
 1

Cycle-based Decomposition of Markov Chains with
Applications to Low Power Synthesis and Sequence

Compaction for Finite State Machines

Ali Iranli and Massoud Pedram
Dept. of Electrical Engineering

University of Southern California
Los Angeles CA 90089

Abstract - This paper advances the state-of-the-art by presenting a well-founded mathematical
framework for modeling and manipulating Markov processes. The key idea is based on the fact
that a Markov process can be decomposed into a collection of directed cycles with positive
weights, which are proportional to the probability of the cycle traversals in a random walk. Two
applications of this new formalism in the computer aided design area are studied. In the first
application, we present a new state assignment technique to reduce dynamic power consumption
in finite state machines. The technique comprises of first decomposing the state machine into a set
of cycles and then performing a state assignment by using Gray codes. The proposed encoding
algorithm reduces power consumption by an average of 15%. The second application is sequence
compaction for improving the efficiency of dynamic power simulators. The proposed method is
based on the cycle decomposition of the Markov process representing the given input sequence
and then selecting a subset of these cycles to construct the compacted sequence.

 2

I. Introduction

Mathematical modeling is an essential task in the early steps of system design. Markov processes
are one of most widely used models in describing the behavior of VLSI systems. These models
are for example used to define the behavior and performance of history dependent systems,
analyze different memory dependent characteristics of circuits such as power dissipation and
latency, and design policies for system-level resource management including dynamic power
management (DPM.) In addition, there are many system design optimization problems which
strongly depend on information about the near past and/or future of the system workload and
behavior e.g., dynamic resource binding and on-the-fly reconfiguration. These problems can be
readily modeled by the Markov processes.

Traditionally, a Markov process has been represented by a set of states and a set of
transitions (edges) among these states. This representation is simple, compact, and easy to
understand. Furthermore, using this representation, one can easily acquire information about the
past (fan-in states) and/or the near future (fan-out states) with respect to current state of the
system. However, there are another set of design problems that require information about the past
and/or future trajectory of system states. One such problem is the low power state assignment
problem for VLSI circuits. In these types of problems, the customary representation of Markov
processes in terms of states and transitions fails to efficiently represent the historic and/or
futuristic trajectory of the system states. This paper introduces a mathematical framework for
cycle representation of Markov processes. In this representation, a Markov process is represented
by using a set of directed cycles and their corresponding weights. This representation translates
the state trajectory of the system into a set of intra-cycle and inter-cycles transitions. This
representation of a Markov process in terms of cycles and weights captures more information
about the trajectory of the system states and can be used to compactly formulate and solve an
important set of design optimization problems.

More precisely, in this paper, the theory of cycle representation of a Markov process is used
to prove that 1) A given Markov process is probabilistically equivalent to a set of weighted
cycles; 2) For a given set of cycles generated according to some ordering, there is only one set of
cycle weights which have probabilistic interpretation in terms of the original Markov process. In
other words, if one is not careful when generating a cycle decomposition of the Markov chain,
he/she may generate a decomposition which is incorrect in the sense that there may exist some
edge in the Markov chain whose weight is not equal to the summation of weights of edge-
covering cycles that are in the extracted cycle set and cover that edge.

The key theoretical contribution of this paper is to show how to cost-consciously decompose
a Markov process into a collection of directed cycles with positive weights that are proportional
to the probability of their traversal in a typical random walk. We solve two versions of this
problem. In the first version, detailed knowledge about the Markov chain itself, i.e., the state
diagram, state transition probabilities and the steady-state state probabilities, exists. This problem
is solved optimally by a deterministic cost-driven cycle-decomposition technique. The second
version of the problem assumes no prior knowledge about the state diagram of the Markov
process. This problem is solved heuristically using a probabilistic cost-driven cycle-
decomposition technique.

Based on this mathematical framework, we present solutions for two “power-related”
problems, 1) State assignment and, 2) Sequence compaction. To solve the low power state
assignment problem, we identify most probable cycles in the FSM and encode the states on these
cycles with Gray codes. The objective function is to minimize the Weighted Hamming Distance.
Notice that although techniques such as those presented by Tsui and Pedram in [7] use more
accurate cost functions for two and multi-level logic realization of the state machines, the

 3

MWHD metric is still relevant and valuable. In other words, although MWHD does not exhibit
high absolute accuracy, it has good relative accuracy as demonstrated in published results [5][6]. 1
In particular, during the signoff analysis, we are interested in an evaluation metric with high
accuracy whereas during synthesis and optimization we are typically interested in a power or
delay equation with high relative accuracy. As for the sequence compaction problem, first, the
input vector sequence is modeled as a Markov chain, it is then decomposed into a set of cycles.
The average power dissipation of the circuit under the applied vector sequence is calculated by
simulating each decomposed cycle of the Markov process once and then calculating the average
over power consumption of all cycles in the input Markov model. The mathematical framework
for the proposed sequence compaction technique is different from those of [13]-[18] and results in
higher compaction ratios for the same level of evaluation accuracy. The proposed technique is
also clearly different from statistical techniques, which attempt to achieve the same objective
through sampling strategies [19][20].

I.A Prior Work Review

State encoding/assignment, as a crucial step in the synthesis of the controller circuitry, has been
extensively studied. Early research on state assignment was focused on finding a state encoding
that minimizes the circuit area [2]-[4]. In the 1990’s, a number of low power state-encoding
techniques were presented [5]-[7]. Roy et al. was the first to address the problem of reducing
switching activity of input state lines of the next state logic, during the state assignment,
formulating it as a Minimum Weighted Hamming Distance (MWHD) problem [5]. Olson et al.
used a linear combination of switching activity of the next state lines and the number of literals as
the cost function [6]. Tsui et al. [7] used simulated annealing as a search strategy to find a low
power state encoding that accounts for both the switching activity of the next state lines and
switched capacitance of the next state and output logic.

On the other hand, for power estimation it is well known that the average power dissipation in
a CMOS circuit is proportional to a summation over all gates of the product of the capacitive load
and the switching activity of each gate [1]. This summation, which is often called the switched
capacitance of the circuit, can be calculated directly by simulating the circuit. To produce a power
estimate with good accuracy and high confidence, the direct simulation technique requires
explicit, weighted enumeration of all allowed pairs of input vectors, which is impractical for any
circuit of reasonable size and complexity. Therefore, adopting a computationally less expensive
method for estimating the average power dissipation in a CMOS VLSI circuit is crucial. There
exist two main classes of Static and Dynamic techniques for power estimation [9].

Static techniques are based on calculating the probabilistic behavior of internal nodes of the
circuit as a function of the stochastic behavior of the input vectors (e.g., switching activity,
spatio-temporal correlations). Examples of power estimation techniques in this category are [10]-
[12]. These techniques generally provide sufficient accuracy with low computational overhead,
however, important effects such as signal slew rates, generation and propagation of
hazards/glitches cannot be properly captured by these techniques. In addition, probabilistic power
estimation techniques tend to have difficulty in efficiently capturing the complete set of spatio-

1 Absolute accuracy is a measure of the estimate of some parameter of interest compared to its actual

value. In contrast, relative accuracy is a measure of the accuracy of individual estimates of the parameter
when compared to other estimates of the same parameter made under different conditions. For example, a
proposed power estimation metric may produce absolute errors of 30% or higher for some circuit whereas
that metric may exhibit a relative error of at most 10% between estimates for two different implementations
of that same circuit.

 4

temporal correlations at the external inputs and the reconvergent fan-out structures in the circuit,
which further reduces their estimation accuracy.

