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Abstract

In this paper, we present an end-to-end network, called

Cycle-Dehaze, for single image dehazing problem, which

does not require pairs of hazy and corresponding ground

truth images for training. That is, we train the network

by feeding clean and hazy images in an unpaired man-

ner. Moreover, the proposed approach does not rely on

estimation of the atmospheric scattering model parameters.

Our method enhances CycleGAN formulation by combining

cycle-consistency and perceptual losses in order to improve

the quality of textural information recovery and generate

visually better haze-free images. Typically, deep learning

models for dehazing take low resolution images as input

and produce low resolution outputs. However, in the NTIRE

2018 challenge on single image dehazing, high resolution

images were provided. Therefore, we apply bicubic down-

scaling. After obtaining low-resolution outputs from the

network, we utilize the Laplacian pyramid to upscale the

output images to the original resolution. We conduct ex-

periments on NYU-Depth, I-HAZE, and O-HAZE datasets.

Extensive experiments demonstrate that the proposed ap-

proach improves CycleGAN method both quantitatively and

qualitatively.

1. Introduction

Bad weather events such as fog, mist, and haze dramat-

ically reduce the visibility of any scenery and constitute

significant obstacles for computer vision applications, e.g.

object detection, tracking, and segmentation. While images

captured from hazy fields usually preserve most of their

major context, they require some visibility enhancement

as a pre-processing before feeding them into computer

vision algorithms, which are mainly trained on the images

captured at clear weather conditions. This pre-processing

is generally called as image dehazing/defogging. Image de-

hazing techniques aim to generate haze-free images purified

from the bad weather events. Sample hazy and haze-free

∗indicates equal contribution

Figure 1: Hazy and clean examples from the NTIRE 2018

challenge on single image dehazing datasets: I-HAZE [6]

& O-HAZE [7] datasets.

images from the NTIRE 2018 challenge on single image

dehazing [4] are illustrated in Figure 1.

In the recent literature, researchers concentrate on single

image dehazing methods, which can dehaze an input image

without requiring any extra information, e.g. depth infor-

mation or known 3D model of the scene. Single image de-

hazing approaches are divided into prior information-based

methods [3,5,12,16,20,32] and learning based methods [10,

24,30,34,35]. Prior information-based methods are mainly

based on the parameter estimation of atmospheric scattering

model by utilizing the priors, such as dark channel pri-

ors [16], color attenuation prior [38], haze-line prior [8, 9].

On the other hand, these parameters are obtained from

training data by learning based methods, which rely mostly

on deep learning approaches. The proliferation of deep

neural networks increases the use of large-scale datasets,

therefore, researchers tend to create synthetic dehazing

datasets like FRIDA [33] and D-HAZY [2], which have a

more practical creation process than real dehazing datasets.

Even though most of the deep learning approaches use

the estimation of intermediate parameters, e.g. transmis-
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sion map and atmospheric light [10, 24], there are also

other approaches based on generative adversarial networks

(GANs), which build a model without benefiting from these

intermediate parameters [30].

GANs, introduced by Goodfellow et al. [14], are found

to be very successful at image generation tasks, e.g. data

augmentation, image inpainting, and style transfer. Their

major goal is the generation of fake images indistinguish-

able from the original images on the targeted domain. By

utilizing GANs, there exist state-of-the-art methods [30,35]

for single image dehazing, which require hazy input image

and its ground truth in a paired manner. Recently, the need

of paired data is removed after the cycle-consistency loss

has been proposed by CycleGAN [37] for image-to-image

translation. Inspired by the cycle-consistency loss, Dis-

entangled Dehazing Network (DDN) has been introduced

by Yang et al. for single image dehazing. Unlike Cy-

cleGAN [37] architecture, DDN reconstructs cyclic-image

via the atmospheric scattering model instead of using an-

other generator. Therefore, it requires the scene radi-

ance, medium transmission map, and global atmospheric

light [34] at the training phase.

