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Abstract In this paper we present a methodology and between the two regions is determined based on the signal
technigues for generating cycle-accurate macro-models for statistics collected from simulation runs. The Activity-
RT-level power analysis. The proposed macro-model Based Control (ABC) model [4] is proposed to estimate the
predicts not only the cycle-by-cycle power consumption of power consumption of random-logic controllers. All of the

a module, but the power profile of the module over time. above macro-models assume some statistics or properties
The proposed methodology consists of three steps: modulabout the input sequence.

equation form generation and variable selection, variable . : o
reduction, and population stratification. First order All of the above techniques are suitable for estimating the

temporal correlations and spatial correlations of up to 2verage-power dissipation (and are referred to as

order 3 are considered to improve the estimation accuracy. cumulative power macro-mogelin some applications,
Experimental results show that, the macro-models have 15Eowever, estimation of average power is just one task in the
or less variables and exhibit <5% error in average power, Proader sense of power evaluation. Other tasks include the
and <15% errors in cycle-by-cycle power compared to €Stimation of the moving average of the power, power
circuit simulation results using Powermill. profiling on a cycle-by-cycle basis, and rate of current
change estimation. This type of information is crucial for
l. INTRODUCTION system reliability analysis and DC/AC noise analysis. If the
macro-modeling technique does not provide such

Due to rapid progress in the semiconductor manufacturing,incormation, the circuit designers will have to resort to

the device density and operating frequency have greatlyyaie jevel or circuit-level simulator again. Consequently,

increased, making power consumption a major designg,iqskind of macro-model is considered to be less useful.
concern. High power consumption exacerbates the

reliability problem by raising the die temperature and by The notion ofcycle-accurate macro-modelgas proposed

increasing current density on the supply rails. It also iy [5]. Let P denote the power consumption of modjuie
reduces battery life which is a key concern in portable .5k cyclek, then we can write:

devices. Therefore, low power design requirements are

driving a new breed of design automation methodologies Pk =F;(Vjk-1.Vjx) (1.2)
and tools which in turn rely on accurate and efficient ) .
estimation tools at various design levels. whereV; andVj. denote the input vectors for modilet

L . - . cyclesk andk-1, andF; is some function of the input vector
Power estimation at RT level is crucial in achieving a short y ! b

design cycle. Macro-modeling is the major technique for pairs. The _goal Of. power macro-modeling is to find
power estimation at RT-level. In this technique, low-level functionF; given an input vector sequendethe so called
simulations of modules is replaced by power macro-modeltraining sej for modulej and given the corresponding
equation evaluation (which can be performed very fast). power consumption values. Cycle based macro-models can

Macro-modeling techniques use capacitance models forbe easily transformed into cumulative macro-models [5].
circuit modules and activity profiles for data or control This paper improves results of [5] in the following
signals [1-3]. The simplest form of the macro-model directions. A new variable selection methodology is applied
equation is given by: to capture the relation between power consumption and
_1y2 module inputs/outputs. The spatial correlation among
Power= 2V * Lf [Cei [SW 1.1) inputs are considered up to order three. Because we use

where Cqy is the effective capacitancBWis the mean of integer variables instead of 0-1 variables as in [5], our

. oo - : macro-models have fewer variables (fewer than 15
the input switching activity, andlis the clock frequency.  \aaples compared to 40~100 variables in [5]) and higher

The Power Factor Approximation (PFA) technique uses anaccyracy (10% error on cycle-by-cycle basis compared to
experimentally determined weighting factor, called the 11.2% in [5]. In addition, we use population stratification to
power factor, to model the average power consumed by aobtain a macro-model with higher fidelity.

given module over a range of designs. This paper is organized as follows. Section Il gives the

To improve the accuracy, more sophisticated macro-modeltheoretical background for regression analysis. Section IlI

equations have been proposed. Dual Bit Type model,discusses a procedure of building the macro-model whereas
proposed in [2], exploits the fact that, in the data path or Section IV presents the experimental results. Section V will

memory modules, switching activities of high order bits discuss some applications of cycle-accurate macro-models.

depend on the temporal correlation of data when lower

order bits behave similarly to white noise data. Thus a Il BACKGROUND

module is completely characterized by its capacitanceBased on the theory of regression analysis, we define the
models in the MSB and LSB regions. The break-point relation between power and input vector pair characteristics
as a statistical relation, which can be expressed as :

* This research was supported in part by DARPA under contract number
F33615-95-C1627, SRC under contract number 97-DJ-559.



