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Abstract

This paper presents a novel cycle-approximate perfor-
mance estimation technique for automatically generated
transaction level models (TLMs) for heterogeneous multi-
core designs. The inputs are application C processes and
their mapping to processing units in the platform. The pro-
cessing unit model consists of pipelined datapath, memory
hierarchy and branch delay model. Using the processing
unit model, the basic blocks in the C processes are analyzed
and annotated with estimated delays. This is followed by
a code generation phase where delay-annotated C code is
generated and linked with a SystemC wrapper consisting of
inter-process communication channels. The generated TLM
is compiled and executed natively on the host machine. Our
key contribution is that the estimation technique is close to
cycle-accurate, it can be applied to any multi-core platform
and it produces high-speed native compiled TLMs. For ex-
periments, timed TLMs for industrial scale designs such as
MP3 decoder were automatically generated for 4 hetero-
geneous multi-processor platforms with up to 5 PEs under
1 minute. Each TLM simulated under 1 second, compared
to 3-4 hrs of instruction set simulation (ISS) and 15-18 hrs
of RTL simulation. Comparison to on-board measurement
showed only 8% error on average in estimated number of
cycles.

1. Introduction

Heterogeneous multiprocessor platforms are increas-
ingly being used in system design to deal with growing
complexity and performance demands of modern applica-
tions. However, choosing the optimal platform for a given
application and the optimal mapping of the application to
the platform is crucial. Such system level decisions require
early and accurate estimation of performance for a given de-
sign choice. Cycle accurate models do provide accuracy but
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may not be available for the whole platform. Furthermore,
cycle accurate instruction set simulation models (ISS) for
processors and RTL models for custom HW are too slow
for efficient design space exploration. Although ISS models
use an instruction set abstraction, the mapped application is
interpreted by ISS at run time, which slows down simula-
tion. Our proposed native compiled timed TLMs bypass
the problem of interpreted models using a preprocessing
step that annotates the application code basic blocks with
accurate delay estimates. Hence, our TLMs provide perfor-
mance estimates that are cycle approximate but simulate at
speeds close to reference C code.

The performance annotation of application code can be
done at various levels of accuracy by considering differ-
ent features of a processing element (PE) such as operation
scheduling policy, cache size and policy and so on. The PE
model is a set of these parameter values. While generating
the timed TLM, each basic block in the application is an-
alyzed to compute the estimated number of cycles needed
to execute it on the given PE. The number and combina-
tion of parameters used to model the PE, determine the ac-
curacy of the estimation. Therefore, several timed TLMs
are possible depending on the detail of PE modeling. The
more detailed the PE model, the longer is the delay compu-
tation time. A tradeoff is needed to determine the optimal
abstraction of PE modeling. In this paper, we consider op-
eration scheduling policy, datapath structure, memory delay
and branch delay as the most important parameters for PE
modeling. We use an abstract bus channel based communi-
cation model [16] to manage the problem size.

The rest of the paper is organized as follows. In Sec-
tion 2, we present a comparison of our technique with state
of the art dynamic estimation techniques. In Section 3 we
position TLM estimation framework as part of a system de-
sign methodology. In Section 4, we describe our estimation
algorithms and software architecture. Experimental results
scalability and accuracy with several multi-processor design
examples are presented in Section 5. Finally, we wind up



the paper with conclusions and future work.

2. Related Work

There have been several efforts in early performance es-
timation of multiprocessor systems for the past 15 years.
The approaches can broadly be categorized as static, semi-
static and dynamic. Static approaches use analytical mod-
els of the platform architecture to compute delays for ap-
plications mapped to them. Semi-static approaches use
source level profiling to gather application characteristics
and use the application to platform mapping to generate per-
formance estimates. Fully dynamic approaches, such as the
one espoused in this paper, use platform models to generate
timed executable model of the design that produces estima-
tion data at run time. ISS and virtual platforms are popular
examples of dynamic approaches.