In this work, we introduce Cycle-Dehaze network by

utilizing CycleGAN [37] architecture via aggregating

cycle-consistency and perceptual losses. Our main purpose

is building an end-to-end network regardless of atmospheric

scattering model for single image dehazing. In order to

feed the input images into our network, they are resized

to 256 × 256 pixel resolution via bicubic downscaling.

After dehazing the input images, bicubic upscaling to

their original size is not sufficient to estimate the missing

information. To be able to obtain high-resolution images,

we employed a simple upsampling method based on

Laplacian pyramid. We perform our experiments on

NYU-Depth [28] part of D-HAZY [2] and the NTIRE

2018 challenge on single image dehazing [4] datasets:

I-HAZE [6] & O-HAZE [7]. According to our results,

Cycle-Dehaze achieves higher image quality metrics than

CycleGAN [37] architecture. Moreover, we analyze the

performance of Cycle-Dehaze on cross-dataset scenarios,

that is, we use different datasets at training and testing

phases.

Our main contributions are summarized as follows:

• We enhance CycleGAN [37] architecture for sin-

gle image dehazing via adding cyclic perceptual-

consistency loss besides cycle-consistency loss.

• Our method requires neither paired samples of hazy

and ground truth images nor any parameters of atmo-

spheric scattering model during the training and testing

phases.

• We present a simple and efficient technique to upscale

dehazed images by benefiting from Laplacian pyramid.

• Due to its cyclic structure, our method provides a gen-

eralizable model demonstrated with the experiments

on cross-dataset scenarios.

The rest of this paper is organized as follows: In

Section 2, a brief overview of related work is provided. The

proposed method is described in Section 3. Experimental

results are presented and discussed in Section 4. Finally,

the conclusions are given in Section 5.

2. Related Work

Image dehazing methods aim at recovering the clear

scene reflection, atmospheric light color, and transmission

map from an input hazy image. The requirement to

know several parameters of the scene makes this problem

challenging. Image dehazing methods can be categorized

in terms of their inputs: (i) multiple images dehazing,

(ii) polarizing filter-based dehazing, (iii) single image de-

hazing via utilizing additional information, e.g. depth or

geometrical information methods, and (iv) single image

dehazing [19].

Multiple images based methods overcome dehazing

problem by obtaining changed atmospheric conditions

from multiple images [21–23, 36]. In other words, it

is required to wait until the weather condition or haze

level are changed; thus, it is not practical for real-world

applications. The polarization filter based approach has

been proposed to dismiss the requirement of changed

weather conditions [27]. In this approach, various filters

are applied on different images to simulate changed

weather conditions. Nevertheless, the static scenes are

only considered when polarization filter based approaches

are used. Therefore, this method still is not applicable

for real-time scenarios. To address the necessities of

these methods, single image dehazing via using additional

information such as depth information [15] and the

approximation of the 3D model of the scene [17] have been

suggested. Since there is usually a single captured image

of hazy scenes in the real-world conditions, obtaining

additional information about the scene is extremely hard.

Due to problems of previous approaches, researchers focus

on single image dehazing methods.

Single Image Dehazing. Single image dehazing meth-

ods are mainly based on estimating parameters of the

physical model, which is also known as the atmospheric

scattering model. This model depends on the atmospheric

condition of the scene, and can be expressed as follow:

I(x) = J(x)t(x) +A(1− t(x)) (1)
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where I(x) is the hazy image, J(x) is the haze-free image

or the scene radiance, t(x) is the medium transmission

map, and A is the global atmospheric light on each x pixel

coordinates. t(x) can be formulated as:

t(x) = e−βd(x) (2)

where d(x) is the depth of the scene point and β is defined

as the scattering coefficient of the atmosphere.