Y = (X, X5, X, ) +E (2.1) ﬁ:“}%,mQJ:Xb 2.7)

wheree is a random error term of normal distribution with and the residual terms (error) are defined as the difference
the meanE{e} =0 and the varianaez{s} =2, andX, between the fitted power and observed (actual) power:

Xa, ..., X, are the characteristic variables related to the e=[e, 6, g]=P-P=P- Xb (2.8)
input vector pairs. (2.1) is different from a functional
relation in that: 1) same variable assignment may produce,
different Y values because different vector pairs which "
result in different power consumption may produce the T QP
same set of characteristic values, an & thus regarded sum of squares erroSSE z ez
as a random variable with me&tY) = f (X, X5,... X, . )

In the following, we define some relevant terms for
egression analysis [6].

i=1
mean squares erroMSE= SSH m k1)
We define the cycle-accurate macro-model as a linear

m
function describing the statistical relationship between regrssion sum of squareSSR= Z( P- B?
power dissipation of a vector pair and the characteristic =

values of the vector, that is, we write: regrssion mean squareMSR= SSR k

P=Bo+ PuXu* BoXo +ot BiXi (2:2) coefficient of correlationR = ,/SSR(SSR+ SSB
where P is the power (which is the power estimated from a
circuit-level simulator, such as Powermill [7B,,B,,--,B,

The statistical nature of the macro-model enables us to
) - predict the accuracy level of fitted power value as follows.
are constants called the regression coefficients of thegjyen any input vector pair, the values of its characteristic
macro-model, and X;, X,---, X, are characteristic  yariables %, X, ..., %) are first computed. The fitted
variables extracted from the input vector pair. (predicted) power is given by =i, +bx +b,x, +--+bx, -

Assume that we have been given the equation form of theGiven a confidence level &- the confidence interval of the
macro-model as (2.2), and have performed Powermill actual powerP is defined as an intervaP{, P,] such that

simulations (observations) an randomly sampled vector  the probability that the actual power value lies inside this

tpoalrssm tthh:tfa?ﬁil#g“%g)(ﬂgg Sfﬁa'?f‘csgtoﬁae’%'rso'ét;?r';%g]e‘j interval is  1a. We can thus compute the confidence

simulation results (observation values) of power. The linear interval forP at any confidence level d-as:

regression model for vector pairs from the training set canp_t1-q/2:m-k - 5 —a/2:m=k - 29

be written as: [P-tl-a/2;m-k 1)I.I'B[P],P+t(1 a/2;m-k 1)|3®-[P]]( - )
wheret(1-a/2;mk-1) is the (1a/2)x100 percentile point of

R =PBo+BoX 1+ BoX ot +B X t&, 1=12:-,m (2.3) the t distribution with degree of freedom ofi{k-1) and
or in matrix form as: gP] is the standard deviation of the new observation which
is given by:
P=XB+¢ (2.4)
— T T -1
where P/s are random variates corresponding to Pl _\/MSEEQH X (XTX) 7 X) (2.10)
observations: X; 1, X 2.+, Xk ) 1 =12,...m; Bo,By,---.By whereX andMSEare the variable matrix and mean squares

are the regrssion coefficientss ;. % ».-, %, are known error of the training set, respectively.

The quality of the macro-models can be evaluated in terms
of the following criteria:

&'s are independent random variates representing deviatiory

values derived from the input vector pav;{,V ,); and

Correlation coefficients: Coefficient of multiple

from the mean value of power with variance correlationR is a general measure of the quality of a
VAR[g] =02, and Covie;,&;1=0, for i#]. regression model since it represents linearity of the
model and the magnitude of the error. From its
Consequently, the random vectrhas an expected value definition, 0< R< 1. Furthermore, the higher th@
of E[P]=XB and the variance-covariance matrix ®fis value, the better the quality of the regression model.
— 42 ; ; ; ; TheR value may differ from one population to next for
CovP] =01, wherel is the identity matrix. the same macro-model. Therefore, tRevalues of
The least square estimator for the coefficighis: different macro-models should be compared only when
T 4T they are subjected to the same input population.
b=(X"IX)"X' [P (2.5) . .
2. Errors: Error in cycle power (ECP) gives the average
where error when estimating power on cycle by cycle basis
_ T while error in average power (EAP) gives the average
(kfl’)xl‘[bmblf“’@] (2.6) error when estimating the average power. More