Dynamic techniques explicitly simulate the circuit under a “typical” input stream. They can
be applied at both the circuit and gate-level. Their main shortcoming is, however, that they are
very slow. Moreover, their results are highly dependent on the simulated sequence. A number of
issues appear to be important for power estimation using dynamic techniques. The input statistics,
which must be properly captured, and the length of the input sequences, which must be applied,
are two such issues. Generating a minimal-length sequence of input vectors that satisfies these
statistics is not trivial. The reason is the elaborate set of input statistics, which must be preserved
or reproduced during sequence generation for use by power simulators.

I.B Paper Organization

The remainder of this paper is organized as follows. Section II provides the theoretical
background for the cycle-decomposition of Markov processes. Sections III and IV present the
application of this mathematical framework to two instances of computer aided design problems,
i.e., low power state encoding and sequence compaction. Conclusions and summary are given in
Section V.

II. Cycle Decomposition of a Markov Process (CDMP)

Let us start with a simple example of a cyclic process modeling the motion of a particle on a
closed curve. Let’s focus on the particle’s motion through p points of this curve at moments that
are one unit of time apart; cf. Figure 1a. This leads us to a discretization of the curve into an
infinite sequence of points C = (v1, v2,..., vp, vp+1=v1, vp+2=v2,...) called a directed cycle with
period p. If no disturbance occurs, the passing of the particle through (vi, vi+1) can be codified by
an infinite binary sequence,

1, 0100 0100 010
i iv v

p

y
+

=… … … …
(1)

where 1 (0) means that the particle is (is not) passing through (vi, vi+1). The sequence is
understood as a non-random sequence in the context of Kolmogorov’s theory of complexity since
both 1 and 0 appear periodically after every p steps [21].

Consider a set of possibly overlapping cycles {C1,...,Cr} where each cycle Ci (i ≤ r) is
associated with some positive number W(Ci); (cf. Figure 1b). Imagine that at some instance of
time, the particle appears at some point v that is common to t cycles, say C1,...,Ct (t ≤ r). The
particle may continue its way to another point v’, which is the intersection point of m cycles (out
of t cycles that had point v as an intersection point) say C1,...,Cm (m ≤ t). A natural measure of the
particle’s transition when moving from v to v’ can then be defined as:

1 2

1 2

() () ()

() () ()
m

t

W C W C W C

W C W C W C

+ + +
+ + +

 (2)

Accordingly, the binary sequence yv,v’ codifying the transition of the particle from v to v’ is
given by a chaotic sequence. Furthermore, since expression (2) provides transition probability
from v to v’ of a Markov process ξ that behaviorally models the particle’s movement, it can be
concluded that: “A collection of cycles, , along with some weights assigned to each cycle,

defines a Markov process ξ.”

II.A CDMP: Problem Statement

Motivated by the above example, we proceed with a formal definition of directed cycles and
cycle-based representation of Markov processes.

 5

a. Particle’s motion on a closed curve b. Collection of overlapping cycles

Figure 1. Super imposing cycles

Definition 1. A directed cycle over a countable set of states S is a periodic function C from the
set of integers into S. Furthermore C(i) is called a vertex of the cycle and (C(i), C(i+1)) is

called a directed edge of the cycle.

Each cycle C belongs to an equivalence class of cycles where ={C’| ∀i∈ , C’(i)=C(t(i))},

where t is a translation function over . Two cycles belonging to the same equivalence class are

called equivalent.

Definition 2. For a cycle C, passage function JC is a binary function defined over the set of states
S as follows:

1 , ()
()

0 otherwiseC
i C i v

J v
∃ ∈ =⎧

= ⎨
⎩

 (3-a)

The second order passage function can be defined as:

1 , () (1) '
(, ')

0 otherwiseC
i C i v and C i v

J v v
∃ ∈ = + =⎧

= ⎨
⎩

(3-b)

Definition 3. Let S be a countable set of states. Sequence ξ= (Xn)∈S, n≥0 of random variables on
the probability space Ω is said to be a homogeneous Markov process with state space S if for any
n≥0 and Y0, Y1, …, Yn+1∈S, we have

 1 1 1 1 0 0 1 1(, , ,) ()n n n n n n n n n nP X Y X Y X Y X Y P X Y X Y+ + − − + += = = = = = =… (4-a)

Moreover, the Markov process ξ is called recurrent exactly if

()1 : 0 ;n
iin p i∃ ≥ > ∀ (4-b)

where pij=P(Xn+1=j| Xn=i) and pij
(n) are the single and n-step transition probabilities from state i to

state j.

Based on aforementioned definitions, Kalpazidou proposes the following general theorem for
cycle decomposition of Markov processes (cf. [21] pages 130-140.)

Theorem 1. Let S be a finite set of states. Consider a homogeneous recurrent |S|-state Markov
process ξ defined over a probability space with common invariant probability distribution

 6

pi, i ≤ |S|; then there exists a finite set of weighted cycles such that superposing the cycles will

define ξ; i.e.,

(). ()

(). (,)

i C i

C

C i j

C
ij

i

p W C J v

W C J v v

p
p

∈

∈

=

=

∑

∑

(5)

where W(C) is positive weight assigned to cycle C. pi, and pij are steady state probability of state
vi and conditional probability of transition from vi to vj, respectively.

Proof. Given in reference [21]. ♦

Based on Theorem 1, the Markov process decomposition problem can be stated as follows.

Cycle Decomposition of a Markov Process (CDMP) Problem: Given a homogeneous recurrent
|S|-state Markov process, find a set of weighted cycles and their weights W(Ci), such that their

superposition defines the Markov process.

Solutions to the CDMP problem can be classified as probabilistic or deterministic solutions
depending on whether or not the weights on cycles are subjected to probabilistic interpretation or
not. In the following sections, one solution from each class will be presented.

II.B A Probabilistic Solution to the CDMP Problem

In [24], Qian and Qian presented a probabilistic approach for performing cycle decomposition.
This approach is based on the fact that if we take an infinitely long random walk on the states of
the Markov process, all possible cycles are identified. The weights for these cycles are then
calculated by solving the set of equations in (5). An infinitely long random walk starting from a
random state of the Markov process is initiated. The algorithm generate_cycles, shown in Figure
2, is then used to find all the cycles along the generated random walk. Given the walk V on the
states of Markov process ξ, all the states are traversed one by one. If a previously visited state is
encountered, a cycle is identified (cf. line 4). The sequence of states on the walk that makes up
the cycle C are then replaced by the single state, s. State s is the boundary state of cycle C, which
means that cycle C is started and returned to state s along the given walk V of the Markov process
ξ. Τhe algorithm continues until all cycles are identified.

