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ABSTRACT 

Let G be a 2-connected claw-free graph on n vertices, and let H be 
a subgraph of G. We prove that G has a cycle containing all vertices 
of H whenever a3(H) 5 K(G), where a 3 ( H )  denotes the maximum 
number of vertices of H that are pairwise at  distance at  least three in 
G, and K(G)  denotes the connectivity of G. This result is an analog of a 
result from the thesis of Fournier, and generalizes the result of Zhang 
that G is hamiltonian if the degree sum of any K(G) + 1 pairwise 
nonadjacent vertices is at  least n - K(G).  0 1995 John Wiley & Sons, Inc. 

1. TERMINOLOGY 

We use Bondy and Murty [3] for terminology and notation not defined here 
and consider simple graphs only. 

Let G be a graph of order n. The connectivity of G is denoted by K(G),  
the number of vertices in a maximum independent set of G by a ( G ) ,  the 
set of vertices adjacent to a vertex u E V ( G )  by N ( u ) ,  and the degree 
of u by d ( u )  = IN(u)I. If H is a subgraph of G, we denote by a 3 ( H )  the 
maximum number of vertices of H that are pairwise at distance at least three 
in G. Let S V(G). We denote by a k ( S )  the minimum value of the degree 
sum (in G) of any k pairwise nonadjacent vertices of S if k 5 a(G[S] ) ,  
where G [ S ]  is the subgraph of G induced by S; if k > a(G[S] ) ,  we set 
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a k ( S )  = k ( n  - 1). Instead ofak(V(G)) we use a k ( G ) ,  and instead of a l (S)  
we use the more common notation 6 ( S ) .  If H is a subgraph of G or a subset 
of V(G), an H-cycle of G is a cycle containing all vertices of H; a G-cycle is 
a Hamilton cycle, and a graph G containing a G-cycle is called hamiltonian. 
A graph G is claw-free if G has no induced subgraph isomorphic to K I , ~ .  

2. RESULTS 

There are many results showing a graph G is hamiltonian if G satisfies a 
particular degree condition. The disadvantage of such results is that there 
is no result left even when only a few vertices have “small” degree, while 
recent results show that in these cases the graphs under consideration can 
still have “long” cycles containing particular sets of vertices with “large” 
degree. We give an example. 

I Theorem 1 (Dirac [5] ) .  
then G is hamiltonian. 

let G be a graph of order n 2 3 .  If 6(G) 2 z n ,  

Recently, Theorem I was generalized independently by BollobAs and 
Brightwell, and by Shi. 

Theorem 2 ([2,8]). 
S C V(G). If 6 ( S )  2 i n ,  then G has an S-cycle. 

Let G be a 2-connected graph of order n and let 

In a similar fashion, a generalization of the following well-known result of 
Chvhtal and Erdos appeared in the thesis of Fournier. 

Theorem 3 [4]. 
G is hamiltonian. 

Let G be a graph of order n 2 3 .  If a ( G )  5 K(G), then 

Theorem 4 [6]. 
G. If a ( H )  5 K(G), then G has an H-cycle. 

Let G be a 2-connected graph and let H be a subgraph of 

Extremal graphs for Theorems 3 and 4 can be found, e.g., within the class 
of complete bipartite graphs with unequal cardinalities of the two color 
classes. Most of these graphs contain many induced subgraphs isomorphic 
to K I , ~  and have a 3  = 1, while the connectivity can be arbitrarily large. The 
situation is quite different if we consider claw-free graphs. In Section 3 we 
give a proof of the following analog of Theorem 4 for claw-free graphs. 

Theorem 5. Let G be a 2-connected claw-free graph and let H be a 
subgraph of G. If a 3 ( H )  5 K(G), then G has an H-cycle. 
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Corollary 6. 
and let S C V(G). If a k + , ( S )  2 n - k, then G has an S-cycle. 

Let G be a k-connected claw-free graph (k 2 2) on n vertices 

Corollary 6 is an immediate consequence of Theorem 5 and the following 
lemma. 

Lemma 7. 
If U ~ + ~ ( S )  2 n - k, then a3(G[S]) 5 k. 

Let G be a 2-connected graph on n vertices and let S C V(G) .  

Prooj Suppose a?(G[S] )  L k + 1. Consider a subset T C S with 
(TI = k + 1 vertices that are pairwise at distance at least three in G. Then 

d(u)  5 n - ( k  + 1) < n  - k .  
V E T  

Therefore, g k + l ( S )  2 n - k implies a?(G[S] )  5 k. I 

Corollary 6 generalizes the following result of Zhang. 

Theorem 8 [9]. 
vertices. If ak+l (G)  2 n - k ,  then G is hamiltonian. 