. ) ) precisely, we can write:
It has been proved in [6] that the lest square estimator is an

unbiased estimator fof3, which means HJ= B.The
estimated (fitted) power from macro-model is given by:



Ch_%p where {; is calledorder 1 transition variableof inputi,
hay I I
ECP= li @y EAP=EL _ = (2.11) t; Ot is calledorder 2 joint transition variableof inputsi
n & i . . . .
= P and j, etc. Entries of these vector variables are either 0 or 1
= and the sum of entries in each vector add up to 1.

. GENERATING THE MACRO-MODEL Theorem 1 Equation (3.4) gives the exact power

3.1 Variable Selection consumption for any vector pair applied to the inputs of
3.1.1 Theoretical foundation of macro-model equation any _combinational module with k inputs. Furthermore,
Sl q coefficients in the equation are unique for given module.

If we ignore power consumption of the floating nodes
within gates (it is <5% in practice), the power consumption
of a combinational module is only a function of transitions It is obvious thahy = 0 since power consumption for vector
at the primary inputs and can be written as: pair (00...0)- (00...0) must be zero. All other coefficients
= F(ELE £) 3.1) in equation (3.4) can be uniquely determined from circuit-

IR LA level simulation on some specific vector pairs.

3.1.2 Relevant input correlations

wherek is the number of inputs ang,t,,---,f, are the so

called transition variables which encoded by a bit vector asDEfmltlon INpUtS ,iz,...J; aretransitive fanout correlated

iff their transitive fanout cones in the circuit have at least

following: one common node, that is, there exists at least one node of
f=[a b, i=12--k the module whose logic function includes all these inguts.
a=b=c=0if i:0-0 a=lb=c=0 if i:0-1 (32) is called theorder of the correlation.

b=lLa=c=0if i:1-0, c=lLa=b=0 if i:1-1 For sake of simplicity, we use “correlation” to mean

Note that the function is defined as a mapping from vector transitive fanout correlation” in the rest of this paper.

space to real numbers. Equation (3.1) can be expandedhe coefficients in (3.4) essentially reflect the correlation
between the corresponding (joint) transition probabilities

0 — (£0-0 §0-0 0-0 .
aroundt™ = (&7, ., Bc ) as follows: and the power consumption in a circuit.
P=f(f.h, 5= &5 8 Proposition 1 If iy,i,,...,i; are not correlated, all entries of
k k k32 a . .., arezero.
+ g_f ) a‘iaf_ A oot (33) ol
1% |0 5115710608 | o Corollary If J is the highest order of correlation among
okt inputs of a module, the first J+1 terms of equation (3.4) are
+oot———— AL OAE O---0OAf, sufficient to model the exact power for any input vector
04,0t ---0ty | 0 pair applied to the module.
where 3.1.3 The macro-model equation
At =t xor t2°0 =t Ot %t , Ot% 0t , Ot ° We have empirically observed that, on average, low order
i i i il il 14,2 i,2 4.3 i,3 . .. X . .
~ joint transition variables have higher coefficient values for
=[t, 004, 00,3000 =[t; 1, 2.t 5] = 1; most circuits. Based on this observation, we approximate

and the [1” operation between two vectors is defined as: (3.4) Dby ignoring the high ort;ler terms. Our first
. approximation function is written as:
[Ug, Uz, U ] T [Ve, Voo, Vi ] = [UgVy, UgVa -, Ug Vi UV,

@Ro-10-10
u2V21'”1u2Vn1'”1umvlrumV2!"'!umVn]:[W1'W2!'”!Wmn] Q}O”lD )
- . . k o0 ok ok Dpﬁllﬂog
By redefining the constants in (3.3), we can write: P=a,+ zfi iLOD'* z z 0 fj [Elvl g
@o ~10-1[] =1 1.1 =5+ 0. .0
&°-10 o 0 i 0 1.11-1
k 0ok o o 11ﬂoD SN B
P=a,+ zt- @%”OD+ z t Of; [Ei” 0 30-10-10-1[]
=1 1-10 f=1j=* 0. ° 0 0L 0
i 0 1-11-1 k k k Oﬂl,Oﬂl,laOD
i B £y Zt‘im‘ﬂ‘,[%a'lv' ore (3.5)
[30-10-1:0-10-1[] =1 j=i+1l=]+1 0 : 0
1,2,...k 1-.11.11-1
0 oﬁl,oﬁL»»»,oﬂl,lﬁog (3.4) B B
+4 0%, 0 ka[%@'z """ k 0 ' ko ok ko ;
: O =a0+zi[a| +Z Zti[ltj[ai,j
Eaizl}: il g Ei 15
o DD PIELLI
o+ S m + EOf @+ OGO, @, +e
el et
Z ;jZ—l =L iEE

wheree is the error caused by approximation.



