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Abstract

Recently, we have demonstrated that trichosanthin (TCS), a promising agent for the treatment of cervical adenocarcinoma,
inhibited HeLa cell proliferation through the PKC/MAPK/CREB signal pathway. Furthermore, TCS down-regulated Bcl-2
expression was abrogated by a decoy oligonucleotide (OGN) to the cyclic AMP-responsive element (CRE). The decoy OGN
blocked the binding of CRE-binding protein (CREB) to Bcl-2. These results suggested that CRE-mediated gene expression
may play a pivotal role in HeLa cell proliferation. However, little is known about the effect of TCS on cell cycle arrests,
particularly, whether the genes involved in cell cycle were regulated by CRE. Our present study shows that the arrests of S,
G1 and G2/M phases were accompanied by the significant down-regulation of cyclin A, D1 and CDK 2, 4 in HeLa cells, cyclin
D1, E and CDK 2, 4 in Caski and C33a cells, and cyclin A, B1, E and CDK 2 in SW1990 cells. However, the cell cycle arrests were
reversed via the significant up-regulation of cyclin A and D1, by the combined treatment of TCS and CRE. In conclusion,
these data demonstrate for the first time that specific cell cycle arrests in cancer cells can be induced by TCS by inhibiting
the binding of CREB to CRE on genes related to cell proliferation.
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Introduction

Trichosanthin (TCS), an active component isolated from the

root tubers of the Chinese medicinal herb Trichosanthes kirilowii [1],

is a promising agent for the treatment of cancer [2]. Our previous

reports showed that TCS inhibited cervical adenocarcinoma HeLa

cell proliferation [3] through the PKC/MAPK/CREB signal

pathway [4]. Furthermore, TCS down-regulated Bcl-2 expression

[5], which was abrogated by a cyclic AMP-responsive element

(CRE, TGACGTCA) decoy oligonucleotide (OGN), blocking the

CRE-binding protein (CREB) binding site on Bcl-2 [6]. These

results suggest that CRE-mediated gene expression may play a

pivotal role in HeLa cell proliferation.

However, little is known about the effect of TCS on cell cycle

arrest of HeLa cell, cervical squamous carcinoma (Caski and C33a

cell), and human pancreatic carcinoma (SW1990 cell), especially,

whether genes related to cell cycle were regulated by the CRE

decoy OGN.

In the present study, we further explored the effects of TCS on

the proliferation of cancer cells, cell cycle arrests in the progress of

cell proliferation and the role of CRE in cell cycle regulation.

The aim of this study was to investigate the effects of TCS on

cancer cell proliferation and the effect of CRE on TCS-induced

cell cycle arrests. An important question was whether CRE-

combined cyclins played a critical role in the regulation of cell

cycle arrest in these cancer cells.

Materials and Methods

Cell lines and culture
Cervical cells (HeLa, Caski, C33a) and SW1990 cells were

obtained from American Type Culture Collection (ATCC, USA).

HeLa, Caski, C33a [7] and SW1990 cell [8] were grown in

monolayer in RPMI 1640 medium (Gibco, NY, USA) and

Dulbecco’s modified Eagle’s medium (DMEM), containing 10%

heat-inactivated fetal bovine serum, 100 U/ml of penicillin and

100 mg/ml of streptomycin (BioWhittaker, Inc., Walkersville, MD,

USA), in a CO2 incubator (Forma Scientific, USA). The medium

was replaced twice a week, and cells were passaged every 4–5 days

at a ratio of 1:3.

Cell treatment
Cells were plated at 26106 cells/dish in 100-mm dishes in the

basal medium. At confluence, they were washed briefly with PBS

and then treated with TCS (Jinshan pharmacy company,

Shanghai, China). Control cells were incubated in TCS-free

medium.

Cell viability assay
Cell viability was assessed with Cell Counting Kit-8 (Dojindo

Laboratories, Kumamoto, Japan) using the methods described

previously [3,4,9].
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Treatment of cells with CRE-OGNs
CRE decoy OGN (59-TGACGTCAGAGAGCGCTCTCT-

GACGTCA-39) and control OGN (59- TGACGTCATGACGT-

CATGACGTCA-39) were converted to phosphorothioate OGNs

(Invitrogen Carlsbad, CA, USA) as previous described [5,6,10].

Preparation of cytosolic and nuclear proteins
The preparations of cytosolic and nuclear proteins were

performed as previously described [6,11,12]. Briefly, at the end

of each designated treatment, cells were washed briefly with cold

PBS and lysed by scrapping them in 0.5 ml cold hypotonic buffer

(10 mM HEPES, 40 mM KCl, 3 mM MgCl2, 1 mM dithiothre-

itol, 0.2% NP-40, 1 mg/ml aprotinin, 2 mM leupeptin, 1 mM

phenylmethylsulfonyl fluoride, 40 mM p-nitrophenyl phosphate,

1 mM sodium orthovanadate and 50% glycerol). The lysates were

collected and incubated on ice for 5 min, then centrifuged at

15,0006g for 20 s. The supernatant was collected and saved as the

cytosolic fractions. The pellet (i.e. cell nuclei) was resuspended in

hypertonic buffer (20 mM HEPES, 420 mM KCl, 1.5 mM

MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2% NP-40,

1 mg/ml aprotinin, 2 mM leupeptin, 0.5 mM phenylmethylsulfo-

nyl fluoride, 40 mM p-nitrophenyl phosphate, 1 mM sodium

orthovanadate and 25% glycerol). After incubation on ice for

60 min, the samples were centrifuged at 15,0006g for 20 min and

the supernatants were collected and saved as nuclear extracts. The

cytosolic fractions and nuclear extracts were boiled for 10 min and

dissolved in 8% SDS PAGE.