Let G be a k-connected claw-free graph (k 2 2) on n 

By the way, as observed in [ l] ,  implicit in the proof of Theorem 8 in [9] is a 
proof of the following stronger result, which is a special case of Theorem 5 
and an analog of Theorem 3. 

Theorem 9. 
then G is hamiltonian. 

Let G be a 2-connected claw-free graph. If a3(G)  5 K(G) ,  

The proof of Theorem 5 given in Section 3 is based on proof ideas used in 
[ l ]  and [9]. The main idea to use so-called vertex-insertion was originally 
introduced in [9], and later presented more clearly in [l] .  This idea is used 
throughout the proof of Theorem 5 in a similar way, restricted to vertices 
of H.  

It is clear that Theorem 5 is more general than Theorem 4 within the 
class of claw-free graphs. 

Theorem 5 is best possible in the following sense. Let G I  be a graph 
obtained from three disjoint complete graphs on at least three vertices 
by joining two disjoint triples of vertices by a triangle, where each triple 
contains one vertex of each complete graph. Then G I  has no hamilton cycle, 
is claw-free, while a 3 ( G I )  = K(GI )  + 1 = 3. We do not know whether 
Theorem 5 is best possible for graphs G with K ( G )  2 3. Matthews and 
Sumner [7] conjectured that any 4-connected claw-free graph is hamiltonian. 
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3. PROOF OF THEOREM 5 

Let G be a 2-connected claw-free graph, let H be a subgraph of G such that 
cr3(H) 5 K(G),  and let C be a cycle of G containing as many vertices of 
H as possible, and longest subject to this condition. Fix an orientation on 
C. If u, u E V ( C ) ,  then u e u  denotes the consecutive vertices on C from u 
to u in the direction specified by the orientation of C. The same vertices, 
in reverse order, are given by u c u .  We will consider u c u  and U ~ U  both 
as paths and as vertex sets. We use u+ to denote the successor of u on C 
and u p  to denote its predecessor. 

Assuming C is no H-cycle, let ao E V ( H )  - V ( C ) .  By a variation on 
Menger's Theorem, there are at least K ( G )  paths connecting ao to vertices 
of C having only the vertex ao in common and having no internal vertices 
on C. Choose a maximum number of paths with this property, and denote 
by X = { x i  I i = 1,2, .  . . , t }  the end vertices of the paths on C,  occurring on 
C in the order of their indices. Obviously, 1x1 = t 1 K(G) .  First note that 
any pair of vertices x ; , x j  E X is joined by a path containing a0 with all 
internal vertices in G - V(C) .  We denote such a path by x i n - x j .  Let S j  be 
the set of vertices of x + C x , i ~ ,  and choose ui E Si such that u j x i  E E(G)  
and lxiCu; I is as large as possible (i = 1,2, .  . . , z;  indices mod t ) .  A vertex 
u E Si n V ( H )  is insertible if there exist vertices u ,  u+ E V ( C )  - S j  such 
that u u , u u +  E E(G) ;  then uu' E E ( C )  is an insertion edge of u. We 
denote the set of insertion edges of u by Z(u), and we denote the first 
noninsertible vertex of V ( H )  occurring on u t  ex[+ by ai . Using standard 
techniques in hamiltonian graph theory, it is straightforward to show 

t 

+ 

and 

a; exists. (3) 

In the rest of the proof we show that a,  and a ,  are at distance at least three 
in G ( i , j  E {1,2,. . . , t } ;  i # j ) ,  implying a 3 ( H )  2 t + 1 2 K ( G )  + 1, 
and proving Theorem 5. 

Suppose there exists a vertex w E u:Cx,+l fl V ( H )  n N ( x , )  and as- 
sume a ,  @ u:ew- .  Then every vertex of u:cw-  fl V ( H )  is insertible. 
Let w1 be the first vertex of u:ew f l  V ( H )  fl N ( x , )  with the property that 
x,-x, and x,xT are not insertion edges of the vertices in u:Cw- n V ( H )  

+ 

-, 
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+ + + 

(or w1 = u:). Using the cycle x ; w ~ C x , ~ x ~ C x , ~ x ~ C u ; x , ~ x ,  and inserting 
the vertices of u T 6 w ,  n V ( H )  in a straightforward way, we derive a 
contradiction. Hence 

If w E u:6x1;, fl V ( H )  n N(xj), then ai E u T 6 w p .  (4) 

By (4) and the definition of ui, we have 

From the definition of X and the fact that ai 6 X ,  we obtain 

Next we show 
+ + 

There is no edge joining a vertex of u: Ca, and a vertex of u: Ca,, and 

I(x) n I (  y )  = 0 for all x E u:6a,  f l  V ( H )  and y E u;?a,- f l  V ( H ) .  