Algorithm Prob_CD (V)
begin
1. =Φ;

2. foreach state s on V do
3. if s is already visited then
4. C = states on V between the two occurrences of s;
5. = ∪ {C};

6. Replace set of states C on V by the single state s;
7. end if
8. end for
9. Solve set of linear equations (5) for set of cycles;

10. return ;

end

 7

Figure 2. Probabilistic cycle decomposition algorithm

For example, consider a trajectory of ξ given by (a, b, c, d, b, d, c, e, f, c, e, a, …), applying the
generate_cycle algorithm extracts a cycle set as shown in Figure 3. When all cycles are extracted,
the set of linear equations (5) are solved by using any linear programming approach such as
Gauss-Seidel method (cf. [25]) to find the corresponding weights for each cycle.

n 8 9 10 11 12

ξn e f c e a

V a,b,d,c,e a,b,d,c,e,b,f a,b,d,c,e,f,c a,b,d,c,e a,b,d,c,e,a

C [c,e,f,c] [a,b,d,c,e,a]

 {[b,c,d,b]} {[b,c,d,b]}
{[b,c,d,b],
[c,e,f,c]}

{[b,c,d,b],
[c,e,f,c]}

{[b,c,d,b], [c,e,f,c],
[a,b,d,c,e,a]}

n 1 2 3 4 5 6 7 8
ξn a b c d b d c e

V a a,b a,b,c a,b,c,d a,b,c,d,b a,b,d a,b,d,c a,b,d,c,e

C [b,c,d,b]

 φ φ φ φ {[b,c,d,b]} {[b,c,d,b]} {[b,c,d,b]} {[b,c,d,b]}

(a)

(b)

Figure 3. Cycle extraction using generate_cycle algorithm,
a) cycle decomposition steps b) the Markov Model and its cycles

It is obvious that this approach to cycle decomposition requires non-polynomial time to find
all possible cycles of a given Markov process, since the number of simple cycles is combinatorial
in a number of states in the Markov process. It is worth noting that cycle weights found using this

 8

approach are unique and independent of the ordering in which the cycles were generated. The
weights have a probabilistic interpretation, in the sense that W(C) is equal to the expected number
of times that C appears along an infinitely long sample path. In the next section, we will propose
a deterministic approach to cycle generation with polynomial time complexity in a number of
states in the Markov process.

II.C Deterministic Solutions to the CDMP Problem

In [21], Kalpazidou presented a deterministic approach to the CDMP problem as follows.
Consider a homogenous and recurrent Markov process ξ. Pick an arbitrary state vi. Since the
process is recurrent, there exists at least one state vj, such that the transition probability from i to j,
Pij, is non-zero. Pick this new state vj and repeat the procedure. Since the number of states is
finite, a cycle will finally be created. Set the weight for this cycle to the minimum probability of
any transition on the cycle, and decrease the probability of each transition on the cycle by this
weight. Proceed in a similar manner to process other cycles until no nonzero probability transition
is left.

Theorem 2: Let ξ be a homogenous and recurrent Markov process and be the set of weighted

cycles generated using the above-mentioned deterministic approach. The set of cycles in is a

decomposition of ξ that satisfies Theorem 1.

Proof: Following the cycle generation procedure mentioned above, in each iteration, after finding
a cycle, the total transition probability of the edges on that cycle is reduced such that the total
transition probability of the minimum-weight edge becomes zero. Now, if the minimum-weight
edge happens to be edge ij, then . () 0i ijp p w ij− = , and ij will be removed from the Markov chain.

However, more likely, the minimum-weight edge is some other edge, say kl, and thus, the weight
of edge ij after extracting this cycle will be . () 0i ijp p w kl− > . After extracting a number of cycles,

the weight of target edge ij is finally reduced to zero. In this way, the total transition probability
of each edge is distributed between different cycles that are extracted in each iteration, and
therefore, we have,

: (,)

. ()

i j

i ij

C v v C

p p W C
∀ ∈

= ∑

Now,

: (,)

: (,) :

. () (). (,)

() ()

(). ()

i j

j i j i

i ij C i j

C v v C C

i

v C v v C C v C

C i

C

p p W C W C J v v

p W C W C

W C J v

∀ ∈ ∀

∀ ∀ ∈ ∀ ∈

∀

= =

= =

=

∑ ∑

∑ ∑ ∑

∑

 ♦

Notice that the cycles generated by the deterministic approach are not unique and depend on
the policy for selecting the next state. Moreover, even if the same set of cycles is generated, the
weight for each cycle will depend on the order in which the cycles were generated.

 9

Theorem 3: Let ξ be a homogenous and recurrent Markov process and be the set of weighted

cycles generated using the above-mentioned deterministic approach, then | | is of O(|S|2) where

|S| is the number of states in ξ.

Proof: Because in each iteration of the deterministic approach, after extracting a cycle, weight of
at least one edge becomes zero, | | is upper bounded by the number of edges in the Markov

process which is O(|S|2), Thus, the algorithm can have O(|S|2) iterations in the worst case. ♦

To summarize, the cycle decomposition of Markov processes can be done in two ways: 1) a
probabilistic approach that requires the enumeration of all simple cycles in the given Markov
process. This enumeration requires exponential time in terms of the size of Markov process, and
results in cycle weights that are equal to the probability of visiting the cycles in any random walk
along the given Markov process. 2) a deterministic approach that produces a polynomial size set
of cycles in polynomial time in terms of the size of Markov process. In this approach, cycle
weights no longer carry the probabilistic meaning, but satisfy the requirements of theorem 1.

This deterministic solution is a generic procedure without any cost function to optimize. To
utilize the cycle representation of FSMs for design optimization, it is important to develop a cost-
aware deterministic cycle decomposition algorithm. More precisely, we must augment
Kalpazidou’s algorithm to select the “right” set of cycles for the target application. One such
specialization is presented in Figure 4.

Figure 4. Deterministic cycle generation algorithm

In this algorithm, the weight of each edge is the total transition probability of that edge;
i.e., wij = pi.pij ∀i, j=1...|S|. The algorithm starts with the edge with maximum weight in line 3 and
then repeatedly picks the maximum weight edges from the set of remaining edges (line 7). This
process is repeated until a cycle is generated (line 8); the cycle weight will then be set to the
minimum of all the edge weights on the cycle (line 10), and the weights of all the edges on the

Algorithm Dtr_CD (ψ)
begin
1. = ∅;

2. while max. edge weight > 0 do
3. pick (vi, vj) w/ max. weight;
4. ω = ∅;
5. repeat
6. ω = ω + (vi, vj);
7. pick (vi, vj) w/ max. weight in (E - ω);
8. until there is a cycle in ω;
9. C = cycle_of (ω);
10. W(C)=min. {wij | JC(vi,vj)=1};
11. = ∪ {C};

12. foreach i,j: JC(vi,vj)=1 do
13. wij = wij – W(C);
14. end for
15. end while
16. return ;

end

 10

cycle will be decreased by the cycle weight (lines 12-14). This process is repeated until there are
no more edges with non-zero weights.

When a cycle is formed by successively marking maximum-weight edges as per Dtr_CD
algorithm, the cycle does not necessarily include all of the marked edges. Consider, for example,
the following sequence of max-weight edges in a 5-vertex graph: 12, 34, 15, 35, and 25. The
cycle formed here for the first time, is 1251. Clearly all edges are max-weight edges; yet only
three of the five marked edges are included in the cycle; Assume that the min-weight edge is 12;
Subsequently, the weight of this edge becomes zero; the weights of edges 15 and 25 are reduced
by w(12) while the weight of edges 35 and 34 remain unchanged. The reason we choose edges of
maximum weight may be explained as follows. During the state encoding step, the extracted
cycles are sorted according to their weights. Next the cycle of maximum weight is identified and
encoded; The states in this first cycle will therefore have the maximum flexibility in assuming
any Gray code sequence, which means that the expected switching activity for transitions along
the cycle (which have the highest occurrence probability) are minimized. This corresponds to the
minimization of the MWHD during state assignment.

III. Low Power State Assignment

Finite state machines (FSM’s) can be described by a six-tuple ψ(X, Y, S, s0, λ, η), where X is the
set of input symbols, Y is the set of output symbols, S is the set of states, s0 is the initial state,
λ: X×S→Y is the output function, and η: X×S→S is the next state function.

