a better understanding of the relationship between vulnerabili-

ties and their interactions can provide security administrators a better view and an understand-

ing of their security status. In addition, we have also ranked the attributable variables and their 

contribution in estimating the subject length. Thus, one can utilize the ranking process to take 

precautions and actions to minimize Expected Path Length. 
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1. Introduction 

Cyber-attacks are the most formidable security challenge faced by most governments and large scale companies. 
Cyber criminals are increasingly using sophisticated network and social engineering techniques to steal the cru-
cial information which directly affects the operational effects of the Government or Company’s objectives. Ac-
cording to the Secunia [1] report 2015, one could see how crucial the volume and magnitude of increasing cy-
ber-security threaten. Thus, in understanding the performance, availability and reliability of computer networks, 
measuring techniques plays an important role in the subject area. 

Quantitative measures are now commonly used to evaluate the security of computer network systems. These 
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measures help administrators to make important decisions regarding their network security. 
In the present study, we have first proposed a stochastic model for security evaluation based on vulnerability 

exploitability scores and attack path behavior. Here, we consider small case scenarios which include three vul-
nerabilities (high, medium and small) as a base model to understand the behavior of network topology. We 
structure the attack graph which includes all possibilities that the attacker reach the goal state and use probabil-
istic analysis to measure the security of the network. In addition, we propose a statistical model that is driven by 
the mentioned vulnerabilities along with the significant interactions that is highly accurate. This statistical model 
will allow us to estimate the Expected Path Length and Minimum number of steps to reach the target with prob-
ability one. Having these important estimates, we can take counter steps and acquire relevant resources to pro-
tect the security system from the attacker. In addition, utilizing this model we have identified the significant in-
teraction of the key attributable variables. Also we can rank the attributable variables (vulnerabilities) to identify 
the percentage of contribution to the response (Expected Path Length and Minimum number of steps to reach the 
target) and furthermore one can perform surface response analysis to identify the acceptable values that will mi-
nimize the Expected Path Length among others. 

2. Background and Terms of Cybersecurity 

Here we review some of the terminology associated with cyber security for the convenience of the reader. We 
also describe some basic aspects of Markov chains properties that we utilized in fulfilling the objectives of the 
present study.  

Figure 1 and Figure 2 below give a schematic presentation of the Common Vulnerability Scoring System 
(CVSS) which is the basis of the metric calculation model and the temporal and environmental matrices calcula-
tion model, respectively. 

2.1.1. Vulnerabilities 

In computer security, a vulnerability [2]-[4] is a weakness which allows an attacker to reduce a system’s infor-
mation assurance. Vulnerability is the intersection of three elements, which are, systems susceptibility to the  

 

 

Figure 1. Common vulnerability scoring system-base metric calculation model. 
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Figure 2. Common vulnerability scoring system-temporal and environmental metrics calculation model. 

 
flaw, attacker access to the flaw, and attacker capability to exploit the flaw. 

To exploit a vulnerability, an attacker must have at least one applicable tool or technique that can connect to a 
system weakness. In this frame, vulnerability is also known as the attack surface. 

The attack surface of a software environment is the sum of the different points (the “attack vectors”) where an 
unauthorized user (the “attacker”) can try to enter data to or extract data from an environment. 

2.1.2. Attack Graphs 

An attack graph [5] [6] is a succinct representation of all paths through a system that ends in a state where an in-
truder has successfully achieved his goal. 

Attack graphs describe ways in which an adversary can exploit vulnerabilities to break into a system. System 
administrators analyze attack graphs to understand where their system’s weaknesses lie and to help decide which 
security measures will be effective to deploy. In practice, attack graphs are produced manually by Red Teams. 
Construction by hand, however, is tedious, error-prone, and impractical for attack graphs with large number of 
nodes. 

2.1.3. Frei’s Vulnerabilities Lifecycle 

Frei’s Vulnerability Lifecycle [7] is a representation of stages that vulnerability faces with time. This model 
calculates the likelihood of an exploit or patch being available a certain number of days after its disclosure date. 

2.1.4. Common Vulnerability Scoring System (CVSS) 

Common Vulnerability Scoring System (CVSS) [8] is a free and open industry standard for assessing the sever-
ity of computer system security vulnerabilities. It is under the custodianship of the Forum of Incident Response 
and Security Teams (FIRST). It attempts to establish a measure of how much concern a vulnerability warrants, 
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compared to other vulnerabilities, so efforts can be prioritized. The scores are based on a series of measurements 
(called metrics) based on expert assessment. The scores range from 0 to 10. Vulnerabilities with a base score in 
the range 7.0 - 10.0 are High, those in the range 4.0 - 6.9 as Medium, and 0 - 3.9 as Low. CVSS calculating me-
thod is described by Figure 1 and Figure 2 are given in Section 2.  

