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Abstract: Smart grid is an emerging system providing many benefits in digitizing the traditional
power distribution systems. However, the added benefits of digitization and the use of the Internet of
Things (IoT) technologies in smart grids also poses threats to its reliable continuous operation due to
cyberattacks. Cyber–physical smart grid systems must be secured against increasing security threats
and attacks. The most widely studied attacks in smart grids are false data injection attacks (FDIA),
denial of service, distributed denial of service (DDoS), and spoofing attacks. These cyberattacks
can jeopardize the smooth operation of a smart grid and result in considerable economic losses,
equipment damages, and malicious control. This paper focuses on providing an extensive survey
on defense mechanisms that can be used to detect these types of cyberattacks and mitigate the
associated risks. The future research directions are also provided in the paper for efficient detection
and prevention of such cyberattacks.

Keywords: cyber–physical power system; cybersecurity; cyberattack; false data injection; denial of
service; spoofing attack; smart grid

1. Introduction

An electricity network, in which the bidirectional flow of electricity and data is
achieved using digital technologies for communication, is called a smart grid [1]. The pur-
pose of a smart grid is to transform traditional electricity networks into the modern grid
with the help of information and communication technologies (ICTs) [2]. Transmission of
large data was not possible in traditional grids with the high-voltage transmission cables [3].
The electric power transfer from centralized power plants to the consumers involves vari-
ous electrical components [4], such as transmission lines, transformers, and substations,
among others [5]. Furthermore, traditional grids have no energy storage devices available
on a large scale. Renewable power generation and demand response at the distribution
end need effective communication for information exchange among different components
of a smart grid [6]. Smart grid has the best possible solutions for almost all the challenges
a traditional network can face [7,8]. To achieve reliability, security, efficient monitoring,
and enhanced transfer of electricity, smart grid researchers introduced communication
between electrical and digital data [9]; however, the advantages of digitization in smart
grids have also increased data security issues for the electricity networks; therefore, smart
grid security is also a vital challenge [10].

The complete infrastructure of a smart grid is highly dependent on its communication
system that is coupled with power system [11]. A power system relies on the power flow,
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whereas a cyber system relies on the information flow. The communication channel uses
various devices and technologies for communication. The communication systems are
extremely vulnerable to cyberattacks [12]. The attackers aim to attack the communication
links to access physical systems and modify or block information flow [13].

Cybersecurity refers to the practice of protecting data confidentiality, availability, and
integrity in the systems or devices that are associated with the Internet [14]. It defends elec-
tronic devices and networks such as mobile devices, computers, and electronic systems by
protecting their data from misuse by unauthorized users and attackers [15]. Cybersecurity
in the smart grids defends their data confidentiality, availability, and integrity from such
dangers [16]. Security mechanisms built for IT networks are not sufficient for securing grid
networks because of different system dynamics [17]. Availability, integrity, and confiden-
tiality of smart grid network data must be secured for its reliable and continuous operation;
therefore, well-defined cybersecurity mechanisms are needed to protect the smart grid
system from malicious attacks and vulnerabilities [18].

Data attacks in a smart grid can be categorized into three major divisions: Confiden-
tiality, integrity, and availability attacks [18]. These data attacks can happen on devices,
network topology, and network protocols [19,20]. False data injection (FDI) attacks are
the influential attacks that target the communication protocols of the smart grid network.
Denial of Service (DoS) is another attack that disturbs the network topology due to which
operators cannot have a wider observation and control of the power system [21]. Malware,
replay attack, and eavesdropping are some foremost attacks on meters and sensors of a
smart grid. The main objective of the attacker is to obtain, modify or block the information
to adversely affect the smart grid operation, steal confidential information, or gain financial
benefits [22–24].

The schematic representation of a smart grid system is given in Figure 1, which shows
different components of a smart grid [25]. The power generation plants, transmission and
distribution system, information and communication systems, distributed generation and
energy storage, and prosumers are major parts of the smart grid system. Power sources for
bulk generation are hydroelectric plants, diesel power plants, microtrubines, nuclear power
plants, wind turbines, and photovoltaic plants [26]. Using these primary sources, power is
generated to transmit it for use in domestic and industrial applications. In a transmission
network, interconnected lines facilitate the power transmission to distribution end. High
voltage AC current is transferred through transmission lines whereas voltage is reduced for
local distribution of current. In the primary stage, bulk electric power is transferred from
the generating station to the substation. In the secondary stage, power is transferred from
substations to different cities and villages. To store the excess electricity, grid energy storage
is used to store energy on a large scale. Smart grid system can be monitored, controlled, and
managed remotely with sensors and intelligent electronic devices (IEDs) [27]. The transmis-
sion and distribution levels include power lines, intelligent substations, monitoring and
control automation systems, and smart transformers that are equipped with sensors. All the
devices and components are managed at the upper level by an energy management system,
transmission and distribution management system, centralized and decentralized manage-
ment system, and outage management system. The supervisory and management systems
are interfaced with the power network by information and communication technologies
(ICT) layer.
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Figure 1. General illustration of smart grid infrastructure.

1.1. Preceding Affined Review Papers

Different reviews on cyberattacks for smart gird already exist in the literature. How-
ever, they most cover only the FDI attacks, DoS attacks, and their machine and deep-
learning-based detection methods within the smart grid system. The summary of these
reviews is given in Table 1. In [28], FDIA is introduced and its physical and economic
impact on smart grids along with detection approaches are discussed. In [29], the impacts
of cyberattacks on smart grids are analyzed and potential research progress in China is dis-
cussed. The authors in [30] assessed the security risks of DoS and integrity attacks in smart
grid system. In [31], only machine-learning-based detection methods are discussed for only
FDIA in smart grid systems. In [32], the impacts of cyberattacks on control and stability of
smart grid system are discussed. However, these review papers do not express the DDoS
and GPS spoofing attacks together with FDIA and DoS attacks. Moreover, these review
papers are mainly focused on machine-learning-based defense strategies for cyberattacks
detection in smart grid, which formed the main motivation for this paper.

Table 1. Review papers on cyberattacks in smart grid systems.

