
Cycle and Phase Accurate DSP Modeling and Integration
for HW/SW Co-Verification

Lisa Guerra*, Joachim Fitzner⊥, Dipankar Talukdar*, Chris Schläger⊥, Bassam Tabbara+,
Vojin Zivojnovic⊥

*
Conexant Systems
4311 Jamboree Rd., MC 510E-602,
Newport Beach, CA 92660, USA
[lisa.guerra,dipankar.talukdar]@conexant.com

⊥ AXYS GmbH,
Kaiserstr. 100
52134 Herzogenrath, Germany
[jf, cs, vz]@axys.de

+
UC Berkeley EECS Dept.

211-150 Cory Hall
Berkeley, CA 94720, USA
tbassam@eecs.berkeley.edu

ABSTRACT

We present our practical experience in the modeling and
integration of cycle/phase-accurate instruction set architecture
(ISA) models of digital signal processors (DSPs) with other
hardware and software components. A common approach to the
modeling of processors for HW/SW co-verification relies on
instruction-accurate ISA models combined (i.e. wrapped) with the
bus interface models (BIM) that generate the clock/phase-accurate
timing at the component’s interface pins. However, for DSPs and
new microprocessors with complex architectural features this
approach is from our perspective not acceptable. The additional
extensive modeling of the pipeline and other architectural details
in the BIM would force us to develop two detailed processor
models with a complex BIM API between them. We therefore
propose an alternative approach in which the processor ISAs
themselves are modeled in a full cycle/phase-accurate fashion.
The bus interface model is then reduced to just modeling the
connection to the pins. Our models have been integrated into a
number of cycle-based and event-driven system simulation
environments. We present one such experience in incorporating
these models into a VHDL environment. The accuracy has been
verified cycle-by-cycle against the gate/RTL level models. Multi-
processor debugging and observabili ty into the precise cycle-
accurate processor state is provided. The use of co-verification
models in place of the RTL resulted in system speedups up to 10
times, with the cycle-accurate ISA models themselves reaching
performances of up to 123K cycles/sec.

1. INTRODUCTION
The trend of developing increasingly complex systems under
shrinking time-to-market conditions continues. Typical current-
day, single-chip electronic system implementations include a mix
of a number of microcontroller, DSP, shared memory, dedicated
logic, and interconnect components. With increased hardware and
software design complexity, greater use of components from

various design teams and third parties, and rising number of gates
per pin, verification has emerged as a critical bottleneck
surrounding the system-on-chip design paradigm.

In addressing this verification bottleneck, concurrent simulation of
full systems-on-chip with interacting hardware and software is
now widely recognized as an important and viable verification
approach. Co-simulation/verification of hardware and software
has been proposed for a number of environments such as [8]
[3][12][5][10][13][4][15][2] and is also offered commercially by
companies such as Mentor Graphics [9], Synopsys [14] and
others.

In this work our interest is system co-simulation used during
cycle-accurate system verification, after the system architecture
has been selected and hardware and software models have been
developed. Co-simulation enables the verification of actual
processor application code running on ISA processor models in
conjunction with accurate models of the remainder of the
hardware system.

In general, for cycle-accurate processor modeling, there have been
efforts which develop C/C++-based cycle-accurate ISA models to
verify against the RTL models (e.g., for the UltraSparc [11] and
CRISP 32-bit RISC microprocessors [6]). On the other hand, in
the co-verification domain, the most common approach for
cycle/phase-accurate modeling uses instruction-based ISA models
extended by simple interface models (commonly referred to as bus
interface models (BIM) or wrappers) which interpret external
interaction events, and thereby generate cycle/phase-accurate
simulation traces at the component’s pins. This method is used,
for example, in the ARM7 processor model [7] integrated into
commercial HDL-based environments such as [14] and [9].

For architectures with a simple timing, this can provide a
satisfactory level of accuracy under most circumstances. Recent
DSP architectures and a growing number of new microcontrollers,
however, have deep pipelines with greater memory access
bandwidth, memory accesses distributed over multiple stages, and
complex stalling logic. For these types of processors, bus interface
models become very complex, and must include modeling of
pipeline and architecture information in order to recover the
necessary timing. Our contribution described here offers an
alternative to detailed interface models; we model the processor
ISA itself in a full cycle-accurate fashion. Complete modeling of
the deep, partly-protected pipeline with all the interrupt, wait
state, and stall effects is performed. The wrapper is thus reduced
to a thin layer describing the interconnection to pins and the API
between the ISA model and the BIM is simple.