2.1.5. Cyber Situational Awareness 

Tim Bass [9] first introduced this concept and this is the immediate knowledge of friendly, adversary and other 
relevant information regarding activities in and through cyberspace and the Electromagnetic Spectrum (EMS). It 
is obtained from a combination of intelligence and operational activity in cyberspace, the EMS, and in the other 
domains, both unilaterally and through collaboration with our unified action and public-private partners. 

Cyber situational awareness is the capability that helps security analysts and decision makers:  
• Visualize and understand the current state of the IT infrastructure, as well as the defensive posture of the IT 

environment. 
• Identify what infrastructure components are important to complete key functions.  
• Understand the possible actions an adversary could undertake to damage critical IT infrastructure compo-

nents. 
• Determine where to look for key indicators of malicious activity.  

2.2. Markov Chain and Transition Probability 

A discrete type stochastic process { }, 0NX X N= ≥  is called a Markov chain [10] if for any sequence  

{ }0 1, , , NX X X  of states, the next state depends only on the current state and not on the sequence of events 
that preceded it, which is called the Markov property. Mathematically we can write this as follows: 

( ) ( )0 0 1 1 2 2 1 1, , , ,N N N N N NP X j X i X i X i X i P X j X i− − − −= = = = = = = = . 

We will also make the assumption that the transition probabilities  

( )0 0 1 1 2 2 1, , , ,N N N NP X j X i X i X i X i− − −= = = = =  do not depend on time. This is called time homogeneity. 
The transition probabilities (Pi,j) for Markov chain can be defined as follows: 

( ), 1 i j N NP P X j X i−= = = . 

The transition matrix P of the Markov chain is the N N×  matrix whose ( ),i j  entry ,i jP  satisfied the fol-
lowing properties. 

0 1, 1 ,ijP i j N≤ ≤ ≤ ≤  

and 

1

1, 1 .
N

ij

j

P i N
=

= ≤ ≤∑  

Any matrix satisfying the above two equations is the transition matrix for a Markov chain. 
To simulate a Markov chain, we need its stochastic matrix P and an initial probability distribution πo.  
Here we shall simulate an N-state Markov chain (X; P; π0) for 0,1, 2, ,N N=  , time periods. Let X be a 

vector of possible state values from sample realizations of the chain. Iterating on the Markov chain will produce 
a sample path {XN} where for each N, XN ∈ X. When writing simulation programs this is about using uniformly 
distributed U [0, 1] random numbers to obtain the corrected distribution in every step. 

Transient States 

Let P be the transition matrix [10] for Markov chain Xn. A “state i” is called transient state if with probability 1 
the chain visits i only a finite number of times. Let Q be the sub matrix of P which includes only the rows and 
columns for the transient states. The transition matrix for an absorbing Markov chain has the following canoni-
cal form. 

0 I
P

Q R
=


 
 

. 
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Here P is the transition matrix, Q is the matrix of transient states, R is the matrix of absorbing states and I is 
the identity matrix. 

The matrix P represents the transition probability matrix of the absorbing Markov chain. In an absorbing 
Markov chain the probability that the chain will be absorbed is always 1. Hence, we have 

0 asn
Q n→ →∞ . 

Thus, is it implies that all the eigenvalues of Q have absolute values strictly less than 1. Hence, I Q−  is an 
invertible matrix and there is no problem in defining the matrix  

( ) 1 2 3
M I Q I Q Q Q

−= − = + + + + . 

This matrix is called the fundamental matrix of P. Let i be a transient state and consider iY , the total number 
of visits to i. Then we can show that the expected number of visits to i starting at j is given by 

ijM , the ( ),i j  
entry of the matrix M.  

Therefore, if we want to compute the expected number of steps until the chain enters a recurrent class, as-
suming starting at state j, we need only sum 

ijM  over all transient states i. 

3. Cybersecurity Analysis Method 

The core component of this method is the attack graph [11]. When we draw an attack graph for a cybersecurity 
system it has several nodes which represent the vulnerabilities that the system has and the attacker’s state [12]. 
We consider that it is possible to go to a goal state starting from any other state in the attack graph. Also an at-
tack graph has at least one absorbing state or goal state. Therefore we will model the attack graph as an absorb-
ing Markov chain [12]. 