Each estimation approach can be evaluated on the basis
of speed, accuracy, abstraction level and generality. Speed
and accuracy are natural concerns. Abstraction level is im-
portant because during early estimation, detailed models of
the PEs may not be available. Finally, generality is relevant
because a heterogeneous platform may have custom PEs.
A purely SW estimation technique relies on instruction set
abstraction and may not be applicable to such a platform.

In [12], a static estimation based on a designer-specified
evaluation scenario is proposed. However, the estimation
is not cycle level and is not applicable to custom HW. SW
performance estimation techniques [9], [8], [2], [3], and [4]
claim to provide estimation at transaction level, but they do
not take into account the processor datapath structure. Un-
like above techniques, [10] and [5] can take into account
the datapath structure by using ISS, but the generated mod-
els are extremely slow. [14], [7], [13] provide fast system
simulation models, but they are not retargetable and can-
not consider custom hardware which makes then unscal-
able. Simplescalar [1] is a well known retargetable ISS that
can provide cycle accurate estimation result but is several
orders slower than TLM.

3. TLM Estimation Framework

Figure 1 shows TLM estimation framework in the con-
text of a system design methodology, enabled by the Em-
bedded System Environment (ESE) [6] tool set from the
Center for Embedded Computer Systems (CECS), UC
Irvine. Our TLM estimation tool is part of the ESE front-
end. Designers may have several models with different ab-
straction levels to describe a multiprocessor system. TLMs
offer fast simulation at a higher level of abstraction. On
the other hand, Pin-Cycle Accurate Models (PCAMs) have
detailed design implementation but simulate much slower.
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Figure 1. System Design Methodology

Designer generates TLMs from the design decisions to ver-
ify the system early in the design cycle. Then, TLMs go
through cycle accurate synthesis step resulting in PCAMs.
Using PCAMs, designers optimize and re-verify their de-
sign to meet given design constraints. After PCAMs are
finalized, HW synthesis and SW compilation are performed
to generate prototype board design. The time spent in
TLM generation and test is in order of hours. In case of
PCAMs and prototype board design, it is in order of weeks
and months respectively. Therefore, design and verifica-
tion with PCAMs is too slow to efficiently explore the de-
sign space. Our proposed design methodology applies per-
formance annotation before TLM generation. The timed
TLMs allow the designer to perform fast and early evalua-
tion of design choices. This can shorten the system design
cycle drastically, because design iteration with TLM simu-
lation is in the order of few hours.
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Figure 2. TLM timing Annotation

Figure 2 shows an overview of our timing annotation
technique. The timing annotator takes design decisions
at transaction level and analyzes processes in PE. Then,
the application process is translated into control data flow
graph(CDFG). This CDFG is fed into the estimation engine



along with the processing unit model (PUM). PUM charac-
terizes the structure of PE and has the scheduling policy for
the PE. The estimated timing delay for each basic block is
added at the end of the basic block and the timing annotated
process code is input to the TLM generator.

4. Estimation Tool Architecture
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Figure 3. Estimation Tool Architecture

In this section, we discuss the architecture and imple-
mentation of our performance estimation tool. A C/C++
front-end is implemented using the LLVM compiler infras-
tructure [11] to parse application processes into CDFGs.
For each basic block inside the CDFG, the corresponding
DFG is fed to an estimation engine. The DFG delay is com-
puted based on the PUM for the respective PE. The esti-
mated delay is annotated into the CDFG data structure us-
ing LLVM source transformation API. Timed C code for the
process is generated using the LLVM code generation API.
Finally, the annotated C code is compiled and linked with
a SystemC programming model of the platform to generate
the simulatable timed TLM.

4.1. Processing Unit Model (PUM)

The PUM consists of the following data models:

1. Execution model consists of scheduling policy and
operation mapping table. The scheduling policy de-
fine the operation scheduling algorithm used by the PE
such as ASAP, ALAP, List etc. The operation map-
ping table keeps two flags: demand_operand and com-
mit_result that specify the pipeline stages where the op-
eration needs operand and commits the result, respec-
tively. Furthermore, a usage table is associated with

each operation pointing to the datapath unit and mode
used by operation in each pipeline stage.

