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Abstract It is shown that the discrete-time version of the neoclassical one-sector opti-
mal growth model with elastic labor supply and standard monotonicity and convexity
assumptions on technology and preferences can have periodic solutions of any period
as well as chaotic solutions. The optimality of these non-monotonic solutions is traced
back to strong income effects. When technology and preferences are parameterized as
it is commonly done in quantitative macroeconomic studies, these phenomena cannot
occur.

Keywords Optimal growth · Endogenous labor supply · Periodic solutions · Chaotic
dynamics

JEL Classification C61 · O41

1 Introduction

The neoclassical one-sector growth model with infinitely lived households has been
widely used to study the causes and consequences of long-run growth and business
cycles.Whereas the deterministic version of this model with inelastic labor supply has
the property that all solutions converge monotonically to a unique interior steady state,
this is not necessarily the case when labor supply is elastic and time is modeled as a
discrete variable.DeHek (1998) provides both an example inwhich there existmultiple
interior steady states and an example in which the optimal solution displays periodic
oscillations. He concludes his paper by posing the question of “whether this model
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with leisure-dependent utility is able to generatemore complex dynamics, in particular,
chaos” (DeHek 1998, p. 270). Kamihigashi (2015) addresses themultiplicity of steady
states in a more systematic way and proves that the model can have any finite number
of steady states or even a continuum of steady states.

The purpose of the present paper is to conduct a similar systematic analysis of
period-2 cycles and to provide an affirmative answer to the question by De Hek (1998)
regarding more complicated dynamics. To this end, we first extend the results from
De Hek (1998) by proving that, for any time-preference factor between 0 and 1, there
exist a production function and an instantaneous utility function—both satisfying stan-
dard monotonicity and convexity assumptions—such that the resulting model admits
a locally asymptotically stable optimal solution which is periodic with period 2. Fur-
thermore, we construct a robust example of an economy for which there exists an
optimal solution that has period 3. The existence of a solution with period 3 implies
the existence of periodic solutions of all periods (see Sarkovskii 1964) as well as the
occurrence of topological chaos (see Li and Yorke 1975).

The one-sector growthmodel with elastic labor supply forms the backbone of many
modern dynamic stochastic general equilibrium models including real-business-cycle
models and new Keynesian models. The standard approach to analyzing these models
involves as its first step the specification of production functions and utility functions in
parametric form. There are only a few classes of parametric families of functions that
are used in quantitative macroeconomic research. In these specifications, it is typically
the case that the utility function is additively separable with respect to consumption
and leisure or that both the production function and the utility function are smoothwith
nonnegative cross-partial derivatives. We show that neither cycles nor chaos can be
optimal under these assumptions.Moreover, the emergence of period-3 cycles requires
unrealistically strong time preference as shown by Sorger (1994), Mitra (1996), and
Nishimura and Yano (1996). Finally, we also point out that according to Hartl (1987)
non-monotonic dynamics such as cycles and chaos are ruled out in the continuous-time
version of the model.

The parametric families of production and utility functions mentioned in the pre-
vious paragraph form only a small subset of the set of those functions which satisfy
the standard monotonicity and convexity assumptions on technology and preferences.
Nevertheless, intuitive reasoning in the economics profession is highly influenced by
models which use these parametric specifications. It is therefore of interest to find out
which mechanisms are responsible for the periodic or even chaotic optimal solutions
and which are therefore ruled out by the typical parametric specifications. De Hek
(1998) links the occurrence of multiple steady states and cycles to the substitutability
or complementarity, respectively, of consumption and leisure. Kamihigashi (2015),
on the other hand, argues that normality of leisure is what rules out multiple steady
states. The results and examples of the present paper support an intuitive explanation
by income effects as in Kamihigashi (2015) rather than by substitution effects as in
De Hek (1998). In particular, we believe that a strong and positive income effect on
consumption combined with inferiority of leisure is the most plausible explanation of
the non-monotonicity of optimal solutions.
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Themodel studied in the present paper coincideswith that analyzed byKamihigashi
(2015) but differs slightly from that used by De Hek (1998).1 More specifically, we
assume that output in period t is produced from investment made in period t − 1 and
labor supplied in period t , whereas De Hek (1998) assumes that both factor inputs for
period-t production are determined in period t−1. We have chosen the present setting
because we consider it to be more popular in macroeconomics than the one employed
in De Hek (1998). It has to be emphasized, however, that for every result or example
presented in this paper one can derive a corresponding result or example, respectively,
using the timing assumption from De Hek (1998). In particular, deterministic chaos
can also occur in the setting studied in De Hek (1998).

The rest of the paper is organized as follows. Section 2 describes the model and
Sect. 3 presents and discusses the results and their implications. All proofs are given
in “Appendix.”

2 The model

Time evolves in discrete periods t ∈ N0 = {0, 1, 2, . . .}. Let us denote by kt and �t the
period-t factor inputs of capital and labor, respectively, and by f (kt , �t ) the amount of
output that is available in period t . This amount consists of output produced in period
t plus non-depreciated capital from the previous period. The production function f
satisfies the following assumption.

Assumption 1 (i) The function f : R+ × [0, 1] �→ R+ is continuous, concave,
homogeneous of degree 1, and continuously differentiable on R++ × (0, 1].

(ii) There exists k̄ > 0 such that f (k̄, 1) = k̄.
(iii) For every k > 0, it holds that f (k, �) is strictly increasing and strictly concave

with respect to � ∈ [0, 1].
(iv) For every � ∈ (0, 1], it holds that f (k, �) is strictly increasing and strictly concave

with respect to k ∈ R+.
Output can be used for consumption and for investment, and we denote by ct the

amount that is consumed in period t . A sequence (kt , �t , ct )
+∞
t=0 is called a feasible

allocation if the conditions kt ≥ 0, �t ∈ [0, 1], ct ≥ 0, and

ct + kt+1 = f (kt , �t ) (1)

hold for all t ∈ N0.
Throughout the paper, we assumewithout furthermentioning that the initial endow-

ment of the economy with capital, k0, is such that k0 ∈ [0, k̄]. Together with
Assumption 1, this implies that every feasible allocation satisfies kt ∈ [0, k̄] and
ct ∈ [0, k̄] for all t ∈ N0. When we specify the preferences over allocations, we may
therefore restrict the domain of the instantaneous utility function accordingly.

The economy is endowed with a single unit of time per period such that 1 − �t
denotes the time that is available for leisure. The preferences of the social planner are
described by the welfare functional

1 See also footnote 2 in Kamihigashi (2015).
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+∞∑

t=0

β t u(ct , 1 − �t ), (2)

where u is an instantaneous utility function depending on consumption and leisure
and β is a time-preference factor.

Assumption 2 The function u : [0, k̄]×[0, 1] �→ R is continuous, strictly increasing,
and strictly concave.

Assumption 3 It holds that β ∈ (0, 1).

An economy is a triple ( f, u, β). Suppose that an economy ( f, u, β) and an initial
capital endowment κ ∈ [0, k̄] are given. A feasible allocation (kt , �t , ct )

+∞
t=0 is said

to be interior if (kt , �t , ct ) ∈ (0, k̄) × (0, 1) × (0, k̄) holds for all t ∈ N0, and it is
said to be optimal from κ if it maximizes the welfare functional (2) over all feasible
allocations with the given initial capital endowment k0 = κ . A feasible allocation
(kt , �t , ct )

+∞
t=0 is called an optimal allocation for the economy ( f, u, β) if there exists

an initial endowment κ ∈ [0, k̄] such that (kt , �t , ct )+∞
t=0 is an optimal allocation from

κ .