Ref. Description

[28] This paper reviewed the FDIA attacks and discussed the economic and physical impact of the successful
FDIA in smart grids. It also presented the defense strategies against FDIAs.

[29]
The authors analyzed the impacts of cyberattacks on interactive models of smart grids and presented
corresponding solution approaches as graphic dimension, mechanism dimension, and probability
dimension methods.

[30] The authors introduced a layered approach to evaluate the security risks of both cyber and physical
power systems against integrity and denial of service attacks.

[31] This paper detected the FDIA impacts toward non-technical losses, state estimation, and load forecasting
using machine learning methods.

[32]

This paper summarized the modeling methods of smart grid systems. This paper also analyzed the
impacts of cyberattacks on control and stability of power system, and types of cyberattacks from
the perspectives of simulation, probability, topology, and mechanism. It also introduced a unified
framework for modeling physical and cyber components.
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1.2. Necessity for an Up-To-Date Review

In the existing literature/research, the main focus was on either false data injection
or denial of service attack. The attacks, such as GPS spoofing and distributed denial of
service attacks, were not included in the past research; we have considered both denial of
service attacks and false data injection with other important attacks, such as GPS spoofing
and distributed denial of service attacks. The types of attacks are increasing with the rapid
improvement and extensive acquisition of smart grid technology devices. This makes the
security concerns further complicated, which increases the need to constantly update the
security systems by researching and investigating them. As the utilization of technology
increases, and with the rise in the amount of information available on networks, quicker
and more proficient ways to identify attacks are required, and undoubtedly there are a large
number of progressing ways of further developing the security of networks. Moreover,
these reviews focused on artificial intelligence-based detection methods for FDIA and
DoS attack. However, this review includes both artificial intelligence and other detection
methods for cyberattacks detection within smart grid. According to the Google Scholar
database, there is a continuous increase in the number of publications dealing with smart
grid attacks, from 4900 in 2018 to 5060 publications in 2022. The focus of the research
community for smart grid applications and cyberattacks on them is globally emerging.
Detecting the location of the attack is also pretty important; however, the previous smart
grid research focuses only on the presence of FDI and DoS attacks.

1.3. Review Methodology Brief Description

Various sources of information, namely, Scopus, IEEE Xplore, Google Scholar, MDPI,
and Web of Science were used to find the existing research for conducting this literature
review. The key step was to retrieve the relevant review articles on the basis of some
selected keywords. The primary selection for this review was made with respect to several
characteristics, as provided in Figure 2. These keywords are smart grid, cyber-physical
power system (CPPS), cybersecurity, cyberattack, cyberthreats, FDIA, DOS, DDoS, and
GPS spoofing attack. Articles published in English between 2012 and 2021 were selected
for review. The second step involved the grouping of these articles into different sections.
The articles were divided into two main groups: articles related to smart grid applications
and articles related to smart grid attacks. Articles related to cyberattacks are further divided
into FDI attacks, spoofing attacks, DoS attacks, and DDoS attacks. Every single article is
further distributed with respect to the core of its research findings.

Figure 2. Research papers selection procedure.
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1.4. Formation of the Remaining Work

The rest of the article is structured as follows: Cyberattacks (FDIA, DoS, DDoS, and
GPS spoofing) in smart grid and their detection methods are described in Section 2. Future
research directions are provided in Section 3. Finally, conclusions are summarized in
Section 4.

2. Cyberattacks in Smart Grid

Smart grid is a combination of the power grid and a communication network, security
attacks may take place in both the physical space, as in the conventional power grid, and
cyber space as in any communication network. There are numerous types of attacks that
may be carried out on a smart grid system. The most commonly occurring attacks in smart
grid are FDIA, DoS, DDoS, and GPS spoofing attacks. The detection methods proposed for
these attacks are discussed in the following sections.

2.1. False Data Injection Attacks

False data injection attack (FDIA) is the most vicious attack in the smart grid systems.
In FDIA, an attacker intrudes the system and modifies sensor readings such that undetected
errors are to be introduced into estimation of state variables and scheduling decisions.
The direct access of the physical network is considerably difficult compared to accessing the
communication channel. In this attack, the attacker focuses on the communication network
and communication channel to manipulate the sensors reading as shown in Figure 3.
Detecting such kinds of attacks is extremely complex and challenging.

A deep-learning-based location detection (DLLD) architecture is proposed in [33] to
detect the real-time location of FDIA attacks. A bad data detector is also used to filter the
low-quality data. A convolutional neural network (CNN) is employed for capturing the
inconsistent power flow measurements; however, it does not modify the current bad data
detection system and also does not leverage any prior statistical assumptions. In [34], a
linear model is presented for a general FDIA attack, which is based on a short-term state
forecasting with the temporal correlation. It presents the consistency test to examine the
deviations among the received measurements and the forecasted measurements. Further-
more, a detector is also proposed to check the shortcomings of the previous detectors and
to handle critical estimations.

An adaptive sliding mode controller is presented in [35] to detect FDIA and dynamic
load altering attack (DLAA). The developed controller is able to secure the reliable op-
erations of the under attacked power system. Moreover, the upper bound of the attack
signals is also estimated to eliminate the effect of multiple attacks. In, [36], authors claim
to develop the quickest intrusion detection algorithm for FDIA detection. The detection
algorithm is developed by analyzing the statistical properties of dynamic state estimations.
It is claimed that the algorithm minimizes the worst-case detection delay while identifying
FDIA attacks and sudden system changes.

A hybrid FDIA detection mechanism is introduced in [37] to ensure the security
of power system operations and control. The proposed mechanism combines machine
learning and variational mode decomposition (VMD) technology. VMD is used to disinte-
grate the system state time series into an ensemble of elements with distinct frequencies.
The consequence of attack intensity and environmental noise on the performance of the
aimed technique is also examined. In [38], combination of weighted residual method and
equivalent measurement transformation is used to identify and detect false data. To test the
effectiveness of the algorithm IEEE 14 bus system was used in the MATLAB environment.
In [39], an improved extreme learning machine method is proposed to suppress the redun-
dancies of the feature vectors and use the obtained features vectors for training a time-series
analysis-based LSTM detection method. This proposed mechanism can efficiently detect
the new type of FDIA by examining the variations between the feature vectors in both the
temporal and spatial aspects.
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Figure 3. General illustration of false data injection attack in a smart grid system.