Our solution provides full cycle and phase-accuracy for the
proposed implementation under real operating conditions for
system-on-chip designs. The accuracy is verified cycle-by-cycle
against the gate/RTL-level model. For the processor models, the
simulation slowdown that one might expect by the increased
accuracy does not occur. The SuperSim compiled ISA simulator
of the processor [15][16] successfully compensates for slowdown
due to increased accuracy.

In this paper we also describe the integration of these models with
other hardware and software components. A fully cycle-accurate
system simulation has been achieved, incorporating the C-based
ISA DSP models and mixed-level VHDL models. The integration
supports full multi-processor debugging, visibili ty, and
controllabil ity of instantiable, configurable models of the DSP
processor with low development effort. Experimental results
demonstrate processor ISA model speeds of up to 123K
cycles/second and co-verification model speeds of up to 70K
cycles/second. For a complete RTL VHDL-based system-on-chip
simulation, speedups of a factor of 10 over conventional RTL
simulations were attained.

The paper is organized as follows. Section 2 presents our DSP
processor co-verification model. An integration of these models
into a VHDL simulation environment is presented in Section 3.
Experimental results are discussed in Section 4 and finally
conclusions are presented in Section 5.

2. PROCESSOR CO-VERIFICATION MODEL
This section presents the design options for a processor co-
verification model and discusses the reasons that lead to our
choice of a cycle-accurate over an instruction-based (bit-accurate)
ISA core model. Model requirements, possible model structures,
and aspects of model reuse are also presented.

The target for our co-verification model is a state-of-the-art,
Conexant in-house, low-power DSP. It is a pipelined, two-way
SIMD (single -instruction-multiple-data) machine with a Harvard
memory architecture capable of handling up to three data memory
accesses per cycle. It has a fixed length 32-bit instruction set and
supports 16 and 32-bit operations. The DSP is being used in
several systems-on-chip embedded in communication and
consumer products developed at Conexant Systems.

2.1 Model Requirements
Models that will be used within system simulation have to be
designed to include the following features:

Modeling accuracy: In terms of functionality and processor state
representation, bit-accuracy [12] is necessary in order to reflect
bit-length effects and obtain correct results. In terms of timing, the
accuracy requirements depend on the processor’s mechanisms to
connect to the system. For the case of the systems and verification
stage considered here, cycle-accurate timing is critical for
verifying the performance impact of certain components and
architectural features such as memory wait states, variable
interrupt latency, or non-interruptible loops. Since the targeted
processor as characterized above has interactions with memory,
memory-mapped I/O, and I/O on a phase basis, modeling the
related components’ interaction with phase-accuracy is inevitable.

Debug capabil ity: The internal state of the model needs to be
observable. For processors, this includes the ISA registers,
memory, and pipeline. It is desirable to observe the correct state at
every clock cycle, not just at instruction boundaries, as this greatly
enhances processor understanding and programming. The

execution control should comprise all standard debugging features
like stepping, and breakpoint handling for a multiple processor
system.

High simulation speed, and reliabil ity: The performance of the
overall system is drastically influenced by the speed of its
components. Therefore, each component should be optimized for
speed. This is not only beneficial for run-time simulation but in
addition enables thorough model verification against its reference.
This helps ensure high reliability not only of the components but
also of the system.

IP reuse: The models should be generic with respect to the number
of instances of processors, memory sizes, memory maps, and
interface protocols. Models must have a well-defined API, and
provide flexibili ty in their use and execution since different design
tools may be used by different teams as the design evolves. One
requirement in this class is that the model has to be slavable, i.e.
capable of being activated by a master scheduler. While it may
appear a simple requirement, a number of models that we have
encountered are not slavable to another simulation master and thus
integration alternatives are less flexible.

2.2 Model Structure
Most of the processor models used in existing HW/SW co-
verification environments are instruction-accurate, providing
precise processor state modeling only at the instruction
boundaries. A simulation step in such a model atomically
simulates one instruction's behavior through all stages of the
pipeline. Each executed instruction can trigger one or more
software events such as reads, writes, and signal assignments.

