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Cycles in Digraphs—
A Survey

J.C. Bermond
UNIVERSITE PARIS—SUD

ORSAY, FRANCE

C. Thomassen

MATEMATISK INSTITUT, AARHUS UNIVERSITET
AARHUS, DENMARK

ABSTRACT

The main subjects of this survey paper are Hamiltonian cycles, cycles of
prescribed lengths, cycles in tournaments, and partitions, packings, and
coverings by cycles. Several unsolved problems and a bibliography are
included.

INTRODUCTION AND TERMINOLOGY

The concept of a cycle plays a fundamental role in the theory of undirected
graphs, and there are numerous papers dealing with cycles. The literature on
cycles in digraphs is not so extensive. This is partly because cycles do not
play the same fundamental role for directed graphs as for undirected graphs.
For example, the cycles in a digraph are not, in general, the circuits of a
matroid, as is the case for undirected graphs, and if one considers the digraph
of an electrical network, it is the cycles of the underlying undirected graph
(rather than those of the digraph) that are of primary interest. However, the
main reason for the relatively few results on cycles in digraphs is probably
that it is considerably more difficult to study these. The cycles in an
undirected graph correspond in an obvious way to the cycles of length three
or more in the symmetric digraph associated with the graph; so it often
happens that a result on cycles in undirected graphs has a natural, but more
difficult, generalization to digraphs.

‘The purpose of this paper is to survey results on cycles in digraphs and
compare them with the analogous results for undirected graphs, and also to
present a list of unsolved problems on the subject. We treat Hamiltonian
cycles (Sec. 1), cycles of prescribed lengths (Sec. 2), cycles in tournaments
(Sec. 3), and coverings and packings with cycles (Sec. 4), and we mention

problems of a more special nature (Sec. 5).

»



For the problem of counting cycles in digraphs the reader is referred to
Harary and Palmer (1973). The related problem of listing all cycles in a
digraph has received much attention because of its importance in optimizing
computer programs. Algorithms for this problem having O(n-t+e-ec) time
requirements (where n,e,c are the numbers of vertices, arcs, and distinct
cycles, respectively, in the digraph under consideration) have been described
by Johnson (1975), Read and Tarjan (1975), and Szwarcfiter and Lauer
(1974). These and other algorithms are discussed in Mateti and Deo (1976).

Also, the Traveling Salesman Problem, i.e., the problem of finding a
Hamiltonian cycle of minimum weight in a digraph with weighted arcs, has
many applications and has been treated in several papers. For a survey on
this problem, the reader is referred to Bellmore and Nemhauser (1968) and
Christofides (1980), and a bibliography is given by Pierce (1975).

For cycles in undirected graphs, the reader is referred to the monograph of
Walther and Voss (1974) and the survey articles by Bermond (1979), Bondy
(1978), and Lesniak-Foster (1977). Some of the results on cycles in
tournaments are treated in more detail in the monograph of Moon (1968) and
in the survey paper of Beineke and Reid (1979), and long cycles in digraphs
are also treated in the survey paper of Thomassen (1979).

We use standard terminology. For the sake of clarity we repeat the most
important definitions:

A digraph (directed graph) D is a pair (X,U), where X is a finite set of
elements, called vertices, and U is a set of ordered pairs (x,y) of vertices,
called arcs. If the arc (x, ) is present, we say that x dominates y. The number
of vertices of D is the order of D.

A path is a digraph (X,U), where X = {x,x,,...,x,} and U= {(x;,x;.)! 1
< i =< n—1}. If we add the arc (x,,x,), we obtain a cycle (in this case a cycle
of length » or an n-cycle). The cycle of length n is denoted by C »-

A cycle in a digraph D including all vertices of D is a Hamiltonian cycle
and, if D has such a cycle, we say that D is Hamiltonian.

An oriented graph is a digraph with no 2-cycle, and a tournament is an
oriented graph in which any two vertices are adjacent.

A digraph is symmetric if every arc is contained in a 2-cycle. If G is an
undirected graph, we denote by G* the symmetric digraph associated with G.
The converse digraph of D is the digraph obtained from D by reversing the
directions of all arcs.

A digraph D is strong, if for any two vertices x and y, D contains a path
from x to y and a path from y to x. D is k-connected if the deletion of fewer
than k vertices always results in a strong digraph. A k-arc-connected digraph
is defined analogously. A component of a digraph D is a maximal strong
subdigraph. The components of D can be labeled D|,D,,...,D, such that no
vertex of D; dominates a vertex of D; if j < i. If D is a tournament, this



labelling is unique, and we refer to D, and D, as the initial, respectively
terminal, components of D, and the other components are infermediate
components.

The outdegree d*(x) of a vertex x in D is the number of arcs starting at x
and the indegree d™(x) is the number of arcs terminating at x. The fotal
degree (or just degree) of x is defined by d(x) = d*(x) + d~(x).

D is k-diregular if d*(x) = d~(x) = k for each vertex, and D is k-regular if
d(x) = k for each vertex x.

The cartesian product D, X D, of two digraphs D, = (X,,U;) and

= (X,,U,) is the digraph with vertex set X, X X, such that a vertex
(xl,xz) dominates (y,, yz) if and only ifx, =y, and (x,,y,) € U,, or x, =y,
and (x,,y,) € U,.

The lexicographic product D| ® D, is the digraph with vertex set X; X X,
such that (x;,x,) dominates (y,,y,) if and only if x, dominates y,, orx, = y,
and x, dominates y,.

In the figures two oppositely oriented arcs joining the same vertices will be
represented by an undirected edge.

For any real number x, |x] denotes the integer part of x, and [x] = —|—x|.

1. HAMILTONIAN CYCLES
1. Sufficient Conditions on the Degrees

Two fundamental early results on Hamiltonian cycles in digraphs are those
of Camion and Ghouila-Houri.

Theorem 1.1.1 [Camion (1959)]. A tournament is Hamiltonian if and only
if it is strong.

Theorem 1.1.2 [Ghouila-Houri (1960)]. Every strong digraph of order n
and minimum degree at least n is Hamiltonian.

Ghouila-Houri’s theorem implies the well known theorem of Dirac (1952)
that every undirected graph of order » and minimum degree at least n/2 is
Hamiltonian. Ore (1960) proved that the same conclusion holds if we only
assume that the sum of the degrees of any two nonadjacent vertices is at least
n. This was generalized to digraphs by Woodall.

Theorem 1.1.3 [Woodall (1972)]. A digraph D of order # is Hamiltonian if,
for any two vertices x and y, either x dominates y or

d¥(x) +d ()= n



A common generalization of Theorems 1.1.1, 1.1.2, and 1.1.3 was obtained
by Meyniel.

Theorem 1.1.4 [Meyniel (1973)]. A strong digraph D of order # is Hamil-
tonian if for any two nonadjacent vertices x and y we have

dx)+dy)=2n— 1.

Meyniel’s original proof is lengthy, but a short proof was found by Overbeck—
Larish (1976) and a slightly simpler proof was given by Bondy and
Thomassen (1977).

The proof of Bondy and Thomassen is constructive and yields an efficient
algotithm in O(n*) steps for finding a Hamiltonian cycle in a digraph
satisfying the hypothesis of Meyniel’s theorem [see Minoux (1980) or
Bermond (1979)).

Theorems 1.1.2, 1.1.3, and 1.1.4 are best possible in the sense that they
become false if the degree conditions are relaxed. This can be demonstrated
by the complete bipartite digraphs with the property that the difference
between the cardinalities of the color-classes is one. Another example is
given by the following digraph H,. Let u be a vertex of K* ,, the complete
symmetric digraph of order n — 2. Obtain digraph H, by adding two new
vertices v and w, each of which dominates all 7 — 2 vertices of K*_, and is
dominated by only .

Clearly H,, is non-Hamiltonian; however, the degree of u is 2n — 2, and the
degree of any other vertex different from v and w is 2n — 4; only v and w have
degree n — 1. It is an immediate consequence of Meyniel’s theorem that H,
contains the maximum number of arcs possible for a strong non-Hamiltonian
digraph. A stronger assertion is given in Theorem 1.3.1 below.

The requirement in Theorems 1.1.2 and 1.1.4 that D be strong is
necessary as is demonstrated by a digraph consisting of two complete
symmetric digraphs joined completely by arcs all in the same direction.

FIGURE 1. The digraph H,,.




Haggkvist (1977) has used Meyniel’s theorem to obtain results on the
existence of Hamiltonian paths and cycles containing prescribing edges in an
undirected graph. For example, if the sum of the degrees of any two
nonadjacent vertices x and y in an undirected graph with # vertices, where n
is even, is at least n + 1 (resp. n — 1), then any 1-factor of the graph can be
extended into a Hamiltonian cycle (resp. path). This result is best possible in
the sense that # -+ 1 (resp. # — 1) cannot be replaced by n (resp. n — 2). An
analogous result for bipartite graphs was obtained by Las Vergnas (1971).

1.2. Conjectures on the Degree Sequence

Pdsa (1962) generalized Ore’s theorem by showing than an undirected graph

has a Hamiltonian cycle provided its degree sequence majorizes the sequence

2,3,...,0(n —1)/2], [n/2], [(n + 1)/2],...,[(n + 1)/2]. Nash-
Williams (1968, 1969) proposed a generalization of this to digraphs.