3 The results and their implications

In this section, we investigate under which conditions an economy ( f, u, β) admits
optimal allocations which are periodic of period 2 or 3. We will also explain why the
consideration of these two period lengths is important.

We start with the case of period 2. A feasible allocation (kt , �t , ct )
+∞
t=0 is said to

be periodic of period 2 if there exist real numbers ka , kb, �a , �b, ca , and cb such that
(ki , �i , ci ) ∈ [0, k̄] × [0, 1] × [0, k̄] for i ∈ {a, b}, ka �= kb, and

(kt , �t , ct ) =
⎧
⎨

⎩
(ka, �a, ca) if t ≡ 0 mod 2,

(kb, �b, cb) if t ≡ 1 mod 2
(3)

hold. It will be convenient to introduce the following notation:2

Fa = f (ka, �a) + ka − kb − f1(kb, �b)kb − f2(kb, �b)�a,

Fb = f (kb, �b) + kb − ka − f1(ka, �a)ka − f2(ka, �a)�b.

Theorem 1 Let f and β be given such that Assumptions 1 and 3 hold. Suppose
furthermore that there exist real numbers ka, kb, �a, and �b with ka �= kb such that

2 Throughout the paper, we denote partial derivatives by subscripts. For example, u1(ca , 1 − �a) is the
partial derivative of the instantaneous utility function u with respect to its first argument evaluated at the
point (ca , 1−�a). Analogously, f2(ka , �a) is the partial derivative of the production function f with respect
to its second argument evaluated at the point (ka , �a). The notation for higher-order partial derivatives is
analogous: For example, f12(ka , �a) denotes the cross-partial derivative of f at point (ka , �a).
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(ki , �i ) ∈ (0, k̄) × (0, 1) holds for i ∈ {a, b}. The following two statements are
equivalent:

(a) There exist an instantaneous utility function u satisfying Assumption 2 and a
pair of real numbers (ca, cb) ∈ (0, k̄)2 such that the periodic sequence defined by
(3) is an optimal allocation for the economy ( f, u, β).
(b) It holds that

β2 f1(ka, �a) f1(kb, �b) = 1, (4)

f (ka, �a) − kb > 0, (5)

f (kb, �b) − ka > 0, (6)

Fb + β f1(ka, �a)Fa > 0. (7)

We will now show by means of an example that the conditions stated in part (b) of
the theorem can be satisfied for any feasible value β ∈ (0, 1) even if one restricts the
technology to be of Cobb–Douglas form.

Example 1 Let α ∈ (0, 1) and β ∈ (0, 1) be arbitrary constants and define

A = 1/(αβ) > 1.

We consider a Cobb–Douglas production function of the form f (k, �) = Akα�1−α .
Moreover, let γ > 1 be given and assume that ka = γ �a and kb = γ −1�b. These
definitions imply that f1(ka, �a) = αAγ α−1, f1(kb, �b) = αAγ 1−α ,

Fa = [Aγ α + γ − (1 − α)Aγ −α]�a − (γ −1 + αAγ −α)�b,

and

Fb = [Aγ −α + γ −1 − (1 − α)Aγ α]�b − (γ + αAγ α)�a .

Because of A = 1/(αβ), it follows immediately that condition (4) is satisfied. It
remains to be shown that one can find γ > 1 such that (5)–(7) hold. Using the above
expressions, we can rewrite these three inequalities as

Aγ α�a > γ −1�b, (8)

Aγ −α�b > γ�a, (9)

Ta(γ )�b < Tb(γ )�a, (10)

where

Ta(γ ) = (1 − α)Aγ α + γ α−2 − (1 − αA)γ −1 − Aγ −α

and

Tb(γ ) = (1 − αA)γ α + Aγ 2α−1 − (1 − α)Aγ −1 − γ.

123
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Because of A > 1, it follows that the two inequalities in (8)–(9) determine a non-
empty conical area in (�a, �b)-space, the lower boundary of which is formed by the
ray �b = A−1γ 1+α�a and the upper boundary by the ray �b = Aγ 1+α�a . Using
A = 1/(αβ), α ∈ (0, 1), and β ∈ (0, 1), it is straightforward to verify that T ′

i (1) >

0 = Ti (1) holds for i ∈ {a, b}. Obviously, this implies that both Ta(γ ) and Tb(γ )

are strictly positive, provided that γ is strictly greater than but sufficiently close to
1. Consequently, there exists a pair (�a, �b) ∈ (0, 1)2 such that the three inequalities
(8)–(10) are simultaneously satisfied, provided that Tb(γ )/Ta(γ ) > A−1γ 1+α . The
latter condition can be expressed as

Z(γ ) = (1 − α − αA + A−1)γ α + (A − A−1)γ 2α−1 − (1 − α)Aγ −1

−(1 − α)γ 1+2α > 0.

We have Z(1) = 0 and

Z ′(1) = −α2A + α2 − αA−1 + αA + A−1 − 1 = (1 − α)(1 − β)(1 − αβ)/β > 0,

where we have once more used A = 1/(αβ), α ∈ (0, 1), and β ∈ (0, 1). Obviously,
this implies that Z(γ ) > 0 holds for γ greater than but sufficiently close to 1. Hence,
we have demonstrated that, for every time-preference factor β ∈ (0, 1), there exist a
Cobb–Douglas production function f and numbers ka , kb, �a , �b with ka �= kb such
that condition (b) of Theorem 1 holds.

Together with Theorem 1, the above example gives rise to the following corollary.

Corollary 1 For every β ∈ (0, 1), there exist a Cobb–Douglas production function f
and an instantaneous utility function u satisfying Assumption 2 such that the economy
( f, u, β) admits an optimal allocation which is periodic of period 2.

In “Appendix,” we show that the periodic optimal allocations constructed in Exam-
ple 1 are locally asymptotically stable, provided that the utility function u is chosen
appropriately. Hence, our results are more general than those in De Hek (1998) as they
guarantee the existence of locally asymptotically stable optimal allocations of period
2 for all time-preference factors β ∈ (0, 1).

Even if Corollary 1 demonstrates that periodic optimal allocations can exist under
a typical parametric specification of the production function (namely Cobb–Douglas),
it does not say anything about the properties of the utility function that give rise to
such an outcome. Our next result identifies two conditions that rule out the optimality
of periodic allocations.