The co-verification model consists of the ISA simulator and a Bus
Interface Model, BIM (Figure 1a). The interface model itself is
also partitioned into two parts, the bus pin model and the bus
cycle scheduler. The latter collects the information about the
software events, identifies the corresponding hardware events, and
schedules them in proper order for each clock cycle. It schedules
these transactions along with already pending transactions using
cycle count information from the ISA and architectural
information of the processor to properly take into account external
inputs, such as interrupts and memory wait states. The bus pin
model provides the interconnection to the simulation environment
and the rest of the system. For example, in an HDL environment,
it provides the pin delay back-annotation and connects to the HDL
over the FLI/PLI interfaces. For processor architectures with
relatively simple cycle-based timing, like some standard
microcontrollers and embedded RISC architectures, the use of
instruction-accurate models might be sufficient. However, even
for these architectures this rather low level of accuracy can cause
modeling problems especially for whole systems involving
multiple cores, interrupts, and heterogeneous memory banks.
Despite this fact, the community of model users and providers
have had several strong arguments to develop and use this type of
model in the past. The main ones are ISA model availabili ty, high
simulation speed, high degree of IP protection, and relatively
simple ISA model development. The best known model from this
class is the ARM7TDMI HW/SW co-verification model
developed by ARM, Ltd. [7].

In an alternative approach, a cycle-accurate ISA model (Figure
1b) is used. The increase of the timing accuracy within the core
model reduces the complexity of the bus cycle scheduler since the
only remaining task is to translate ordered cycle based events into
phase based hardware events. The overlapped execution of

instructions and other pipeline effects are already handled by the
core model.

Ordered phase
based events

(a) (b) (c)

Ordered phase
based events

Sequences of
overlapping events

Bus Cycle
Scheduler

Bus Pin
Model

Ordered
phase
based
events

Bus Pin
Model

Ordered cycle
based events

Cycle
Accurate
Model

Bus Pin
Model

Bus Cycle
Scheduler

Instruction
Accurate
Model

BIM

Phase
Accurate
Model

Figure 1: Possible Model Structures
Finally, in a third approach a phase-accurate ISA model is used
(Figure 1c). This models the bit-true state of the processor at each
phase transition. The interface model in this case does not require
any kind of bus cycle scheduler because the software events of
each phase can be directly translated into the corresponding
hardware events.

The tradeoff among these approaches lies in the complexity of the
ISA model versus the complexity of the interface model, as well
as the complexity of the API between the ISA and the interface
model. In the following section, we provide arguments as to why
for DSPs the development and integration of cycle-accurate ISA
models is unavoidable.

2.3 Arguments for a Cycle-Accurate Core Model
Considering the existing commercial HW/SW co-verification
environments, it can be seen that models of DSP architectures are
rarely provided and if they are, they show serious HW/SW
modeling deficiencies if modeled using the instruction-accurate
approach. The question that arises is why the integration of a DSP
causes these problems.

Main characteristics of today’s DSPs are a high memory
bandwidth, short interrupt latencies, and deep pipelines. All of
these features have an impact on the ability of the processor to
communicate with other components and therefore are critical for
the design of a co-verification model.

Pipelining is a key implementation technique used to increase
processor performance by overlapping the execution of multiple
instructions. One problem with increased pipelining is that it spli ts
the execution of an instruction into smaller pieces, and thus
provides the potential for a number of interactions between the
processor and other components across multiple cycles. For a
load-store-architecture the memory read and write always occur in
the same stage but for an architecture capable of memory-to-
memory operations those accesses are located in two different
stages. Since the duration of one cycle tends to shorten with
longer pipelines, memory accesses can not be limited to one clock
cycle and need to be spread over stage boundaries to allow the
usage of standard memory.

Consider a hypothetical 5-stage pipeline with instruction fetch
(IF), instruction decode (ID), operand fetch (OF), execute (EX),
and write back (WB) stages. The execution of an ADD instruction

in this pipeline generates read accesses to both program and data
memory (Harvard architecture). Consider the data memory access.
In the decode stage, the ADD's operand memory address is
available and issued to an external, cycle-accurate shared memory
component. In the next cycle, when the ADD is in the operand
fetch stage, the read data is returned to the processor (Figure 2).