Specifically, he made the following conjecture:

Conjecture 1.2.1 [Nash-Williams (1968, 1969)]. If both the sequence of
outdegrees and the sequence of indegrees of a digraph D of order n majorize

the sequence 2,3, ..., [(n — 1)/2],[n/2],[(n + 1)/2],...,[(n + 1)/2],
then D has a Hamiltonian cycle.

This seems to be a difficult conjecture. As noted by Nash-Williams
(1969), it is not even obvious that in a digraph satisfying the assumption of
the conjecture, there is a cycle through any two vertices.

One may also try to obtain digraph analogues of various other sufficient
conditions on the degrees, such as Chvatal’s theorem (1972) which asserts
that if the degree sequence d, <d,- - - <d, of an undirected graph satisfies
the condition d,, =< k <n/2=>d,_, = n — k, then the graph is Hamiltonian.
In particular, we may ask whether every strong digraph whose nondecreasing

degree sequence d; < d,*-- =< d, satisfies the following condition is
Hamiltonian:
(i) d, <2k<n=>d,; = 2n-—=k) for each k.

4 Similarly one may ask whether every strong digraph whose nondecreasing
outdegree and indegree sequences d{ < dj- - - < dfandd;<d; -+ =d;
satisfy the following conditions is Hamiltonian:

iy di<k<Z=4d",>n-k and
/ 2
di<k<5=d_=n—k

In fact, the digraph H, of Figure 1 shows that the answer to each of these
questions is negative. A third possible analogue of Chvatal’s theorem, which
survives H, is the following conjecture due to Nash-Williams (1975).



Conjecture 1.2.2 [Nash-Williams (1975)]. If D is a strong digraph whose
nondecreasing indegree and outdegree sequences df < dj - -+ < d} and
di < dj -+ = d, satisfy the conditions:

d,“:_<_k<2——>d,, = n —k and d,:_<_k<— =>df,=2n—k

for each k, then D is Hamiltonian.

1.3. Conditions on the number of arcs

Ore (1961) proved that, if an undirected graph G of order » has more than
<n;1> + 1 edges, then G is Hamiltonian, and Bondy (1972) showed that

the only non-Hamiltonian graphs with (n;l) + 1 edges are the graphs

G(1,n) consisting of a complete graph K,_ plus a vertex joined to a given
vertex of this K,_, and an exceptional graph of order 5.
These results have been extended to digraphs as foliows:

Theorem 1.3.1 [Bermond, Germa, Heydemann, and Sotteau (1980)]. The
only non-Hamiltonian strong digraphs with at least (n — 1)(n — 2) + 2
arcs are the symmetric digraph G(1,n)* the digraph H, of Figure 1 and its
converse and the digraphs of figure 2.

If we do not require G to be strong, we have the fo]ﬂowmg theorem.

Theorem 1.3.2 [Lewin (1975)]. If D is a digraph of order # with more than
(n —1)* arcs, then D is Hamiltonian.

This result is best possible in view of the digraph consisting of K*_, plus a
new vertex which dominates or is.dominated by all the vertices of the K*_

To conclude this section we mention a problem of a probabilistic nature
posed independently by Wright (1973) and Bondy (1978):

=

FIGURE 2. Non-Hamiltonian digraphs with largest possible number of arcs.



Problem 1.3.3. Determine the asymtotically smallest function f{n) such that
a digraph of order n with f{n) arcs randomly placed is almost certainly
Hamiltonian (that is, the probability that the resulting digraph is Hamiltonian
tends to 1 as # tends to infinity).

In the undirected case this function has been shown to be iz logr + in
log log n + 0(n) by Komlos and Szemerédi (1976) and Korsunov (1976)
improving an earlier result of Posa (1976). Cycles in random digraphs have
been investigated by Palesti (1971).

1.4. Strong Digraphs with Minimum Degree » ~ 1 and Regular Digraphs

As another possible generalization of Ghouila-Houri’s theorem, Nash—
Williams (1969) suggested the problem of characterizing the strong digraphs
of order n and minimum degree n — 1 that have no Hamiltonian cycle. A
result of this kind for undirected graphs can be obtained from work of Dirac
(1973): the only non-Hamiltonian undirected graphs of order # (n odd) and
minimum degree (# — 1)/2 are the graph obtained from two complete graphs
each with (n + 1)/2 vertices by identifying a vertex in one with a vertex in the
other, and the graphs obtained from the complete bipartite graph
K- 1y2,(n+1)2, by adding some edges joining vertices of degree more
than ;(n — 1). The symmetric digraphs associated with these graphs are non-
Hamiltonian and have minimum degree # — 1, but they are not the only ones.
Figure 3 shows two other examples. Because none of the undirected graphs
above are regular, it follows that every ((n — 1)/2)-regular graph with »
vertices (1 odd) is Hamiltonian, a result first proved by Nash-Williams
(1970).

Bondy (1978) proposed the following generalization of the above to
digraphs: Every ((n — 1)/2)-diregular digraph D of order n (n odd) is
Hamiltonian or is isomorphic to Ds or D, (Fig. 3). This conjecture was

¢ "/Jﬁ \’5

D5 o
7

FIGURE 3. Two non-Hamiltonian diregular digraphs.




proved by Thomassen (1980) (see Theorem 1.4.4). Bondy also made the
stronger conjecture that every strong (n — 1)-regular digraph is Hamiltonian
(except D5 and D;). This conjecture turned out to be false. Thomassen
(1980) described a variety of counterexamples. Consider, for example, the
digraph obtained from two disjoint complete symmetric digraphs D; and D,
by identifying a vertex of D, with a vertex of D,. Then add two new vertices u
and v and let each vertex of D, (resp. D,) dominate (resp. be dominated by)
each vertex not in D, (resp. D,). It is easy to find a spanning strong (n — 1)-
regular subdigraph of this digraph. These examples and other examples in
Thomassen (1980) indicate that it is not easy to describe the strong non-
Hamiltonian digraphs of order n and minimum degree » — 1. All the

examples that we know of have connectivity one, so the following conjecture
may be true:

Conjecture 1.4.1 [Thomassen (1979)]. Every 2-connected (n — 1)-regular
digraph of order n, except Ds and D, is Hamiltonian.

As a partial solution to the above problem of Nash-Williams, Thomassen
(1980), proved the foliowing:

Theorem 1.4.2 [Thomassen (1981)]. If D is a strong digraph of order n and
minimum degree n — 1, and if S is any longest cycle of D, then every vertex
of D — V(S) has degree n — 1, any two vertices of D — V(S are adjacent,
and every component of D — V{(S) is a complete digraph. Moreover, if D is

2-connected, then S can be chosen such that D — V(S) is a transitive
tournament.

Additionally, Thomassen (1981) showed that a component of D — V(S)
may have any order s, s < n/2.

We have already described many strong non-Hamiltonian digraphs of
order n = 2k + 1 and minimum degree n — 1. If we impose the additional
condition that all indegrees and outdegrees be at least k, the class of digraphs
obtained is considerably smaller.

Theorem 1.4.3 [Thomassen (1981)]. Let D be a digraph of order
n =2k + 1 and minimum indegree and ontdegree at least k. Then D is
Hamiltonian unless D has a set of X+ 1 mutually nonadjacent vertices
(which then dominate and are dominated by all the k remaining vertices), or
D is isomorphic to Ds or D, of Figure 3, or D is the symmetric digraph
consisting of two disjoint copies of K plus one vertex joined to all others by
two arcs.

Since Ds; and D, are the only diregular digraphs in Theorem 1.4.3, the
above-mentioned conjecture of Bondy on Hamiltonian cycles in diregular
digraphs follows.

Theorem 1.4.4 [Thomassen (1981)]. If D is a k-diregular digraph of order

n = 2k + 1, the D is Hamiltonian unless D is isomorphic to D; or D, of
Figure 3.



Jackson (1980) proved that every 2-connected undirected k-regular graph
with at most 3k vertices is Hamiltonian. This cannot be extended to digraphs.
Thomassen (1981) proved that, for each %, there are infinitely many k-
diregular digraphs with no cycle of length >k -+ 3. To see this, we consider
m disjoint copies D,D,, ...,D,, of K¥.. For each L 1<i<m-—1,select
vertices x;,y; in D; and vertices z;,(,v;y, in D, ,, delete the arcs (x;,;),
(1:%:)s (Zit15Vi1)s (Vig1,2i41) andadd the 4-cycle (x;,2;11,9:,V041.%;)-
Then a longest cycle in the resulting digraph has length k& + 3 if m = 3 and
k+2ifm=2,

We return to diregular digraphs in Sec. 4, which deals with Hamiltonian
decompositions. Here we mention two conjectures concerning diregular
digraphs.

Conjecture 1.4.5 [Jackson (1980b)]. If k > 3, then every k-diregular orien-
ted graph with at most 4k + 1 vertices is Hamiltonian.

Jackson (1980b) described a 2-diregular non-Hamiltonian oriented graph
of order 8 and, by modifying the construction given above (with m = 2), one

can construct, for each k = 2, a k-diregular non-Hamiltonian oriented graph
of order 4% + 4.

Conjecture 1.4.6 [Thomassen (1979)]. Every oriented graph of order n in
which each indegree and outdegree is at least /3 is Hamiltonian.*

The oriented graph with vertex set 4 U B U C and arc set x| x €
A, y€ B, or x EB, y €EC, or x € C, y € A} is Hamiltonian if
and only ifl 41 = | Bl = | CI. So Conjecture 1.4.6 is best possible.