(7) 
+ 

To prove (7), suppose to the contrary there are vertices x E u:Ca, and 
y E uT6a,  such that xy E E(G)  or x and y have a common insertion edge 
uu' E E ( C )  (and x,y E V ( H ) ) .  Choose x as close to u,  along u:6u, as 
possible subject to the above conditions. Define 

LJ I ( Z )  i f x  # u: 
E,  = { Z E L I : ? X - ~ V . H )  0 

i f x  =uT 

Analogously define El .  By the choice of x, we have 

There is no edge joining a vertex of u:6x- and a vertex of u T 6 y - ,  (8) 

and 

E; n E., = 0. (9) 

Consider two cases. 

Case 1. xy E E(G) .  
By (4), there is no edge joining a vertex of u:6xp f l  V ( H )  to 

x,, since a ,  (Z u:Cx-. Thus E, E(C - xl). Similarly, E, C E(C - 
xl). By (€9, El  E(C - u 1 6 x ) .  The ver- 
tices of V ( C )  - (uT6x- U u : e y - )  are contained in a cycle D = 

+ 

E(C - u , 6 y )  and E, 
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c + +  + 

xiuiCx+x,-CyxCxJxfCujxj~xi. Clearly, Ei U E j  C E(D) .  Using (9) 
and similar arguments as before, we can insert the vertices of (u'Cx- U 
uT?y-) fl V ( H )  in D to obtain a cycle containing more vertices of H than 
C, a contradiction. 

+ 

Case 2. 
Assuming Case I does not apply, choose y as close to u, along u:Ca, as 

possible subject to the other conditions. By the definition of insertion edges, 
uu' @ S, U S,. Furthermore, the choice of x and y implies 

x and y have a common insertion edge uu+ E E(C).  
* 

Combining (4), (8), (9), and (lo), we get E; U E j  C E(C - ( { x i , x j }  U 
u i c x  U u,&)) - {uu'} and El f' E j  = 0. If u E x+?x;, define 
D = x i u i ~ x ; x i C ? ; u C x u + ? x : x + ? u j x j ~ x i ;  if u E xTCx;, define 
D = x , u j C x + x , - C u i y C u x C x J x f C u , x , ~ x i .  Clearly, in both cases 
E; U El C E(D), and we can derive a contradiction with the choice of 
C by inserting the vertices of ( u T 6 x -  U u ; e y - )  n V ( H )  in D as before. 
This completes the proof of (7). 

By ( 5 )  and (6), a ~ a ,  @ E ( G )  and N ( Q )  fl N ( a ; )  = 0, and, by (7), 
a ,a j  @ E(G) .  It suffices to show N ( a , )  fl N ( a , )  = 0. Suppose u E 
N ( a i )  fl N ( a j ) .  Then similar arguments as in the proof of Case 1 of 
(7) show u E V ( C ) .  By ( 5 )  and (7), u 4 u:cu; U u t e u ;  U {x j , x j } .  
If u E X , ? + ~ ? S ~  U X ~ + ~ ? X ; ,  then the noninsertibility of a;  and u j ,  
and (7) imply that G [ { u , u + , a i , a j } ]  = K , , 3 ,  a contradiction. If u E 
a'Cx;+l U ~ f C x ~ + ~ ,  assume without loss of generality, u E a+Cxi+, .  
Then, considering G[{u ,  u', a , ,  a,i}] and using (7) and the noninsertibility 
of a j ,  we obtain aiv' E E(G) .  Let w be the first vertex of u;ca l  adjacent 
to u .  As before we can insert the vertices of (u ' ea ;  U u t i ' w - )  n 
V ( H )  in the cycle x i u ; C x ~ x 1 ~ C w ~ C a ; u + C x ~ ~ x f C u j x j ~ x ~  to derive a 
contradiction with the choice of C. (Note that u # x, : ,~ ,~  by (5 ) . )  Hence 
u E x'Cu; U xTCuj.  Assume without loss of generality u E x + 6 u j .  
Considering G[{u- ,  u ,  a ; ,  aj}] and using (7) and the noninsertibility of a j ,  
we obtain a;u-  E E ( G )  and u p  # xi (by ( 5 ) ) .  Choose bj E uTi 'n i  as 
close to uj along u f i ' u j  as possible such that ubj  E E(G) .  As before 
we can insert the vertices of ( u T e a ;  U uTi.0;) n V ( H )  in the cycle 
xiu;C u b j C x , ~ x ~ C u ~ a ; C x J x f u , C x j ~ x ,  to derive a contradiction with the 
choice of C. Hence the set {ao,ul, .  . . ,a ,}  consists of at least K(G) + 1 
vertices of H which are pairwise at distance at least three in G, showing 
that a 3 ( H )  > K ( G ) ,  our final contradiction. 

c c  

c c + +  J I +  

.+ + + 

c t c  + + 

- + 

c + + + c 
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