Cycle 1 2 3
Stage IF ID OF
ADD Prog. Addr. (out) Prog. Value (in)

Data Addr. (out)
Data value (in)

Figure 2: Multi-Stage Memory Access
To model this behavior with an instruction based core model and a
bus cycle scheduler it is not only necessary to schedule the
address bus but also to read the data back from the data bus in the
next cycle. This value has to be propagated to the ISA model
which has to remain idle until this value becomes available in
order to compute the sum and update the flag register. The
interaction between the ISA model and the bus scheduler becomes
even more complicated, if two read accesses are scheduled by the
same instruction. Both access requests have to be sent to the bus
model and the ISA must wait for two responses from the system.
The interface between the core processor model and the bus
model needs to be able to take multiple reads into account plus
additional side effects like variable length wait states for the
response. The high memory bandwidth in DSPs is achieved by
either using multiple memory banks or by using memory modules
with multiple ports. For example, up to two reads and one write
can be caused by one instruction. As a consequence, two
overlapping instructions in the pipeline can result in three data
memory accesses scheduled for a single cycle (two reads from one
instruction and one write from the other). All of this results in an
enormous number of software events, all of which have certain
interdependencies.

Some architectures allow a fetched instruction to be subsequently
kil led later in the pipeline in order to handle issues such as
mispredicted branches. An instruction-based simulator usually
does not model the fetch of these kil led instructions, since without
pipelining, the branch condition from the previous instruction is
always determined. Data memory accesses initiated by killed
instructions are sometimes visible to the system. Thus while they
do not have an impact on the internal state of the processor, they
stil l might impact the system.

Short interrupt latencies are a strong requirement in the DSP
domain in order to allow applications to meet their real time
constraints. Some processors have variable interrupt latency since
they are not able to accept interrupts under every condition.
Hardware loops, stalls, memory wait states, program flow
instructions, and branch prediction are examples that might cause
a delay in the servicing of interrupts. Consider the example shown
in Figure 3 for a different 5-stage pipeline. An interrupt is
received in cycle one. At this time a conditional branch instruction
with one delay slot is in IF. The processor delays the interrupt by
a cycle to ensure the execution of the delay slot instruction prior
to the interrupt. The branch target address is thus used as the
return address after the interrupt routine has been completed. It
would be far more complicated to save the branch target address
and then resume the program execution with the delay slot
instruction. The BR's delay slot instruction is thus fetched before
the interrupt is accepted, and in cycle three the interrupt jump

target instruction is fetched. The sources of variable interrupt
latencies are not orthogonal and have certain processor specific
dependencies which are rather difficult to model in an instruction-
based ISA providing a cycle counter.

Clock cycle
1 2 3 4 5

IF BR DelaySlot ISR
ID BR DelaySlot ISR
OF BR DelaySlot ISR
EX BR DelaySlot
WB BR

interrupt interrupt
pending

interrupt
accepted

Figure 3: Variable Latency Interrupt Example

The interdependencies between instructions causing pipeline stalls
and instructions to be kil led affect the timing and the functionality
of the bus interface significantly. As a consequence, either the bus
cycle scheduler has to be supplied with more information about
these dependencies or the timing accuracy of the core model has
to be increased, providing ordered cycle or even phase events.
Making the bus cycle scheduler more aware of the instruction
dependencies has the drawback that it would result in building a
second pipeline within the bus cycle scheduler and the
decentralization of architectural information.

if (phase1){
Get phase1 inputs, write to ISA model
ExecutePhase1()
Drive phase 1 outputs.

}
if (phase2) {

Get phase 2 inputs, write to ISA model
ExecutePhase2()
UpdateState()
Drive phase 2 outputs.

}

Figure 4: Phase Accurate Wrapper
Since our target processor has features such as high memory
bandwidth, memory wait states, stalls, variable interrupt latency,
and branch prediction, we therefore developed a cycle-accurate
ISA core model that provides ordered cycle events to the bus
scheduler. Since the interaction between the processor and the
other system components is required on phase boundaries, we in
some cases allow the ISA to be advanced in phases (Figure 4).
However, only those parts of the processor state that are visible at
the pins get updated on the phase edge; the complete processor
state is still updated only at the cycle boundary. This enables
100% phase accuracy of the co-verification model.

2.4 Model Reuse and Configuration
This section describes a number of elements that enable the reuse
of our model. First, the model provides a well-defined set of
interface functions and modes. Supported interface functions
include initialization, reset, termination, phase execution, state
access such as reading and writing registers and memories, setting
and resetting of interrupts and pipeline stalls for memory wait
states. The model also has interfaces from which the system
integrator can customize multi-stage memory and I/O reads (split
reads), and memory and I/O writes. Modes include master mode
in which the simulation runs as an independent process and slave

mode in which it can be called from an external simulation
master.