Absorbing state or goal state is the security node which is exploited by the attacker. When the attacker has 
reached this goal state, attack path is completed. Thus, the entire attack graph consists of these type of attack 
paths. 

Given the CVSS score for each of the vulnerabilities in the attack Graph, we can estimate the transition prob-
abilities of the absorbing Markov chain by normalizing the CVSS scores over all the edges starting from the at-
tacker’s source state. 

We define, 

ijp  = probability that an attacker is currently in state j and exploits a vulnerability in state i. 
n = number of outgoing edges from state i in the attack model. 
vj = CVSS score for the vulnerability in state j. 
Then formally we can define the transition probability below, 

1

j

ij n

kk

v
p

v
=

=
∑

. 

By using these transition probabilities we can derive the absorbing transition probability matrix P, which fol-
lows the properties defined under Markov chain probability method. 

3.1. Attack Prediction 

Under the Attack prediction, we consider two methods to predict the attacker’s behavior. 

3.1.1. Multi Step Attack Prediction 

The absorbing transition probability matrix shows the presence of each edge in a network attack graph. This ma-
trix shows every possible single-step attack. In other words, the absorbing transition probability matrix shows 
attacker reaches ability within one attack step. We can navigate the absorbing transition probability matrix by 
iteratively matching rows and columns to follow multiple attack steps, and also raise the absorbing transition 
probability matrix to higher powers, which shows multi-step attacker reach ability at a glance. 

For a square (n × n) adjacency matrix P and a positive integer k, then Pk is P raised to the power k: Since P is 
an absorbing transition probability matrix with time, this matrix goes to some stationary matrix Π, where the 
rows of this matrix are identical. That is, 
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lim Π.k

k P→∞ =  

At the goal state column of this matrixΠ has ones, so we can find the minimum number of steps that the at-
tacker should try to reach to the goal state with probability 1. 

3.1.2. Prediction of Expected Path Length (EPL) 

The Expected Path Length (EPL) measures the expected number of steps the attacker will take starting from the 
initial state to reach the goal state (the attacker’s objective). As we discussed earlier P has the following canoni-
cal form. 

0

Q R
P

I

 
=  
 

. 

Here, P is the transition matrix, Q is the matrix of transient states, R is the matrix of absorbing states and I is 
the identity matrix. 

The matrix P represents the transition probability matrix of the absorbing Markov chain. In an absorbing 
Markov chain the probability that the chain will be absorbed is always 1. Thus, we have 

0 asn
Q n→ →∞ . 

This implies that all the eigenvalues of Q have absolute values strictly less than 1. Thus, I Q−  is an inverti-
ble matrix and there is no problem in defining the matrix  

( ) 1 2 3
M I Q I Q Q Q

−= − = + + + + . 

Using this fundamental matrix M of the absorbing Markov chain we can compute the expected total number 
of steps to reach the goal state until absorption. 

Taking the summation of first row elements of matrix M gives the expected total number of steps to reach the 
goal state until absorption and the probability value relates to the goal state gives the expected number of visits 
to that state before absorption. 

4. Illustration: The Attacker 

To illustrate the proposed approach model that we discussed in section 3, we considered a Network Topology [3] 
[12]-[14] given in Figure 3, below. 

The network consists of two service hosts IP 1, IP 2 and an attacker’s workstation, Attacker connecting to 
each of the servers via a central router. 

In the server IP 1 the vulnerability is labeled as CVE 2006-5794 and let’s consider this as V1. 
In the server IP 2 there are two recognized vulnerabilities, which are labeled CVE 2004-0148 and CVE 

2006-5051. Let’s consider this as V2 and V3, respectively. 
We proceed to use the CVSS score of the above vulnerabilities. And the exploitability score (e (v) in Figure 1) 

of each vulnerabilities as given in Table 1, below. 
Host Centric Attack graph 
The host centric attack graph is shown by Figure 4, below. Here, we consider that the attacker can reach the  

 

 

Figure 3. Network topology. 
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Figure 4. Host centric attack graph. 

 
goal state only by exploiting V2 vulnerability. The graph shows all the possible paths that the attacker can follow 
to reach the goal state. 

Note that IP1,1 state represents V1 vulnerability and IP2,1 and IP2,2 states represent V2 and V3 vulnerabilities, 
respectively. Also, the notation “10” represents the maximum vulnerability score and this provides attacker the 
maximum chance to exploit this state. Attacker can reach each state by exploiting the relevant vulnerability.  