Single image based methods can be categorized into

two main approaches: prior information-based methods and

learning-based methods. Prior information-based methods

have been introduced as the pioneer of single image de-

hazing methods in [13, 31]. Following these studies, the

dark channel prior (DCP) based on the statistics about the

haze-free images has been presented by He et al. [16]. In

this method, haze transmission map is estimated by utilizing

dark pixels, which have a low-intensity value of at least one

color channel. Dark channel prior has been enhanced by

optimizing the inherent boundary constraint with weighted

L1-norm contextual regularization to estimate transmission

map [20]. In addition, Zhu et al. proposed a color atten-

uation prior (CAP) in order to recover depth information

by creating a linear model on local priors [38]. Contrary

to using local priors, Berman et al. introduced non-local

color prior (NCP), which is based on an approximation of

the entire haze-free images including few hundred distinct

colors [8]. Each distinct color on a haze-free image is

clustered and represented a line in RGB color space. Dis-

tance map and dehazed image are obtained by using these

lines. Haze-line prior based approach has been improved by

intersection with air-light to estimate global air-light in [9].

Moreover, due to non-uniform lighting conditions on the

entire image, local airlight is estimated for each patch for

night-time dehazing by multi-scale fusion in [3].

Recently, learning based methods have been employed

by utilizing CNNs and GANs for single image dehazing.

CNN based methods mainly focus on estimating transmis-

sion map and/or atmospheric light [8, 10] to recover clean

images via atmospheric scattering model. On the other

hand, GANs based methods produce haze-free images and

estimate parameters of the physical model [34]. Also,

combination of them has been proposed in [35].

Ren et al. [24] proposed a Multi-Scale CNN (MSCNN),

which consists of coarse-scale and fine-scale networks in

order to estimate the transmission map. The coarse-scale

network estimates the transmission map, which is also

improved locally by the fine-scale network. Another trans-

mission map estimation network, called as DehazeNet, is

designed differently from classical CNNs by adding feature

extraction and non-linear regression layers, and it has been

suggested by Cai et al. [10]. In addition to previous

approaches, All-In-One Dehazing Network (AOD-net) has

been presented in [18] to be able to produce clean images

directly without estimating intermediate parameters inde-

pendently. Atmospheric scattering model is re-formulated

to implement it in an end-to-end network. Zhang et al. [35]

suggested a multi-task method that includes three modules,

which are transmission map estimation via GANs, hazy

feature extraction, and image dehazing. All modules have

been trained jointly and image level loss functions, e.g.

perceptual loss and pixel-wise Euclidean loss, have been

utilized. Similarly, Yang et al. [34] introduced Disentangled

Dehazing Network (DDN) to estimate the scene radiance,

transmission map, and global atmosphere light by utilizing

three generators jointly. Different from our method, these

methods require estimation parameters of the atmospheric

scattering model during training phase.

3. Proposed Method

Cycle-Dehaze is an enhanced version of CycleGAN [37]

architecture for single image dehazing. In order to increase

visual quality metrics, PSNR, SSIM, it utilizes the percep-

tual loss inspired by EnhanceNet [25]. The main idea of

this loss is comparing images in a feature space rather than

in a pixel space. Therefore, Cycle-Dehaze compares the

original image with the reconstructed cyclic-image at both

spaces, where cycle-consistency loss ensures a high PSNR

value and perceptual loss preserves the sharpness of the

image. Moreover, Cycle-Dehaze uses traditional Laplacian

pyramid to provide better upsampling results after the main

dehazing process. Figure 2 shows the overall representation

of Cycle-Dehaze architecture.

As can be demonstrated in Figure 2, Cycle-Dehaze

architecture is composed of two generators G,F and two

discriminators Dx, Dy . In favor of cleaning/adding the

haze, the architecture profits from the combination of

cycle-consistency and cyclic perceptual-consistency losses

besides the regular discriminator and generator losses. As a

result of this, the architecture is forced to preserve textural

information of the input images and generate unique

haze-free outputs. On the other hand, pursuing the balance

between cycle-consistency and perceptual-consistency

losses is not a trivial task. Giving over-weight to perceptual

loss causes the loss of color information after dehazing

process. Therefore, cycle-consistency loss needs to have

higher weights than the perceptual loss.