From a probabilistic point of view, an FSM, ψ, can be described by a Markov chain in which
pi is the probability of being in state si and pij is the conditional probability of transition from state
vi to state vj. The pij values are obtained from input sequence statistics and the next state function
of the FSM, or they can be calculated based on output trace for simulation of typical input
sequences to the FSM. The pi values are in turn calculated by solving the Chapman-Kolmogrov
equations [22][23].

The state transition graph of an FSM is a vertex/edge weighted, directed graph G(V, E),
where the set of vertices V and set of edges E correspond to the states of the FSM and transitions
between them respectively:

{ }

{(,) : (,) }
i i

i j i j

V v v S

E v v x X v x vη
= ∈
= ∃ ∈ = (6)

The weight assigned to each vertex vi is the state probability pi, and the weight assigned to
each edge (vi, vj) is the probability pij in the Markov process. Assume states vi and vj are encoded
using binary strings bi and bj, respectively. The transition from state si to state sj will have a
switching activity equal to dij, the hamming distance between bi and bj. Since dynamic power
consumption is directly related to switching activity and state transition in an FSM corresponds to
the switching of the state bits, state encoding will have a major effect on the power consumption.
The goal is to perform the state assignment in such a way that state transitions, with higher
probability, take place within a smaller switching activity on state bits. The objective function to
minimize would then be:

:(,)

. .

i j

ave i ij ij

i j v v E

p p p d
∈

=∑ ∑
(7)

Implementation of an FSM is usually done using D flip-flops. The input to the flip-flops
would then be D=η(x, v) where x is the input and v is the present state.

In our proposed technique for low power state encoding, the FSM is first decomposed into a
set of cycles. These cycles are then encoded in order to minimize the total switching according to

 11

the cost function in (7). Once the cycles are encoded, the entire FSM will be implemented using
D flip-flops.

III.A Cycle-decomposition-based Encoding

Having described a new mathematical framework for Markov process cycle decomposition, we
can now proceed with the solution to the low-power state encoding problem. As mentioned
earlier, the technique for state assignment proposed here is based on the decomposition of FSM
into a set of cycles. Due to the high complexity of the probabilistic method (i.e., the number of
cycles in that approach can grow exponentially in the number of states of the FSM), the
deterministic method will be employed here to generate the cycles.

 After decomposing the FSM into a set of cycles, the CD_based_encoding algorithm of
Figure 5 is employed for the state assignment step.

Figure 5. Cycle-decomposition-based state assignment algorithm

After all of the cycles are generated in line 1 of the algorithm, they are sorted according to
their weights (line 2) and then a table of all Gray codes for the minimum required bit count is

generated by Generate_Gray_code_table (line 3). The number of such Gray codes will be 2lg
2

S⎡ ⎤⎢ ⎥ .
The cycles will then be encoded one by one according to the sorted order by using the
Encode_cycle algorithm. This algorithm assigns the codes to the states on the cycle in such a way
that the hamming distance of each state from its neighboring states is minimized. However, this is
not feasible for those cycles whose states are partially encoded as part of a previously encoded
cycle (line 7). In fact, when the number of previously encoded states in a cycle is sufficiently
large, it makes more sense to switch from a Gray-coding scheme to a Minimum Weighted
Hamming Distance algorithm (MWHD). That is precisely what CD_based_encoding does for the
few un-encoded states in these cycles (lines 9 and 10.)

Gray codes are used to encode states in a cycle because these codes are the optimal solution
with respect to the measured cost function, i.e., the minimum weighted hamming distance.
Consider a table of Gray codes shown in Figure 6; codes are divided into two sets. A code is a

Algorithm CD_based_encoding (ψ)
// ψ is the State Transition Graph for a FSM
begin
1. = Dtr_CD (ψ);

2. S = sort ();

3. Generate_Gray_code_table();
4. while S ≠ ∅ do

5. C = get the cycle with max. weight from S;

6. Encode_cycle (C);
7. remove from S those cycles where more than t% of the

states are encoded;
8. end while
9. U = get the remaining un-encoded states;
10. Assign_MWHD(U);
end

 12

high-code if its MSB is 1, and is a low-code if its MSB is 0. A table of 2n+1Gray codes can
successively be constructed from a table of 2n Gray codes applying a simple procedure:

1. Write a Gray code table;

2. Concatenate the table above with a copy of itself, written in reverse order;

3. Add a 0 as the MSB of the entries in the first half of the table and a 1 as the MSB of
the second half;

When constructing a Gray code table according to this simple procedure, the low-codes are
always on top whereas the high-codes are at the bottom. The line, which separates the high-codes
from low-codes, is called the middle-line.

Figure 6. Gray code table

The only difference between high and low codes with equal distances from the middle-line is
the MSB, thus they have a hamming distance of one. Moreover, each code differs from its
neighboring codes only in one bit (this is the well-known Gray code property). Given a cycle C,
we can encode it optimally by following a ping-pong movement in the Gray code table starting
from the very first high-code under the middle-line and choosing the codes in high, low, low,
high, high, low, ... order as shown in Figure 7.

Figure 7. Ping-pong encoding and switching activity of state bits

 13

Figure 8 shows the Encode_cycle heuristic algorithm for encoding cycles. For cycles with all
un-encoded states, it makes no difference which state to start from for encoding. However, for
cycles where some of the states have already been encoded, the start state is indeed important. In
line 1, Find_best_rotation returns the beginning of the largest consecutive sequence of previously
un-encoded states in the cycle. For example, if cycle C has 10 states from which two consecutive
groups of size 3 and 4 states are not yet coded, Find_best_rotation returns the state at the start of
un-encoded state sequence of size 4. The high and low codes are selected as candidate codes for
the yet un-encoded state (lines 3, 4). Next Find_best_code is used to compare the cost for each of
the two candidate codes and to pick the best one (line 5). The process is continued, traversing all
states starting from the strt state until all un-encoded states in the cycle are visited (line 2.)

Figure 8. Cycle encoding heuristic

Example: Figure 9.a shows an FSM with 6 states and its transition probability matrix. Algorithm
Dtr_CD chooses the edges with descending transition probability until a cycle is formed. In this
example the first cycle detected is the cycle C1 (cf. Figure 9.b) since transitions St0 St1 and
St1 St0 are the two most probable transitions. Next, the algorithm finds the minimum transition
probability in the cycle which is St0 St1 and reduces the transition probability of all edges with
that value. This would eliminate edge St0 St1 and reduces the transition probability of edge
St1 St0 to 0.0154. The algorithm continues until there are no more edges left. Figure 9.b shows
the set of cycles generated using this algorithm. Next, Encode_cycle algorithm is used to encode
each cycle. First Cycle C1 is selected for encoding because it has the maximum weight; this cycle
is encoded using the codes 010 and 110 (cf. Figure 7). Then Cycle C2 is selected, since in this
cycle state St0 has been encoded in previous iteration, the algorithm starts from the next un-
encoded state, i.e., St5 and picks the best code with respect to code of St0 to encode St5, which is
011. Next, the algorithm encodes C3, i.e. St3 is encoded with respect to St5 resulting in code 111.
For Cycle C4, we note that states St0, St5, and St3 are previously encode, therefore,
Find_best_rotation selects St2 as the start state for C4, since this is the beginning state of the
largest un-encoded sequence in this cycle. The algorithm then traverses the cycle and encodes
each state. St2 state is encoded as 101 and state st4 is encoded as 001. Since there are no more un-
encoded states, the algorithm stops at this point. Note that the set of cycles and the order in which
the cycles are being coded is very important, for example if we change the encoding order to be
C5, C4, C3, C2, C1, and C6. By the time we reach cycle C1, the remaining available codes for
state St1 have at least a hamming distance of two compared to the codes of state St0, but this
cycle is the most probable cycle, which implies that the resulting low power code is not good. On
the other hand the set of cycles generated by Dtr_CD are the best for this problem because this
algorithm chooses those cycles which are most probable in typical operation of the FSM machine.