These interfaces are critical to enable reuse of the model within a
number of environments. For example, for co-verification, these
processor models have been integrated directly into an HDL
environment as shown in Figure 5a. Also, they have been
integrated into a cycle-accurate C++ environment to form a sub-
system “i sland” which itself has been integrated into a HDL
environment (Figure 5b).

Sub-system Co-verifi cation model

Core Co-verif ication
model

Processor
model
(ISA)

(a)

Core Co-verif ication model

Processor model
(ISA)

Interface
Model

Logic Simulator
(HDL)

FLI

Shared Memory

IM IM

Logic
Simulator

(HDL)

Subs.
Sim.

FLI

(b)

Figure 5: Reusing the Model in Multiple Environments

3. INTEGRATION: HDL ENVIRONMENT
This section presents our experience in integrating the before-
mentioned models into a VHDL environment. Since the final
verification of the design will be done on a HDL gate-level netlist,
a mixed-level VHDL-based environment provides a uniform
verification platform that supports model refinement from the
abstract behavioral description, to the cycle-accurate, then finally
the gate level. Another benefit is model availabil ity and reliabil ity
since a large amount of legacy and third-party hardware
components are modeled primarily in HDL. At this point,
integration is done directly into a commercial HDL simulator but
can also be done for standard co-verification tools.

In addition to the DSP, other modeled system components include
dedicated and shared memories, programmable/hardwired
accelerators, DMA controllers, and processor interface busses.

3.1 Overview
In the VHDL environment, the VHDL simulator acts as the
central event scheduler. We execute the processor model by a call
through the C Foreign Language Interface (FLI) of the VHDL
simulator. The phase-level synchronization with the rest of the
system is maintained by making the call on every transition of the
clock. Before the call, inputs are read, and after the call, outputs
are driven. Processor co-verification models are compiled into
shared objects and directly integrated without the need for inter-
process communication (IPC).

3.2 Memory Modeling
Processor memory was modeled in the following three ways. All
memory falling only within the DSP's address space (not shared
with any other components) is modeled locally within the ISA
model, in C. Using the SuperSim compiled simulation approach,

all program memory is pre-compiled into the model. Thus, no
program memory interaction takes place at run time, although
such interactions could be made visible within the system.

 All other memory accesses (shared with possibly multiple
processors, I/O, accelerators and DMA controllers), are modeled
using either standard VHDL transactions or are abstracted using
VHDL '93 shared variables. Abstraction is achieved without
sacrificing cycle-accuracy even for memories shared between
multiple processors and components. It is used whenever
verification of the interaction is not needed. The shared variables
are aliased in the core’s VHDL wrapper and freely accessible
through the C FLI of the commercial VHDL simulator. This
mechanism provides for efficient processor-based shared memory
access by reducing the number of VHDL transactions. In the
system-level memory components, the shared memory is used as
the storage element instead of the regular VHDL variables. All
interactions of the memories with other components such as a
DMA controller or accelerator take place through VHDL signals
and the existing memory interface protocols. The use of shared
variables results in only one copy of the storage resources to
represent multiple-owner memory components, thus obviating the
need for coherency control.

3.3 Reuse
In addition to the reuse properties described in Section 2.4, reuse
in the VHDL integration was enabled by keeping all instance and
memory configuration information separate from the model itself.
Models are re-instantiable and configuration information such as
instance identifi ers are passed to the models using VHDL
Generics. Another manner in which reuse is enabled is in the
actual definition of the model pin boundaries. With an in-house
processor, boundaries are flexible and thus the core was
partitioned to keep system-dependent parts of the DSP, such as the
multi-bus protocol interface, in VHDL. This left a generic
memory access interface to the core.