Cyclic perceptual-consistency loss. CycleGAN [37]

architecture introduces cycle-consistency loss, which cal-

culates L1 − norm between the original and cyclic image

for unpaired image-to-image translation task. However, this

calculated loss between the original and cyclic image is

not enough to recover all textural information, since hazy

images are mostly heavily-corrupted. Cyclic perceptual-

consistency loss aims to preserve original image structure

by looking the combination of high and low-level features
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Figure 2: The architecture of Cycle-Dehaze Network where G & F refers to the generators, and Dx & Dy to the

discriminators. For the sake of clarity, the representation is split into two parts: hazy to clean image, and clean to hazy

image. Best view in color.

extracted from 2nd and 5th pooling layers of VGG16 [29]

architecture. Under the constraints of x ∈ X , y ∈ Y

and generator G : X → Y , generator F : Y → X , the

formulation of cyclic perceptual-consistency loss is given

below, where (x, y) refers to hazy and ground truth unpaired

image set and φ is a VGG16 [29] feature extractor from 2nd
and 5th pooling layers:

LPerceptual = ‖φ(x)− φ(F (G(x)))‖22

+ ‖φ(y)− φ(G(F (y)))‖22.
(3)

Full objective of Cycle-Dehaze. Cycle-Dehaze has

one extra loss compared to CycleGAN [37] architecture.

Therefore, the objective of Cycle-Dehaze can be formulated

as follows, where LCycleGAN (G,F,Dx, Dy) is the full

objective of CycleGAN [37] architecture, D stands for the

discriminator and γ controls the effect of cyclic perceptual-

consistency loss:

L(G,F,Dx, Dy) = LCycleGAN (G,F,Dx, Dy)

+ γ ∗ LPerceptual(G,F ),
(4)

G∗, F ∗ = argmin max
G,F,Dx,Dy

L(G,F,Dx, Dy). (5)

Conclusively, Cycle-Dehaze optimizes CycleGAN [37] ar-

chitecture with the additional cyclic perceptual-consistency

loss given in Equation 3 according to Equations 4 and 5. In

order to obtain haze-free images, the generator G∗ is used

at the testing time.

Laplacian upscaling. Cycle-Dehaze architecture takes

256 × 256 pixel resolution input image and produces

256 × 256 pixel resolution output image because of GPU

limitation. In order to reduce deterioration of the image

quality during the downscaling and upscaling process,

we have taken advantage of Laplacian pyramid, which is

created by using high-resolution hazy images. In order to

get the high-resolution dehazed image, we have changed

the top layer of Laplacian pyramid with our dehazed

low-resolution image and performed Laplacian upscaling

process as usual. This basic usage of Laplacian pyramid

especially preserves most of the edges of the hazy image

during the cleaning process and boosts SSIM value at

the upscaling stage. Laplacian upscaling is an optional

post-processing step while working on the high-resolution

images.

Implementation details (indoor/outdoor). We used

TensorFlow [1] framework for the training and testing

phases, and MATLAB for resizing images. We trained

our model with NVIDIA TITAN X graphics card. We

performed around 40 epochs on each dataset in order to

ensure convergence. Our testing time is about 8 seconds

per image on Intel Core i7-5820K CPU. During the training

phase of our model, we used Adam optimizer with the

learning rate 1e−4. Moreover, we took γ as 0.0001 which is

1e+5 times lower than the weight of the cycle-consistency

loss.
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Metrics None He et al. [16] Zhu et al. [38] Berman et al. [8] Ren et al. [24] Cai et al. [10] CycleGAN Yang et al. [34] Ours

PSNR 9.46 10.98 12.78 12.26 13.04 12.84 13.38 15.54 15.41

SSIM 0.58 0.64 0.70 0.70 0.66 0.71 0.52 0.77 0.66

Table 1: Average PSNR and SSIM results on NYU-Depth [28] dataset. Most of the accuracies taken from the paper [34].

Numbers in red and blue indicate first and second best results, respectively. The second column of the table shows the values

which are average PSNR and SSIM results calculated directly between the each hazy and its ground truth image.