Theorem 2 Consider an economy ( f, u, β) satisfying Assumptions 1–3 and sup-
pose that there exist real numbers ka, kb, �a, �b, ca, and cb satisfying ka �= kb and
(ki , �i , ci ) ∈ (0, k̄) × (0, 1) × (0, k̄) for i ∈ {a, b} such that the periodic sequence
defined by (3) is an optimal allocation for the economy ( f, u, β). Then neither of the
following two statements is true:

(a)There exist functions v : [0, k̄] �→ R and q : [0, 1] �→ R such that u(c, 1−�) =
v(c) + q(1 − �) holds for all (c, �) ∈ [0, k̄] × [0, 1] and such that v and q are
locally differentiable at ci and 1 − �i , respectively, for both i ∈ {a, b}.
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(b) The functions f and u are twice continuously differentiable with f12(k, �) ≥ 0
and u12(c, 1 − �) ≥ 0 for all (k, �, c) ∈ (0, k̄] × (0, 1) × (0, k̄].
Theorem 2(a) is related to corollary 2 in Kamihigashi (2015), which shows that

in the case of an additively separable utility function the model admits at most one
interior steady state. Theorem 2(b) is related both to proposition 1 in Kamihigashi
(2015) and to proposition 2.4 in De Hek (1998). To explain these relationships, first
note that u12(c, 1 − �) ≥ 0 for all (c, �) ∈ (0, k̄) × (0, 1) is a sufficient condition for
the normality of both consumption and leisure. This observation provides the link to
proposition 1 in Kamihigashi (2015), which is directly derived from the assumption
of normality of leisure. The connection to proposition 2.4 in De Hek (1998) becomes
clear by noting that De Hek (1998) assumes that output in period t is produced from
labor supplied in period t−1, whereas we assume that output in period t requires labor
input in the same period t . This difference in timing has the effect that Theorem 2(b)
above requires a nonnegative cross-partial derivative u12(c, 1 − �), whereas De Hek
(1998) can rule out periodic optimal allocations in the case where u12(c, 1 − �) ≤ 0
holds.

Since most of the parametric families of production and utility functions used in
quantitative macroeconomic models satisfy at least one of the two properties men-
tioned in Theorem 2, we cannot expect to find familiar closed-form utility functions
that allow periodic optimal allocations. In the proof of Theorem 1, we construct the
utility function as the pointwise minimum of two quadratic polynomials in consump-
tion and leisure. Properties of such a utility function (in addition to those that are
imposed by Assumption 2) are hard to characterize. The advantage of the construction
in the proof of Theorem 1 is that it can easily be modified to find economies with
optimal allocations of any period, see Theorem 3 and the ensuing discussion. In the
present case of an optimal allocation of period 2, however, there does indeed exist a
simpler construction which results in a quadratic utility function. We illustrate this
construction in the following example, which will also be helpful to understand the
mechanisms that are responsible for the optimality of periodic allocations.3

Example 2 As inExample 1,we assume f (k, �) = Akα�1−α , A = 1/(αβ), ka = γ �a ,
and kb = γ −1�b, where γ > 1. Let us fix the parameter values α = β = 1/2, from
which it follows that A = 4 and k̄ = 16. Furthermore, we set �a = 1/2 and �b = 1/3.
We know from Example 1 that, whenever γ is sufficiently close to 1, there exist a
utility function u satisfying Assumption 2 and consumption values ca and cb such
that the economy ( f, u, β) admits the optimal allocation defined by (ka, �a, ca) and
(kb, �b, cb). We shall now demonstrate that the quadratic utility function

u(c, 1 − �) = p1c + p2(1 − �) + p11c2

2
+ p12c(1 − �) + p22(1 − �)2

2
(11)

does the trick, provided that the coefficients p1, p2, p11, p12, and p22 are chosen
appropriately.

3 I am indebted to Marwan Lisser for making me aware of this simpler construction in the case of period 2.
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Using the above specifications and defining z = γ 1/2, we have

ka = z2

2
, �a = 1

2
, ca = 2z − 1

3z2
, kb = 1

3z2
, �b = 1

3
, cb = 4

3z
− z2

2
,

f (ka, �a) = 2z, f (kb, �b) = 4

3z
, (12)

and

f1(ka, �a) = f2(kb, �b) = 2

z
, f2(ka, �a) = f1(kb, �b) = 2z. (13)

Substituting (11)–(13) into conditions (42)–(45) in “Appendix,” we obtain four equa-
tions for the five undetermined coefficients p1, p2, p11, p12, and p22. One set of values
satisfying these equations is given by

p1 = 21

20
,

p2 = 40 − 162z − 8z2 − 240z3 + 412z4 + 3z5

20z3
,

p11 = 3z(60 − 59z)

10(8 + 24z − 48z3 − 9z4)
,

p12 = 3(40 − 42z − 8z2 − 240z3 + 252z4 + 3z5)

10z(8 + 24z − 48z3 − 9z4)
,

p22 = − 3P(z)

10z3(8 + 24z − 48z3 − 9z4)
,

where

P(z) = 80 − 84z − 1312z2 − 1024z3 + 1208z4 + 3564z5 + 2928z6 − 4224z7

− 1152z8 − 9z9.

It is straightforward to verify that the function u in (11) satisfies Assumption 2 when-
ever z > 1 is chosen sufficiently close to 1. The optimality of the periodic allocation
defined by (ka, �a, ca) and (kb, �b, cb) for such a value of z follows now directly from
the fact that (42)–(45) hold and from Lemma 1 in “Appendix.”

Let us try to develop some intuition for the emergence of non-monotonic dynamics
in the one-sector growth model with elastic labor supply. De Hek (1998) attributes this
phenomenon to consumption and labor being complements. What he means by that is
the property that u12(c, 1−�) > 0 holds.4 As we have pointed out before, the different
timing assumption in our model would then mean that periodic optimal allocations
require consumption and leisure to be substitutes in the sense of u12(c, 1 − �) < 0,

4 This is not the usual definition of complementarity, though. According to Shephard’s lemma, two goods
are (net) complements if the cross-partial derivative of the expenditure function with respect to the prices
is negative rather than if the cross-partial derivative of the utility function with respect to the quantities is
positive.
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which is indeed consistent with Theorem 2. This property alone, however, does not
seem to be the whole explanation. To explain our reasoning, consider Example 2 in
the limit as z = γ 1/2 approaches 1. The utility function and the allocation in this limit
are as follows:5

u(c, 1 − �) = 21c

20
+ 9(1 − �)

4
− 3c2

500
− 3c(1 − �)

50
− 3(1 − �)2

20
, (14)

ka = 1

2
, �a = 1

2
, ca = 5

3
, kb = 1

3
, �b = 1

3
, cb = 5

6
, (15)

f (ka, �a) = 2, f (kb, �b) = 4

3
, (16)

f1(ka, �a) = f2(ka, �a) = f1(kb, �b) = f2(kb, �b) = 2. (17)

First note from (17) that the marginal products f1(kt , �t ) and f2(kt , �t ) are constant
along the periodic allocation. In a competitive equilibrium interpretation of the model,
these marginal products correspond to the factor prices. The fact that the factor prices
are constant along the allocation suggests that neither intertemporal nor intratemporal
substitution effects are responsible for the non-monotonic dynamics. As we will argue
now, it ismuchmoreplausible that incomeeffects play amajor role.Given the quadratic
utility function in (14), it is easy to compute the corresponding demand functionswhich
maximize u(c, 1 − �) subject to the budget constraint c + ω(1 − �) ≤ y, where y
denotes income and ω is the price of leisure relative to consumption. In the current
model, we know that the relative priceωmust be equal to themarginal product of labor,
that is, ω = f2(k, �). We see from (17) that this relative price is constant and equal
to 2 along the periodic allocation under consideration. Because the utility function is
quadratic, the demand functions are linear in income y, and the coefficients of y in the
demand functions for consumption or leisure measure the effects of income changes
on the demand for the respective good. In the demand function for consumption, this
coefficient is equal to 5/3, whereas in the demand function for leisure it is −1/3. We
therefore see that leisure is an inferior good. What is more important, however, is
that consumption reacts very strongly to income changes. Now consider the periodic
optimal allocation in (15). If the economy is in state a with the high capital stock
ka = 1/2, income is high as well, namely f (ka, �a) = 2. Due to the strong income
effect on consumption, consumption in state a is ca = 5/3, which corresponds tomore
than 83% of income. This, in turn, means that households save very little and that next
period’s capital stock and income are low, namely kb = 1/3 and f (kb, �b) = 4/3. The
strong (positive) income effect on consumption implies that consumption in state b is
cb = 5/6, a mere 62.5% of income. The corresponding high investment brings the
capital stock back up to ka = 1/2, and the same process repeats itself. Inferiority of
leisure amplifies the fluctuations, because it leads to high (low) labor input in periods
with high (low) capital. We believe that these mechanisms, which are clearly visible
in Example 2, are also the main driving forces for the non-monotonicity of allocations
in the general model.