Procedure Encode_cycle (cycle C)
begin
1. strt = Find_best_rotation (C);
2. foreach un-encoded state on C starting from strt
3. high = find first available high-code;
4. low = find first available low-code;
5. code(state) = Find_best_code (high, low);
6. end for
end

 14

0 0.1846 0 0 0 0.1846

0.20 0 0 0 0 0

0 0 0 0 0.0308 0

0.0308 0 0.0308 0 0 0.0615

0.0154 0.0154 0 0 0 0

0.1231 0 0 0.1231 0 0

i ijp p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⋅ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a. Finite State Machine and its Transition and State probabilities

b. Finite State Machine and its Transition and State probabilities

Figure 9. Example of state assignment algorithm

III.B Experimental Results

The cycle-based encoding algorithm was implemented in C and run on an IBM IntelliStation with
a 730 MHz Pentium III processor and 256 MB memory to generate the experimental results. The
total weighted Hamming distances (WHD) for a number of FSM benchmark circuits and for
different encoding techniques are reported in Table 1. For these results, we assumed uniform
external input distribution and used equation (7) to calculate the WHD value for each state
machine. The purpose of this table is to demonstrate the relative efficiency of the cycle-based
encoding algorithm compared to a genetic search based algorithm proposed in [26].

The first column provides names of the FSM circuits, which are all selected from LGSynth89
or ISCAS89 benchmark sets. The largest circuit used for generating experimental results has 256

 15

states. Column 2 shows the number of states in each FSM. Columns 3 and 4 report the average
switching activity per state bit line and the runtime (in seconds) for the proposed cycle-based
state assignment (i.e., the CD_based_encoding algorithm). All FSMs were encoded in the order
of one second or less. Columns 5 and 6 report the average switching activity and runtime for a
genetic search algorithm that was implemented to calculate the low power state assignment based
on the minimum weighted hamming distance cost. For these results, parameter t (cf. line 7, Figure
5) was set to 40% for all of the above experiments. The results show a significant speed-up
compared to the genetic search algorithm with nearly the same quality of results. The case of
s208 is a notable exception, where we obtain more than 70% reduction in the WHD metric. The
reason for this significant improvement is that s208 is indeed a 256 state counter. As a result we
perform much better than the genetic search algorithm (the quality of GA solution may improve if
it is given more computation time). Column 7 shows the WHD result of the approach presented in
Reference [4] whereas column 8 shows the WHD result if the transition selection process in the
deterministic cycle decomposition algorithm is performed at random instead of based on the
probabilities.

FSM #
States

Cycle-
based
WHD

Cycle-
based
Time

Genetic
search
WHD

Genetic
search
time

Ref
[4]

WHD

Arbitrary
Cycle_Gen

WHD

dk16 28 1.89 0.6 1.83 220 2.23 3.54

dk512 15 1.35 0.4 1.42 130 1.33 2.34

donfile 24 1.45 0.5 1.39 165 1.55 3.43

ex1 21 0.72 0.7 0.70 155 2.55 5.12

ex2 19 1.61 0.6 1.60 100 1.78 2.45

ex5 9 1.33 0.4 1.29 42 1.62 3.43

ex7 10 1.46 0.4 1.35 56 1.37 4.23

planet 48 1.31 0.8 1.86 600 1.10 2.45

S208 256 0.50 1.6 3.55 3450 3.12 2.76

S298 218 3.12 1.2 4.50 2875 5.10 6.23

S820 25 0.49 0.5 0.55 170 0.68 3.12

S953 20 0.37 0.6 0.45 300 0.32 2.45

S1488 48 0.35 1.0 0.36 700 0.54 2.56

sand 32 0.65 0.8 0.82 390 0.89 1.99

sse 16 0.78 0.5 0.88 150 0.56 2.42

styr 30 0.57 0.7 0.61 250 0.70 1.89

tbk 32 1.05 0.8 1.17 400 2.08 3.57

train11 11 0.41 0.4 0.46 5 1.5 3.12

average 1.07 0.70 1.37 564.34 1.61 3.17

Table 1. Average Switching Activity

 16

Table 2 shows the post-mapping area and power consumption of the FSMs using genetic
search generated state codes v.s. codes generated by CD_based_encoding algorithm. Relative
accuracy of WHD cost function can be noticed by considering tables 1 and 2 side by side.

FSM Genetic search
Power
(μW)

Genetic search
Area
(μm2)

Cycle-based
Power
(μW)

Cycle-based
Area
(μm2)

dk16 1650 97852 1760 99539

dk512 429 32976 427 32864

donfile 1106 85012 1215 84711

ex1 983 72985 968 73538

ex2 997 67862 1089 68544

ex5 572 35676 507 26606

ex7 581 40227 634 41576

planet 1326 117382 1179 110112

S208 362 63120 220 54351

S298 8943 985651 8307 917559

S820 1269 134263 1137 130741

S953 1311 113176 1047 106007

S1488 1054 159124 923 153947

sand 1623 134278 1455 129910

sse 629 48319 459 43044

styr 926 134257 840 131997

tbk 2391 173216 2135 171718

train11 310 30128 240 29533

average 1470.11 140305.80 1363.44 133683.20

Table 2. Genetic v.s. cycle_encode_cycle

IV. Sequence Compaction for Power Simulation

The statistics of input vectors heavily impacts the power dissipation in a combinational circuit
[1]. Therefore, to obtain accurate power estimates for a circuit, it is required to use a vector
sequence, which captures the typical application data. Unfortunately, the length of such a
sequence can be quite large. So it is important to find ways to construct or otherwise extract a
subsequence of much shorter length that can be simulated by utilizing a low-level simulation
engine to provide highly accurate power estimates of a circuit. Two approaches have been
developed to address this problem: probabilistic compaction and statistical sampling.

An approach for reducing the power simulation time is to compact the given long stream of
bit vectors using probabilistic automata [13]. The idea is to build a Stochastic State Machine
(SSM) which captures the relevant statistical properties of a given, long bit stream, and then
excite this machine by a small number of random inputs so that the output sequence of the

 17

machine is statistically equivalent to the initial one. The relevant statistical properties denote, for
example, the signal and transition probabilities, and first-order spatio-temporal correlations
among bits and across consecutive time frames. The procedure then consists of decomposing the
SSM into a set of deterministic state machines, and realizing it through SSM synthesis with some
auxiliary inputs. The compacted sequence is generated by uniformly random excitement of such
inputs. Another algorithm for vector compaction is presented in [14]. The foundation of this
approach is also probabilistic in nature: it relies on adaptive (dynamic) modeling of binary input
streams as first-order Markov sources of information. The adaptive modeling technique itself is
best known as dynamic Markov chain modeling. A hierarchical technique for compacting large
sequences of input vectors is presented in [15]. The distinctive feature of this approach is that it
introduces hierarchical Markov chain modeling as a flexible framework for capturing not only
complex spatio-temporal correlations, but also dynamic changes in the sequence characteristics
such as different input modes. Other approaches such as [16] use spatio-temporal correlation of
the input sequence as a cost function for generating a new input sequence, which can estimate the
average power within reasonable error bounds. Reference [17] approximates Discrete Fourier
Transform (DFT) of hamming distance between consecutive vectors in the input sequence to
generate a new sequence which captures the original sequence’s statistical properties. Reference
[18] presents a different approach based on a graph model to transform the sequence compaction
problem to that of finding a heaviest weighted trail in a directed graph. The authors then present a
heuristic based on min-cost flow to solve the problem.