Our network is similar to the original CycleGAN [37]

architecture except for the cyclic perceptual-consistency

loss and Laplacian pyramid as a post-processing step. At

the highest level of Laplacian pyramid, we scale the images

to 256 × 256 pixel resolution because of our network’s

requirements. To calculate cyclic perceptual-consistency

loss, we used VGG16 [29] architecture, which is initialized

by ImageNet [11] pre-trained model. The source code of

the proposed method will be publicly available through

project’s GitHub page1.

4. Experiments and Results

In this section, we have presented the experimental

results and discussed them with the results of the chal-

lenge. The first experiment is to compare our result

with the state-of-the-art approaches on NYU-Depth [28]

dataset. Then, we have investigated our performance on

the NTIRE 2018 challenge on single image dehazing [4]

datasets: I-HAZE [6] & O-HAZE [7]. In addition, we have

emphasized differences between CycleGAN [37] and our

proposed method, Cycle-Dehaze, via qualitative and quan-

titative results. Furthermore, we have provided comparative

qualitative results on natural images.

4.1. Datasets

NYU-Depth [28] dataset consists of 1449 pairs of clean

and synthesized hazy images of the same scene. The

dataset is the part of D-HAZY [2] dataset, which includes

two individual environments presented as Middelbury [26]

and NYU-Depth [28]. We have chosen NYU-Depth [28],

which is considerably larger scale than Middlebury [26]

part. NYU-Depth [28] contains also depth map of each

scene, which is not used for this study.

The NTIRE 2018 challenge on single image dehazing [4]

datasets were collected via professional fog generators and

camera setup for image dehazing problem. Each image

includes a Macbeth ColorChecker mostly used for color

calibration with the real-world. The challenge [4] has two

main datasets: I-HAZE [6] & O-HAZE [7], which have 25
indoor and 35 outdoor hazy images and their ground truth

images, respectively. The captured images are in very high

resolution. During the challenge, the organizers provide

1github.com/engindeniz/Cycle-Dehaze

additional 10 images for each dataset as a validation and

test set. We did not include them in the training data.

Data Augmentation. We have employed data aug-

mentation by taking random crops as the pre-processing

step before the training phase. This procedure makes our

model robust for different scales and textures. Our data

augmentation procedure is as in Algorithm 1.

Algorithm 1 Data Augmentation

1: procedure AUGMENTER

2: factor← the number of augmented image

3: Image crops[1..factor]← []

4: i← 0
5: loop:

6: if i = factor then

7: WRITE(crops); break

8: x, y← select a random pixel coordinate on image

9: w, h← select a random width, height

10: crops(i)← CROP(x,y,w,h)

11: crops(i)← RESIZE(crops(i), [256, 256])

12: i← i+ 1.

13: goto loop.

According to Algorithm 1, we take random crops from

the image by selecting random pixel coordinates and crop

sizes. Then, we resize our crops to 256×256 before feeding

them into our network. We run our augmenter function for

each image in our datasets.

During data augmentation, we have obtained 200 images

per original image in the training set of the I-HAZE [6] and

O-HAZE [7] datasets, since this dataset contains too few

images.

4.2. Results on NYUDepth Dataset

We have conducted our experiments on the benchmark

NYU-Depth [28] dataset to illustrate the performance of our

approach compared to the other state-of-the-art approaches.

We have employed Cycle-Dehaze by taking hazy images as

input, and compared haze-free outputs with theirs ground

truths. We have tested our method on all images of NYU-

Depth [28] dataset and reported average PSNR and SSIM

values in Table 1.
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Input CycleGAN Ours Ground Truth

Figure 3: Qualitative results on I-HAZE [6] & O-HAZE [7] datasets.