4.1. Adjacency Matrix for the Attack Graph 

Let s1, s2, s3, s4, represent the attack states for Attacker, (IP1,1), (IP2,1) and (IP2,2), respectively.  
To find the weighted value of exploiting each vulnerability from one state to another state, we divide the vul-

nerability score by summation of all out going vulnerability values from that state.  
For our attack graph the weighted value of exploiting each vulnerability is given below. 
1st row probabilities: 

Weighted value of exploiting V1 from s1 to s2 is ( )1 1 2V V V+ . 

Weighted value of exploiting V2 from s1 to s3 is ( )2 1 2V V V+ . 

2nd row probabilities: 
Weighted value of exploiting V2 from s2 to s3 is ( )2 210V V+ . 
3rd row probabilities: 

Weighted value of exploiting V1 from s3 to s2 is ( )1 1 3 10V V V+ + . 

Weighted value of exploiting V3 from s3 to s4 is ( )3 1 3 10V V V+ + . 

4th row probabilities: 
Weighted value of exploiting V3 from s4 to s4 is 1. 
For the Host Centric Attack graph we can have the Adjacency Matrix as follows. 

1 2 3 4

1

1 21 2 1 2 1 2

2

2 2 2 2
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1 3
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0 0
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Utilizing the information given in Table 1, the matrix A is given by 

0 0.5455 0.4545 0

0 0.6667 0.3333 0

0 0.3529 0.5882 0.0588

0 0 0 1

A

 
 
 =
 
 
 

 

Here, 0.5455 is the probability that attacker exploit V1 vulnerability in first step, from s1 to s2. We can explain 
0.0588 as the probability that once in state IP2,1 can exploit V3 vulnerability and reach to IP2,2 in first attempt. 
Similarly each probability represents the chance to exploit relevant vulnerability from one state in the first at-
tempt. 

We want to use this matrix to answer the important question in cyber security analysis. We want to find the 
minimum number of steps to reach the goal state (final destination) with probability one and the expected path 
length metric. 

4.2. Finding Stationary Distribution and Minimum Number of Steps 

By using the above matrix A, we can find the probabilities with two, three and several attempt by the attacker to 
reach the goal state using 2 3 4, , , , p

A A A A  matrices. From these matrices we can find all possible probabili-
ties from one state to another that the attacker can reach by two steps A2, three steps A3 and four steps A4 and up 
to p steps Ap respectively. We continuous this process until we reach the absorbing matrix and that p value gives 
the minimum number of steps that the attacker is required to reach the goal state with probability one. 

We proceed by changing the CVSS score and calculate for each combination of V1, V2 and V3 the minimum 
number of steps that the attacker will reach the goal state with probability one. These calculations are given in 
Table 2, below.  

 
Table 1. Vulnerability scores. 

Vulnerability Exploitability score 

V1 (CVE 2006-5794) 6 

V2 (CVE 2006-5051) 5 

V3 (CVE 2004-0148) 1 

 
Table 2. Number of steps for absorbing matrix. 

# of steps V1 V2 V3 # of steps V1 V2 V3 # of steps V1 V2 V3 

68 10 9 8 407 9 8 1 92 7 6 5 

75 10 9 7 87 9 7 6 109 7 6 4 

85 10 9 6 100 9 7 5 138 7 6 3 

99 10 9 5 121 9 7 4 197 7 6 2 

119 10 9 4 154 9 7 3 374 7 6 1 

153 10 9 3 222 9 7 2 118 7 5 4 

221 10 9 2 424 9 7 1 149 7 5 3 

424 10 9 1 107 9 6 5 212 7 5 2 

78 10 8 7 128 9 6 4 400 7 5 1 

88 10 8 6 163 9 6 3 165 7 4 3 

102 10 8 5 234 9 6 2 233 7 4 2 

124 10 8 4 447 9 6 1 439 7 4 1 

159 10 8 3 138 9 5 4 269 7 3 2 

229 10 8 2 176 9 5 3 504 7 3 1 

439 10 8 1 252 9 5 2 634 7 2 1 
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Continued 