We can minimize erroe by re-computing the coefficient 1, 0.1, 1.0, 1.1 o .
values doing least-square fitting for (3.5). However (3.5) is & ~ §(ai *ta " +a), =12k for grouping
too large to be our macro-model equation because thesingle inputs;
number of variables in it Bk +9[CZ + 27[C?, which is

0-10- 1+a0 11a0+_‘_

too high! The use of 0-1 variables in (3.5) makes it difficult  Gi,j = 5(3 i

to reduce the number of variables using regression 1ﬂ11 o o
approach. +a;, ), 1,j=12-k, i<]

pairs of mputs

for grouping

We thus use a variable partitioning approach which offers

two advantages: 1) uses integer variables, 2) has constant 1

number of variables independentkof G, :E(asill,oal,oal +a|or|1,oﬁl,1ao

We defineG; as the set of all input€, as the set of all 111111 o for
possible combinations of two input§s as the set of all ta ) L) =120k, i< <

possible combinations of three inputs: grouping triplets of inputs

G, ={12--.k}, Transition variables of the same order are sorted in
G, ={(12),(13),---,(Lk),(23),---, (k- LK)}, increasing order of the corresponding criteria values and
Gs ={(12,3),(124), -, (L2,K),(L34),--, (k - 2,k -1 K)} then divided into groups of at mdstelements.

Note thatG; consists of indices for order 1 transition Let's define:

variables; G, consists of indices for order 2 transition i
variables, etc. The variable partitioning technique divides %9 s the total number of transitions of typej in
G; into L subsets(, into M subsets, ant; into N subsets groupG .

such that: o
- : M M ZIE e is the total number of pair-wise joint transitions
Gig =9, G, =G Gyy =, G,, =G : ) i
O Lo L:J Lo l' O 29 L:J 29 2 of type { -] k1) in groupG,.
Giql <K G,y K Ty bk-tmen . .
| 1'g| | 2'9| 39 is the total number of joint transitions of
N N - .
type (-], k=1, m=n) in groupGs
ﬂG&g =, UG3v9 =G, |G3v9|S K = - 0.1 —1-0 194
g=1 g=1 Tl,g :_ zti :[ Tlrg Tlvg Tl,g ] 1x3
whereK is some user-specified bound. The size constraint G

is specified to manage the complexity of macro-model T, = tOf
equation characterization and evaluation. 9 @ %@

2,9

We approximate equation (3.5) by assuming that: _r0-10-1 —o0.11-.0 1-11-1
=Ty Tog S Ey ”

&O 10 Eb](q)qlD _ B B .
DlﬁOD %}f o . _ Tog = £ 0t 0F
& g O Ui DGlg,g =12,---,L (i,7.)0Gs 4

1-1[] 10 L 0100l —0.10.110 11111
%% ¢ [y = [ro;r0-10-1 qoor0aat0 L platen 1]l><27
@.Ofl'mm q)o Jro-io We can thus introduce our cycle-accurate macro-model as
gao 11aoD Ij)o ~11-0 D follows:

IJ D : D D(LJ)DGZ’g,g:lZ,...,M 0 g

0 D O o0

@Ilﬁllﬁ 0-11-1 p= b°+Z[T 1 oTo Tl 1] 1

B 2.9 %xl Bljlfl |:|

@104,041,045 [B0-10-20-10] 90

E4310%10 ~11e OE Dolj,oal,laog Ebo”]"o”lg
il =299 i =12... -
: g -0 : I:J 0, . BGsg,9=12-,N < fro- 10-1 o 11-0 1-11-1 ggm °o
+Z B T o T .0
1.11-11-1 0 Do 11-11- 1 = 9 9 :
9=t g g
Ea' K B Bra QJ%;LL g
To minimize the error introduced by the above ’ Oaloﬁloﬁlm
approximation, we should do a careful variable partitioning Dbs o
because variables may have very different coefficients. In El-oal,oal,oal ToA0410 L piiaii ]E%VOO 2110 D
our approach, the partitioning criteria are based on the* z O
coefficients in (3.4) which are computed as: O, 111120
9 B