2. Datapath model is a set of functional units, and
pipelines. Functional unit has an id, type, quantity,
possible operation modes, and delays for each opera-
tion mode. For example, ALU may have addition and
multiplication modes with different delays. Pipeline
model defines the function units used per stage. Multi-
ple pipelines are allowed for superscalar architectures.

3. Branch delay model is a statistical model that store
the branch prediction policy, cycles lost for mispredic-
tion and the average misprediction ratio.

4. Memory model is also a statistical model that stores
the average i-cache and d-cache hit-rates and cache
memory access latencies for a set of cache sizes. The
external memory latency is also specified here.
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Figure 4. PUM example: DCT HW

Figure 4 shows the PUM examples for custom HW
(DCT). DCT has a non-pipelined datapath and no memory
hierarchy. The register files and block rams used for stor-
age have a single cycle delay. The absence of a pipeline
in DCT is modeled as an equivalent single issue pipeline
with only one stage in its PUM. In Figure 5, the PUM of
a MIPs-like microprocessor(MicroBlaze) is described. This
PUM has configurable instruction/data cache and single is-
sue pipeline. As shown in the examples above, PUM is flex-
ible and general enough to describe not only configurable
embedded processors but also custom IPs.
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Figure 5. PUM example: MicroBlaze

4.2. Estimation Algorithm

The DFG Timing Annotator in Figure 3 computes the
estimated delay for each basic block using the PUM. The
estimated basic block delay has three components:

1. number of cycles for operation schedule,
2. delays due to cache-misses, and
3. branch misprediction penalties

In order to compute the scheduling delay, we simulate the
DFG of the basic block on the execution model in the PUM
while assuming optimistic cache behavior of 100% hit rate
and no branch misprediction.

Algorithm 1 Optimistic Scheduling

1: delay =0

2: c_set ={ } // operations in pipeline
3: d_set = { } // operations done
4: r_set = {x| all operations in BB } // remaining opera-

tions
5: initialize pipeline // list data structure for pipeline
6: while |d_set| !=# of BB operations do
7. for all pipeline do
8 d_set = d_set U advClock(pipeline)
9 c-set = c_set - d_set

10  end for

11:  for all pipeline do

12: c_set = c_set U AssignOps(pipeline.stgl, r_set)
13: r_set =r_set - c_set

14:  end for

15:  delay =delay + 1
16: end while
17: return delay

Algorithm 1 computes the scheduling delay for a basic
block with optimistic assumptions. The basic idea of the al-
gorithm is to simulate the scheduling behavior of the PE to
compute the cycle delay for a single DFG. The PE behavior
is simulated by function advClock (line 8) until all opera-
tions in the DFG are completed i.e. done set has all the oper-
ations on the basic block(line 6). The simulation is guaran-
teed to terminate because there are no cycles in the DFG.We
start by initializing the pipeline data structure. In the first it-
eration, advClock does nothing because the pipeline is still
empty. Function AssignOps assigns operations from the re-
maining set to the first stage of the pipeline, based on the
Operation Scheduling Policy in PUM. The assigned opera-
tions are added to the current set (line 12).

Function advClock simulates the each pipeline stage as
follows. A commit set of operations in the DFG is main-
tained. These are operations that have moved beyond their
commit stage of the pipeline (marked by commit flag). Thus
the results of these operations are ready. For all operations
in a given stage, a counter keeps the remaining cycles for the
operation in the current stage. For every call to advClock,
all counters are decremented by one. If a counter reaches
0, it is advances to the next stage if the next stage in not a
demand stage. For a demand stage, the data dependencies
of the operation are checked. If all the dependencies are in
the commit set (i.e. all operands are available and no data
hazard), then the operation is advanced to the next stage.
Finally, advClock returns the set of operations that are in
their last stage and have remaining cycle counter value of 0.
These operations are added to the done set (line 8). Finally,
the scheduling delay is returned (line 17).