I-HAZE [6] O-HAZE [7]

Methods Metrics Validation Test Validation Test

None PSNR / SSIM 13.80 / 0.73 - / - 13.56/0.59 - / -

Best PSNR / SSIM 20.41 / 0.85 24.97 / 0.88 22.82 / 0.74 24.59 / 0.77

CycleGAN PSNR / SSIM 17.80 / 0.75 - / - 18.92 / 0.53 - / -

Ours PSNR / SSIM 18.03 / 0.80 18.30 / 0.80 19.92 / 0.64 19.62 / 0.67

Table 2: Average PSNR and SSIM results on the NTIRE 2018 challenge on single image dehazing [4] datasets: I-HAZE [6] &

O-HAZE [7]. According to preliminary results, the first row demonstrates the best accuracies of the NTIRE 2018 challenge

on single image dehazing [4]. The first row of the results shows the values which are average PSNR and SSIM results

calculated directly between the each hazy and its ground truth image.

Table 1 compares our quantitative results with the other

approaches including CycleGAN [37]. By outperforming

the state-of-the-art methods [8, 10, 16, 24, 38] according to

PSNR metric, our model achieves the second best result.

Moreover, Cycle-Dehaze reaches higher PSNR and SSIM

values than CycleGAN [37]. This demonstrates that adding

perceptual-consistency loss on CycleGAN [37] improves

the architecture further for PSNR and SSIM metrics on

NYU-Depth [28] dataset. The results also indicate that

Cycle-Dehaze could get nearly similar PSNR results with

the approaches profited from parameters of the atmospheric

scattering model [34].

4.3. Results on IHAZE and OHAZE Datasets

We have focused on the NTIRE 2018 challenge on single

image dehazing [4] datasets: I-HAZE [6] & O-HAZE [7]

during the preparation of this work. We have analyzed

effects of Laplacian pyramid and cyclic perceptual-loss,

especially on I-HAZE [6] dataset. The challenge datasets

are considerably higher resolution than other image

dehazing datasets e.g. NYU-Depth [28]. Therefore, the

scaling process on images has a larger effect on I-HAZE [6]

and O-HAZE [7] datasets according to PSNR and SSIM

metrics. Our Laplacian pyramid reduces this deforming

effect of the scaling process. We have tested our method

on all validation and test images of the challenge datasets

provided by organizers of the NTIRE 2018 challenge on

single image dehazing [4]. We have trained our final model

only on the training set, which is also provided by the

organizers. Table 2 presents average PSNR and SSIM

values and Figure 3 shows sample qualitative results.

Quantitative Results. According to Table 2, our pro-

posed method gave better PSNR and SSIM values than

CycleGAN [37] for each track of the challenge. This

shows that additional cyclic perceptual-consistency loss and

Laplacian pyramid increase the performance of original

CycleGAN [37] architecture. Moreover, PSNR and SSIM

differences between the I-HAZE [6] and O-HAZE [7]

datasets presents that outdoor scenes suffer from SSIM

values because of the long shot of the captured images.

On the other hand, they have higher PSNR values since

the produced fog spreads the atmosphere and the captured

images seem less hazed than the indoor scenes.
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Input He et al. [16] Zhu et al. [38] Ren et al. [24] Berman et al. [8] Cai et al. [10] Cycle-Dehaze

Figure 4: Qualitative results on natural hazy images by comparing with state-of-the-art-results.

Qualitative Results. Figure 3 shows the qualitative

difference between CycleGAN [37] and Cycle-Dehaze.

From the qualitative results, it can be clearly seen that

dehazed images by Cycle-Dehaze has less noise and sharper

edges for both indoor and outdoor scenes, where cyclic

perceptual-consistency loss reduces the noise of the de-

hazed images and Laplacian pyramid leads sharper edges.

Since outdoor scenes include more textural repetitions than

indoor scenes, recovering textures of O-HAZE [7] is harder

than I-HAZE [6]. Therefore, our sharpness on edges

reduces in outdoor conditions.