In [40,41], cumulative sum (CUSUM)-based statistics are used to detect FDIA in real-
time. In the general CUSUM-based statistics method, maximum possible loss is minimized
using the known probability distribution functions of both pre- and post-attacks events.
The smart grid system is considered under attack if the CUSUM-based statistic exceeds pre-
defined threshold; however, [40] proposed a generalized likelihood ratio-based centralized
and distributed sequential detection method using a level-triggered sampling technique.
It is reported to be computationally efficient to detect the FDIA attack and reduce the
communication overhead in the system; on the contrary, the authors in [41] proposed
a modified real-time FDIA detection method using a residual pre-whitening technique.
It aims to reduce the average detection delay and provide the quickest stopping point for
declaring that the system is under attack. A power load forecasting model is proposed
in [42], which is based on the framework of the cyber–physical–social systems to take
social implications into account for load balancing. The authors of [43] introduced the
Padé approximation-based method and explicit infinitesimal generator discretization-based
method against delayed cyber–physical power systems.

In [44], the worst-case impact of FDIA is investigated in smart grid with both fixed and
switching locations. In [45], a method for extracting patterns based on temporal–topological
correlation is proposed to restore the complete attack path for all network attacks; however,
it is merely limited to small topologies. To capture ideal measurements in state estimation
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against FDIA, generative adversarial network (GAN) based data model is introduced in [46]
and results showed promising outcomes. In [47], authors introduced cognitive risk control
(CRC) as a physical model and research tool to unit the cognitive-dynamic systems (CDS).
Yet, it is not able to identify the specific sensor which is affected by the FDIA attack. Table 2
presents the summary of detection methods developed for FDIA detection in smart grid
system. The targeted devices and contributions are also summarized in it.

Table 2. Review of false data injection attack detection in smart grid systems.

Ref. Victim Device Type of Attack Solution Method Description

[33] State estimator FDI-Power buses Convolutional
neural network

It captures the inconsistency and co-
occurrence dependency in the power flow
measurements due to the potential attacks
and detects the exact locations of FDIA in real-
time by concatenating convolutional neural
network with a standard bad data detector.

[34] SCADA and
PMU measurements FDI-Power measurements Short-term state

forecasting-based method

Proposed detector addresses the shortcoming
of previous detectors in terms of handling crit-
ical measurements using temporal correlation.

[35] Smart grid FDI- Control and Dynamic
load altering attack

Adaptive sliding
mode controller

It presents and adaptive sliding mode con-
troller to ensure the reliable operation of the
power system under unknown attack by us-
ing the adaptive mechanism.

[36] SCADA system
FDI-power grid state

transitions and worst case
detection delays

Quickest intrusion
detection algorithm and

Dynamic state estimation
algorithm

It estimates and tracks the time-varying and
non-stationary power grid states using Rao-
CUSUM detector.

[37] Power system state
estimators

FDI-Power buses
and Sensors

Online sequential extreme
learning machine and

variational mode
decomposition

An effective FDIA detection method is pre-
sented with temporal correlation.

[38] State estimation system FDI-Power measurement
Equivalent-current based

measurement
transformation method

A weighted residual method is presented to
detect and identify the FDIAs.

[39] Communication System
FDI-Generation

scheduling and power
shedding

LSTM
Attacks are detected by analyzing the feature
vectors that learn the temporal correlations of
the feature vectors in time sequence.

[40] Power monitoring meters
and State estimators FDI-Power measurements Generalized CUSUM

algorithm

A distributed sequential detector is proposed
which uses level-triggered sampling tech-
nique.

[41] State estimation system FDI-Power Buses and
measurements

Residual
pre-whitening algorithm

Residual pre-whitening technique based on
the CUSUM of the one-shot statistic is used
to resolve real-time FDIA detection mecha-
nisms.

[42] Power network and Social
network FDI-Load Measurement LSTM

A power load forecasting model based on
deep learning and statistical method is pro-
posed which is able to mitigate FDIA.

[44] Generator bus FDI- Generator frequency
and switching attack

Optimal partial state
feedback law

A scheme based on manipulating the subset
of control signals and changing the locations
of attack continually to degrade system per-
formance at a minimum cost using convex
relaxation and Pontryagin’s maximum princi-
ple.

[46] Power system state
estimator FDI-Power measurement

Generative Adversarial
Network (GAN)-based

data model

Novel smooth training technique for GAN is
developed and an online adaptive window
is explored to maintain the state estimation
integrity in real-time.

[47] Smart grid FDI-Power bus Cognitive risk control
The entropic state is used to detect and bring
FDI attacks under control using CRC with
task-switch control.
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2.2. Denial of Service (DoS) Attacks

In a DoS attack, the attacker mainly focuses on making an intelligent device inacces-
sible for its intended use by flooding it with large unexpected data traffic. Data flooding
blocks the regular traffic from reaching to its target device as shown in Figure 4. Flooding
the service and crashing the service are two main methods of DoS attacks. The flooding
includes three types of attacks: buffer overflow attack, synchronization, and ICMP flood
attacks. The advanced form of DoS is Distributed Denial of Service (DDoS) attack. Instead
of flooding, a DDoS attack focuses on crashing the target machine by attacking the ma-
chine from multiple compromised hosts rather than one source. In the smart grid, DoS
attack exploits the network topology and attacks all the possible attack sources, whereas
DDoS attacks use compromised hosts to launch an organized DoS attack towards multi-
ple targets—it effectively expands the power of attack and makes defense more obscure
and complex.

Figure 4. Schematic representation of the denial of service attack.

A Gaussian process model is presented in [48] for malicious DDoS attacks detection.
A warning system is introduced in smart grid control to predict such malicious events and
enable smart grid control center to develop the mitigation strategy. Moreover, this system
can also predict fluctuations and abnormal voltage surges. In [49], DoS detection methods
in different layers of sensor networks are discussed. It is also concluded that cybersecurity
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enhancement must be considered at the design stage of sensors to maximally avoid DoS
attacks in their real-time operation.