(3.6)



In terms ofL,M,N values, the number of variables in the invoke the macro-model equation which was trained using
macro-model is B+OM+27N, which is independent of the vector pairs with a similar switching activity.

number of circuit inputs. Theorem 2 The regression coefficierR of the macro-

Table 1 shows the experimental results for three macro-model in population stratification approach is always larger

models using different number of groups and using than or equal to that one without population stratification,

different grouping strategies. For Macro-modelL i 1, M ie.,

=1,N = 1; For Macro-model 2, = 8, M = 8, N = 2, and R. >R

the single inputs, input pairs, and input triplets are grouped str = Tnostr

randomly; For Macro-model &, = 8,M =8,N=2,and our  Experimental results in Table 2 shows the improvement on

variable partitioning heuristic is used. The input sequencethe regression coefficierR of the macro-model with the

are randomly generated. We did not include biasedpopulation stratification approach (Macro-model 1) and

sequence into this experiment becauseRhalues are so  without it (Macro-model 2). The experiment sequence

high that it is difficult to assess the merit of each method.  contains both biased and random vectors.

From Table 3, we can draw the following conclusions: Table 2 Experimental results of population

+ In general, input grouping improves the quality of stratification approach
macro-models.

) ) ) ) ) Module Macro-model 1 Macro-model 2
* A good input grouping technique is very important to R ECP (%) R ECP (%)
obtain a high quality macro-model.
C1355 0.9806 7.86 0.9691 8.76
Table 1 Experimental results of input partition C1908 0.9603 9.34 0.9507 11.19
C2670 0.9786 8.77 0.9747 10.22
Macro-model 1| Macro-model 3 Macro-model|3
C3540 0.9743 11.45 0.9566 12.88
Module R ECP R ECP R ECP
%) %) %) C432 0.9196 19.07 0.9001 22.96
c1355 | 0.7037| 807 0604 92 07788 7|8 C5315 0.9819 7.64 0.9812 8.72
C1908 | 05387| 154 0.5456 1500 0.7987 1].2 C6288 0.9892 6.03 0.9864 7.16
C2670 | 0.3940| 117 04022 11l6 06295 14 C7s52 0.9885 6.58 0.9871 7.36
C3540 | 05439| 174 0.6583 155 0.7599 1%.2 C880 0.9506 14.19 0.9509 15.32
ca32 | 03169 291 03260 290 07706 2.2 Mul16 0.9832 6.32 0.9819 6.90
c5315 | 0.4128| 99| 04813 94 o0s012 sf ADDER16 | 0.9868 5.64 0.9725 6.73
c6288 | 0.7318| 8.1| 07717 7.4 08011 6|8 3.3 Variable Reduction
Cr552 | 0.1852| 334 0.317¢ 310 009184 92 In the macro-model equation (3.6), the number of variables
€880 0.5421| 19.4 0.4854 208 0.6976 14.3 is about 150. Althogh the large number of variables will
Muie | 07568l sol o7s1d 83 o813 7b improve the quality of the macro-model, we cannot afford
to evaluate a large macro-model equation for every clock
Adder16 | 07151] 86| 0726 83 08647 6 cycle at RT-level. Therefore, we must reduce the number of
3.2 Population Stratification variables in the equation.

From our experiments we have found that the regressionin our approach, the search method develops a sequence of
correlationR between the estimated power and the actualregression models. At each step, oteariable is added
power varies for different power ranges. This means thatinto or deleted from the final macro-model equation. The
the regression model is not strictly linear over the range ofcriterion used for adding or deleting variables is e
possible power values. The reason for the lack of linearity statistics of the regression theory [6]. The algorithm is
is that the macro-model equation is only an approximation described next:

to the power-transition function. During the variable
selection, we discard the high order terms in the power-
transition function and group subsets of variables of given
order together. The approximation introduces some non-
linearity into the macro-model equation. This effect is more
pronounced when the number of variables is small.