93 10 7 6 480 9 5 1 107 6 5 4 

107 10 7 5 195 9 4 3 135 6 5 3 

129 10 7 4 279 9 4 2 191 6 5 2 

166 10 7 3 529 9 4 1 359 6 5 1 

239 10 7 2 323 9 3 2 149 6 4 3 

458 10 7 1 610 9 3 1 210 6 4 2 

114 10 6 5 774 9 2 1 393 6 4 1 

137 10 6 4 81 8 7 6 242 6 3 2 

176 10 6 3 93 8 7 5 450 6 3 1 

253 10 6 2 112 8 7 4 564 6 2 1 

484 10 6 1 143 8 7 3 134 5 4 3 

148 10 5 4 205 8 7 2 187 5 4 2 

190 10 5 3 390 8 7 1 348 5 4 1 

272 10 5 2 99 8 6 5 215 5 3 2 

520 10 5 1 119 8 6 4 396 5 3 1 

211 10 4 3 151 8 6 3 493 5 2 1 

301 10 4 2 216 8 6 2 187 4 3 2 

574 10 4 1 411 8 6 1 342 4 3 1 

350 10 3 2 128 8 5 4 423 4 2 1 

664 10 3 1 163 8 5 3 351 3 2 1 

844 10 2 1 232 8 5 2     

74 9 8 7 440 8 5 1     

83 9 8 6 180 8 4 3     

96 9 8 5 256 8 4 2     

115 9 8 4 484 8 4 1     

148 9 8 3 296 8 3 2     

212 9 8 2 557 8 3 1     

 
For example, it will take minimum 68 steps with vulnerability configuration of V1 = 10, V2 = 9, V3 = 8 for the 

attacker to reach the final goal with probability one. The largest number of steps for the attacker to achieve his 
goal is 844 steps by using the vulnerabilities, V1 = 10, V2 = 2 and V3 = 1, with probability one. 

4.3. Expected Path Length (EPL) Analysis 

As described under Section 3.1.2 we measure the expected number of steps the attacker will take starting from 
the initial state to compromise the security goal. In Table 3, we present the calculations of the Expected Path 
Length of the attacker for various combinations of the vulnerabilities V1, V2 and V3. 

For example, it will take 8.25 EPL with vulnerability configuration of V1 = 10, V2 = 9, V3 = 8 for the attacker 
to compromise the security goal. The largest Expected Path Length of the attacker is 72.8 using V1 = 8, V2 = 2 
and V3 = 1. 

5. Development of the Statistical Models 

The primary objective here is to utilize the information that we have calculated to develop a statistical model to 
predict the minimum number of steps to reach the stationary matrix and EPL of the attacker. We used the appli-
cation software package “R” [15] for required calculations in developing these models. 

5. 1. Developing a Statistical Model to Predict the Minimum Number of Steps 

By using the information in Table 2, we developed a statistical model that estimates the minimum number of  
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Table 3. Expected path length for several vulnerabilities. 

Expected path length V1 V2 V3 Expected path length V1 V2 V3 

8.25 10 9 8 34.25 9 3 2 

8.98 10 9 7 63.25 9 3 1 

9.96 10 9 6 79.91 9 2 1 

11.33 10 9 5 9.53 8 7 6 

13.39 10 9 4 10.78 8 7 5 

16.81 10 9 3 12.65 8 7 4 

23.67 10 9 2 15.77 8 7 3 

44.22 10 9 1 22.01 8 7 2 

9.32 10 8 7 40.72 8 7 1 

10.33 10 8 6 11.39 8 6 5 

11.75 10 8 5 13.36 8 6 4 

13.87 10 8 4 16.64 8 6 3 

17.42 10 8 3 23.19 8 6 2 

24.5 10 8 2 42.86 8 6 1 

45.75 10 8 1 14.35 8 5 4 

10.81 10 7 6 17.85 8 5 3 

12.29 10 7 5 24.85 8 5 2 

14.5 10 7 4 45.85 8 5 1 

18.19 10 7 3 19.67 8 4 3 

25.57 10 7 2 27.33 8 4 2 

47.71 10 7 1 50.33 8 4 1 

13 10 6 5 31.48 8 3 2 

15.33 10 6 4 57.82 8 3 1 

19.22 10 6 3 72.8 8 2 1 

27 10 6 2 10.57 7 6 5 

50.33 10 6 1 12.35 7 6 4 

16.5 10 5 4 15.32 7 6 3 

20.67 10 5 3 21.27 7 6 2 

29 10 5 2 39.1 7 6 1 

54 10 5 1 13.25 7 5 4 

22.83 10 4 3 16.42 7 5 3 

32 10 4 2 22.75 7 5 2 

59.5 10 4 1 41.75 7 5 1 

37 10 3 2 18.06 7 4 3 

68.67 10 3 1 24.98 7 4 2 

87 10 2 1 45.73 7 4 1 

8.798 9 8 7 28.7 7 3 2 

9.73 9 8 6 52.37 7 3 1 

11.04 9 8 5 65.67 7 2 1 

13 9 8 4 12.14 6 5 4 

16.27 9 8 3 14.97 6 5 3 

22.82 9 8 2 20.64 6 5 2 

42.44 9 8 1 37.64 6 5 1 
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Continued 