3.4 Debugging
Debugging includes visibility of state and source level code
running on the processor cores as well as controllabil ity of the
simulation. By using the cycle-accurate ISA models, the
programmer is able to see register values committed in the precise
cycle and to watch the instructions currently in the different
pipeline stages. This aids greatly in understanding the impacts of
interrupts, stalls, wait states and mispredicted branches and thus in
more efficient processor programming. Debug of co-verification
models within the system simulation is provided with the same
debug interface provided for the stand-alone ISA model. In both
cases, debugging is achieved using a standard C-language
debugger (e.g. dbx or gdb). The debugger and the SuperSim
simulator are adapted to execute the C code of the simulation and
at the same time display target assembly instructions. This debug
approach is enabled by a certain use of compiled simulation
[15][16] (also shown in Figure 6a). While for the stand-alone ISA
model, debugging is done directly on the compiled model
(<file>.exe in Figure 6a), for the VHDL-based system simulation,
debugging is done on the VHDL simulator which includes the
compiled co-verification model as a shared object (Figure 6b).
Whereas the proprietary VHDL simulator code is not visible to
the debugger, the compiled model code is. In this way,
breakpoints can be placed within the co-verification model to step,
break, and perform all other standard software debug operations.
Even multiple instances of a processor can be debugged in this

manner at the same time, with compound multi-processor
breakpoint conditions. A key advantage of this approach is that
very li ttle code development/modification is needed to support
debug. Also, this is achieved without the run-time and
development overhead of IPC. This approach of attaching a
standard C-language debugger can be used for debug of any C-
based processor or ASIC models integrated within the HDL
simulation. It was found quite useful for debugging of C FLI code
in general.

<fi le>.exe

debugger

VHDL simulator

* .so* .so

debugger

a) Generation and debugging of stand-alone (master) model

b) Generation and debugging of co-veri fi cation model

<fi le>.c

interface

Simulation
compiler

ARCH. lib

<fi le>.so

co
m

pi
le

/
lin

k

<fi le>.c
Simulation
compiler

ARCH. lib

<fi le>.exe

co
m

pi
le

/
lin

k

<fi le>.asm

<fi le>.asm

Figure 6: Debugging Approach

4. EXPERIENCE AND RESULTS

4.1 Accuracy
The described model has been implemented and successfully
verified against the phase-accurate reference RTL VHDL model.
The verification process consisted of running mill ions of random
instructions as well as hundreds of focus vectors on the processor
model to test the core functionality. A focus vector is a complex
sequence of instructions designed to test specific sub-sections of a
design, such as the memory interface. Several hundred system-
level focus vectors consisting of sets of programs and HDL
testbenches were used to test the system level interactions. An
automated trace mechanism was used to compare the results to
that of a VHDL gate-level netlist. The desired visibili ty and
controllabil ity have also been achieved. Figure 7 shows a screen
shot of the user interface. Mentor Graphic's MTI ModelSim
simulator is used for logic simulation and hardware debug. The
SuperSim simulator with customized Solaris Workshop debugger
is used for software simulation and debug.

Figure 7: Screen Shot Showing Waveform and Software Debug

4.2 Speed
A number of experiments have been run to quantif y the model
simulation speeds. All results were collected on a 296 MHz Sun
Ultra2 with 2 Gigabytes of RAM. Experiments were performed on
a set of examples with varying core computational complexity and

IO activity.

The first set of results (Table 1) shows the simulation times for the
processor core. RTL HDL is the phase-accurate behavioral RTL
VHDL of the core. MaxSim is the co-verification model presented
in this paper, placed in a VHDL wrapper. SuperSim is the stand-
alone cycle-accurate ISA C-model. The simulation was performed
on three different programs. Simple1 is an example of low
computational complexity, basically an idle (NOOP) loop.
Complex1 is of high computational complexity involving
arithmetic operations and significant shared memory activity. IO1
is an I/O-intensive application where the core initiates larger
number of interactions with the peripheral and external memory
components. Compared to the RTL model, the MaxSim model
provides a speedup of 600, 875, and 158 on these examples,
respectively. What is noteworthy is that the speedup is achieved
with a phase accurate model of the core which is relatively more
complex than a traditional instruction set accurate model. The
examples also highlight the effect of the interface activity. In the
IO1 example, the external pin activit ies cause numerous events in
the HDL simulator domain, which slow down the simulation.
Reference [1] presents the effect of parameters such as I/O
activity and number of cores on the simulation time. The trends
presented in that paper were observed in our system also and can
be used to extrapolate the results to other examples.

Examples Speed (cycles per sec) / Speedup
RTL HDL MaxSim SuperSim**

Simple1 130 / 1 78K / 600 123K / 946
Complex1 80 / 1 70K / 875 94K / 1175
IO1 90 / 1 14.3K / 158 110K / 1222
** Developed by AXY S [16].