5 For z slightly larger than 1, the values will be close to those stated in (14)–(17).
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Let us now turn to the case of period 3. A feasible allocation (kt , �t , ct )
+∞
t=0 is

periodic of period 3 if there exist real numbers ka , kb, kc, �a , �b, �c, ca , cb, and cc such
that ka , kb, and kc are mutually different from each other and such that

(kt , �t , ct ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ka, �a, ca) if t ≡ 0 mod 3,

(kb, �b, cb) if t ≡ 1 mod 3,

(kc, �c, cc) if t ≡ 2 mod 3

(18)

holds. Given such an allocation, we define

Fac = f (ka, �a) + kc − kb − f1(kb, �b)kb − f2(kb, �b)�a,

Fba = f (kb, �b) + ka − kc − f1(kc, �c)kc − f2(kc, �c)�b,

Fcb = f (kc, �c) + kb − ka − f1(ka, �a)ka − f2(ka, �a)�c,

Faa = f (ka, �a) + ka − kb − f1(kc, �c)kc − f2(kc, �c)�a,

Fbb = f (kb, �b) + kb − kc − f1(ka, �a)ka − f2(ka, �a)�b,

Fcc = f (kc, �c) + kc − ka − f1(kb, �b)kb − f2(kb, �b)�c.

Theorem 3 Let f and β be given such that Assumptions 1 and 3 hold. Suppose
furthermore that there exist real numbers ka, kb, kc, �a, �b, and �c such that ka �= kb,
kb �= kc, ka �= kc, and (ki , �i ) ∈ (0, k̄) × (0, 1) hold for i ∈ {a, b, c}. The following
two statements are equivalent:

(a) There exist an instantaneous utility function u satisfying Assumption 2 and a triple
of real numbers (ca, cb, cc) ∈ (0, k̄)3 such that the periodic sequence defined by (18)
is an optimal allocation for the economy ( f, u, β).
(b) It holds that

β3 f1(ka, �a) f1(kb, �b) f1(kc, �c) = 1, (19)

f (ka, �a) − kb > 0, (20)

f (kb, �b) − kc > 0, (21)

f (kc, �c) − ka > 0, (22)

β2 f1(ka, �a) f1(kc, �c)Fac + Fbb > 0, (23)

β f1(kc, �c)Fcc + Fba > 0, (24)

β f1(ka, �a)Faa + Fcb > 0, (25)

β2 f1(ka, �a) f1(kc, �c)Fcc + β f1(ka, �a)Faa + Fbb > 0, (26)

β2 f1(ka, �a) f1(kc, �c)Fac + β f1(ka, �a)Fba + Fcb > 0. (27)

Having derived the necessary and sufficient conditions on f and β for the existence
of an economy ( f, u, β) that admits an interior optimal allocation of period 3, we now
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show by means of an example that these conditions can be satisfied even if we restrict
the technology to be of the Cobb–Douglas variety.6

Example 3 We specify the production function by f (k, �) = Akα�1−α with α = 1/3
and the time-preference factor by β = 7/20. Furthermore, we choose the allocation
variables ka = 1507, kb = 2143, kc = 3200, �a = 2/5, �b = 57/100, and �c =
21/25. The productivity parameter A is determined in such a way that (19) holds,
which yields A ≈ 2079. With these specifications, it is straightforward to verify that
conditions (20)–(27) are satisfied.7 In particular, consumption is given by ca ≈ 10800,
cb ≈ 15231, and cc ≈ 25774. Note that the periodic optimal allocation is apparently
not close to a steady state because the coefficients of variation of capital, labor, and
consumption along the allocation are between 30 and 40%.

From Theorem 3 and Example 3, we obtain the following corollary.

Corollary 2 There exist a Cobb–Douglas production function f , an instantaneous
utility function u satisfying Assumption 2, and a time-preference factor β satisfying
Assumption 3 such that the economy ( f, u, β) admits an optimal allocation which is
periodic of period 3.

To explain the implications of the above results, let an economy ( f, u, β) be given
such that Assumptions 1–3 hold. It follows from standard results on dynamic program-
ming8 that, for every initial capital endowment κ ∈ [0, k̄], there exists a unique optimal
allocation from κ . Moreover, there exists a continuous function h : [0, k̄] �→ [0, k̄]
such that the set of all capital sequences corresponding to optimal allocations for the
economy ( f, u, β) coincides with the set of all trajectories of the difference equation

kt+1 = h(kt ) for all t ∈ N0 (28)

which start in initial states k0 ∈ [0, k̄]. Equation (28) says that the capital stocks in
every optimal allocation form a trajectory of a continuous dynamical systemdefined on
the one-dimensional compact state space [0, k̄]. When the economy ( f, u, β) admits
an optimal allocation of period 3, it follows that the corresponding difference Eq. (28)
has a periodic trajectory with period 3. Continuous dynamical systems which are
defined on a one-dimensional state space, such as (28), are very well studied, and it is
known that the existence of periodic solutions with period 3 has strong implications.9

First, according to Sarkovskii (1964) it follows that a difference equation that admits
a periodic solution of period 3 admits periodic solutions of all periods p ∈ N. Sec-
ond, according to Li and Yorke (1975), the existence of a periodic solution of period
3 implies that the dynamical system (28) exhibits topological chaos. This means in
particular that there exists an uncountable set S of initial capital endowments such
that the unique optimal allocation emanating from any κ ∈ S is neither periodic nor

6 This is just one of several examples that we have found.
7 The verification has been executed in exact algebra with the software Mathematica�.
8 See, e.g., Miao (2014), Sorger (2015), or Stokey and Lucas (1989).
9 See, e.g., Collet and Eckmann (1980), De Melo and Van Strien (1993), or Sorger (2015).
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asymptotically periodic and that, for any pair {κ, κ ′} ⊆ S, the two optimal alloca-
tions starting in κ and κ ′, respectively, become arbitrarily close to each other without
converging to each other. Hence, Corollary 2 proves that the neoclassical one-sector
growth model with elastic labor supply can generate very complicated dynamics and
that its optimal allocations can display sensitive dependence on initial conditions.