The first nontrivial step towards a proof of Conjecture 1.4.6 was made by
Jackson (1981).

Theorem 1.4.7 [Jackson (1981)]. Let D be an oriented graph with minimum

indegree and outdegree at least k (k =2) and with at most 2k + 2 vertices.
Then D is Hamiltonian.

Jackson (1981) also proved that an oriented grtaph D in which each
indegree and outdegree is at least & contains a path of length at least 2k. He
made the conjecture that D even contains a path of length at least 3k (or a
Hamiltonian path) if it is strong.*

For large digraphs the following result is a drastic extension of Theorem
1.4.7.

“R. Haggkvist (private communication) has disproved Conjecture 1.4.6 and his
counterexamples can be modified to disprove the 3k-path-conjecture of Jackson as
“well.



Theorem 1.4.8 [Thomassen (1980c)]. There exists a positive constant ¢
such that an oriented graph D of order n is Hamiltonian orovided each vertex
has indegree and outdegree at least #/2 — cv/n.

1.5. Other Sufficient Conditions for Hamiltonian Cycles

In this section we comment on connectivity, independence number, powers
of digraphs, planar digraphs, and line digraphs.

The Chvatal-Erdos Theorem (1972) asserts that an undirected graph G is
Hamiltonian provided that its connectivity is not less than its independence
number (or stability .number). For digraphs each of the following three
invariants is the independence number, when restricted to undirected graphs.
If D is a digraph, then (D) (resp. i,{D), resp. i3(D)) is the maximum
cardinality of a vertex set A of D such that D{A4) has no arc (resp. no cycle,
resp. no 2-cycle).

The invariant 7,(D) was studied by Meyniel (1980). Las Vergnas and
Meyniel (Seminar, Paris 1977) and Bondy (1978) conjectured that a k-
connected digraph D with i,(D) < k is Hamiltonian or isomorphic to D; of
Figure 3. However, Thomassen (1980) has exhibited infinite families of
counterexamples to the case k£ = 3 of this conjecture. Moreover, the con-
struction preceding Conjecture 1.4.5 (with m = 2) can easily be modified to
given non-Hamiltonian 2-connected digraphs with i; = 2.

Las Vergnas (private communication) has introduced the following stron-
ger connectivity concept for digraphs. A digraph is (k,[)-connected if, for
every pair of vertices x and y, there exist k paths from x to y and ¢ paths from
y to x, all the paths having only x and y in common. Las Vergnas (private
communication) conjectured that a digraph D is Hamiltonian provided
iD) < k and D is (h,k — h)-connected for each 7,0 < h < k.

However, it is no easier to work with this connectivity concept than it is to
decide whether or not a digraph is Hamiltonian. Indeed, Fortune, Hopcroft,
and Wyllie (1980) have proved that the problem of deciding whether two
vertices of a digraph are on a common cycle is NP-complete (see also
Problem 1.5.2). This problem was mentioned by Frank (1978).

Let D?, the pth power of the digraph D, be the digraph having the same
vertex set as [J, such that there is an arc D” from x to y if and only if there
exists a path from x to y of length less than or equal to p in D.

In the undirected case, Sekanina (1960) proved that the cube of every
connected graph is Hamiltonian, and Fouquet (1978) has shown that this has
no immediate extension to digraphs. Specificaily, he proved the following:

Theorem 1.5.1 [Fouquet (1978)]. For every p and g there exists a g-
connected digraph D such that D? is not Hamiltonian.



He proved, however, that if D contains a cycle of length k, then D' 71 is
Hamiltonian.

Bermond (1980) conjectured the following possible generalization of
Sekanina’s result: If D is connected and Eulerian [that is d* (x) = d~(x) for
every vertex x], then D? is Hamiltonian. Pacs (private communication) gave
infinite families of counterexamples. Let the vertex set of D be the disjoint
union of X}, X;, X3, X,y with | X|| =8p, | X;| =4p, | X5l =2p, | X, =
» = 4. Let the vertices of each X}, 1 <i =< 4,be labeled, 1,2,.... Arcs of D
are as follows: From the vertices 2/ — 1 and 2i (i=1,..., 4p) of X, to the
vertex I of X, from the vertices 2/ — 1 and 2j (j=1..., 2p) of X, to the
vertices j and j + 1 of X3, from the vertices 2k — 1 and 2k (k=1,...,p)of
X; to the vertices k, k + 1, k + 2, k + 3 of X, (the indices being taken
mod p), and from the vertex k& of X, to the vertices 8(k — 1) + 1,...,
8(k — 1) + 8 of X;. Thus, d*(x) = d (x) = 2! for x € X, and so
D is Eulerian. But clearly D* is not Hamiltonian, since | X, U X; U
X0 <I1X0. .

Alpern (1978) gave a sufficient condition, in terms of powers of graphs and
digraphs, for a digraph to have a Hamilionian cycle and applied that to
problems concerning measure preserving homeomorphisms in certain
measure spaces.

The theorem of Tutte (1956) that every 4-connected planar graph has a
Hamiltonian cycle seems to have no natural generalization to digraphs. The
maximum connectivity of a planar graph is 5, and a 5-connected non-
Hamiltonian planar digraph can be obtained as follows. Consider a 3-
connected undirected planar graph having a face of degree 17 or more (it is
not difficult to describe such a graph). Let x,,x,, .. ..x.,x; (k= 17) be the
boundary cycle of this face. Replace every edge of the graph by a cycle of
length 2 and then add two new vertices y, z and the arcs (y,x;)(1 < i < 5),
xS =i =29), (%209 < i < 13) and (z,x)(13 < [ < 17). Then
the resulting digraph is planar and 5-connected, but clearly it has no
cycle containing both y and z.

This example also suggests the following problem:

Problem 1.5.2 [Bermond and Lovasz (1975)]. Does there exist a natural
number & such that for every k-connected digraph D each pair of vertices

belongs to a common cycle? (In view of the above example, & must be at least
six.)

Jackson (private communication) conjectured that if D is oriented, then
k = 3 will suffice.

Problem 1.5.2 is a special case of the following problem:



Problem 1.5.3. Does there exist, for each pair £,/ of natural numbers, a

natural number f(k,l) such that every f(k,I)-connected digraph is (k,1)-
connected?

Sometimes it happens, that a problem is easier for digraphs than for
graphs. Such is the case with Hamiltonian cycles in line digraphs. Kastelyn
(1963) proved that the line digraph of a digraph D is Hamiltonian if and only
if D is Eulerian. It is not known when the line graph of an undirected graph G
is Hamiltonian. Thomassen conjectures that every 4-connected line graph
L(G) is Hamiltonian and he has verified this in the special case when G is 4-
edge-connected (unpublished).

1.6. Hamiltonian Problems of a More Special Nature

The following result of Hamidoune (1979) concerns the length of a Hamil-
tonian walk (closed walk meeting every vertex at least once) in a digraph with
a given connectivity. It disproves a conjecture of Jolivet (1974).

Theorem 1.6.1 [Hamidoune (1979)]. A k-connected digraph of order # has
a Hamiltonian walk of length at most

(e L O DA G52 ])
max n— , n—k .
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A very restrictive class of Hamiltonian digraphs was considered by
Chartrand, et al. (1969). A digraph is randomly Hamiltonian if every path

of the digraph can be extended to a Hamiltonian cycle. They proved the
following theorem:

Theorem 1.6.2 [Chartrand, Kronk, and Lick (1969)]. A digraph of order
is randomly Hamiltonian if and only if it is either one of the digraphs K¥, C

or, for n even, K%, ,, or is the lexicographic product of a cycle with an
independent set.

The analgous theorem of Chartrand and Kronk (1968) for undirected
graphs follows as a special case. It would be interesting to know which
digraphs are randomly Hamiltonian from some vertex and which digraphs
have the property that every path can be extended into a Hamiltonian path.
Such results would generalize Theorem 1.6.2 and the corresponding results
for undirected graphs due to Thomassen (1973, 1974). Another possible
generalization would be to characterize the Hamiltonian digraphs in which
every Hamiltonian path can be extended into a Hamiltonian cycle. Dirac and
Thomassen (1973) showed that the undirected graphs with this property are




precisely the randomly Hamiltonian graphs. But for digraphs the situation is
different. For example, Griinbaum (1969) showed that there are precisely
two tournaments (with three and five vertices, respectively) such that every
Hamiltonian path is contained in a Hamiltonian cycle. This result was also
obtained by Thomassen (1980a) from some more general results to be
mentioned later. The aforementioned problem of characterizing digraphs that
are randomly Hamiltonian from some vertex has been solved for tourna-
ments by Thomassén (unpublished) who has proved that for each n = 5,
there are precisely three non-isomorphic tournaments of order n with this
property. )

Using the abovementioned result of Dirac and Thomassen (1973),
Thomassen (1980c) gave a short proof of the following result:

Theorem 1.6.3 [Grotschel and Harary (1979)]. If G is a 2-edge-connected
graph, then G has a non-Hamiltonian orientation, unless G is a cycle or a
complete graph.