Different methods for DDoS attack detection are proposed in [50]. A pattern detec-
tion mechanism uses a model that stores the signatures of previously identified attacks.
The second method is the anomaly detection method. In this method, a model is created
on the basis of the expected state of the system. This model is then compared with the
current state of the system. In the third-party detection mechanism, it rely on externals to
handle the detection process and provide attack characterization. Authors in [51] deployed
a pseudo-state estimation application to detect the DoS attack or clock accuracy. It pro-
vides valid and realistic results built on a proof-of-concept prototype. However, it uses an
overlay-based proactive defense mechanism that can offer smart grid network nodes to
create a first-level firewall against DDoS attacks. By using a pub-sub infrastructure, it can
also provide secure data delivery in a light-weight manner.

Honeypots are introduced in [52] for enhancing security against DDoS attacks in the
advanced metering infrastructure network of the smart grid. Honeypot game strategy
is used to analyze the strategic interactions between attackers and defenders to protect
data and improve the security of the advanced metering infrastructure network. In [53],
a reputation-based topology configuration scheme is presented against DOS attacks that
enables cyber elements to distributively reconfigure the system’s routing topology to isolate
malicious nodes in the micro grid.

A detection framework is proposed in [54] that allows sufficient readings from meters
to be continuously collected through various local controllers for estimating the states of
a grid and provide self-healing capability against jamming and DOS attacks. In [55], a
general and scalable mitigation approach is developed that is aimed to be capable of timely
detection of DDoS attacks in IoT devices.

The authors in [56] implemented parametric feedback linearization controller to con-
trol the delay that occurred between sensors and controllers due to DOS attack; however,
they tested this controller on limited nodes. In [57], an advanced communicated-assisted
protection scheme is introduced to examine the vulnerabilities such as permissive over-
reaching transfer trip to DDoS and FDIA attacks. The authors of [58] established a new
lightweight, secure, and reliable communication platform that can allow both secure and cost-
effective communication. Table 3 presents the summary of detection methods developed for
DoS and DDoS attacks detection in smart grid system. The targeted devices and contributions
are also summarized in it.

Table 3. Review of DoS and DDoS attacks detection in smart grid systems.

Ref. Victim Device Type of Attack Solution Method Description

[48] Smart meter and electric
appliances DDoS Gaussian process

Gaussian process is used to detect DDoS attack
using mean and covariance functions of underly-
ing system model to predict its abnormal mode of
operation.

[49] Sensors DoS
Authorization,

redundancy, and real-time
location-based methods

Attacks in different communication layers and
their defense mechanisms are discussed and
dropped data are recorded even outside the sen-
sor network.

[50] Electric system devices DDoS

Activity level, cooperation
degree, and deployment

location-based
defense mechanisms

Taxonomies of DDoS attacks and their correspond-
ing defense mechanism are briefed.

[51] Cloud assisted
applications DDoS Port hopping

spread spectrum

DDoS attacks are prevented with the help of open
port switching over time in a pseudo-random
manner. The proposed method is verified on the
PlanetLab test-bed and Amazon’s EC2.
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Table 3. Cont.

Ref. Victim Device Type of Attack Solution Method Description

[52] Advanced Metering
Infrastructure DDoS Honeypot game strategy

The propose method helps in better analysis of
strategic interactions between defenders and at-
tacks. Attack detection rate are considerably im-
proved, which shows promising security enhance-
ment of AMI networks.

[53] Wireless relay nodes DoS
Reputation-based

topology
configuration method

Successful isolation of attacked cyber nodes are
achieved and data are continuously transmitted
at low latency.

[54] Smart meter DoS and channel
jamming attacks

Intelligent local controller
switching with

channel hopping

Sufficient readings from meters are continuously
collected through various local controllers to esti-
mate the states of a grid under considered attacks.
Optimal placement strategy of local controllers is
also provided to avoid jamming attacks.

[55] Smart appliances DoS
Minimally invasive attack
mitigation via detection

isolation and localization

The proposed mitigation method is scalable and
has capability of timely detection of DDoS attacks.

[56] Sensor and controllers DoS Parametric feedback
linearization control

Time-delay tolerance of power system is enhanced
using communication latency values between con-
trollers and sensors.

[57] Distance relay DDoS Directional comparison
unblocking scheme

Only permissive overreaching transfer trip pro-
tection is studied. DDoS attacks are avoided in
power system protection relays to some extents
only.

[58] Client nodes DDoS and replay attacks
Multi-homing based

enhanced packet
diffusion mechanism

Secure end-to-end data delivery is ensured with
light weight mechanism against DDoS and re-
play attacks.

2.3. Spoofing Attacks

In a spoofing attack, the attacker focuses on the communication links. GPS spoofing
attack is the widely studied spoofing attack in smart grid system. A general illustration of
GPS spoofing attack is depicted in Figure 5. The communication links between a monitoring
device and the control center are vulnerable to spoofing attacks [59,60].

Smart grid systems need sub-microsecond precision at power substations to provide
better performance measurements, fault detection, automated network management, and
protection relay operations. This sub-microsecond precision relies on time reference sources
such as global navigation satellite system (GNSS) clocks. In order to enable real-time
automatic control of the smart grid, low-cost and high-precision GPS receivers are being
embedded into a large number of intelligent grid sensors, such as phasor measurement
units. However, GPS receivers can be spoofed by nearby attackers that transmit high-power
false signals with the same GPS frequency. Moreover, the position of each satellite in the
global navigation satellite system is publicly available online; therefore, a GPS signal can
be easily spoofed or jammed by a malicious attacker [61]. Timing inaccuracies at the time
source or between the time source and the time stamping site might result in erroneous
measurement data, missing data, and/or failed data frame compilation. Data gaps caused
by unreliable data delivery to data concentrators, control centers, and applications within
acceptable latency times could impede early warning information about dynamic grid
issues [62]. Hence, It is essential that the GPS signals are resilient to interference, and
increasingly to jamming and spoofing, given the importance of the power system and the
possibility that the smart grid will depend on high-precision timing in the future.