One consequence of Sarkovskii (1964) is that any economy ( f, u, β) that admits
an optimal allocation of period 3 must also admit an optimal allocation of period 2.
Hence, it follows from Theorem 2 that such an economy can have neither an additively
separable utility function nor smooth production and utility functions with nonnega-
tive cross-partial derivatives. Moreover, whereas we could establish the existence of
optimal allocations of period 2 for any feasible time-preference factor β ∈ (0, 1), this
is not possible in the case of optimal allocations of period 3. This follows from Mitra
(1996) and Nishimura and Yano (1996), who have shown in a more general context
that an optimal allocation with period 3 can only exist if β < (3 − √

5)/2 ≈ 0.38.
The mechanisms that generate chaotic dynamics in the present model are most

likely the same ones that are responsible for the emergence of periodic allocations
of period 2, namely strong income effects. These are consistent with the standard
Assumptions 1–3, but they do not occur when production and utility functions are
parameterized as it is commonly done in quantitative macroeconomic studies. In the
constructive proof of Theorem 3, we define the utility function u as the minimum of
three quadratic polynomials, which does not lend itself to intuitive interpretations. The
simpler construction used in Example 2 does not work in the present setting because
a quadratic polynomial has only five parameters, which leaves too few degrees of
freedom to satisfy the six equations stated in (69)–(74).

We have imposed smoothness of the production function f in Assumption 1 but
have not made an analogous assumption on the instantaneous utility function u. The
reason is that the function u employed in the constructive proofs of Theorems 1 and
3, respectively, is the minimum of finitely many smooth polynomials. This function
is not differentiable along the one-dimensional manifolds at which the graphs of the
polynomials intersect. It is possible, however, to replace the function u in these proofs
by a smooth function satisfying Assumption 2 without violating any of the first-order
conditions. This is the case because the first-order conditions involve the partial deriva-
tives of the function u only at the (two or three) points along the allocation, and because
these points are separated from the manifolds along which the non-differentiability
occurs. Thus, the two theoremswould remain true ifwewere to strengthenAssumption
2 by imposing smoothness of the instantaneous utility function.

Finally let us point out that non-monotonic allocations such as periodic and chaotic
ones cannot occur in a continuous-time version of themodel such as the one underlying
Benhabib and Farmer (1994) or Sorger (2000). This is the case because strict concav-
ity of the utility function would imply the uniqueness of an optimal allocation from
any given initial value κ and because continuous-time dynamic optimization problems
with a single state variable and unique optimal solutions cannot have non-monotonic
optimal solutions (see, Hartl 1987). Thus, whereas the results about the possible mul-
tiplicity of steady states derived by Kamihigashi (2015) hold essentially unchanged if
time varies continuously, our existence results for periodic optimal allocations have
no counterpart in the continuous-time setting.
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4 Appendix

Lemma 1 Let ( f, u, β) be an economy satisfying Assumptions 1–3 and suppose that
there exist real numbers ka, kb, �a, �b, ca, and cb such that ka �= kb and (ki , �i , ci ) ∈
(0, k̄) × (0, 1) × (0, k̄) for i ∈ {a, b} hold and such that the utility function u is
continuously differentiable locally around both of the two points (ca, 1 − �a) and
(cb, 1 − �b).
(a) The sequence (kt , �t , ct )

+∞
t=0 defined by (3) is an optimal allocation for the economy

( f, u, β) if and only if the following conditions hold:

ca + kb = f (ka, �a), (29)

cb + ka = f (kb, �b), (30)

β2 f1(ka, �a) f1(kb, �b) = 1, (31)

u1(cb, 1 − �b) = β f1(ka, �a)u1(ca, 1 − �a), (32)

u1(ca, 1 − �a) f2(ka, �a) = u2(ca, 1 − �a), (33)

u1(cb, 1 − �b) f2(kb, �b) = u2(cb, 1 − �b). (34)

(b) If the sequence (kt , �t , ct )
+∞
t=0 defined by (3) is an optimal allocation for the econ-

omy ( f, u, β), then it holds that (ca, �a) �= (cb, �b).

Proof (a) Consider the allocation specified by (3). Because of (ki , �i , ci ) ∈ (0, k̄) ×
(0, 1) × (0, k̄), the allocation is feasible and interior if and only if (29)–(30) hold. It
is known that, under Assumptions 1–3, an interior feasible allocation is an optimal
allocation if and only if the first-order optimality conditions

u1(ct , 1 − �t ) = β f1(kt+1, �t+1)u1(ct+1, 1 − �t+1) for all t ∈ N0, (35)

u1(ct , 1 − �t ) f2(kt , �t ) = u2(ct , 1 − �t ) for all t ∈ N0 (36)

as well as the transversality condition limt→+∞ β t u1(ct , 1−�t )kt+1 = 0 are satisfied.
These conditions require differentiability of the production function f and the instan-
taneous utility function u locally around the allocation, which has been assumed for f
in Assumption 1 and for u directly in the lemma. The first-order condition (36) holds
along the given allocation if and only if (33)–(34) are satisfied. The Euler Eq. (35)
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holds along the given allocation if and only if (32) and the corresponding equation

u1(ca, 1 − �a) = β f1(kb, �b)u1(cb, 1 − �b) (37)

are satisfied. Multiplying the left-hand sides and the right-hand sides of (32) and
(37), we obtain (31). Conversely, if (31) holds, then one of the two Euler Eqs. (32)
and (37) is redundant. In other words, Eqs. (32) and (37) together are equivalent to
Eqs. (31)–(32). Finally, the transversality condition holds because of the boundedness
of the allocation, the interiority of (ci , 1 − �i ) for i ∈ {a, b}, and Assumption 3. This
completes the proof of part (a).

(b) Suppose to the contrary that (ca, �a) = (cb, �b) = (c, �) holds. Then it follows
from (31)–(32) that f1(ka, �) = f1(kb, �) = 1/β, which contradicts ka �= kb due
to the strict concavity of the mapping k �→ f (k, �). The proof of the lemma is now
complete. ��
Lemma 2 Let X and Y be non-empty and compact intervals on the real line and
let xa, xb, ya, and yb be real numbers such that xi ∈ int X and yi ∈ int Y hold for
i ∈ {a, b} and such that (xa, ya) �= (xb, yb). Furthermore, let w1a, w1b, w2a, and w2b
be positive real numbers. The following two statements are equivalent:
(a) There exists a function w : X × Y �→ R which is continuous, strictly increasing,
and strictly concave and which is continuously differentiable locally at the points
(xa, ya) and (xb, yb) with partial derivatives w1(xi , yi ) = w1i and w2(xi , yi ) = w2i
for i ∈ {a, b}.
(b) The inequality

(w1a − w1b)(xb − xa) + (w2a − w2b)(yb − ya) > 0 (38)

holds.

Proof We first prove that (a) implies (b). By strict concavity of w and (xa, ya) �=
(xb, yb), it follows that

w(xa, ya) < w(xb, yb) + w1b(xa − xb) + w2b(ya − yb)

and

w(xb, yb) < w(xa, ya) + w1a(xb − xa) + w2a(yb − ya).

Combining these two inequalities, we obtain

w1b(xb − xa) + w2b(yb − ya) < w(xb, yb) − w(xa, ya) < w1a(xb − xa)

+w2a(yb − ya).

Obviously, this implies (38).
The proof that (b) implies (a) is divided into three steps.
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Step 1: Inequality (38) is equivalent to w1b(xb − xa) + w2b(yb − ya) < w1a(xb −
xa) + w2a(yb − ya). Hence, there exist real numbers wa and wb such that

w1b(xb − xa)+w2b(yb − ya) < wb −wa < w1a(xb − xa)+w2a(yb − ya). (39)

Step 2: We define for i ∈ {a, b} and all (ε1i , ε2i ) ∈ R
2+ the quadratic polynomial

g(·, · | i, ε1i , ε2i ) : X × Y �→ R by

g(x, y | i, ε1i , ε2i ) = wi + w1i (x − xi ) + w2i (y − yi )

−ε1i (x − xi )
2 − ε2i (y − yi )

2.