A special class of non-Hamiltonian digraphs are the Aypohamiltonian
digraphs, i.e., the digraphs D such that D is non-Hamiltonian but every
vertex-deleted digraph D — v is Hamiltonian. Undirected hypchamiltonian
graphs have been studied to a large extent [for references see, for example,
Thomassen (1978)], and the richness of such graphs shows that it is difficult
to obtain a sufficient condition for a Hamiltonian cycle in a graph in terms of
Hamiltonian properties of vertex-deleted subgraphs. While the problem of
the existence of an undirected hypohamiltonian graph of a given order 7 is
not easy (and, in fact, unsolved for n = 17), we have the following theorem:

Theorem 1.6.4 [Fouquet and Jolivet (1978), Grotschel and Wakabayashi
(1978), Thomassen (1978)]. For every n = 6, there is a hypohamiltonian
digraph of order 7.

The hypohamiltonian digraphs in Thomassen (1978) have the additional
interesting property of being planar. Also, hypohamiltonian oriented graphs
were described in Thomassen (1978). He showed that the cartesian product
C, X C,,1—; is hypohamiltonian. More generally, he proved that C, X C,, is
non-Hamiltonian whenever k and m are relatively prime. Subsequently,
Erdos and Trotter (1978) determined exactly when C, X C,, is Hamiltonian.

Theorem 1.6.5 [Erdos and Trotter (1978)]. Let d = g.c.d. (k,m). The
cartesian product C, X C,, of two cycles is Hamiltonian if and only ifd = 2
and there exist positive integers d,,d, such that d, + d, = d and g.c.d.
(k,d,) = g.cd. (m,d,) = 1.

The cartesian product of cycles provides an infinite class of vertex-
. transitive non-Hamiltonian digraphs. Only four such graphs are known in the



undirected case, and Thomassen [see Bermond (1979)] has conjectured that
only a finite number of such graphs exist. Babai (J.A. Bondy, private
communication) disagrees. Lovasz (197 0) conjectured that every undirected
vertex-transitive graph has a Hamiltonian path. This may be true for digraphs
as well.

Grotschel, Thomassen, Wakabayashi (1980) showed that there is a
hypotraceable digraph of order » if and only if # > 7, and that, for each
k = 1, there are infinitely many hypotraceable oriented graphs with precisely
k components.

A digraph is called homogeneously traceable if there is a Hamiltonian
path starting at each vertex. Clearly, every hypohamiltonian digraph is
homogeneously traceable. Thus, for every n > 6, there exist non-Hamilton-
ian homogeneously traceable digraphs. Bermond, Simoes-Pereira, and Zam-
firescu (1979) have shown that non-Hamiltonian homogeneously traceable
digraphs or order n have at least 21 arcs and exist if and only if n = 5. They
also showed that non-Hamiltonian homogeneously traceable oriented graphs
exist if and only if n = 7 and exhibited such digraphs with 27 arcs.

Skupien and Wojda (1974) introduced the notion of strongly (p,g)-
Hamiltonian graphs. This notion can be generalized to digraphs. A digraph
D = (X,U) is said to be strongly g-arc Hamiltonian if, for every system S
of pairwise disjoint paths of the complete symmetric digraph with vertex set
X of total length ¢, the digraph D' = (X, U U S) has a Hamiltonian cycle
containing S. A strongly I-arc Hamiltonian digraph is strongly Hamil-
tonian-connected, that is, for every pair of vertices x and p there exists a
Hamiltonian path from x to y and a Hamiltonian path fromy to x. Finally, we
say that a digraph is strongly (p,q)-Hamiltonian if the digraph obtained by
deleting any 7 vertices is strongly g-arc Hamiltonian for all r,0=<r=<p.The
following theorem generalizes Woodall’s theorem (1.1.3).

Theorem 1.6.6 [Bermond (1975)]. If a digraph D of order 12 has the property
that, for any two vertices x and y, either x dominates yordt(x)+d (y) =
n+ p + q, then D is strongly (p,q)-Hamiltonian.

As shown by Ghouila-Houri (1964, p. 324), the analogous generalization
of his theorem (1.1.2) and, thus, of Meyniel’s theorem (1.1.4) is not true.
Indeed, there exist 2-connected digraphs in which each degree is at least
n + 1 and which contain arcs that belong to no Hamiltonian cycle. Other
examples were also exhibited by Thomassen (1980a), where the following
conjectures are given:

Conjectufe 1.6.7 [Thomassen (1980a)]. Every 3-connected digraph of

order n and with minimum degree at least #n + 1 is strongly Hamiltonian-
connected.

Conjecture 1.6.8 [Thomassen (1980a)]. Let D be a 4-connected digraph of
order n such that the sum of the degrees of any pair of nonadjacent vertices is
at least 2n + 1. Then D is strongly Hamiltonian-connected.




Thomassen (1980a) has proved this conjecture for tournaments (see Sec.
3.1).

A digraph is weakly Hamiltonian-connected if, for any pair of vertices x
and p, there exists a Hamiltonian path from x to y or one from y to x.
Ghouila-Houri (1964) proved the following result which was rediscovered by
Overbeck—Larisch (1976) in a slightly more general form.

Theorem 1.6.9 [Ghouila-Houri (1964)]. A 2-connected digraph of order 7
and minimum degree at least n + 1 is weakly Hamiltonian-connected.

Ghouila-Houri (1964) proved that the connectivity condition cannot be
weakened in this theorem. Furthermore, Meyniel’s theorem (1.1.4) cannot
immediately be generalized, as there exist 2-connected tournaments that are ,
not weakly Hamiltonian-connected. A complete characterization of weakly

Hamiltonian-connected tournaments was given by Thomassen (1980a) (see
Sec. 3.1).

2. CYCLES OF PRESCRIBED LENGTHS

2.1. Pancyclic Digraphs

Bondy (1972a) observed that conditions implying an undirected graph to be
Hamiltonian often imply the graph to be pancyclic or to have a very special
structure. Specifically, he proved that if a graph G satisfies Ore’s condition,
then G is pancyclic or isomorphic to K/, ,/,. The strongest result of this kind
for undirected graphs is a result of Hakimi and Schmeichel (1974). The
abovementioned result of Bondy was generalized to digraphs by Thomassen
(1977).

Theorem 2.1.1 [Thomassen (1977)]. Let D be a strong digraph of order n
such that, for any two nonadjacent vertices x and y of D d(x) + d(y) > 2n.
Then D is pancyclic or D is a tournament (in which case D contains cycles of
all lengths except 2) or else # is even and D is isomorphic to K o2

This theorem extends the aforementioned theorems of Camion, Ghouila-
Houri, and Woodall [the fact that Ghouila-Houri’s condition implies a digraph
to be pancyclic or isomorphic to K¥, ,,, was first established by Haggkvist
and Thomassen (1976)] and a result of Overbeck-Larisch (1977). However,
it does not include Myniel’s theorem, and it becomes false if we replace the
degree condition by Meyniel’s condition. To see this consider the digraph
D, . with vertex set {x,,x,,..., x,} and arc set x| i <jori=j+ 1}\
(xXpx-1) | 1 < 1< n — k + 1}.Then D, , satisfies Meyniel’s condition
and, moreover, it has only two pairs of nonadjacent vertices, {x,,x,} and
X4—k+1,5,), such that the inequality in Meyniel’s theorem is an equality. For
tater purposes, we observe that the number of arcs of D, isn(n — 1)/2 +
k— 2. :



Bondy (1971) proved that every Hamiltonian undirected graph of order #
with at least jn® edges is pancyclic unless # is even and the graph is
isomorphic to K, 2 He conjectured that the same is true for digraphs
(When we replace jn® by 3n* andK, ), by K¥,,,). However, D,
is Hamiltonian, but not pancyclic, and it has jn(n + 1) — 3 edges. On the
other hand we have:

Theorem 2.1.2 [Haggkvist and Thomassen (1976)]. A Hamiltonian digraph
with n vertices and in(n + 1) — 1 or more arcs is pancyclic.

Combining this theorem with 1.3.1 and 1.3.2, respectively, we get

Corollary 2.1.3 A strong digraph with » vertices and (n — 1)(n — 2) + 3 or
more arcs is pancyclic.

Corollary 2.£.4. A digraph with n vertices and (» — 1)* 4 1 or more arcs is
pancyclic. -

The digraph D, (defined above) with k > n, that is, the digraph with
vertex set {x;,X,,....x,} and arc-set{(x;,x;)|i <j or i=j-+ 1}, has
in(n + 1) — 1 arcs and contains exactly one Hamiltonian cycle. Thus, the
following theorem is best possible:

Theorem 2.1.5 [Miiller and Pelant (1978)]. If a Hamiltonian digraph has 7
vertices and sn(n + 1) or more arcs, then it has at least two distinct
Hamiltonian cycles.

Miiller and Pelant also gave conditions for the existence of &k distinct
Hamiltonian cycles, when 3 < k < 6. The analogous problem for undirected
graphs was considered by Sheehan (1975).

Pancyclic tournaments are treated in Sec. 3.1.

2.2. The Minimum Number of Arcs Guaranteeing a Cycle of Length k& or at
Least k

We first recall the state of the problem in the undirected case. The number of

edges needed to ensure a cycle of length at least £k has been completely
determined.

Theorem 2.2.1 [Woodall (1976)]. Given natural numbers n and k, where
k=3,setn=qlk —2)+r+1,where0< r< k — 2. If Gis a graph of
order n with more than 5g(k — 1)(k — 2) + ir(r + 1) edges, then G
contains a cycle of length at least k.



Theorem 2.2.1 is best possible in view of the graph consisting of g copies
of K, and one copy of K., all having exactly one vertex in common. The
case n = 1 (mod k — 2) was first solved by Erdds and Gallai (1959).