A fast GPS spoofing detection method is presented in [63], which is based on multi-
antenna by applying the probabilistic metric of the carrier signal to noise ratio from two
receive antennas to conduct the speediest GPS spoofing detection. A test bed is also set up
to verify their results. The results demonstrated the effective scheme to glimpse and stop
spoofing attacks.
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Figure 5. General illustration of GPS spoofing attack in smart grids.

The authors in [64] aimed to secure the phasor measurement unit model combined
with the dynamic network model against spoofing attacks in the power grid. These models
are appropriate for receiving GPS measurements in the state estimation. The performance
of this dynamic network model is better as compared to the static model. In [65], a neural
network method named neural network GPS spoofing detection (NNGSD) is proposed to
diagnose the spoofing attack and its location by operating phasor measurement unit data
with the help of a dynamic power system. This method has been experimented in different
conditions and the results show the promising real-time performance.

The authors in [66] proposed a strategy against GPS spoofing attacks while considering
its dynamic nature in the power grid. They used dynamic monitoring mechanism to observe
the measurements using a state-space model combined with the data of SCADA and PMU.
The developed anti-GPS spoofing attack mechanism detects these attacks and measurement
corrections using a dynamic model of the smart grid system. Table 4 presents the summary
of detection methods developed for spoofing attacks detection in the smart grid system.
The targeted devices and contributions are also summarized in it.
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Table 4. Review of spoofing attacks detection in smart grid systems.

Ref. Victim Device Type of Attack Solution Method Description

[63] Phasor measurement unit GPS spoofing time
stamp attack

multi-antenna based
quickest detection

The probabilistic metric is used which takes in-
formation of the carrier signal to noise ratio
from two receive antennas to conduct the quick-
est GPS spoofing detection.

[64] Phasor measurement unit GPS spoofing attack Weighted lest square state
estimation

The detection method estimates the state vari-
ables such as nodal voltages in rectangular co-
ordinates, generator rotor angles and its rotor
speed, as well as the time-varying attacks.

[65] Phasor measurement unit GPS spoofing phase
angle attack

multilayer perceptron
neural network

The proposed neural network detection method
is able to diagnose the GPS spoofing attacks and
determine their location as well. The learning
process of neural network is executed only once.

[66] Phasor measurement unit GPS spoofing
time attack

Kalman filter-based
dynamic fusion estimator

The proposed method uses a state-space model
combined with the data of SCADA and PMU
under dynamic system conditions. Proposed de-
tection approach can detect multi-GPS spoofing
attacks.

3. Research Directions

Many researchers have proposed methods for the detection of FDIA, DoS, and spoofing
attacks on smart grid systems. There are also works reported in the literature for the study
of the impact of these attacks. However, most of these studies are focused on individual
components of the smart grid systems. This entails further research on smart grid systems
that focuses on the protection of a whole smart grid.

To achieve an enhanced and improved the impact analysis of FDIA, further research
work is required on the distribution system other than the transmission system. Time dura-
tion of an attack could have an impact on smart grid failure due to a cyberattack; therefore,
it is important to analyze the detection duration and impact of the cyberattack on the power
system in that duration.

Optimization of the network topology should also be performed while considering
5G technology in sensors, smart meters, local controllers, state estimators, and other
advanced metering infrastructure. Moreover, there is also need to analyze the impact of
cyberattacks on voltage ride-through of the inverter in the smart grid. Encryption methods
can also be introduced for secure data transmission to enhance the defense against these
malicious attacks. Moreover, potential deep federated learning should also be explored
for securing smart grid systems against cyberattacks. Cost estimation of cyberattacks on
smart grid for the protection of infrastructure is an essential research area. It can help in
prioritizing the parts of a smart grid for security.

As real data collection is still challenging, hence it will be beneficial to simulate
cyberattacks to collect key characteristics that resemble real ones using virtual reality
(VR). VR may potentially offer a potential solution by including reinforcement learning.
Additionally, artificial intelligence experts will be able to predict the kind of attacks, which
resembles real cybersecurity problems in smart grid system.

Transfer learning can also be explored to transfer data from models learned real
datasets to simulation models or vice versa. GANs also need to be explored to extract
novel instances from data obtained using different components of the smart grid. Lowering
computational costs and convergence of different defense mechanisms need to be studied
to have a better realization of their real-world implementations.

Privacy protection of data using the confidentiality, integrity, and availability triad in a
form of decentralized/centralized learning is the key topic to be covered in the cybersecurity
of smart grid systems. Privacy is a crucial issue that has not been addressed keeping the
artificial intelligence model itself intact. Future research needs decentralized federated
learning to be taken into account to protect the attack modeling procedure and add more
security measures.
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4. Conclusions

Smart grid, a cyber–physical power system, can be adversely affected by various
cyberattacks due to digital evolution. This paper provided a comprehensive review on
the detection of most occurring cyberattacks including false data injection attacks, denial
of service, distributed denial of service, and GPS spoofing attacks in the smart grids.
It also provided an analysis of the impact these attacks can have on a smart grid. The
false data injection attack is a type of cyberattack that targets the supervisory control and
data acquisition systems, state estimators, monitoring meters, and sensors. In contrast,
the DoS and DDoS attacks target smart meters, sensors, local controllers, state estimator,
and advanced metering infrastructure. The security of these targeted devices must be
strengthened to limit the occurrence of cyberattacks. Different defense mechanisms, both
artificial intelligence and traditional solution methods, are also highlighted to provide
insight into enhancing the security of smart grid systems; however, there is still a need to
explore more defensive strategies against such types of cyberattacks. Digital twin models
and data-driven methods such as machine and deep learning should be explored for both
analyzing different types of attacks and mitigating the impact of these attacks in smart grid
systems; therefore, future recommendations are also highlighted for the improvement and
more secure operations of the smart grid system against cyberattacks.
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Electronics 2022, 11, 3854 14 of 16

References
1. Wang, H.; Qian, Y.; Sharif, H. Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wirel.