Since the numbers w1i and w2i are strictly positive for i ∈ {a, b}, it follows
that g(x, y | i, 0, 0) is strictly increasing with respect to (x, y) for i ∈ {a, b}.
Since X×Y is compact, this property is robust to small perturbations of ε1i and
ε2i . Hence, g(x, y | i, ε1i , ε2i ) is strictly increasing in (x, y) for all sufficiently
small positive numbers ε1i and ε2i and both i ∈ {a, b}. It is also clear that
g(x, y | i, ε1i , ε2i ) is strictly concave in (x, y) when ε1i > 0 and ε2i > 0 hold
for i ∈ {a, b}. The inequalities in (39) can be expressed as g(xa, ya | a, 0, 0) <

g(xa, ya | b, 0, 0) and g(xb, yb | b, 0, 0) < g(xb, yb | a, 0, 0). Due to continu-
ity of g, these strict inequalities remain true if ε1i and ε2i are sufficiently small
positive numbers instead of 0. It is therefore possible to find positive num-
bers ε̄1i and ε̄2i such that g(x, y | i, ε̄1i , ε̄2i ) is strictly increasing and strictly
concave with respect to (x, y) for i ∈ {a, b} and such that

g(xa, ya | a, ε̄1a, ε̄2a) < g(xa, ya | b, ε̄1b, ε̄2b), (40)

g(xb, yb | b, ε̄1b, ε̄2b) < g(xb, yb | a, ε̄1a, ε̄2a) (41)

hold.
Step 3: We define the function w : X × Y �→ R by

w(x, y) = min{g(x, y | i, ε̄1i , ε̄2i ) | i ∈ {a, b}}.

As a minimum of continuous, strictly increasing, and strictly concave func-
tions, the function w itself is also continuous, strictly increasing, and strictly
concave. The inequalities stated in (40)–(41) imply furthermore that w is
continuously differentiable locally around the points (xa, ya) and (xb, yb)
and that its partial derivatives at these points are given by w1(xi , yi ) =
g1(xi , yi | i, ε̄1i , ε̄2i ) = w1i and w2(xi , yi ) = g2(xi , yi | i, ε̄1i , ε̄2i ) = w2i
for i ∈ {a, b}. ��

Proof of theorem 1 We define ca and cb by Eqs. (29)–(30). This yields strictly posi-
tive values if and only if conditions (5)–(6) hold. Condition (4) coincides with (31).
It remains to show that there exists a function u : [0, k̄] × [0, 1] �→ R satisfying
Assumption 2 and conditions (32)–(34). Since the latter equations are homogeneous
in the partial derivatives u1(ci , 1 − �i ) and u2(ci , 1 − �i ) for i ∈ {a, b}, we may
normalize the function u by setting u1(ca, 1 − �a) = 1. Solving (32)–(34) under this
normalization yields
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u1(ca, 1 − �a) = 1, (42)

u1(cb, 1 − �b) = β f1(ka, �a), (43)

u2(ca, 1 − �a) = f2(ka, �a), (44)

u2(cb, 1 − �b) = β f1(ka, �a) f2(kb, �b). (45)

Now we apply Lemma 2 with X = [0, k̄], Y = [0, 1], xi = ci , and yi = 1 − �i
for i ∈ {a, b}. This shows that there exists a function u : [0, k̄] × [0, 1] �→ R such
that Assumption 2 is satisfied and such that the partial derivatives of u at the points
(ca, 1−�a) and (cb, 1−�b) exist and are given by (42)–(45) if and only if the inequality

[1 − β f1(ka, �a)](cb − ca) + [ f2(ka, �a) − β f1(ka, �a) f2(kb, �b)](�a − �b) > 0

holds. We can use (29)–(30) to eliminate ca and cb from this condition, which yields

f (kb, �b) + kb − ka + f2(ka, �a)�a − f (ka, �a) − f2(ka, �a)�b
+β f1(ka, �a) [ f (ka, �a)+ka−kb+ f2(kb, �b)�b− f (kb, �b)

− f2(kb, �b)�a]>0.

Linear homogeneity of f implies that f2(ki , �i )�i − f (ki , �i ) = − f1(ki , �i )ki for
i ∈ {a, b}. Substituting this into the above formula, we obtain (7). This completes the
proof of Theorem 1. ��
Proof of local asymptotic stability in Example 1 The dynamics of optimal allocations
are determined by Eqs. (1) and (35)–(36). Linearizing these equations, we obtain

dct + dkt+1 = f1(t)dkt + f2(t)d�t ,

u11(t)dct − u12(t)d�t = β f1(t + 1)[u11(t + 1)dct+1 − u12(t + 1)d�t+1]
+βu1(t + 1)[ f11(t + 1)dkt+1 + f12(t + 1)d�t+1],

f2(t)[u11(t)dct − u12(t)d�t ]+u1(t)[ f12(t)dkt+ f22(t)d�t ]=u12(t)dct−u22(t)d�t ,

where we have shortened the notation by indicating evaluation of f , u, and their partial
derivatives at period-s arguments by (s). We can use the third of these equations to
express d�s in terms of dks and dcs for s ∈ {t, t + 1}. Substituting these expressions
into the first two equations and solving them for (dkt+1, dct+1), we obtain

⎛

⎝ dkt+1

dct+1

⎞

⎠ = J (kt , �t , ct )

⎛

⎝ dkt

dct

⎞

⎠ ,

where J (kt , �t , ct ) ∈ R
2×2 is the Jacobianmatrix at point (kt , �t , ct ). Since capital is a

predetermined variable while consumption is not, the periodic allocation defined in (3)
is locally asymptotically stable if the matrix J := J (ka, �a, ca)J (kb, �b, cb) has one
stable eigenvalue and if the corresponding eigenvector (zk, zc)� satisfies zk �= 0.10

10 See Sorger (2015), theorem 3.7.
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We shall now verify that this is the case for the periodic optimal allocation constructed
in Example 1 and Theorem 1.

From the construction of u in the proofs of Theorem 1 and Lemma 2, we know
that the first-order partial derivatives of the utility function are given by (42)–(45),
whereas the second-order partial derivatives are u11(ci , 1− �i ) = −2ε̄1i , u22(ci , 1−
�i ) = −2ε̄2i , and u12(ci , 1 − �i ) = 0 for i ∈ {a, b}. Furthermore, from f (k, �) =
(αβ)−1kα�1−α , ka = γ �a , and kb = γ −1�b we can easily compute all the first- and
second-order partial derivatives of the production function at the two points (ka, �a)
and (kb, �b). Using all of these results and choosing ε̄2a = ε̄2b = ε3, ε̄1b = ε2, and
ε̄1a = ε, we obtain

lim
ε→0

J =
⎛

⎝ 1/(αβ)2 −γ α−1/(αβ)

0 α2

⎞

⎠ .

This matrix has the stable eigenvalue α2 with corresponding eigenvector

⎛

⎝ αβγ α−1

1 − α4β2

⎞

⎠ .