10.18 9 7 6 16.43 6 4 3 

11.54 9 7 5 22.6 6 4 2 

13.58 9 7 4 41.1 6 4 1 

16.99 9 7 3 25.89 6 3 2 

23.79 9 7 2 46.89 6 3 1 

44.22 9 7 1 58.5 6 2 1 

12.2 9 6 5 14.78 5 4 3 

14.35 9 6 4 20.19 5 4 2 

17.93 9 6 3 36.44 5 4 1 

25.1 9 6 2 23.04 5 3 2 

46.6 9 6 1 41.38 5 3 1 

15.43 9 5 4 51.29 5 2 1 

19.26 9 5 3 20.14 4 3 2 

26.93 9 5 2 35.81 4 3 1 

49.93 9 5 1 44 4 2 1 

21.26 9 4 3 36.6 3 2 1 

29.67 9 4 2 
    

54.92 9 4 1 
    

 
Table 4. Parametric Model: 2

R  and 2adjusted R  values. 

Model R2 Adjusted R2 

1 1 2 3
344.167 35.284 34.115 67.803Y V V V= + − −

 
0.7244 0.7173 

2 1 2 3 1 2 1 3 2 3
446.865 67.645 81.662 149.982 1.24 13.7 29.354Y V V V VV VV V V= + − − − − +

 
0.8835 0.8773 

3 1 2 3 1 2 1 3

2 2 2

2 3 1 2 3 1 2 3

689.84 51.177 138.815 328.093 0.3626 9.29

39.114 0.084 8.479 17.96 3.47

Y V V V VV VV

V V V V V VV V

= + − − − +

+ − + + −
 

0.9428 0.9376 

 
steps the attacker takes to reach the goal state with probability one. 

The quality of the model is measured by 2
R  and 2adjusted R  values as defined below: 

The first model in Table 4 does not include interactions of the three Vulnerabilities, V1, V2 and V3 and 2
R  

and 2
adjR  reflect its quality of 0.7244 and 0.7173. The second model shows that there is a significant binary in-

teraction of the each factors and the statistical model shows a significant improvement with 2
R  and 2

adjR  of 
0.8835 and 0.8773 respectively. However, the best statistical model is obtained when we consider in addition to 
individual contributions of V1, V2 and V3, two way and three way significant interactions. Thus, from the above 
table the third model with 2

R  and 2
adjR  of 0.9428 and 0.9376 respectively attest to the fact that this statistical 

model is excellent in estimating the minimum number of steps that an attacker will need to achieve his goal. 

5.2. Developing a Parametric Model to Predict the Expected Path Length 

By using Table 3 results we developed a model to find the Expected Path Length that the attacker will take 
starting from the initial state to reach the security goal. 

To utilize the quality of the model we use R2 concept and by comparing the values in Table 5, the third model 
gives the highest R2 and adjusted R2 value. Therefore we can conclude that the third model gives the best predic-
tion of EPL. 

5.3. Comparison of Parametric/Statistical Model Value with Markov Model Value 

From the comparison shown in Table 6, we can conclude that our proposed statistical model gives accurate pre-
dictions. 
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5.4. Rank of Attributable Variables 

In Table 7, below we present the ranks of the most important attributable variables with respect to their contri-
bution to estimate the EPL. 

The most attributable variable (vulnerability) is V3 in quadratic form and individually. Whereas the minimum 
risk factor is the vulnerability V1. Thus, one can use this ranking to take precautionary measures addressing the 
most dangerous vulnerability or vulnerabilities with priority. 

 
Table 5. Parametric model (EPL): R2 and adjusted R2 values. 

Model R2 Adjusted R2 

1 1 2 3
35.975 3.622 3.497 6.845Y V V V= + − −

 
0.7253 0.7181 

2 1 2 3 1 2 1 3 2 3
46.301 6.904 8.28 15.178 0.128 1.384 2.97Y V V V VV VV V V= + − − − − +  0.8839 0.8778 

3 1 2 3 1 2 1 3

2 2 2

2 3 1 2 3 1 2 3

70.62 5.338 14.108 33.144 0.041 0.942

3.943 0.015 0.864 1.814 0.35

Y V V V VV VV

V V V V V VV V

= + − − − +

+ − + + −
 

0.943 0.9378 

 
Table 6. Error calculation of parametric/statistical model (EPL) and Markov model. 