Commun. 2013, 20, 125–132. [CrossRef]
2. Kabalci, E.; Kabalci, Y. Smart Grids and Their Communication Systems; Springer: Singapore, 2019.
3. Merabti, M.; Kennedy, M.; Hurst, W. Critical infrastructure protection: A 21 st century challenge. In Proceedings of the 2011

International Conference on Communications and Information Technology (ICCIT), Amsterdam, The Netherlands, 13–15 July
2011; pp. 1–6.

4. Amin, S.M. Electricity infrastructure security: Toward reliable, resilient and secure cyber-physical power and energy systems.
In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–5.

5. Annaswamy, A.M.; Amin, M. Smart Grid Research: Control Systems-IEEE Vision for Smart Grid Controls: 2030 and Beyond; IEEE:
New York, NY, USA, 2013.

6. Ali, M.; Zia, M.F.; Sundhu, M.W. Demand side management proposed algorithm for cost and peak load optimization. In Proceed-
ings of the 2016 4th International Istanbul Smart Grid Congress and Fair (ICSG), Istanbul, Turkey, 20–21 April 2016; pp. 1–5.

7. Ruester, S.; Schwenen, S.; Batlle, C.; Pérez-Arriaga, I. From distribution networks to smart distribution systems: Rethinking the
regulation of European electricity DSOs. Util. Policy 2014, 31, 229–237. [CrossRef]

8. Zafar, A.; Shafique, A.; Nazir, Z.; Zia, M.F. A comparison of optimization techniques for energy scheduling of hybrid power
generation system. In Proceedings of the IEEE 21st International Multi-Topic Conference (INMIC), Karachi, Pakistan, 1–2
November 2018; pp. 1–6.

9. Kuzlu, M.; Pipattanasomporn, M. Assessment of communication technologies and network requirements for different smart grid
applications. In Proceedings of the 2013 IEEE PES innovative smart grid technologies conference (ISGT), Washington, DC, USA,
24–27 February 2013; pp. 1–6.

10. Gharavi, H.; Chen, H.H.; Wietfeld, C. Guest editorial special section on cyber-physical systems and security for smart grid. IEEE
Trans. Smart Grid 2015, 6, 2405–2408. [CrossRef]

11. Metke, A.R.; Ekl, R.L. Smart grid security technology. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT),
Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–7.

12. Inayat, U.; Zia, M.F.; Mahmood, S.; Khalid, H.M.; Benbouzid, M. Learning-based methods for cyber attacks detection in IoT
systems: A survey on methods, analysis, and future prospects. Electronics 2022, 11, 1502. [CrossRef]

13. Chen, P.Y.; Cheng, S.M.; Chen, K.C. Smart attacks in smart grid communication networks. IEEE Commun. Mag. 2012, 50, 24–29.
[CrossRef]

14. Inayat, U.; Zia, M.F.; Ali, F.; Ali, S.M.; Khan, H.M.A.; Noor, W. Comprehensive Review of Malware Detection Techniques.
In Proceedings of the 2021 International Conference on Innovative Computing (ICIC), Lahore, Pakistan, 9–10 November 2021;
pp. 1–6.

15. Nguyen, T.N.; Liu, B.H.; Nguyen, N.P.; Chou, J.T. Cyber security of smart grid: attacks and defenses. In Proceedings of the ICC
2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

16. El Mrabet, Z.; Kaabouch, N.; El Ghazi, H.; El Ghazi, H. Cyber-security in smart grid: Survey and challenges. Comput. Electr. Eng.
2018, 67, 469–482. [CrossRef]

17. Aloul, F.; Al-Ali, A.; Al-Dalky, R.; Al-Mardini, M.; El-Hajj, W. Smart grid security: Threats, vulnerabilities and solutions. Int. J.
Smart Grid Clean Energy 2012, 1, 1–6. [CrossRef]

18. Berghout, T.; Benbouzid, M.; Muyeen, S. Machine learning for cybersecurity in smart grids: A comprehensive review-based
study on methods, solutions, and prospects. Int. J. Crit. Infrastruct. Prot. 2022, 38, 100547. [CrossRef]

19. Wei, D.; Lu, Y.; Jafari, M.; Skare, P.M.; Rohde, K. Protecting smart grid automation systems against cyberattacks. IEEE Trans.
Smart Grid 2011, 2, 782–795. [CrossRef]

20. Wei, D.; Lu, Y.; Jafari, M.; Skare, P.; Rohde, K. An integrated security system of protecting smart grid against cyber attacks.
In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–7.

21. Liu, S.; Liu, X.P.; El Saddik, A. Denial-of-Service (dos) attacks on load frequency control in smart grids. In Proceedings of the
IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013; pp. 1–6.

22. Wang, X.; Yi, P. Security framework for wireless communications in smart distribution grid. IEEE Trans. Smart Grid 2011,
2, 809–818. [CrossRef]

23. Aravinthan, V.; Namboodiri, V.; Sunku, S.; Jewell, W. Wireless AMI application and security for controlled home area networks.
In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8.

24. Mo, Y.; Kim, T.H.J.; Brancik, K.; Dickinson, D.; Lee, H.; Perrig, A.; Sinopoli, B. Cyber–physical security of a smart grid
infrastructure. Proc. IEEE 2011, 100, 195–209.