Since the eigenvalues and eigenvectors of a matrix depend continuously on the entries
of the matrix, it follows that J has a stable eigenvalue and that the corresponding
eigenvector has a nonzero first component also if ε is positive but sufficiently small.
For such a choice of ε, it follows therefore that the periodic allocation constructed in
Example 1 is locally asymptotically stable. ��

Proof of theorem 2 (a) Suppose to the contrary that the sequence defined by (3) is an
optimal allocation and that the utility function u is additively separable and locally
differentiable along this allocation. Then it follows that conditions (29)–(31) and (42)–
(45) hold (after scaling the utility function such that u1(ca, 1 − �a) = 1). Since
u(c, 1 − �) = v(c) + q(1 − �), the latter four conditions can be written as

v′(ca) = 1, (46)

v′(cb) = β f1(ka, �a), (47)

q ′(1 − �a) = f2(ka, �a), (48)

q ′(1 − �b) = β f1(ka, �a) f2(kb, �b). (49)

Without loss of generality, we can assume ca ≤ cb. Concavity of v and (46)–(47)
imply that β f1(ka, �a) ≤ 1. Because of (31) we obtain β f1(kb, �b) ≥ 1 and, hence,
f1(ka, �a) ≤ f1(kb, �b). Concavity and linear homogeneity of f imply that ka/�a ≥
kb/�b and f2(ka, �a) ≥ f2(kb, �b). Combining these results, we get

f2(ka, �a) ≥ β f1(ka, �a) f2(kb, �b).
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Together with (48)–(49) and the concavity of q, this shows that �b ≤ �a . Since it is
assumed that ka �= kb and since we already know that ka/�a ≥ kb/�b, it follows that
ka > kb. Putting everything into (29)–(30), it follows that kb = f (ka, �a) − ca ≥
f (kb, �b) − cb = ka . This is a contradiction to ka > kb and the proof is complete.
(b) The proof is similar to that of De Hek (1998), proposition 2.4, which is why we

omit some technical details. TheBellman equation for the problemunder consideration
is

V (k) = max
�,k′

{
u( f (k, �) − k′, 1 − �) + βV (k′) | � ∈ [0, 1], k′ ∈ [0, f (k, �)]} ,

where V : [0, k̄] �→ R is the optimal value function. This function is differentiable,
strictly increasing, and strictly concave. Due to strict concavity and boundedness
assumptions, there exists a unique solution to the optimization problem on the right-
hand side of this equation, which we denote by (�, k′) = (g(k), h(k)). The first-order
conditions are

u1( f (k, g(k))−h(k), 1−g(k)) f2(k, g(k)) − u2( f (k, g(k)) − h(k), 1 − g(k)) = 0,

− u1( f (k, g(k)) − h(k), 1 − g(k)) + βV ′(h(k)) = 0.

Totally differentiating these equations with respect to k, we obtain

(u11 f2 − u12)[ f1 + f2g
′(k) − h′(k)] + u1[ f12 + f22g

′(k)]
−u12 f2g

′(k) + u22g
′(k) = 0, − u11[ f1 + f2g

′ − h′(k)] + u12g
′(k) + βV ′′h′(k) = 0,

where the functional arguments of f , u, and V as well as their derivatives have been
omitted for ease of notation. Solving these two equations for h′(k) and g′(k), one
obtains

h′(k) = u1 f12(u12 − f2u11) + f1(u11u22 − u212 + u1u11 f22)

u11u22 − u212 + β f 22 u11V
′′ − 2β f2u12V ′′ + βu22V ′′ + u1 f22(u11 + βV ′′)

.

It is easy to see that under Assumptions 1–3 and those stated in the theorem both
the numerator and the denominator of this expression are strictly positive. Hence, the
policy function h must be non-decreasing. Because optimal allocations satisfy kt+1 =
h(kt ), it follows therefore that they must be monotonic.11 This completes the proof. ��
Lemma 3 Let ( f, u, β) be an economy satisfying Assumptions 1–3 and suppose that
there exist real numbers ka, kb, kc, �a, �b, �c, ca, cb, and cc such that ka �= kb, kb �= kc,
ka �= kc, and (ki , �i , ci ) ∈ (0, k̄) × (0, 1) × (0, k̄) for i ∈ {a, b, c} hold and such that
the utility function u is continuously differentiable locally around each of the three
points (ca, 1 − �a), (cb, 1 − �b), and (cc, 1 − �c).

11 See Sorger (2015), lemma 4.1.
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(a) The sequence (kt , �t , ct )
+∞
t=0 defined by (18) is an optimal allocation for the econ-

omy ( f, u, β) if and only if the following conditions hold:

ca + kb = f (ka, �a) , cb + kc = f (kb, �b) cc + ka = f (kc, �c), (50)

β3 f1(ka, �a) f1(kb, �b) f1(kc, �c) = 1, (51)

u1(cb, 1 − �b) = β f1(kc, �c)u1(cc, 1 − �c), (52)

u1(cc, 1 − �c) = β f1(ka, �a)u1(ca, 1 − �a), (53)

u1(ci , 1 − �i ) f2(ki , �i ) = u2(ci , 1 − �i ) for i ∈ {a, b, c}. (54)

(b) If the sequence (kt , �t , ct )
+∞
t=0 defined by (18) is an optimal allocation for the

economy ( f, u, β), then it follows that the three points (ca, 1 − �a), (cb, 1 − �b) and
(cc, 1 − �c) are mutually different from each other.

Proof (a) The proof of this part is completely analogous to that of Lemma 1(a) and
is therefore omitted.

(b) Since the economy satisfies Assumptions 1–3, standard arguments from dynamic
programming imply that optimal allocations exist and that the optimal value func-
tion V : [0, k̄] �→ R is bounded, continuous, and strictly concave. Moreover, it
holds for i ∈ {a, b, c} that

(ci , �i ) = argmax{u(c, 1 − �) + βV ( f (ki , �) − c) | c ∈ [0, f (ki , �)], � ∈ [0, 1]}.

Since (ki , �i , ci ) ∈ (0, k̄) × (0, 1) × (0, k̄) holds for i ∈ {a, b, c}, it follows that

0 ∈ {u1(ci , 1 − �i ) − βp | p ∈ ∂V ( f (ki , �i ) − ci )},

where ∂V (k) denotes the subdifferential of the strictly concave function V at k.12 Now
suppose that (ca, 1 − �a) = (cb, 1 − �b) = (c̄, 1 − �̄). The above condition together
with (50) implies that

u1(c̄, 1 − �̄)/β ∈ ∂V (kb) ∩ ∂V (kc).

Because V is strictly concave and kb �= kc by assumption, the right-hand side of
this formula is the empty set. Hence, we obtain a contradiction to the assumption
(ca, 1 − �a) = (cb, 1 − �b), which proves this part of the lemma. ��
Lemma 4 Let X and Y be non-empty and compact intervals on the real line and let
xa, xb, xc, ya, yb, and yc be real numbers such that xi ∈ int X and yi ∈ int Y hold
for i ∈ {a, b, c} and such that the three points (xa, ya), (xb, yb), and (xc, yc) are
mutually different from each other. Furthermore, letw1a,w1b,w1c,w2a,w2b, andw2c
be positive real numbers. The following two statements are equivalent:

12 In parts of the literature, the terminology “subdifferential” is only used for convex functions, whereas it
is replaced by “superdifferential” in the case of concave functions.

123



74 G. Sorger

(a)There exists a functionw : X×Y �→ Rwhich is continuous, strictly increasing, and
strictly concave and which is continuously differentiable locally at the points (xa, ya),
(xb, yb), and (xc, yc) with partial derivatives w1(xi , yi ) = w1i and w2(xi , yi ) = w2i
for i ∈ {a, b, c}.