4.4. Results on CrossDataset Image Dehazing

CNNs mostly tend to overfit on a specific dataset rather

than learning the targeted task. To the best of our know-

ledge, fine-tuning the trained model on a targeted dataset is

the most popular solution of overfitting. On the other hand,

we have analyzed our method with two distinct experiments

in cross-dataset setups, in which entirely different datasets

have been used for the training and testing phases. Firstly,

we have tested Cycle-Dehaze on some popular natural

images used by image dehazing community by scaling them

to 256 × 256. Figure 4 provides the qualitative results

obtained on them. Secondly, we have tested the final

model trained on NYU-Depth [28] dataset on I-HAZE [6]

dataset and vice versa, since both of the datasets have

been created under indoor conditions. Table 3 presents

the accuracies of cross-dataset testing and Figure 5 shows

the visual difference of cross-dataset testing between the

datasets captured at indoor scenes: NYU-Depth [28] and

I-HAZE [6] datasets.

Training set Test set PSNR SSIM

NYU-Depth [28] NYU-Depth [28] 15.41 0.66

I-HAZE [6] NYU-Depth [28] 13.12 0.59

I-HAZE [6] I-HAZE [6] 18.03 0.80

NYU-Depth [28] I-HAZE [6] 14.76 0.73

Table 3: Cross-dataset quantitative results of Cycle-Dehaze

architecture on the datasets captured at indoor scenes.
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Single-dataset Cross-dataset

Figure 5: Comparative qualitative results between single

and cross dataset experiments via Cycle-Dehaze.

Quantitative Results. According to Table 3, Cycle-

Dehaze obtains considerably high PSNR and SSIM values

on cross-dataset testing. As a matter of fact, the results

both on NYU-Depth [28] and I-HAZE [6] are as fine

as original CycleGAN [37] architecture on regular single

dataset testing. This shows that Cycle-Dehaze mostly learns

the dehazing task rather than overfitting on a dataset. Due

to the cyclic mechanism of Cycle-Dehaze, our method

focus on adding a haze on images beside cleaning a haze.

Therefore, Cycle-Dehaze learns what is haze regardless of

the image dehazing problem. On the other side, the methods

only addressed the dehazing process tend to focus on color

enhancement on the specific dataset. From the result of

cross-dataset experiments, Cycle-Dehaze can be considered

as a practical solution on real-world conditions for single

image dehazing.

Qualitative Results. Figure 4 shows the comparative

qualitative results of Cycle-Dehaze on natural hazy images

with respect to state-of-the-art image dehazing methods

[8, 10, 16, 24, 38]. According to qualitative results, the

performance of Cycle-Dehaze is perceptually satisfying on

natural images, especially when the color tones of neigh-

boring pixels are very close to each other. Specifically,

Cycle-Dehaze preserves the natural color toning of hazy

image after dehazing process. Consequently, Cycle-Dehaze

keeps the shadows and depth on the image more perceptible.

Figure 5 includes the images, which are dehazed by

regular Cycle-Dehaze and by the cross-dataset version of

it. According to qualitative results, both methods can clear

the haze from the input images. On the other hand, the color

recovery on the single dataset is better than on cross-dataset

which leads lower PSNR results on cross-dataset scenario.

Since the haze thickens at some parts of the images, our

model can not estimate the actual ground truth color if it is

trained on another dataset.

5. Conclusion

We proposed a single image dehazing network, named as

Cycle-Dehaze, which directly generates haze-free images

from hazy input images without estimating parameters of

the atmospheric scattering model. Besides, our network

provides a training process of hazy and ground truth images

in an unpaired manner. In order to retain the high visual

quality of haze-free images, we improved cycle-consistency

loss of CycleGAN architecture by combining it with the

perceptual loss. Cycle-Dehaze takes low-resolution images

as input, so it requires downscaling of its inputs as a

pre-processing step. For reducing distortion on images

while resizing, we utilized Laplacian pyramid to upscale

low-resolution images instead of using directly bicubic

upscaling. The experimental results show that our method

produces visually better images and achieves higher PSNR

and SSIM values than CycleGAN architecture. Moreover,

we performed additional experiments on the cross-dataset

scenario to demonstrate generalizability of our model for

different domains.
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