Table 1: Processor Core Only

Table 2 shows simulation times for a system containing four
instances of the processor core, shared memory, and peripheral
components. The MaxSim column represents the system with the
RTL cores replaced by the co-verification models, and the
VHDL’93 shared memory implementation. Roughly an order of
magnitude speedup was obtained by replacing processor RTL
models with the C-models. This resulted in simulation speeds on
the order of hundreds-of-cycles/second (200-300). The presence
of RTL peripheral components in the system reduced the speedup
gain that was achieved with only the core.

Examples Speed (cycles/sec) / Speedup
RTL HDL MaxSim

Simple 37 / 1 300 / 8
Complex1 22 / 1 300 / 13
IO1 26 / 1 208 / 8

Table 2: Four-Core System-On-Chip

On a similar comparison with a VHDL gate-level netlist of the
system, an order of magnitude speedup was attained (speedups of
12-28). The added speedup was attained since the relative
complexity between MaxSim and gate-level netlist models is
greater than that between MaxSim and RTL models.

5. CONCLUSION AND FUTURE WORK
Simulation is a major issue and a critical approach for debugging
complex embedded system-on-chip designs. This paper has
presented our experience in the modeling of cycle and phase
accurate DSPs for HW/SW co-verification, including our decision
to use a cycle-accurate ISA. Despite the timing complexity of the
target architectures, all the effects of interrupts, memory wait
states, and deep, partly-protected pipelines have been modeled
and verifi ed. While integration into a general VHDL framework
has allowed us to easily incorporate existing HDL hardware IPs,
parallel work at Conexant Systems has also integrated these
models into a C/C++-based cycle-accurate simulation environment
for earlier system co-verification.

6. ACKNOWLEDGEMENTS
Thanks to Ulrich Bortfeld from Conexant and Davorin Mista from
AXYS for their feedback and contributions to this project.

7. REFERENCES
[1] T. Albrecht, J. Notbauer, S. Rohringer, “HW/SW CoVerification

Performance Estimation & Benchmark for a 24 Embedded RISC
Core Design,” DAC, pp. 808-811, 1998.

[2] F. Balarin, M. Chiodo, P. Guisto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, B. Tabbara,
“Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach,” Kluwer Academic Publishers, 1997.

[3] D. Becker, R. Singh, S. Tell, "An engineering environment for
hardware/software co-simulation," DAC, pp. 129-134, 1992.

[4] W.T. Chang, A. Kalavade, E. Lee, "Effective heterogenous
design and co-simulation," NATO Advanced Study Institute
Workshop on Hardware/software codesign, June 1995.

[5] S. Coumeri, D. Thomas, "A simulation environment for
hardware-software codesign," ICCD, pp. 58-63, 1995.

[6] D. Ditzel, A. Berenbaum, “Using CAD tools in the design of
CRISP,” IEEE Design & Test, 21-31, June 1987.

[7] R. Earnshaw, L. Smith, K. Welton, " Challenges in cross-
development," IEEE Micro, pp. 28-36, July/Aug. 1997.

[8] R. Gupta, C. Coelho, G. De Micheli, “Synthesis and simulation
of digital systems containing interacting hardware and software
components.” DAC, pp. 225-230, 1992.

[9] R. Klein, “Miami: A hardware software co-simulation
environment,” IEEE Int’l workshop on rapid system
Prototyping, pp. 173-77, 1996

[10] B. Lin, K. Van Rompaey, S. Vercauteren, D. Verkest, I. Bolsens,
H. De Man, "Designing single chip systems," ASIC , 1996.

[11] G. Maturana, J. Ball, J. Gee, A. Iyer, J. M. O’Connor, “ Incas: A
cycle accurate model of UltraSPARC,” ICCD, pp. 130-135,
1995.

[12] J. Rowson, "HW/SW co-simulation," DAC, pp. 439-440, 1994.
[13] B. Schnaider, E. Yogev, "Software development in a hardware

simulation environment," DAC, pp. 684-689, 1996.

[14] Synopsys Eagle tool. http://www.synopsys.com/products/hwsw/.
[15] V. Zivojnovic, H. Meyr, "Compiled HW/SW co-simulation,”

DAC, pp. 690-695, 1996.

[16] AXYS SuperSim simulators. http://www.axys.de/products.