Parametric value Markov Value Error 

9.099 9.96 0.861 

43.596 44.22 0.624 

61.487 63.25 1.763 

39.62 42.86 3.24 

49.91 51.29 1.38 

43.68 44 0.32 

10.49 10.57 0.08 

 
Table 7. Ranking the variables according to contribution. 

Variable Rank 

2

3
V

 
1 

V3 2 

V2 3 

2

2
V

 
4 

V2V3 5 

V1V2V3 6 

V1 7 

V1V3 8 

V1V2 9 

2

1
V

 
10 

6. Conclusions 

We have developed a very accurate statistical model that can be utilized to predict the minimum steps to reach 
the goal state and predict the expected path length. 

This developed model can be used to identify the interaction among the vulnerabilities and individual va-
riables that drive the EPL. 

We ranked the attributable variables and their contribution in estimating the subject length. By using these 
rankings, security administrators can have a better knowledge about priorities. This will help them to take the 
necessary actions regarding their security system. 

Here we develop a model for three vulnerabilities and we can expand this model to any large  
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Network System. Thus, the proposed methods will assist in making appropriate security decisions in advance. 
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Appendix 

Model 1R results 
1) 0 1 1 2 2 3 3Y b b X b X b X= + + +  

Here y—# of steps takes to reach the goal state with highest probability 
Xi—Vulnerabilities  
bi—coefficient 
 
Coefficients: 

Estimate   Std. Error  t value  Pr (>|t|) 
(Intercept)  344.167  41.154   8.363  1.55e−13*** 
X1    35.284   5.984   5.896  3.74e−08*** 
X2    −34.115   5.984   −5.701  9.21e−08*** 
X3    −67.803   5.984   −11.331  <2e−16*** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 90.95 on 116 degrees of freedom 
Multiple R-squared: 0.7244, Adjusted R-squared: 0.7173  
F-statistic: 101.6 on 3 and 116 DF, p-value: <2.2e−16 
 
2) 0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3Y b b X b X b X b X X b X X b X X= + + + + + +  

 
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|)  
(Intercept)  446.865   72.410   6.171  1.09e−08*** 
X1    67.645   9.772   6.922  2.85e−10*** 
X2    −81.662   23.169   −3.525  0.000613*** 
X3    −149.982  29.943   −5.009  2.04e−06*** 
X4    −1.240   2.516   −0.493  0.623005 
X5    −13.700   3.863   −3.546  0.000570*** 
X6    29.354   2.516   11.667  <2e−16*** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 59.9 on 113 degrees of freedom 
Multiple R-squared: 0.8835, Adjusted R-squared: 0.8773  
F-statistic: 142.9 on 6 and 113 DF, p-value: <2.2e−16 
 
AIC = 1371.591 
 
3) 2 2 2

0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2 9 3 10 1 2 3Y b b X b X b X b X X b X X b X X b X b X b X b X X X= + + + + + + + + + +  
 
Call: 
lm(formula = y ~ X) 
Residuals: 
Min   1Q   Median  3Q   Max  
−119.916  −25.326  5.661  26.622  110.223  
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|)  
(Intercept) 689.84236  105.66582  6.529  2.17e−09*** 
X1   51.17739  23.71769  2.158  0.033141* 
X2   −138.81536  26.81969  −5.176  1.04e−06*** 
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X3   −328.09288  58.78621  −5.581  1.76e−07*** 
X4   −0.36269  3.50341   −0.104  0.917737 
X5   9.29187   6.64327   1.399  0.164745 
X6   39.11435  10.51884  3.719  0.000318*** 
X7   −0.08396  1.86012   −0.045  0.964079 
X8   8.47917   1.86012   4.558  1.35e−05*** 
X9   17.96149  1.86012   9.656  2.61e−16*** 
X10   −3.47455  1.07421   −3.235  0.001613** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 42.74 on 109 degrees of freedom 
Multiple R-squared: 0.9428, Adjusted R-squared: 0.9376  
F-statistic: 179.7 on 10 and 109 DF, p-value: <2.2e−16 
 
AIC = 1362.254 
 
4) 2 2

0 1 1 2 2 3 3 4 2 3 5 2 6 3 7 1 2 3Y b b X b X b X b X X b X b X b X X X= + + + + + + +  
 