It is not completely known how many edges are needed in an undirected
graph to ensure the existence of a cycle of length precisely k, when & is even,
not even for & = 4 [for partial results see Bondy and Simonovits (1974)]. For
k odd, however, the problem is solved. Bondy (1 971a) proved [by refining a
result of Erdds (1963)] the following;

Theorem 2.2.2 [Bondy (1971a)]. Ifn = 2k — 2, then every graph of order
n with more than r%/4 edges contains a cycle of length .

Woodall (1972) cleared up the situation for k < n < 2k — 2.

We now consider the analogous problem for digraphs.

Consider the following digraph D of order n, where n = gk — 1) +r
and 0 <r <k — 1: D consists of the union of g + I complete symmetric
digraphs H,,H,,...,H,,, such that g of them have order (k — 1) and the
last has order . Then add all arcs of the type (x,p), where x € V(H)), yE
V(H;) with i <j. The resulting digraph R, has

g(n.k)=14n(n — 1)y +5(n =k = 2) + Lr(r — 1)

arcs, and contains no cycle of length k& or more.

Theorem 2.2.3 [Héggkvist and Thomassen (1976)]. A digraph of order #

with at least g(n,k) arcs contains a cycle of length & unless it is isomorphic to
R,.

This theorem was proved by Haggkvist and Thomassen ( 1976) only when
k — 1 divides n but, as pointed out by Thomassen (1976), the proof can be
modified to yield the theorem stated.

Lewin (1975) proved the weaker result that the assumption of Theorem
2.2.3 imples the existence of a cycle of length at least k.

The above problem is not completely solved when the digraph under
consideration is strong. However, the following results are close to best
possible.

Theorem 2.2.4 [Haggkvist and Thomassen (1976)]. Let k be an integer, k =
2. Then every strong digraph of order n >(k — 1)? with more than yr?
arcs contains a cycle of length k.

For k odd, Theorem 2.2.4 is best possible except that the condition
n> (k — 1)® may be relaxed.

Theorem 2.2.5 [Héggkvist and Thomassen (1976)]. Let k be an even



integer, k = 2. Then every strong digraph of order n with more than
sn(n — 1) + 5(k — 1)(k — 2) arcs contains a cycle of length .

The digraph D, , described after Theorem 2.1.1 hasin(n — 1) + &k — 2
arcs and contains no cycle of length k. Thus Theorem 2.2.5 is almost best
possible.

The digraph D, , has a strong oriented subgraph within(n — 3) + k£ — 1
arcs. This shows that the following result is best possible.

Theorem 2.2.6 [Heydemann (1980a)]. Let £ be an integer k > 3. Then
every strong oriented graph of order » with more thanin(n — 3) + k& — 1 arcs
contains a cycle of length %.

Let D be the following strong digraph on n vertices, where
n=qlk—2)+r+1,0=<r<k-—2. The vertex set of D consists of the
disjoint union of k—2 sets X; (i = 1,...,k — 2), r of which are of
cardinality ¢ + 1 and k — 2 — r of cardinality g, plus one extra vertex z. The
arcs of D are all arcs of the form (x,y) withx € X, y € X;,1<j,and all the
possible arcs incident with z. Then D is strong and contains no cycle of
length at least k. The number ¢(n,k) of arcs of D is given by

P(nk) =an(n — )+ (n = ) =4k —2—-7r)g(g — 1) —irg(g + 1)

or, equivalently,

o(n,k) = (n*(k — 3) + 2n(k — 1)
— (k= 2)(r + 3) + 2 — 1)/2(k — 2).

Let D' be the following strong digraph. The vertex set X consists of two
disjoint sets 4 and B together with an extra vertex z, with | 4] =k — 3,
| Bl =n — k + 2. The arcs of D’ are all the arcs incident with z together
with all the arcs (x,y) where either x"and y belong togetherto 4 or else x € B
and y € 4. Then D' is strong and contains no cycle of length at least k. The
number ¥(n,k) of arcs of D’ is given by

Y(nk)=(k — n — 2k + 4.

These two digraphs have been introduced by Bermond, Germa, Heydemann,
and Sotteau (1980), where the following conjectures are given:

Conjecture 2.2.7 [Bermond, Germa, Heydemann, and Sotteau (1980)].

Let D be a strong digraph of order n.

(i) Ifn =2k — 4 and if D has more than @(n,k) arcs, then D contains a
cycle of length at least k.

(i) f k<n =<2k~ 4 and if D has more than Y(n,k) arcs, then D
contains a cycle of length at least k.




Note that, in view of the digraphs D and D’ described above, these
conjectures, if true, are best possible. Conjecture 2.2.7 (ii) is true for k =n
by Theorem 1.3.1 and for £ = r — 1 by Bermond, Germa, Heydemann, and
Sotteau (1980). Heydemann (private communication) has shown that it
suffices to prove Conjecture 2.2.7 for n = 2k — 4 and that the conjecture
is true for k < 5. Also note that the examples above disprove Conjecture 6 in
Thomassen (1979). ’

For oriented graphs the following holds:

Theorem 2.2.8 [Heydemann (1980)]. Given natural numbers # and k, n =

k=3,setn= q(k —2)+r+1,where 0<r<k—3. If G is a strong
oriented graph of order n with more.than sn{(n — 1) — {(k — 2 — r)g
(g — 1) — irg(g + 1) arcs, then G has a cycle of length & or more.

Theorem 2.2.8 is best possible as demonstrated by any strong spanning
oriented subgraph of the digraph showing that Conjecture 2.2.7(i) is best
possible.

2.3. Conditions on the Degrees or the Chromatic Number Implying the
Existence of a Cycle of Length k or of Length at Least k.

Dirac (1952) proved that every 2-connected undirected graph with minimum
degree at least k contains a cycle of length at least 2k or a Hamiltonian
cycle. Generalizations have been given by Pésa (1963), Bondy (1971a) and
Bermond (1976).

Ghouila-Houri (1964) showed that there exist 2-connected digraphs with
arbitrarily high degrees and without cycles of length greater than 6. For
example, orient the complete bipartite graph K, _/5|;,-1/2 80 as to produce
no path of length 2. The add two vertices which dominate and are dominated
by all other vertices.

This example and various results on paths in digraphs prompted Bermond,
Germa, Heydemann, and Sotteau (1980a) to conjecture the following:

Theorem 2.3.1 [Heydemann (1980)]. Let D be a strong digraph of order n
such that, for any pair of nonadjacent vertices x and py, we have
d(x) + d(y) = 2n — 2h + 1. Then D contains a cycle of length greater
than or equal to [(n — 1)/h] + 1.

Heydemann (1980) also obtained an analogous result for oriented graphs.

Bermond (1975) and Thomassen (1976) independently conjectured that if
a 2-connected digraph has order at least 2k and minimum indegree and
outdegree at least &, then it contains a cycle of length at least 2%. Recently,
Thomassen (1980) showed that this conjecture is false for n = 2k + 2 (see
counterexamples in Sec. 1.5 in connection with possible extensions of the
Chvatal-Erdos theorem). However, the following holds:




Theorem 2.3.2 [Thomassen (1981)]. A 2-connected digraph of order at

least £ + 2 and with minimum indegree at least %, contains a cycle of length
at least k + 2.

The result is best possible in the sense that there exist infinitely many 2-
connected digraphs with minimum indegree and outdegree at least k and
whose longest cycles have length k + 2. In the special case n = 2k + 1,
Thomassen (1981) verified the above conjecture using Theorem 1.4.2.

Theorem 2.3.3.- [Thomassen (1981)]. If D is a 2-connected digraph of order
2k + 1 such that every vertex has indegree and outdegree at least &, then D
contains a cycle of length at least 2k.

The following conjecfure may hold:

Conjecture 2.3.4 [Thomassen (1979)]. If a digraph D has minimum in-
degree and outdegree at least k and if any two vertices of D are on a common

cycle, then D contains either a cycle of length at least 2k or a Hamiltonian
cycle.

Perhaps stronger results can be obtained in the case of oriented graphs.
Jackson (1980) conjectured the following:

Conjecture 2.3.5 [Jackson (1980)]. If D is a strong oriented graph with

minimum indegree and outdegree at least k, then D contains a cycle of length
at least 2k + 1.

Bondy (1976) obtained the next result on large cycles. It was conjectured
by Las Vergnas (1976).

Theorem 2.3.6 [Bondy (1976)]. Every strong digraph with chromatic
number k contains a cycle of length at least k.

Theorem 2.3.6 generalizes the theorem of Gallai (1968) and Roy (1967)
which states that a digraph of chromatic number & has a path of length at least
k — 1. It also generalizes Camion’s theorem (1.1.1).

2.4. Cycles of Length at Most k&

It is not known how many edges are needed in an undirected graph to ensure
a.cycle of length at most k (unless &k =3). For digraphs, however, the
. problem has been completely solved by Bermond, Germa, Heydemann, and
Sotteau (1980b), in response to a question of Thomassen.



Theorem 2.4.1 [Bermond, Germa, Heydemann, and Sotteau (1980b)]. If D
is a strong digraph of order 1 with at least 3(n? + (3 — 2k)n + k*> — k)
arcs, then D contains a cycle of length at most k.