25. Moreno Escobar, J.J.; Morales Matamoros, O.; Tejeida Padilla, R.; Lina Reyes, I.; Quintana Espinosa, H. A comprehensive review
on smart grids: Challenges and opportunities. Sensors 2021, 21, 6978. [CrossRef]

26. Salkuti, S.R. Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid. Energies 2022,
15, 6667. [CrossRef]

27. Elbouchikhi, E.; Zia, M.F.; Benbouzid, M.; El Hani, S. Overview of signal processing and machine learning for smart grid
condition monitoring. Electronics 2021, 10, 2725. [CrossRef]

http://doi.org/10.1109/MWC.2013.6590059
http://dx.doi.org/10.1016/j.jup.2014.03.007
http://dx.doi.org/10.1109/TSG.2015.2464911
http://dx.doi.org/10.3390/electronics11091502
http://dx.doi.org/10.1109/MCOM.2012.6257523
http://dx.doi.org/10.1016/j.compeleceng.2018.01.015
http://dx.doi.org/10.12720/sgce.1.1.1-6
http://dx.doi.org/10.1016/j.ijcip.2022.100547
http://dx.doi.org/10.1109/TSG.2011.2159999
http://dx.doi.org/10.1109/TSG.2011.2167354
http://dx.doi.org/10.3390/s21216978
http://dx.doi.org/10.3390/en15186667
http://dx.doi.org/10.3390/electronics10212725


Electronics 2022, 11, 3854 15 of 16

28. Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A review of false data injection attacks against modern power systems. IEEE
Trans. Smart Grid 2016, 8, 1630–1638. [CrossRef]

29. Shi, L.; Dai, Q.; Ni, Y. Cyber–physical interactions in power systems: A review of models, methods, and applications. Electr.
Power Syst. Res. 2018, 163, 396–412. [CrossRef]

30. Sridhar, S.; Hahn, A.; Govindarasu, M. Cyber–physical system security for the electric power grid. Proc. IEEE 2011, 100, 210–224.
[CrossRef]

31. Cui, L.; Qu, Y.; Gao, L.; Xie, G.; Yu, S. Detecting false data attacks using machine learning techniques in smart grid: A survey. J.
Netw. Comput. Appl. 2020, 170, 102808. [CrossRef]

32. Yohanandhan, R.V.; Elavarasan, R.M.; Manoharan, P.; Mihet-Popa, L. Cyber-Physical Power System (CPPS): A Review on
Modeling, Simulation, and Analysis With Cyber Security Applications. IEEE Access 2020, 8, 151019–151064. [CrossRef]

33. Wang, S.; Bi, S.; Zhang, Y.J.A. Locational Detection of the False Data Injection Attack in a Smart Grid: A Multilabel Classification
Approach. IEEE Internet Things J. 2020, 7, 8218–8227. [CrossRef]

34. Zhao, J.; Zhang, G.; La Scala, M.; Dong, Z.Y.; Chen, C.; Wang, J. Short-Term State Forecasting-Aided Method for Detection of
Smart Grid General False Data Injection Attacks. IEEE Trans. Smart Grid 2017, 8, 1580–1590. [CrossRef]

35. Li, J.; Yang, D.F.; Gao, Y.C.; Huang, X. An adaptive sliding-mode resilient control strategy in smart grid under mixed attacks. IET
Control. Theory Appl. 2021, 15, 1971–1986. [CrossRef]

36. Nath, S.; Akingeneye, I.; Wu, J.; Han, Z. Quickest detection of false data injection attacks in smart grid with dynamic models.
IEEE J. Emerg. Sel. Top. Power Electron. 2019, 10, 1292–1302. [CrossRef]

37. Dou, C.; Wu, D.; Yue, D.; Jin, B.; Xu, S. A hybrid method for false data injection attack detection in smart grid based on variational
mode decomposition and OS-ELM. CSEE J. Power Energy Syst. 2020. [CrossRef]

38. Hu, Z.; Wang, Y.; Tian, X.; Yang, X.; Meng, D.; Fan, R. False data injection attacks identification for smart grids. In Proceedings
of the 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering
(TAEECE), Beirut, Lebanon, 29 April–1 May 2015; pp. 139–143.

39. Yang, L.; Zhang, X.; Li, Z.; Li, Z.; He, Y. Detecting bi-level false data injection attack based on time series analysis method in smart
grid. Comput. Secur. 2020, 96, 101899. [CrossRef]

40. Li, S.; Yılmaz, Y.; Wang, X. Quickest detection of false data injection attack in wide-area smart grids. IEEE Trans. Smart Grid 2014,
6, 2725–2735. [CrossRef]

41. Jiang, Q.; Chen, H.; Xie, L.; Wang, K. Real-time detection of false data injection attack using residual prewhitening in smart grid
network. In Proceedings of the 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm), Dresden,
Germany, 23–27 October 2017; pp. 83–88.

42. Liu, T.; Zhang, Y.; Zhao, H.; Liu, X.; Gao, T.; Yuan, H.; Zhang, J. Social Implications of Cyber-Physical Systems in Electrical Load
Forecasting. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE),
Hong Kong, China, 20–21 August 2020; pp. 582–587.

43. Ye, H.; Liu, K.; Mou, Q.; Liu, Y. Modeling and formulation of delayed cyber-physical power system for small-signal stability
analysis and control. IEEE Trans. Power Syst. 2019, 34, 2419–2432. [CrossRef]

44. Wu, G.; Wang, G.; Sun, J.; Chen, J. Optimal partial feedback attacks in cyber-physical power systems. IEEE Trans. Autom. Control
2020, 65, 3919–3926. [CrossRef]

45. Wang, L.; Qu, Z.; Li, Y.; Hu, K.; Sun, J.; Xue, K.; Cui, M. Method for extracting patterns of coordinated network attacks on electric
power CPS based on temporal–topological correlation. IEEE Access 2020, 8, 57260–57272. [CrossRef]

46. Li, Y.; Wang, Y.; Hu, S. Online generative adversary network based measurement recovery in false data injection attacks: A
cyber-physical approach. IEEE Trans. Ind. Inform. 2019, 16, 2031–2043. [CrossRef]

47. Oozeer, M.I.; Haykin, S. Cognitive risk control for mitigating cyber-attack in smart grid. IEEE Access 2019, 7, 125806–125826.
[CrossRef]

48. Fadlullah, Z.M.; Fouda, M.M.; Kato, N.; Shen, X.; Nozaki, Y. An early warning system against malicious activities for smart grid
communications. IEEE Netw. 2011, 25, 50–55. [CrossRef]

49. Wood, A.D.; Stankovic, J.A. Denial of service in sensor networks. Computer 2002, 35, 54–62. [CrossRef]
50. Mirkovic, J.; Reiher, P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Comput. Commun. Rev.