Input of the algorithm: Given are a set of candidate
variables {Xg, X,, ..., X, } which is in the initial macro-
model, a training set (values of variables for input vector
pair and corresponding Powermill power value), a low
thresholdt, for deleting a variable, a high thresha|dfor
adding a variable, an upper bound of number of variables
To improve the quality of our macro-model, we refine the MAX 4, Sis the set of selected variables.

macro-model to giece-wise linear regression modél. P PP, - -

At the first step, we stratify the training set into several Step O(Initialization) : SeS=® andC = { X, X5, ..., Xn}
disjoint subsets (strata) based on the switching activity of Step 1 (Find the first variable) : Fit a one-variable linear
the vector pairs in the training set. A vector pair will fall regression model for each variaidein C. TheF" test for
into one and only one of these strata. Then the macro-each model is given by:

model is trained separately for each subset of the training

set. When we apply this piece-wise linear macro-model to F* = MSRX;) i=12....N

estimate the power for a given vector pair, we first examine ' MSEX;)’ n

the switching activity range of the vector pair, and then



Assume thak; is the variable with the maximuf value.
If FJ-* >t, then moveX; from C to S and denote it ax; .

Otherwise, no macro-model can be found for the giyen
value €; must be reduced). The algorithm terminates.

Step 2 (Add a variable) : Assum8 = { X;,X5,--, X, },
for eachX; remaining inC, fit the regression model with
a+1 variables X, X,,--, X; and X, . For each of them,
the partialF test statistics is:

£+ = MSR(X, | X1, X5, Xa) _
b OMSE (X, X1, X g, X2)

b.
(——)?

s{bi}
whereb; is the estimated value @f coefficient ands{ b} is
the standard deviation &f. Let X; be the variable with the

maximum F, value. If FJ-* >t, then moveX; formCto S

and denote it a@(;ﬂ, increasea by 1, and go to Step 3;
Otherwise the algorithm terminates.

Step 3(delete a variable) : Assun®={ X;,X,,--, X, },

and X; is the latest variable added in Step 2. Compute the

partial F test statistics for all other variables3n

2 MSR(X{ [ Xq, X5, Xicg, Xianu Xa) _ B o

= o : =( )
MSE (X;, X1, X5, ,X2) s{b;}

Let X; be the variable with minimunfF* value. If

F.

F; <ty then removeX; formS

Step 4: Repeat Steps 2 and 3 until one of following three

conditions is true:

1. Algorithm terminates in Step 2

2. C=0.

3. The number of variables $equals to MAX,,

In our approach, the number of variables in the candidate

set is 162 at the beginning. We chodgse= t; = 10.0,

MAX s = 15. For most macro-models, the algorithm
terminates at the3condition at step 4 when the number of

variables equals to MAY. Only for one of them the
algorithm terminates at step 3 WhErﬁ <ty.

3.4 Other issues in macro-model generation

transitions on circuit outputs, but only for two of the
circuits (C432 and C880) variables related to outputs
survive the variable reduction phase.

The experimental setup is as follows. For each circuit, the
population size is set to 80,000 vector pairs (constructed by
both biased and random sequences). We first simulate each
circuit for the entire sequence using Powermill and record
the cycle-by-cycle power. Size of the training set is set to
3,000 . The macro-model is then trained using the training
set. After the macro-model is built, we apply it to different
subsets of the population. These subsets are selected such
that their power behaviors are different from that of the
training set. Average ECP and EAP are computed by
averaging the ECP’s and EAP’s of all sub-sets. The
regression coefficienR is computed based on the fitted
results on the entire population. Experimental results for
our cycle-accurate macro-models is summarized in Table 3.

Experimental results shows that our macro-model
technique are very accurate when estimating power
consumption at RT-level. The average ECP and EAP are
10.2% and 2.0%, respectively.

Table 3 Experimental results of cycle-accurate macro-

models
Circuit No. of Var. R ECP (%) | EAP (%)
C1355 15 0.9615 9.3 2.7
C1908 15 0.9343 11.6 2.0
C2670 15 0.9744) 9.6 2.0
C3540 15 0.9472 12.5 2.0
C432 14 0.8971 19.3 3.1
C5315 15 0.9816| 7.8 16
C6288 15 0.9902 6.2 1.9
C7552 15 0.9885 6.9 1.1
€880 15 0.9405 14.3 3.2
Mul16 15 0.9853 6.5 1.6
ADDER16 15 0.9825 6.4 1.1
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