References [19][20] use statistical sampling techniques as another approach for solving the
sequence compaction problem; these techniques use an input model based on a Markov process to
generate the input stream for simulation. The simulation is performed in an iterative manner. In
each, iteration, a vector sequence of a fixed length (called sample) is simulated. The simulation
results are monitored to calculate the mean value and variance of the samples. The iteration
terminates when some stopping criterion is met. This approach suffers from two shortcomings.
First, the required number of samples, which directly impacts the simulation run time, is
approximately proportional to the ratio between the sample variance and the square of the sample
mean value. For certain input sequences, this ratio becomes large, thus significantly increasing
the simulation run time. Second, there is a general concern about the normality assumption on the
sample distribution. Since the stopping criterion is based on such assumption, if the sample
distribution significantly deviates from the normal distribution, the simulation may terminate
prematurely.

This section presents a new sequence compaction technique to improve the efficiency of
dynamic power simulation techniques. The proposed approach is based on cycle decomposition
of a Markov process that models the input vector. Average power dissipation is subsequently
calculated by simulating each decomposed cycle of the Markov process. The mathematical
framework for the proposed sequence compaction technique is different from the
abovementioned techniques and the proposed algorithm results in higher compaction ratios for
the same level of evaluation accuracy.

IV.A Sequence Compaction Problem

As mentioned before probabilistic behavior of input vectors heavily impacts the power dissipation
in a combinational circuit. In our model, any input combination is regarded as a state in the
Markov process. Transition from one input combination to next one is modeled by a transition
between the corresponding states in the Markov process. The probability of each transition in the
Markov process indicates the frequency of the corresponding input change. Associated with each
transition is a value that represents the power dissipation in the circuit due to input vector change.
Therefore, the average power dissipation under the modeled input vector, qave, is calculated as:

 18

,

.ave ij ij
i j

q p q=∑ (9)

where ij
p is the probability of a transition from state i to state j and ij

q is the power dissipation in

the circuit due to the corresponding input change. In this section, we first show how cycle
decomposition of Markov processes enables compacting a large vector sequence that is to be
applied to a circuit.

Example: Consider a combinational circuit with input vectors denoted by symbols a, b, c and d.
An example input vector sequence applied to this circuit is:

a b c b d c b c b c a b c b c a

A string of length k is a stream of k consecutive vectors in the original input sequence. A
cover of an input sequence is a set of strings of different length such that the original input
sequence can be constructed with repetition and/or concatenation of different elements of this set.
Size of a cover is defined as summation of length of all strings in that cover
e.g.{ }, , ,abc bdc bcb ca is a cover of size 11 and abc is a string of length 3.

Constrained Minimum Sequence Covering Problem (CMSC): Given an input sequence and
an integer Lmin find a cover C of the input sequence such that:

 min()s C Length s L∀ ∈ ≥

and Size(C) is minimized.

A sequence compaction problem can be formulated as a constrained minimum sequence-
covering problem where Lmin is 2, since each string should cover at least one transition in the
input sequence. The average power consumption of the circuit is then calculated by:

save s ave

s C

P N P
∀ ∈

= ⋅∑ (10)

where Ns is the number of times string s is repeated and
saveP is the average power consumption of

circuit due to string s. The CMSC problem can be shown to be NP-complete by reducing the
satisfiability problem to it.

The Markov process modeling this input sequence is shown in Figure 10. Simulation of this
sequence will require 15 input transitions: , ,a b b c c b→ → → , etc. Following this sample path on
the Markov process, one can easily see that the whole path can be represented by summation of
cycles C1, C2, and C3 where C1 is repeated twice and C2 is repeated three times. Therefore, the
total power dissipation along the above input transitions is equal to the power dissipation along
C3, two times C1 and three times C2, calculation of which requires only 8 transitions.

 19

a. Markov Chain Representation b. Cycle Decomposition of the Markov Chain Model

Figure 10. Markov Chain Model of Example input Sequence

IV.B The Proposed Compaction Algorithm

Consider a sequence of input vectors applied to a combinational circuit. If we assume that the
input sequence is long enough to accurately model the “typical” application data, then the
Markov process generated using this input sequence is an accurate stochastic representation of the
circuit inputs.

In practice, since the Markov process is generated based on the given input sequence and all
the state and transition probabilities are calculated accordingly, it is assumed that the input
sequence captures the stochastic behavior of Markov process in the sense that the input sequence
is sufficient to provide cycle decomposition for the Markov process. Therefore, we can use the
probabilistic approach described in Section II.B for the walk corresponding to the input sequence
to generate the cycles that decompose the Markov process. Note that the deterministic algorithm
can also be used for this purpose. However, typically only the input sequence is given for power
estimation purposes and not its generating Markov chain, which is required by the deterministic
algorithm. Therefore, in order to use the deterministic algorithm, one is required to solve the
Chapman-Kolmogrov equations (cf. [22][23]) to get the generating Markov chain, making the
probabilistic solution more appealing.

We first prove that the cycles generated along the walk corresponding to the given input
sequence provide a decomposition of Markov process and then show how these cycles are used to
calculate the average power consumption in the circuit. Notice that no a priori knowledge of the
circuit structure is needed for the input vector compaction algorithm. This is in sharp contrast
with statistical sampling techniques, which require the circuit net list.

Theorem 4: Assume that a sequence of input vectors for a combinational circuit is given and that
a Markov process ξ is generated based on the given sequence. The probabilistic approach applied
to the given input vector sequence produces a cycle decomposition of Markov process ξ with the
following weights:

.
k

k

l

C
C

l C
l

N
W

C N
=
∑

 (11)

where
kCW is the weight assigned to cycle Ck,

kCN is the number of times cycle Ck appears along

the walk, and |Cl| is the length of cycle Cl, i.e., the number of transitions on that cycle.

Proof: For the set of cycles with the above weights to be a decomposition of the Markov process,
we have to show that (cf. equation (5)):

 20

(,)

k

k

i ij C
k i j C

p p W
∀ ∈

= ∑ (12)

The left hand side of the above equation is equal to:

 (,)

.
l

i j
i ij

l C
l

N
p p

C N
=
∑

 (13)

where N(i, j) is the number of times that transition from i to j appears along the walk and the
denominator is basically the length of the walk itself. The right hand side of equation (12), on the
other hand, is equal to

(,) (,) (,)

1

. .
k

k k

k k kl l

C
C C

k i j C k i j C k i j Cl C l C
l l

N
W N

C N C N∀ ∈ ∀ ∈ ∀ ∈

⎛ ⎞
⎜ ⎟= = ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑ ∑
 (14-a)

Note that the second factor in equation (14) is exactly equal to the number of times that
transition from state i to state j occurs along the walk, i.e., N(i, j). Therefore equation (12) holds for
the cycle weights defined in (11). The second equality in equation (5) holds since we have

: (,) :

() ()

(). ()

j i j i

i

v C v v C C v C

C i

C

p W C W C

W C J v

∀ ∀ ∈ ∀ ∈

∀

= =

=

∑ ∑ ∑

∑
 (14-b)

and the proof is complete. ♦

The cycles and corresponding weights depend only on the walk itself - represented by the
given input vector sequence - and not the Markov process. Therefore the cycle decomposition can
be obtained without having an explicitly-constructed Markov process. Now that the cycles and
their weights are generated, we show how the average power consumption can be calculated.