This theorem is best possible. Indeed, let D be the digraph obtained from a
transitive tournament on n — k + 2 vertices by replacing the arc joining the
vertex of outdegree 0 in the transitive tournament to the vertex of outdegree
n—k —+ 1, by apath of length £ — 1 (using X — 2 new vertices). Then D is a
strong digraph of order n with {(n% + (3 — 2k)n + k> — k — 2) arcs, and
its smallest cycle has length & + 1.

For diregular digraphs the following conjecture has been made.

Conjecture 2.4.2 [Behzad, Chartrand, and Wall (1970)]. If D is an r-

diregular strong digraph of order at most kr, then D contains a cycle of length
at most k.

Conjecture 2.4.2 is best possible in view of the digraph with vertex set
{xX0sX1,. s Xi) and arc set Pl 1< j<r, 1 <i<kr), where the
indices are expressed modulo kr + 1. The conjecture has been verified for
k=2,3 by Behzad, Chartrand, and Wall (1970), for r=2 by Behzad
(1973), for r = 3 and some other values of (r,k) by Bermond (1975a), for
r =4 and for vertex-transitive digraphs by Hamidoune (1980a, 1980).

Caccetta and Haggkvist (1978) made the stronger conjecture that Con-
jecture 2.4.2 remains true if the diregularity condition is replaced by the
weaker condition that every vertex has outdegree » or more, and they verified
this in the case r = 2.

An extremal problem of a different nature involving small cycles in a
digraph was considered by Chvatal and Thomassen (1978) (see the last
section).

3. CYCLES IN TOURNAMENTS

3.1. Hamiltonian Cycles

Camion’s theorem (1.1.1) was generalized by Harary and Moser (1966) who
proved that a strong tournament contains cycles of all possible lengths. A
slightly stronger result was obtained by Moon.

Theorem 3.1.1 [Moon (1968 p. 6)]. If v is a vertex of a strong tournament of
order 7, and k is any integer, 3 < k < n, then the tournament has a cycle of

length £ containing v.

Goldberg and Moon (1972) extended this by showing that each vertex of



an m-arc-connected tournament is contained in at least m cycles of each
length.

For diregular tournaments there is an arc-version of Theorem 3.1.1:

Theroem 3.1.2 [Alspach (1967)]. If e is an arc of a diregular tournament of
order 7, and k is any integer, 3 < k < n, then the tournament has a cycle of
length % containing e.

If tournament T'is obtained from a diregular tournament 7" by reversing an
arc of 7", then the new arc need not be in a 3-cycle. However, in most
cases the new arc must be in cycles of all possible lengths.

Theorem 3.1.3 [Alspach, Reid, and Roselle (1974)1. If tournament T is
obtained from a diregular tournament T" of order n, n = 7, by reversing an arc
of 7, then the new arc is contained in cycles of T of all lengths 4,5,...,n.

Let the irregularity of a tournament be defined as max| d*(x)
— d (x)] over all vertices x of the tournament. If the irregularity is 1, T is
said to be almost regular. :

An analogue of Theorem 3.1.2 for almost regular tournaments is the
following:

Theorem 3.1.4 [Jakobsen (1972)]. If e is an arc of an almost regular
tournament of order n, n = 8, and & is any integer, 4 < k < n, then e is
contained in a cycle of length .

Theorems 3.1.2, 3.1.3, and 3.1.4 follow from the more general result
below (with a little additional reasoning).

Theorem 3.1.5 [Thomassen (1980a)]. Let T be a tournament of order » and
irregularity m. Let k be any integer, 4 < k < n.Ifn = 5m + 9, then, for any
two vertices x and y, there is a path with & vertices from x to y. If n >
5m + 3, then any arc of T is contained in a cycle of length k.

The proof of Theorem 3.1.5 depends on the fact that if x, »,z are three
vertices of a strong tournament with # vertices and % is any positive integer,
k = n — 1, the the tournament has a path of length k connecting some two of
x,y,z. That fact can be derived from the following theorem, which describes
when two prescribed vertices are connected by paths of all possible lengths
greater than 2.

Theorem 3.1.6 [Thomassen (1980a)]. Let x and y be distinct vertices of a

tournament 7. Then T has a Hamiltonian path connecting x and y unless one

of (i), (ii), (iii), or (iv) below holds, in which case T has no such Hamiltonian

path.

(i) T is not strong, and the initial or terminal component contains neither x
nor y.




(ii) T is strong, T—x is not strong, and y belongs to an intermediate
component of T"— x.
(iii) T is strong, T'—y is not strong, and x belongs to an intermediate
component of T'— y.
(iv) T is isomorphic to T% or T% of Figure 4. .
Furthermore, if none of (i), (ii), (iii), and (iv) holds, then, for every integer
k,3<k=<n-—1, T has a path of length k connecting x and y.

It is not known precisely, when a given arc is contained in a Hamiltonian
cycle of a tournament. The following is a sufficient condition for this.

Theorem 3.1.7 [Thomassen (1980a)]. In a 3-connected tournament every
arc is contained in a Hamiltonian cycle.

The tournaments T'§ and T of Figure 4 show that there are 2-connected
tournaments with arcs that are not contained in any Hamiltonian cycle.
Thomassen (1980a) described an infinite family of such tournaments.
Furthermore, he showed that every 4-connected tournament is (strongly)
Harmiltonian connected, and that there are infinitely many 3-connected ones
that are not. .

Reédei (1934) proved that the number of Hamiltonian paths in a tourna-
ment is odd. However, Camion (1973) showed that the parity of the number
of Hamiltonian cycles can always be changed by reversing a well-chosen arc,
For a problem on arc-reversal, see Conjecture 5.6. '

Szele (1966) showed that if 4 ,(n) is the maximum number of Hamiltonian
paths in a tournament of order n, then

< lim [hf’(v”)] Y < -
.
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\r .’/ \\r
g N A7)
L )
T Te

FIGURE 4. Tournaments with no Hamiltonian path connecting x and vy.



distinct Hamiltonian cycles in a tournament with r vertices, Szele’s result
remains true if we replace &,(n) by h.(n).

Griinbaum (1969a) conjectured that, for every odd integer k, 1 < k =
h,(n), there is a tournament with »n vertices and precisely & distinct
Hamiltonian paths. Thomassen (1980b) disproved this by observing that
there is no tournament with precisely 7 distinct Hamiltonian paths. Perhaps
the following holds:

Conjecture 3.1.8 [Griinbaum (1969a)]. For every integer k, 1 <k =
h,(n), there is a tournament with n vertices and precisely k& distinct
Hamiltonian cycles.

Thomassen (1980b) proved the weaker statement that, for every integer
k >1, there is a tournament with precisely k¥ Hamiltonian cycles.

Moon (1966) proved that the minimum number of Hamiltonian paths in a
strong tournament of order n increases exponentially with #. From that fact
the following was established:

Theorem 3.1.9 [Thomassen (1980b)]. There exists a constant ¢ > 1 such
that every 2-connected tournament of order » has at least ¢" Hamiltonian
cycles and such that every strong tournament of minimum outdegree at least
k, where k = 2, contains at least ¢ Hamiltonian cycles.

The last part of Theorem 3.1.9 extends the aforementioned result of
Goldberg and Moon (1972), that a k-arc connected tournament has at least k
Hamiltonian cycles.

The tournaments with exactly one Hamiltonian cycle were characterized
and enumerated by Douglas (1970), Garey (1972), and Egorycev (1974).

3.2. Cycles of Prescribed Lengths

Let C(n,k) denote the maximum number of distinct cycles of length & in a
tournament of order #.

Theorem 3.2.1 [Korvin (1967)].

7\ (k — 1)! n\ (k— 1)
<k> 2k S Clnk) = (et 1) (A) 2(3/4)k =3

For k= 3,4, the exact values of C(n,k) are given in the following result:

" Theorem 3.2.2 [Kendall and Babington Smith (1940)]. The number of 3-
cycles in a tournament with outdegrees s,,s,,..., s, equals



and

2 _

2D s odd,
24

C(n,3)=

2

ﬁ(n———ﬂ if n is even.
24

Theorem 3.2.3 [Beineke and Harary (1965)).

C(n,4) = 3(n — 3)C(n, 3).

Furthermore, Berman (1975) found an upper bound for the number of 5-
cycles in tournaments of a special type.

Reid proved that if / < k, then the existence of sufficiently many /-cycles in
a tournament also implies a k-cycle.

Theorem 3.2.4 [Reid (1971)]. Let3<I/<k=<nandletn=gq(k — 1) + r,
where 0 <<k — 2. The maximum possible number of /-cycles in a
tournament of order n with no k-cycle is given by gC(k — 1,1) + C(r,]).

Moon (1968, p. 10) showed that a strong tournament contains at least
n—k+1 k—cycles for 3 < k < n. Las Vergnas refined this result. We denote
by 4, the tournament with vertex set {x,,x,,..., x,} and arc set
{epx)li<j—Tlori=j+ 1}

Theorem 3.2.5 [Las Vergnas (1975)]. If T is a strong tournament of order n
which is not isomorphic to 4, then T contains at leastz — k + 2 k-cycles for
4<k=<n-—1.

As a corollary, a strong tournament of order n which is not isomorphic to
/

. n\
A, contains at least (2 ) — 3 cycles. Las Vergnas also extended Theorem

3.2.5 to complete digraphs.
Las Vergnas has generalized some results on cycles in tournaments by
considering digraphs of the form D, U D, U W, where D, and D, are

disjoint digraphs and W is a set of arcs between D, and D,. Among other
things, he proved the following theorem:

Theorem 3.2.6 [Las Vergnas (1973)]. Let D be a digraph of order n of the
form D, U D, U W, where D, and D, are disjoint cycles and W is a set of




arcs between D, and D, such that any vertex of D, is adjacent to any vertex
of D,. If D is strong and k is any integer, 3 < k < n, then D contains a cycle
of length .