2004, 34, 39–53. [CrossRef]
51. Demir, K.; Ismail, H.; Vateva-Gurova, T.; Suri, N. Securing the cloud-assisted smart grid. Int. J. Crit. Infrastruct. Prot. 2018,

23, 100–111. [CrossRef]
52. Wang, K.; Du, M.; Maharjan, S.; Sun, Y. Strategic honeypot game model for distributed denial of service attacks in the smart grid.

IEEE Trans. Smart Grid 2017, 8, 2474–2482. [CrossRef]
53. Srikantha, P.; Kundur, D. Denial of service attacks and mitigation for stability in cyber-enabled power grid. In Proceedings of

the 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20
February 2015; pp. 1–5.

54. Liu, H.; Chen, Y.; Chuah, M.C.; Yang, J.; Poor, H.V. Enabling self-healing smart grid through jamming resilient local controller
switching. IEEE Trans. Dependable Secur. Comput. 2015, 14, 377–391. [CrossRef]

55. Yılmaz, Y.; Uludag, S. Timely detection and mitigation of IoT-based cyberattacks in the smart grid. J. Frankl. Inst. 2019, 358, 172–192.
[CrossRef]

http://dx.doi.org/10.1109/TSG.2015.2495133
http://dx.doi.org/10.1016/j.epsr.2018.07.015
http://dx.doi.org/10.1109/JPROC.2011.2165269
http://dx.doi.org/10.1016/j.jnca.2020.102808
http://dx.doi.org/10.1109/ACCESS.2020.3016826
http://dx.doi.org/10.1109/JIOT.2020.2983911
http://dx.doi.org/10.1109/TSG.2015.2492827
http://dx.doi.org/10.1049/cth2.12172
http://dx.doi.org/10.1109/JESTPE.2019.2936587
http://dx.doi.org/10.17775/CSEEJPES.2019.00670
http://dx.doi.org/10.1016/j.cose.2020.101899
http://dx.doi.org/10.1109/TSG.2014.2374577
http://dx.doi.org/10.1109/TPWRS.2018.2890540
http://dx.doi.org/10.1109/TAC.2020.2981915
http://dx.doi.org/10.1109/ACCESS.2020.2982057
http://dx.doi.org/10.1109/TII.2019.2921106
http://dx.doi.org/10.1109/ACCESS.2019.2939089
http://dx.doi.org/10.1109/MNET.2011.6033036
http://dx.doi.org/10.1109/MC.2002.1039518
http://dx.doi.org/10.1145/997150.997156
http://dx.doi.org/10.1016/j.ijcip.2018.08.004
http://dx.doi.org/10.1109/TSG.2017.2670144
http://dx.doi.org/10.1109/TDSC.2015.2479624
http://dx.doi.org/10.1016/j.jfranklin.2019.02.011


Electronics 2022, 11, 3854 16 of 16

56. Farraj, A.; Hammad, E.; Kundur, D. A cyber-physical control framework for transient stability in smart grids. IEEE Trans. Smart
Grid 2016, 9, 1205–1215. [CrossRef]

57. Jahromi, A.A.; Kemmeugne, A.; Kundur, D.; Haddadi, A. Cyber-physical attacks targeting communication-assisted protection
schemes. IEEE Trans. Power Syst. 2019, 35, 440–450. [CrossRef]

58. Demir, K.; Suri, N. SeReCP: A secure and reliable communication platform for the smart grid. In Proceedings of the 2017 IEEE
22nd Pacific Rim International Symposium on Dependable Computing (PRDC), Christchurch, New Zealand, 22–25 January 2017;
pp. 175–184.

59. Song, M.; Xin, C.; Zhao, Y.; Cheng, X. Dynamic spectrum access: from cognitive radio to network radio. IEEE Wirel. Commun.
2012, 19, 23–29. [CrossRef]

60. Peng, Q.; Cosman, P.C.; Milstein, L.B. Tradeoff between spoofing and jamming a cognitive radio. In Proceedings of the 2009
Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–4
November 2009; pp. 25–29.

61. Meng, Q.; Hsu, L.T.; Xu, B.; Luo, X.; El-Mowafy, A. A GPS spoofing generator using an open sourced vector tracking-based
receiver. Sensors 2019, 19, 3993. [CrossRef]

62. Wei, X.; Aman, M.N.; Sikdar, B. Exploiting correlation among GPS signals to detect GPS spoofing in Power Grids. IEEE Trans.
Ind. Appl. 2021, 58, 697–708. [CrossRef]

63. Gong, S.; Zhang, Z.; Trinkle, M.; Dimitrovski, A.D.; Li, H. GPS spoofing based time stamp attack on real time wide area
monitoring in smart grid. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications
(SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 300–305.

64. Risbud, P.; Gatsis, N.; Taha, A. Multi-period power system state estimation with PMUs under GPS spoofing attacks. J. Mod.
Power Syst. Clean Energy 2020, 8, 597–606. [CrossRef]

65. Sabouri, M.; Siamak, S.; Dehghani, M.; Mohammadi, M.; Asemani, M.H. Intelligent GPS spoofing attack detection in power grids.
arXiv 2020, arXiv:2005.04513.

66. Siamak, S.; Dehghani, M.; Mohammadi, M. Dynamic GPS spoofing attack detection, localization, and measurement correction
exploiting PMU and SCADA. IEEE Syst. J. 2020, 15, 2531–2540. [CrossRef]

http://dx.doi.org/10.1109/TSG.2016.2581588
http://dx.doi.org/10.1109/TPWRS.2019.2924441
http://dx.doi.org/10.1109/MWC.2012.6155873
http://dx.doi.org/10.3390/s19183993
http://dx.doi.org/10.1109/TIA.2021.3131970
http://dx.doi.org/10.35833/MPCE.2020.000125
http://dx.doi.org/10.1109/JSYST.2020.3001016

	Introduction
	Preceding Affined Review Papers
	Necessity for an Up-To-Date Review
	Review Methodology Brief Description
	Formation of the Remaining Work

	Cyberattacks in Smart Grid
	False Data Injection Attacks
	Denial of Service (DoS) Attacks
	Spoofing Attacks

	Research Directions
	Conclusions
	References