Theorem 5: Consider a combinational circuit and a sequence of input vectors applied to this
circuit. Let C be a cycle decomposition based on the given input sequence with weights assigned
as in equation (11). The average power dissipation of the circuit under the given input sequence is
then equal to:

,

. .
kk

ave C C k
i j

q q W C=∑ (15)

where qave is the average power dissipation and
kCq is the average power dissipation in cycle Ck

per transition.

Proof: To provide a proof, we reformulate the right hand side of equation (15) as a summation
over transitions rather than cycles.

(,)

(,)

. k

k

k

ij
i j C

C k k
k

ij
i j C

q

q C C
C

q

∈

∈

= ×

=

∑

∑
 (16)

Therefore,

 21

(,)

, (,)

, (,)

,

. . .

.

.

.(.)

k k k

k

k

k

k

k

C C k ij C
k k i j C

ij C
i j k i j C

ij C
i j k i j C

ij i ij
i j

ave

q W C q W

q W

q W

q p p

q

∈

∀ ∈

∀ ∈

=

=

=

=

=

∑ ∑ ∑

∑ ∑

∑ ∑

∑

 (17)

 ♦

It should be noted that .
kC kW C indicates the probability of being in cycle Ck. Since each

transition in the Markov process can be repeated along the walk and may be part of several
cycles, the probability of being in a specific cycle is not the same as the summation of transition
probabilities over all transitions on that cycle. The probability of being in a cycle depends on the
number of times that cycle is repeated and on the length of cycle, i.e.,

.

.
.

k

k k

l

k C
C k C

l C
l

C N
W C p

C N
= =
∑

 (18)

The numerator in the above equation is the number of transitions along the walk that are part of
cycle Ck whereas the denominator is the total length of walk. Therefore, the ratio gives the
probability of being in cycle Ck. One can now easily verify that 1

kCp =∑ and that the average

power dissipation may be calculated as .
k kC Cq p∑ .

Based on the above theorems, a vector compaction algorithm for efficient dynamic power
evaluation is proposed in Figure 11. In line 1, all the cycles corresponding to the given input
Vector V are generated using the probabilistic approach. In line 2, some of the cycles are dropped
by the Prune_cycles algorithm to achieve a higher compaction ratio, then the average power
consumption is calculated using equation (3).

According to equation (5), eliminating some of the cycles changes the probabilities in the
Markov process that models the input sequence. Reference [14] shows that by bounding
perturbations in Markov process probabilities, one can bound the error in average power
estimation. Dropping cycles with small weights minimizes perturbations in the Markov process
probabilities, and thereby, minimizes the estimation error. To achieve this in algorithm
Prune_cycles (cf. Figure 11), first all cycles are sorted by their descending weights (line 2). Next
based on this ordering, cycles are selected until the compaction ratio reaches a user specified
level, r (lines 6-9). After dropping some of the cycles, weights of the other cycles are updated in
lines 10-12. This is done because cycle elimination is equivalent to dropping some of the
transitions from the given input sequence, which in turn influences the cycle weights according to
equation (18). Finally, the average power consumption is calculated from the updated weights.

 22

Figure 11. Vector compaction algorithm

IV.C Experimental Results

The proposed algorithm is implemented in SIS framework. Average power consumption
calculation is performed using an in-house gate-level logic simulator under SIS. To make a fair
comparison with reference [14], we used the same input vector sequence (4000 vectors) to
generate the results reported in Table 3. Column 1 shows the name of the circuit. Each circuit was
first optimized by using script.rugged and then mapped to a 0.25μm technology library. The
average power consumption for all 4,000 vectors is reported in the third column. The proposed
compaction algorithm was then used to achieve the results in columns 4, 5 and 6 with compaction
ratios of 2, 5 and 10, respectively. The average error for the compaction algorithm using
hierarchical model presented in reference [14] is also reported for the sake of comparison. It is
interesting to note that skipping the pruning step and considering all the cycles has resulted in a
compaction ratio of 2 with no error in average power estimation. More precisely this means that
the number of transitions after cycle decomposition and compaction is already two times smaller
than the original number of transitions. Therefore, if we do not go through the cycle pruning step,

Algorithm Compact(V, r)
begin
1. C=Prob_CD(V);
2. C =Prune_cycles(C, r);
3. . .ave c c

c C

q q W c

∈

=∑ ;

end

Algorithm Prune_cycles(C, r)
begin
1. OrigLen . ;c

c C

N c
∈

=∑

2. C_sort=Sort_cycles(C);
3. i=0;
4. C = ∅ ;
5. PruneLen=|C_sort[i]|;
6. while PruneLen/OrigLen <= r do
 begin
7. _ [];C C C sort i= ∪
8. i++;
9. PruneLen + =|C_sort[i]|;
 end
10. foreach cycle c in C do

11.
.

;
.

c
c c

c

c C

N c
W W

N c

∈

= ×
∑

12. endfor
13. return C ;
end

 23

then we will not incur any error in calculation of the power consumption and yet will achieve a
compaction ratio of 2.

Another set of experimental results is shown in Table 4 for an in-house generated sequence of
length 100,000, which is a counter sequence with the sequence restarting at a random number
after a random number of vectors. The procedure for generating the results was the same as the
procedure used to generate the first set of results.

The results clearly show the effectiveness of the proposed method in estimating the average
power consumption of a circuit. The exact power estimate can be obtained with compaction ratio
of two. Maximum error is less than 3% and average error is less than 2% when the compaction
ratio is 5. For the case where the compaction ratio is 10 the maximum and average errors are
bounded by 5% and 3% respectively. Actual error values for different circuits are shown in Table
5.

Circuit PI # Actual
Power

Est. Pow.
r=2

Est. Pow.
r=5

Est. Pow.
r=10

C432 36 677.02 677.02 636.19 619.00

C499 41 1623.31 1623.31 1566.11 1553.83

C880 60 1614.61 1614.61 1599.97 1593.10

C1355 41 1623.31 1623.31 1566.11 1553.83

C1908 33 2005.98 2005.98 2013.12 2041.29

C3540 50 4967.17 4967.17 4905.58 4836.25

C5315 178 8349.15 8349.15 8246.21 8284.50

C6288 32 13128.22 13128.22 12384.74 12459.62

C7552 207 10047.56 10047.56 9596.88 9364.54

Average Error 0.00 3.03 3.94

Ref. [14] Average Error 2.67 3.55 4.74

Table 3. Average power consumption (μW @ 50MHz)

Circuit PI # Pow. Err.
% (r=5)

Pow. Err.
% (r=10)