Beineke and Little (1980) and Jackson (1981) have investigated cycles in
bipartite tournaments, i.e., complete bipartite oriented graphs.

Theorem 3.2.7 [Jackson (1981)]. A strong bipartite tournament has a cycle
of length 2k or more if, for any two adjacent vertices x and y, either x
dominates y or d*(x) + d~(y) = k.

Beineke and Little (1980) proved that, if a bipartite tournament has a cycle
of length 2k, then it has cycles of all smaller lengths unless & is even and the
2k-cycle induces a special digraph.

Long cycles in k-partite tournaments have been studied by Ayel (1980).

3.3. Generalized Cycles

Ife = (e;,e,,...,6;) is a k-tuple of 1’s and —1’s, then an e-cycle is a
digraph whose underlying undirected graph is a cycle, (v;, v,,..., v, V),
such that v; dominates v;,, if and only if ¢, = 1 (here v,., = v,). If k is even
ande; = (—1)’, an e-cycle is called an antidirected cycle. An e-path and an
antidirected path are defined analogously. Griinbaum (1971) proved that
every tournament, with three exceptions (of orders 3,5, and 7, respectively),
has an antidirected Hamiltonian path, and made the following conjecture:

Conjecture 3.3.1 [Griinbaum (1971)]. Let » be an even integer, n = 10,
Then every tournament of order n contains an antidirected Hamiltonian
cycle.

The conjecture was first proved by Thomassen (1973a) for n = 50. Then
Rosenfeld (1974) obtained the following stronger result

Theorem 3.3.2 [Rosenfeld (1974)]. Every tournament of even order n, n =
28, has an antidirected Hamiltonian cycle.

He also made the following conjecture:

Conjecture 3.3.3 [Rosenfeld (1974)]. There is an integer n, such that, for
every tournament of order n, n = ny, and every n-tuple ¢ of 1’s and —1’s,
e#(1,1,...,1) and e # (—1,—1,...,—1), T contains an e-cycle.

Forcade (1973) proved that the parity of the number of embeddings of an
(e},e5,...,e,)-cycle in a tournamentof order n depends only on (ej,e,, ..
e,) and the number of Hamiltonian cycles of the tournament.

9



4. PARTITIONS, PACKINGS, AND COVERINGS BY CYCLES

In this section we are primarily concerned with packing and covering the arcs
of a digraph by cycles. A packing is a set of arc-disjoint cycles of the digraph.
A covering is a set of cycles covering all the arcs of a digraph. If a digraph has

a packing which is also a covering, we say that the arcs of the digraph can be
partitioned into cycles.

4.1. Partitions
The first general result is Veblen’s theorem:

Theorem 4.1.1 The arcs of a digraph can be partitioned into cycles if and
only if, for each vertex x, d* (x) = d ™ (x).

Meyniel (private communication) has conjectured that there always exists
such a decomposition into at most (n — 1) cycles, where 7 is the order of the
digraph.

It should be noted that Veblen’s theorem is a consequence of Euler’s
theorem:

Theorem 4.1.2. A strong digraph admits a closed walk containing all the
arcs if and only if for each vertex x, d* (x) = d~(x).

For diregular digraphs, a more precise result has been obtained by Kotzig.

A 2-facior in a digraph is a disjoint union of cycles covering all the vertices of
D.

Theorem 4.1.3 [Kotzig (1969)]. The arcs of a diregular digraph can be
partitioned into 2-factors. ‘

It is well known that the edges of the complete (undirected) graph K5,
can be partitioned into Hamiltonian cycles. The analogous result for com-
plete symmetric digraphs has been proved by Tillson (1980).

Theorem 4.1.4 [Tilison (1980)]. If n # 4,6, then the arcs of K¥ can be
partitioned into Hamiltonian cycles.

For n=4,6, such a decomposition is impossible. Theorem 4.1.4 was
conjectured by Bermond and Faber (1976), who discussed relations between
decompositions and sequenceable groups and other combinatorial objects.
An analogous result for bipartite complete symmetric digraphs is as follows:

Theorem 4.1.5 [Bermond and Faber (1976)]. The arcs of K, can be
partitioned into Hamiltonian cycles.



Another possible generalization of the decomposition of K, ; into Hamil-
tonian cycles is described in the following conjecture due to P.J. Kelly [see
Moon (1968, p. 7)].

Conjecture 4.1.6 [Kelly]. The arcs of a diregular tournament can be
partitioned into Hamiltonian cycles.

Kelly’s conjecture has been verified for tournaments of order 9 or less by
Alspach (private communication). Thomassen (1980c) proved that, for some
positive constant ¢, every diregular tournament of order # has C\/; arc-
disjoint Hamiltonian cycles (see Theorem 1.4.8). As a consequence of
Kelly’s conjecture, an oriented graph is Hamiltonian, if it is obtained from a
diregular tournament of order n by deleting any i(n — 3) arcs. Thomassen
(1980c) proved the following related result.

Theorem 4.1.7 [Thomassen (1980c)]. If T is a 5k-connected tournament
and 4 is a set of at most £ arcs of T, then T4 is Hamiltonian,

If T'is a diregular tournament of order n, then T has connectivity at least
n/3, as observed by Thomassen (1980a), and hence, by Theorem 4.1.7, T-4
is Hamiltonian if 4 is a set of at most |n/15] arcs.

Thomassen (1980c) made several other conjectures related to Kelly’s
conjecture, for example the following:

Conjecture 4.1.8 [Thomassen (1980c)]. There exists a function f(k) such
that every f(k)-connected tournament has k arc-disjoint Hamiltonian cycles.

By Camion’s theorem (1.1.1), A1)=1, and Thomassen (1980c) gave
examples showing that f{2) > 2. He conjectured that 2) = 3.

As a k-diregular tournament has 2k -+ 1 vertices, Bondy (1978) con-
Jectured that every k-diregular digraph of order 2k -+ 1, except Ds and D,
(see Fig. 3 in Sec. 1.4) can be decomposed into Hamiltonian cycles.
‘Thomassen (1980) disproved this conjecture as follows. Let & be either 3 or
5. Take two disjoint copies of K¥, add a new vertex which dominates all
vertices of one of the copies of K and which is dominated by all vertices of
the other copy, the add & arcs such that the resulting digraph is k-regular.
This digraph cannot be decomposed into Hamiltonian cycles, because K%
and K¥ cannot be decomposed into Hamiltonian paths (by 4.1.4). No infinite
family of counterexamples is known, so Bondy’s conjecture may be true for k
sufficiently large.

Jackson (1980a) made the following conjecture which, if true, implies the
truth of Kelly’s conjecture:

Conjecture 4.1.9 [Jackson (1980a)]. Every oriented graph of order n such
that d*(x) = d~(x) for each vertex x, can be decomposed into at most |1#/2]
arc-disjoint cycles.



Finally, note that other possible attacks of Kelly’s conjecture are given by
Conjectures 1.4.5 and 1.4.6.

Jackson (1980) proposed a bipartite version of Kelly’s conjecture which is
also of interest in connection with Theorem 4.1.5.

Conjecture 4.1.10 [Jackson (1980)]. Every diregular complete bipartite
oriented graph can be partitioned into Hamiltonian cycles.

It follows from Theorem 3.2.7 that any such oriented graph has a
Hamiltonian cycle.

In the undirected case Hamiltonian decompositions have been obtained for
products of special graphs [see Bermond (1978)]. Baranyai and Szazs
(1981) proved that if G, and G, are two undirected graphs decomposable into
Hamiltonian cycles, then their lexicographic product is also decomposable.
The analogous result for digraphs is perhaps also true.

4.2, Packings and Coverings

If the vertex set of a digraph D is partitioned into nonempty sets 4 and B, and
no vertex of B dominates any vertex of 4, than the set of arcs from 4 to B
forms a cocircuit of D. Lucchesi and Younger (1978) [see also Lovasz
(1976)] have proved that the maximum number of arc-disjoint cocircuits of a
digraph is equal to the minimum number of arcs meeting all the cocircuits.
From this, the following can be deduced:

Theorem 4.2.1 [Lucchesi and Younger (1978)]. For a planar digraph, the
maximum number of arc-disjoint cycles equals the minimum number of arcs
meeting all cycles.

This minimax relation does not hold in general, as can be seen by
considering an appropriate orientation of K; ; (Fig. 5).

Kotzig (1975) conjectured that Theorem 4.2.1 does not even extend to
tournaments and this was verified by Bermond and Kodratoff (1976) [see

FIGURE 5. Two oriented graphs with no two arc-disjoint cycles such that every arc-
deleted subgraph has a cycle.



also Bermond (1975b)]. Kotzig’s conjecture also follows from a result found
by Erdos and Moon (1965) [and improved by Jung (1970)] concerning large
acyclic subgraphs in tournaments. Let v(D) be the maximum number of arc-
disjoint cycles of a digraph D, and let (D) be the minimum number of
arcs meeting all cycles of D (that is, their deletion results in an acyclic
digraph). Clearly, ©(D) = v(D). Now let f(rn) = max t(T,) and
w(n) = max v(T,), where the maximum is taken over all tournaments of
order n. Thus, w(n) is-also equal to the maximum number of edge-disjoint
cycles of the complete (undirected) graph. By a result of Chartrand, Geller,
and Hedetniemi (1971),
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The fact that Theorem 4.2.1 fails for tournaments is established by the
next theorem.