Algorithm 2 Compute BB Delay

1: BB _delay = OptimisticSchedule()

2: if PE is pipelined then

3 BB_delay += BP_miss_rate * Br_penalty
4: end if
5
6

: if PE has i-cache then

BB _delay +=# of BB Ops * (i_cache_miss_rate
* q_cache_miss_penalty + i_cache_hit_rate *
i_cache_delay)

7: end if

8: if PE has d-cache then
BB_delay += +# of BB Operands *
(d_cache_miss_rate * d_cache_miss_penalty
+ d_cache_hit_rate * d_cache_delay)

10: end if

11: return [ BB_delay]

To incorporate the delays from cache miss and branch
misprediction, Algorithm 2 is used. It uses the optimistic
scheduling delay from Algorithm 1 and adds to it the prod-
uct of branch misprediction rate and penalty values from



PUM (lines 1-4). A similar method is used to estimate i-
cache and d-cache delays for the basic block. The summa-
tion of all the delays is rounded off and returned (line 11).

4.3. Timed TLM Generation

Once the delays for each basic block in each applica-
tion process are estimated, we annotate them to the pro-
cess source code. For this purpose, the estimation engine
uses the LLVM compiler infrastructure [11] for addition of
a wait() function call to each basic block. The annotation
is performed on the internal CDFG data structure using the
LLVM API. Recall the the original CDFG has been cre-
ated by the LLVM parser. Finally, C code for the processes
with the annotated wait calls is generated by LLVM code
generator. This C code is then compiled and linked with a
SystemC wrapper to generate the timed TLM executable.

The SystemC wrapper is simply a transaction level pro-
gramming model of the platform. It consists of instanti-
ated modules for each PE with interfaces to channels for
respective buses. The bus channel provides abstract inter-
process communication functions [16]. Each application
process mapped to a PE is instantiated as a SC_PROCESS.
The functions for the process are implemented in C code
that was annotated by the estimation engine. The SystemC
wrapper also carries the implementation of the wait func-
tion that is called at the end of each basic block. The pro-
cess ID is passed as parameter to the wait call. The wait
function keeps the accumulated delay for each process at
any given time during the TLM simulation. At each inter-
process transaction boundary, the accumulated delays are
applied to the SystemC simulation using the sc_wait() func-
tion. We do not apply sc_wait after each basic block ex-
ecution because it is an expensive function that forces the
SystemC simulation kernel to reschedule simulation events.
Inter-process transactions are the minimum granularity for
applying sc_wait and this granularity is user controllable in
the estimation engine.

5. Experimental Results
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Figure 6. MP3 Decoder Application

To evaluate our estimation engine, we generated TLMs

Design | Anno. TLMfyne | TLMgimea | PCAM

SW 31.181s 0.002 s 0.004 s 1593 h
SW+1 | 49.841s 0.006 s 0.216 s 17.56 h
SW+2 | 47.364 s 0.010s 0.253 s 17.71 h
SW+4 | 71.108 s 0.012s 0.355 s 18.06 h

Table 1. Scalability Results: Annotation and
Simulation Time for Timed TLM

I cache Board ISS TLM

/D cache | Cycles Cycles Error Cycles Error
0k/0Ok 27.22M 16.47TM 39.48% 25.51M 6.27%
2k/2k 8.91M 7.28M 18.38% 8.32M 6.68 %
8k/4k 5.83M 5.62M 3.55% 5.55M 4.74%