(b) It holds that

(w1b − w1a)(xa − xb) + (w2b − w2a)(ya − yb) > 0, (55)

(w1c − w1b)(xb − xc) + (w2c − w2b)(yb − yc) > 0, (56)

(w1c − w1a)(xa − xc) + (w2c − w2a)(ya − yc) > 0, (57)

w1a(xb − xa) + w1b(xc − xb) + w1c(xa − xc)

> w2a(ya − yb) + w2b(yb − yc) + w2c(yc − ya), (58)

w1a(xc − xa) + w1b(xa − xb) + w1c(xb − xc)

> w2a(ya − yc) + w2b(yb − ya) + w2c(yc − yb). (59)

Proof We first prove that (a) implies (b). Since the three points (xa, ya), (xb, yb), and
(xc, yc) are mutually different, it follows from strict concavity of w that

w(xa, ya) < w(xb, yb) + w1b(xa − xb) + w2b(ya − yb), (60)

w(xa, ya) < w(xc, yc) + w1c(xa − xc) + w2c(ya − yc), (61)

w(xb, yb) < w(xa, ya) + w1a(xb − xa) + w2a(yb − ya), (62)

w(xb, yb) < w(xc, yc) + w1c(xb − xc) + w2c(yb − yc), (63)

w(xc, yc) < w(xa, ya) + w1a(xc − xa) + w2a(yc − ya), (64)

w(xc, yc) < w(xb, yb) + w1b(xc − xb) + w2b(yc − yb). (65)

Combining (60) and (62), one obtains (55). In the same way, one gets (56) from (63)
and (65) and one gets (57) from (61) and (64). Adding (61), (62), and (65) yields (59),
and by adding (60), (63), and (64) one obtains (58).

The proof that (b) implies (a) is split up in the same three steps as the proof of the
corresponding part in Lemma 2.

Step 1: We first prove that there exist real numbers wa , wb, and wc such that
the inequalities

w1b(xb − xa) + w2b(yb − ya) < wb − wa < w1a(xb − xa) + w2a(yb − ya),

(66)

w1c(xc − xb) + w2c(yc − yb) < wc − wb < w1b(xc − xb) + w2b(yc − yb),

(67)

w1c(xc − xa) + w2c(yc − ya) < wc − wa < w1a(xc − xa) + w2a(yc − ya)

(68)
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hold. To this end, we define the real numbers

Aba = w1b(xb − xa) + w2b(yb − ya) , Bba = w1a(xb − xa) + w2a(yb − ya),

Acb = w1c(xc − xb) + w2c(yc − yb) , Bcb = w1b(xc − xb) + w2b(yc − yb),

Aca = w1c(xc − xa) + w2c(yc − ya) , Bca = w1a(xc − xa) + w2a(yc − ya),

and the open intervals Iba = (Aba, Bba), Icb = (Acb, Bcb), and Ica =
(Aca, Bca). It follows from (55)–(57) that all three of these intervals are
non-empty. Furthermore, it follows from (58)–(59) that Aba + Acb <

Bca and Aca < Bba + Bcb. This, in turn, implies that

{δba + δcb | δba ∈ Iba, δcb ∈ Icb} ∩ Ica �= ∅.

Consequently, there exist real numbers δba ∈ Iba , δcb ∈ Icb, and
δca ∈ Ica such that δca = δba + δcb. Let wa be an arbitrary real
number and define wb = wa + δba and wc = wa + δca . Then it
follows that wb −wa = δba ∈ Iba , wc −wb = δca − δba = δcb ∈ Icb,
and wc − wa = δca ∈ Ica . Obviously, this is equivalent to (66)–(68).

Steps 2 and 3: Since these steps are completely analogous to the corresponding steps
in the proof of Lemma 2, we omit many details. One starts by defining
for i ∈ {a, b, c} and all ε ∈ R+ the quadratic polynomial g(·, · | i, ε) :
X × Y �→ R by

g(x, y | i, ε) = wi + w1i (x − xi ) + w2i (y − yi ) − ε
[
(x − xi )

2 + (y − yi )
2
]
.

If ε is positive but sufficiently small, g(·, · | i, ε) is strictly increasing
and strictly concave for i ∈ {a, b, c}. Then, one defines the function
w : X × Y �→ R by

w(x, y) = min{g(x, y | i, ε) | i ∈ {a, b, c}}.

If ε is positive but sufficiently small, then it follows that w is a contin-
uous, strictly increasing, and strictly concave function. Furthermore,
the inequalities in (66)–(68) ensure that w is continuously differen-
tiable locally around the three points (xa, ya), (xb, yb), and (xc, yc)
and that its partial derivatives at these points are given by

w1(xi , yi ) = g1(xi , yi | i, ε) = w1i

and

w2(xi , yi ) = g2(xi , yi | i, ε) = w2i

for i ∈ {a, b, c}. This completes the proof of the lemma. ��
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Proof of theorem 3 Wedefine ca , cb, and cc by the equations in (50). This yields strictly
positive values if and only if conditions (20)–(22) hold. Condition (19) coincides with
(51). It remains to show that there exists a function u : [0, k̄] × [0, 1] �→ R satisfying
Assumption 2 and conditions (52)–(54). Since the latter equations are homogeneous
in the partial derivatives u1(ci , 1 − �i ) and u2(ci , 1 − �i ) for i ∈ {a, b, c}, we may
normalize the function u by setting u1(ca, 1 − �a) = 1. Solving (52)–(54) under this
normalization yields

u1(ca, 1 − �a) = u1a := 1, (69)

u1(cb, 1 − �b) = u1b := β2 f1(ka, �a) f1(kc, �c), (70)

u1(cc, 1 − �c) = u1c := β f1(ka, �a), (71)

u2(ca, 1 − �a) = u2a := f2(ka, �a), (72)

u2(cb, 1 − �b) = u2b := β2 f1(ka, �a) f1(kc, �c) f2(kb, �b), (73)

u2(cc, 1 − �c) = u2c := β f1(ka, �a) f2(kc, �c). (74)

Now we apply Lemma 4 with X = [0, k̄], Y = [0, 1], xi = ci , and yi = 1 − �i
for i ∈ {a, b, c}. This shows that there exists a function u : [0, k̄] × [0, 1] �→ R such
that Assumption 2 is satisfied and such that the partial derivatives of u at the points
(ca, 1− �a), (cb, 1− �b), and (cc, 1− �c) exist and are given by (69)–(74) if and only
if the inequalities

(u1b − u1a)(ca − cb) + (u2b − u2a)(�b − �a) > 0,

(u1c − u1b)(cb − cc) + (u2c − u2b)(�c − �b) > 0,

(u1c − u1a)(ca − cc) + (u2c − u2a)(�c − �a) > 0,

u1a(cb − ca) + u1b(cc − cb) + u1c(ca − cc)

> u2a(�b − �a) + u2b(�c − �b) + u2c(�a − �c),

u1a(cc − ca) + u1b(ca − cb) + u1c(cb − cc)

> u2a(�c − �a) + u2b(�a − �b) + u2c(�b − �c)

hold, where the numbers u1i and u2i for i ∈ {a, b, c} are defined in (69)–(74). We can
use (50) to eliminate ca , cb, and cc from these conditions, and we can use linear homo-
geneity of the production function to replace f2(ki , �i )�i − f (ki , �i ) by − f1(ki , �i )ki
for i ∈ {a, b, c}. This leads to conditions (23)–(27) and the proof of Theorem 3 is
complete. ��
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