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|)  
(Intercept)  621.3262  32.8175   18.933  <2e−16*** 
X1    56.8012   4.0550   14.008  <2e−16*** 
X2    −132.3630  13.7273   −9.642  <2e−16*** 
X3    −253.7456  14.8482   −17.089  <2e−16*** 
X4    30.1674   4.6875   6.436  3.15e−09*** 
X5    7.3590   1.4064   5.233  7.88e−07*** 
X6    17.9615   1.8543   9.687  <2e−16*** 
X7    −2.3535   0.3204   −7.344  3.56e−11*** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 42.61 on 112 degrees of freedom 
Multiple R-squared: 0.9416, Adjusted R-squared: 0.9379  
F-statistic: 258 on 7 and 112 DF, p-value: <2.2e−16 
 
AIC = 1304.753 
 
Model 2R results  
1) 0 1 1 2 2 3 3Y b b X b X b X= + + +  
Here y—# of steps takes to reach the goal state with highest probability 
Xi—Vulnerabilities  
bi—coefficient 
 
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|)  
(Intercept)  35.9750   4.1628   8.642  3.53e−14*** 
X1    3.6224   0.6053   5.985  2.47e−08*** 
X2    −3.4970   0.6053   −5.778  6.48e−08*** 
X3    −6.8457   0.6053   −11.310  <2e−16*** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
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Residual standard error: 9.199 on 116 degrees of freedom 
Multiple R-squared: 0.7253, Adjusted R-squared: 0.7181  
F-statistic: 102.1 on 3 and 116 DF, p-value: <2.2e−16 
 
2) 0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3Y b b X b X b X b X X b X X b X X= + + + + + +  
 
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|) 
(Intercept)  46.3018   7.3227   6.323  5.28e−09*** 
X1    6.9038   0.9882   6.986  2.08e−10*** 
X2    −8.2824   2.3430   −3.535  0.000592*** 
X3    −15.1780  3.0281   −5.012  2.01e−06*** 
X4    −0.1283   0.2544   −0.504  0.615103 
X5    −1.3842   0.3907   −3.543  0.000577*** 
X6    2.9700   0.2544   11.673  <2e−16*** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 6.058 on 113 degrees of freedom 
Multiple R-squared: 0.8839, Adjusted R-squared: 0.8778  
F-statistic: 143.4 on 6 and 113 DF, p-value: <2.2e−16 
 
AIC = 821.6622 
 
3) 2 2 2

0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2 9 3 10 1 2 3Y b b X b X b X b X X b X X b X X b X b X b X b X X X= + + + + + + + + + +  
 
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|) 
(Intercept)  70.62069  10.68479  6.609  1.47e−09*** 
X1    5.33882   2.39830   2.226  0.028066*  
X2    −14.10835  2.71197   −5.202  9.32e−07*** 
X3    −33.14449  5.94439   −5.576  1.81e−07*** 
X4    −0.04135  0.35426   −0.117  0.907303 
X5    0.94165   0.67176   1.402  0.163826 
X6    3.94315   1.06365   3.707  0.000331*** 
X7    −0.01535  0.18809   −0.082  0.935119  
X8    0.86413   0.18809   4.594  1.17e−05*** 
X9    1.81443   0.18809   9.646  2.74e−16*** 
X10    −0.35045  0.10862   −3.226  0.001656** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 4.322 on 109 degrees of freedom 
Multiple R-squared: 0.943, Adjusted R-squared: 0.9378  
F-statistic: 180.4 on 10 and 109 DF, p-value: <2.2e−16 
 
AIC = 812.3033 
 
4) 2 2

0 1 1 2 2 3 3 4 2 3 5 2 6 3 7 1 2 3Y b b X b X b X b X X b X b X b X X X= + + + + + + +  
 
Coefficients: 

Estimate   Std. Error  t value  Pr(>|t|)  
(Intercept)  64.04972  3.31940   19.296  <2e−16*** 
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X1    5.80147   0.41015   14.145  <2e−16*** 
X2    −13.46770  1.38848   −9.700  <2e−16*** 
X3    −25.64100  1.50186   −17.073  <2e−16*** 
X4    3.05457   0.47413   6.442  3.05e−09*** 
X5    0.74725   0.14225   5.253  7.21e−07*** 
X6    1.81443   0.18755   9.674  <2e−16*** 
X7    −0.23834  0.03241   −7.353  3.41e−11*** 
--- 
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1 
 
Residual standard error: 4.31 on 112 degrees of freedom 
Multiple R-squared: 0.9418, Adjusted R-squared: 0.9381  
F-statistic: 258.8 on 7 and 112 DF, p-value: <2.2e−16 
 
AIC = 754.87 
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