16k/16k 4.41M 5.13M -16.32% 5.02M -13.83%

32k/16k 4.38M 5.11M -16.60% 4.99M -13.89%

Average N/A 18.86% N/A 9.08%

Table 2. Accuracy Results (SW only)

for 4 designs of MP3 decoder application as shown in Fig-
ure 6. The most computationally intensive functions are Fil-
terCore and IMDCT. The first design was a pure software
implementation on MicroBlaze [15] referred to as SW. In
the second design, referred to as SW+1, the left channel Fil-
terCore function was moved to a custom HW component.
In the third design, SW+2, both FilterCore and IMDCT
for the left channel were moved to custom HW compo-
nents. Finally, in design SW+4, FilterCore and IMDCT
from both channels were moved to custom HW compo-
nents. Also, several instruction and data cache sizes for
MicroBlaze were tried. The design goal was to reduce the
decoding time for each MP3 frame without incurring sig-
nificant area penalty.

Timed TLMs were generated for each of the above de-
signs using our estimation engine. ISS models were gen-
erated for the pure SW application only because fast cycle
accurate C models were unavailable for custom HW compo-
nents. PCAM models were developed by manually coding
RTL for the custom HW components. Finally, the PCAMs
were synthesized and downloaded to Xilinx FF896 board
using ISE and EDK tools for on-board measurements.

Table 1 shows simulation time for the generated timed
TLMs in comparison to purely functional TLMs, and
PCAMs. ISS could only be used for the SW design and
took 3.2 hours to complete simulation of 1 frame decoding.
We also show the annotation time for the different designs.
It can be seen that annotation time increases as HW compo-
nents are added because custom HW units use a more com-
plex operation scheduling policy than MicroBlaze. How-
ever, even for a complex design like SW+4, the annotation
time is close to a minute. The simulation time for the timed
TLMs is under a second like functional TLMs. In contrast,
ISS and PCAM simulations are in the order of hours.



I/D Cache SW+1 SW+2 SW+4

Size Board TLM Error Board TLM Error Board TLM Error
0k/0k 26235952 | 23874437 | 9.00% | 24692474 | 20204483 | 18.18% | 24673298 | 20082499 | 18.61%
2k/2k 7314936 7838744 | -7.16% | 5847507 6770896 | -15.79% | 6083583 6652535 | -9.35%
8k/4k 5790118 5261430 | 9.13% | 26235952 | 23874437 9.00% 4486701 4494908 | -0.18%
16k/16k 4997837 4765105 4.66% | 4310239 4196674 2.63% 4231982 4077381 3.65%
32k/16k 4375281 4737844 | -8.29% | 4239167 4172609 1.57% 4149428 4054285 2.29%
Average N/A 7.65% N/A 7.97 % N/A 6.82%

Table 3. Accuracy Results: Error % against Board Measurement

Table 2 show accuracy results for estimation with ISS
and TLMs relative to actual board measurements. The cycle
counts are in millions. It is interesting to note that average
error in timed TLM estimation was actually half of ISS esti-
mation error. This is because the MicroBlaze ISS available
to us did not model memory access accurately enough.

Table 3 shows results for accuracy of the estimation de-
signs with HW units compared to on-board measurement,
using a timer. On an average the estimates were within 6-
9% of board measurements, which is a very high degree of
accuracy. Error rates did fluctuate for different cache sizes
and we used absolute error values to compute averages. We
could not get any conclusive results on the sensitivity of
estimation to the statistical memory and branch prediction
models in PUM. This is the focus of our future research.

6. Conclusions

We presented a technique and tool for cycle approx-
imate retargetable performance estimation using TLMs.
The tool is part of the Embedded System Environment
(ESE) toolset that also includes SystemC TLM generation
from graphical platform and application capture. Results
with design of MP3 decoder application showed that our
estimation engine is scalable to complex heterogeneous
platforms and its estimation results are within 9% of actual
board measurements. As a result ESE allows designers to
experiment with different platforms and applications since
timed TLMs are generated automatically for any design
change. For future work, we plan to improve our PE data
models by adding RTOS parameters. We also want to
study the sensitivity of estimation results to our statistical
memory delay and branch penalty models.
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