Theorem 4.2.2 [Bermond (1975b), Bermond and Kodratoff (1976)]. For
n=10, f(n) > w(n).

The proof of Theorem 4.2.2 depends on the determination of (D, & D,),
where D, ® D, is the lexicographic product of digraphs D, and D,. The
following result was conjectured by Bermond (1975b):

Theorem 4.2.3 [Thomassen (1975)].
oD ®D,) = | V(D) ©(D,) + | V(D)) *t(D)).

The analogous statement for v(D; & D,) is not true in general. Bermond
(1975b) conjectured v(D; & §,) = g*w(D,) where S, is a digraph on ¢
vertices without arcs. That has been disproved by Sterboul (private com-
munication) with ¢ = 2 and with D; equal to the digraph of Figure 6.

In the undirected case, the problem of determining the minimum number
f(n,k) of edges such that every graph G on vertices contains k pairwise
edge-disjoint cycles is an unsolved problem. The following exact values are
known: f(n,2) = n + 4 [Erdos and Posa (1962)]: f(#n,3) = n + 10 [Moon
(1964)]; f(n,4) = n + 18 [Haggkvist (1975)]. Using the Four-Colour
Theorem, Haggkvist (1975) has solved the analogous problem for planar
graphs completely. For digraphs, this problem is easily solved. Indeed, it is
obviotis that, for k = 2, every digraph with at least n(n — 1)/2 + k arcs
contains k pairwise arc-disjoint cycles and it is easy to see that this is best
possible.

Finally, we mention that Nash-Williams (1969) has conjectured that a
digraph with minimum indegree and outdegree at least 71/2 contains two arc-
disjoint Hamiltonian cycles.
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FIGURE 6. A counterexample to a conjecture of Bermond {1975b).

As pointed out ‘by Thomassen (1980c¢), the results in Thomassen (1981)
imply this conjecture for #n odd. However, Nin¢ak (1973) gave a counter-
example for n = 6 and the conjecture is open for each even n = 8.

4.3. Partitions, Packings, and Coverings with Cycles of given Length

The problem of decomposing a digraph into cycles of a given length is related
to design theory, in particular when one is concerned with decompositions of
K*, The following conjecture has been proposed:

Conjecture 4.3.1 [Bermond (1975)]. The arcs of K} can be partitioned into
cycles of length &k, k < n, if and only if n(n — 1) = 0 (mod k), except when
n=k=4n=k==6,andn=6, k= 3.

Note that for the three exceptional pairs of values no such partition exists.
Many particular cases of the conjecture have been solved, one of them being
Tillson’s theorem (4.1.4) for k = n. For a comprehensive survey of these
results, the reader is referred to Sotteau (1980a). For further results and
more details, see also Bermond and Sotteau (1976, 1978) and Bermond,
Huang, and Sotteau (1978).

For complete symmetric bipartite digraphs the situation is clarified by the
following result, conjectured by Bermond and Faber (1976):

Theorem 4.3.2 [Sotteau (1980)]. The arcs of K¥,, can be partitioned into
cycles of length 2k if and only if n = k, m = k, and nm = 0 (mod k).

Analogous problems for packings or coverings of K* with cycles of a given

length k£ can also be considered. Partial results have been obtained, in
particular, for k£ = 3 [Bermond (1975)].

6. FURTHER PROBLEMS INVOLVING CYCLES

Not much is known about antidirected cycles in digraphs (for definitions see
3.3). Haggkvist (1977a) conjectured that every digraph of order n with more



than 3(z — 1) arcs contains an antidirected cycle. Recently, this conjecture
was disproved independently by L.D. Andersen (private communication)
and by Lehel (1980). The exact bound is still to be determined; however, the
following partial result has been obtained.

Theorem 5.1 [Grant, Jaeger, and Payan (1979)]. Any digraph of order n
with more than 7(rz — 1)/2 arcs has an antidirected cycle.

Grant, Jaeger, and Payan (1979) proved, also, that every digraph without
antidirected cycles has a vertex of degree less than or equal to 5, and
conjectured that such graphs are 5-colorable.

Marcus (1979) has considered the problem of describing those constants
&, by, for which the following holds: every k-connected digraph of order n
with m or more arcs contains a strong spanning subgraph with at most
aym + b(n — 1) arcs. He has shown that the truth of the following
conjecture would yield a complete solution for the case &k = 2:

Conjecture 5.2 [Marcus (1979)]. Any 2-connected digraph contains a cycle
with two chords (i.e., two arcs joining two vertices of the cycle).

Corradi and Hajnal (1963) proved that every undirected graph of order at
least 3k and minimum degree at least 2k contains k pairwise disjoint cycles.
We propose an analogous conjecture for digraphs.

Conjecture 5.3. A digraph with minimum outdegree at least 2k — I con-
tains & pairwise disjoint cycles.

The complete digraph of order 2k — 1 shows that the bound is necessary.
The conjecture is trivial for k = 1, and it has been verified by Thomassen for
k=2,

The following conjecture on arc-disjoint cycles, due to D.H.- Younger

[private communication (1973)] is of interest in connection with Theorem
4.2.1.

Conjecture 5.4 [Younger (private communication)]. There exists a function
J(k) such that any digraph contains either & arc-disjoint cycles or a set of f(k)
arcs meeting all cycles.

Younger (1973) described the graph of order 14 in Figure 5 showing that
S(2) > 2. He conjectured that A2) = 3.

The analogous statement for undirected graphs was proved by Erdos and
Pasa (1962).

Using standard operations on digraphs, it is easy to reformulate Conjecture
5.4 as follows:




Conjecture 5.5 There exists a function g(k) such that any digraph contains
either k disjoint cycles or a set of g(k) vertices meeting all cycles.

Again, the analogous result for undirected graphs was proved by Erdos and
Posa (1965). The question of the existence of g(2) was originally posed by
Gallai (1968a).

Younger (1973) and Kosaraju (1977) conjectured that g(2) = 3. Kosaraju
(1977) proved that, if any three cycles of a digraph have a vertex in common,
then all cycles have a common vertex.

The problem of finding many disjoint cycles covering all vertices in a
special class of digraphs, called de Bruijn Graphs, has been discussed by
Lempel (1971).

Gyori (1978) described the digraphs with the property that any arc belongs
to at most two cycles. He also described those with the property that any
vertex is contained in at most three cycles and extended, thereby, an earlier
result of Adam (1976).

It is difficult to count the number of cycles in a digraph unless one is
interested only in special digraphs (for example 3-cycles in a tournament). In
this connection, the following conjecture is of interest:

Conjecture 5.6 [Adam (1964)]. If a digraph D contains at least one cycle,
then it is possible to reverse the direction of an arc so as to obtain a digraph
with fewer cycles than D.

Chvatal and Thomassen proved the following result on local girth of
orientation.

Theorem 5.7 [Chvatal and Thomassen (1978)]. There exists a function (k)
such that any undirected graph G has an orientation D with the property that
any edge which in G is contained in a cycle of length at most &, is contained in
D in a cycle of length at most A(k).

In Theorem 5.7, the object is to obtain many small cycles. On the other
hand, one might try to orient the edges of an undirected graph so as to create
no small cycles. This is nontrivial only if we insist that the resulting digraph
be strong. We propose the problem of characterizing the 2-edge-connected
graphs G, such that, for any strong orientation D of G, the (directed) girth of
D equals the girth of G. The following graphs enjoy this property: any graph
of girth g such that every cycle of length greater than g has a chord (for
example, a complete bipartite graph), any graph with n vertices and
maximum degree # — 1, any planar triangulation, and, finally, the Petersen
graph [Chvatal and Thomassen (1978)].

It is easy to prove that a strong digraph has an odd cycle unless it is
bipartite [see, for example, Harary, Norman; and Cartwright (1965)]. Also,



It 1S easy to show that an undirected Z-conneciea grapn nds au eveu cyuis
unless it is an odd cycle. However, it seems difficult to decide whether or not
a digraph has an even cycle. Younger (private communication) has proposed
the problem of describing an efficient algorithm for finding such a cycle, and
Lovasz has made the following conjecture:

Conjecture 5.8 [Lovasz, see Koh (1976)]. There exists a natural number &
such that every digraph with minimum indegree and outdegree at least k has
an even cycle.

Koh (1976) has shown that k& must be at least three by exhibiting an
infinite familty of counterexamples with k = 2.

A well-known theorem of Whitney (1932) asserts that two graphs G and &
are isomorphic if G is 3-connected and there exists a cycle-preserving
bijection of the edge set of G onto the edge set of H. This result is not true
for digraphs in general. However, for tournaments, the following holds:

Theorem 5.9 [Goldberg and Moon (1971)]. Let T and T" be strong
tournaments with arc sets U and U’, respectively. If there exists a bijection
of U onto U’ which preserves 3-cycles and 4-cycles, then T is isomorphic
to T" or its converse,

Goldberg and Moon (1971) pointed out that Theorem 5.9 is not valid if the
bijection only preserves 3-cycles, but that it may be true if the bijection only

preserves 4-cycles. Other problems of this type have been considered by
Waldrop (1978).
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