9symml 9 0.37 0.86

b9 41 0.24 4.02

C432 36 1.33 2.84

C499 41 1.10 4.46

C880 60 2.60 4.96

C1355 41 1.10 4.46

C1908 33 0.79 1.24

C3540 50 1.00 2.00

 24

C5315 178 1.10 1.20

C6288 32 1.91 2.27

C7552 207 2.79 3.04

duke2 22 0.22 0.53

misex3 14 0.47 5.03

Table 4. Average power error bounds

Circuit PI # Actual
Power

Est. Pow.
r=2

Est. Pow.
r=5

Est. Pow.
r=10

9symml 9 754.29 754.29 751.45 747.78

b9 41 392.07 392.07 391.09 407.85

C432 36 617.93 617.93 626.19 600.34

C499 41 1835.80 1835.80 1856.11 1753.83

C880 60 1710.66 1710.66 1755.76 1614.43

C1355 41 1835.80 1835.80 1856.11 1753.83

C1908 33 1643.36 1643.36 1630.26 1663.89

C3540 50 5853.80 5853.80 5912.35 5736.34

C5315 178 7497.08 7497.08 7580.18 7407.20

C6288 32 20247.15 20247.15 20635.12 19787.40

C7552 207 8265.32 8265.32 8496.22 8013.76

duke2 22 864.00 864.00 865.97 868.54

misex3 14 1061.16 1061.16 1066.16 1120.11

Average Error 0.00 1.16 2.93

Table 5. Average power consumption (μW @ 50MHz)

V. Conclusions

This paper presented a sound mathematical framework for Markov Models. The new formalism is
based on the cycle decomposition of the Markov processes. The key result is that a Markov
process can be decomposed into a collection of directed cycles with positive weights proportional
to the probability of their traversal in a typical random walk. In one application, we proposed a
new state assignment technique to reduce dynamic power consumption in FSMs. The proposed
encoding algorithm reduces power consumption by an average of 15%. In a second application,
we studied the vector compaction problem using the new mathematical framework. The key
result was that a Markov process can be decomposed into a collection of directed cycles and
therefore the input compaction ratio can be improved by an order of magnitude or higher by
exercising these cycles exactly once, and then calculating the total power consumption by using
the corresponding weights of those cycles. Experimental results on a large number of vector
sequences and test-bench circuits were presented to demonstrate the effectiveness of the proposed
approach. We envision a number of other applications in network and system design and analysis

 25

that can benefit from the proposed mathematical formalism. Examples include data aggregation
in distributed sensor networks and low power on-chip bus encoding.

References

[1] M. Pedram, “Power Minimization in IC Design: Principles and Applications,” ACM Trans.
on Design Automation of Electronic Systems, vol. 1, pp. 3-56, Jan. 1996.

[2] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Optimal State Assignment of
Finite State Machines,” IEEE Trans. on CAD, vol. 4, pp. 269-285, Jul. 1985.

[3] S. Yang and M. Ciesielski, “On the Relationship Between Input Encoding and Logic
Minimization,” Proc. of 23rd. Hawaii Int’l Conf. System Sciences, vol. I, pp. 377-386, Jan.
1990.

[4] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State Assignment of Finite State Machines
for Optimal Two-Level Logic Implementations,” IEEE Trans. on CAD, vol. 9, pp. 905-924,
Sep. 1990.

[5] K. Roy and S. Prasad, “Syclop: Synthesis of CMOS Logic for Low-Power Application,”
Proc. of Int’l Conf. on Computer design, pp. 464-467, Oct. 1992.

[6] E. Olson and S. M. Kang, “Low-Power State Assignment for Finite State Machines,” Proc. of
Int’l Workshop on Low Power Design, pp. 63-68, April 1994.

[7] C. Y. Tsui, M. Pedram and A. M. Despain, “Low-Power State Assignment Targeting Two-
and Multilevel Logic Implementation,” IEEE Trans. on CAD, vol. 17, pp. 1281-1291, Dec.
1998.

[8] X. Wu, J. Wei, Q. Wu, and M. Pedram, “Low-Power Design of Sequential Circuits Using a
Quasi-Synchronous Derived Clock,” Int’l Journal of Electronics, Taylor and Francis
Publishing Group, vol. 88, no. 6, pp. 635-643, Jun. 2001.

[9] E. Macii, M. Pedram, F. Somenzi, “High level power modeling, estimation and
optimization,” Proc. of 34th Design Automation Conf. Jun. 1997, pp. 504-510.

[10] C-S. Ding, C-Y. Tsui and M. Pedram, “Gate-level power estimation using tagged
probabilistic simulation”, IEEE Trans. on Computer Aided Design, vol. 17. no. 11, Nov.
1998, pp. 1099-1107.

[11] R. Marculescu, D. Marculescu and M. Pedram, “Probabilistic modeling of dependencies
during switching activity analysis”, IEEE Trans. on Computer Aided Design, Vol. 17, no. 2,
Feb. 1998, pp. 73-83.

[12] F. N. Najm, “Transition Density: A New Measure of Activity in Digital Circuits”, IEEE
Trans. CAD, vol. 12, pp.310-323, Feb. 1993.

[13] R. Marculescu, D. Marculescu and M. Pedram, “Stochastic sequential machine synthesis
with application to constrained sequence generation”, ACM Trans. on Design Automation of
Electronic Systems, vol. 5, no. 3, Jul. 2000, pp. 658-681.

[14] R. Marculescu, D. Marculescu and M. Pedram, “Vector compaction using dynamic
Markov models”, IEICE Trans. Fundamentals of Electronics, Comm. and Comp. Sci., vol.
E80-A, no. 10, Oct. 1997.

[15] R. Marculescu, D. Marculescu and M. Pedram, “Sequence compaction for power
estimation: theory and practice”, IEEE Trans. on CAD, vol. 18. no. 7, Jul. 1999, pp. 973-993.

 26

[16] C-Y. Tsui, R. Marculescu, D. Marculescu and M. Pedram, “Improving the efficiency of
power simulators by input vector compaction”, Proc. of 33rd Design Automation Conf. Jun.
1996, pp. 165-168.

[17] A. Macii, E. Macii, M. Poncino, R. Scarsi, “Stream Synthesis for Efficient Power
Simulation Based On Spectral Transforms,” ACM/IEEE Intl. Symp. on Low Power
Electronics and Design, CA, Aug. 1998.

[18] A. Pinar and C.L. Liu, “Compacting sequences with invariant transition frequencies,”
ACM Transactions on Design Automation of Electronic Systems (TODAES), Volume 8 ,
Issue 2, 2003, Pages: 214 – 221.

[19] R. Burch, F. N. Najm, P. Yang and T. Trick, “A Monte Carlo Approach for Power
Estimation”, IEEE Trans. VLSI Sys., vol. 1, no. 1, pp. 63-71, Mar. 1993

[20] C-S. Ding, Q. Wu, C-T. Hsieh and M. Pedram, “Stratified random sampling for power
evaluation”, IEEE Trans. on Computer Aided Design, vol. 17, no. 6, Jun. 1998, pp. 465-471.

[21] S. L. Kalpazidou, Cycle Representations of Markov Processes, Springer-Verlag, 1995.

[22] C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M. Despain and B. Lin, "Power
estimation in sequential logic circuits," IEEE Trans. on VLSI Systems, Vol. 3, No. 3 (1995),
pp. 404-416.

[23] A.T. Freitas and A.L. Oliveira, “Implicit resolution of the Chapman-Kolmogorov
equations for sequential circuits: an application in power estimation,” Design, Automation
and Test in Europe Conference and Exhibition, 2003, Pages:764 – 769.

[24] M.P. Qian, M. Qian, “Decomposition into a detailed balance and a circulation part of an
irreversible stationary Markov chain”, Sci. Sinica, Special issue II, 69-79. (Chinese and
English.)

[25] http://mathworld.wolfram.com/

[26] S. Chattopadhyay and P.P. Chaudhuri, “Genetic algorithm based approach for integrated
state assignment and flipflop selection in finite state machine synthesis,”, Proceedings of
Eleventh International Conference on VLSI Design, 4-7 Jan. 1998, Page(s):522 - 527