Cell cycle analysis
For flow cytometry analysis of cell cycle, 16106 cells were

harvested by centrifugation, washed with PBS and fixed with ice-

cold 70% ethanol overnight. Fixed cells were treated with 25 mg/

ml RNase A at 37uC for 30 min and then stained with propidium

iodide (PI) (50 mg/ml, Sigma) solution for 30 min in the dark. The

fluorescence intensity of individual cells was measured by a flow

cytometer (Beckman Coulter, Inc., Miami, FL, USA). At least

10,000 cells were counted [13].

Western blot analysis
Total cell lysates were prepared by lysis of cells with

radioimmunoprecipitation assay buffer and protein concentration

was determined using the protein assay kit (Bio-Rad). For Western

blot analysis, 50 mg of each sample was processed as described

[14]. The following antibodies were used: anti-cyclin A, B1, D1, E,

anti-CDK2, 4 and anti-actin (Cell signaling Thehnology, Inc.,

Beverly, MA). The secondary antibodies were coupled to

horseradish peroxidase and detected by chemiluminescence (Bio-

Rad, Hercules, CA). The relative amounts of immunoreactive

protein in each band were determined by scanning densitometric

analysis of the X-ray films.

Statistical analysis
All experiments were repeated three times. The data were

expressed as means 6 SD. ANOVA was used to evaluate the

differences between groups. Data reported as mean 6 SD of three

independent experiments. Differences were considered significant

if p ,0.05.

Results

Effects of TCS on the proliferation of cancer cells
TCS of 20–100 mg/ml inhibited the proliferation of cells by 3%

to 70% after treatment for 24 h (Fig. 1). The 50% inhibitory

concentration (IC50) of TCS on Caski and C33a cells was found to

be 60 mg/ml, lower than that on HeLa and SW1990 cells

(100 mg/ml) (Table 1).

Effects of TCS on cell cycle progress and cell cycle
regulatory proteins
TCS-treated cancer cells were analyzed by flow cytometry. A

dose-dependent cell number increases of S, G1, G2/M phase were

shown in HeLa, Caski, and SW1990 cells respectively, after they

were treated for 24 hours, (Table 2). The levels of cell cycle related

proteins were determined by Western blot assay. TCS decreased

the abundance of cyclin A, D1 and CDK 2, 4, while it had no

marked effect on the expression of cyclin B1 and E in HeLa cell

(Fig. 2). In Caski cell, cyclin D1, E and CDK 2, 4 were

significantly decreased, whereas no marked changes were shown in

the expression of cyclin A and B1 (Fig. 3). Similar results were

found in C33a cells (data not shown). In SW1990 cell, cyclin A,

B1, E and CDK 2 were significantly down-regulated, no distinct

effects were observed in the expression of cyclin D1 and CDK4

(Fig. 4).

Effects of CRE-decoy on the cell cycle progress and
regulatory proteins
The arrests of S, G1 and G2/M phases induced by TCS in

HeLa (Fig. 5), Caski (Fig. 6) and SW1990 (Fig. 7) cells, were

significantly attenuated by the combined treatment of TCS and

CRE (A, B). It was found that the TCS-induced decreases of cyclin

A and D1 were markedly reversed by the addition of CRE, in

Figure 1. Effects of TCS on cancer cell proliferation. TCS inhibited
cell proliferation in a dose-dependent manner. Data represent means 6
SD of three independent experiments (*p ,0.05 compared with
control).
doi:10.1371/journal.pone.0065661.g001

Table 1. Concentration producing 50% growth inhibition
(IC50) of TCS on cancer cells.

Cell line IC50 (mg/ml)

24 h 48 h

HeLa 98.2561.46 64.2162.45

Caski 51.4664.59 22.8664.63

C33a 49.8364.21 21.9462.48

SW1990 10163.84 73.1463.51

doi:10.1371/journal.pone.0065661.t001

CREB Mediates Cancer Cell Cycle Arrest
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HeLa cells (Fig. 5, C, D), Caski cells (Fig. 6 C, D) and SW1990

cells (Fig. 7 C, D).

Discussion

This study showed, for the first time, that TCS exerted cytotoxic

effects on cancer cell viability in a dose-dependent manner (Fig. 1).

Caski and C33a cells were sensitive to its inhibitory effect on cell

proliferation (Table 1). The results of it’s anticancer mechanisms

clearly show that the increase of S phase in HeLa cells

accompanied the decrease of G1 phase cells, while the number

of G2 phase cells did not change. In Caski and C33a cells,

significant increase of G1 phase and decrease of S and G2 phase

cells were observed. In SW1990 cells, an increase of G2/M phase

cells was accompanied by a decrease of G1 phase cells, with no

change found in the number of S phase cells (Table 2).

Investigating the changes in multiple regulatory molecules

involved in the cell cycle showed that the expressions of cyclin A,

D1 and CDK 2, 4 in HeLa cells (Fig. 2), cyclin D1, E and CDK 2,

4 in Caski and C33a cells (Fig. 3), cyclin A, B1, E and CDK 2 in

SW1990 cells (Fig. 4) were significantly down-regulated. Blocking

the binding site of cell cycle genes to CREB by OGN, a CRE

decoy, prevented the TCS-arrested S, G1 and G2/M cell cycles in

HeLa (Fig. 5 A, B), Caski (Fig. 6 A, B) and SW1990 (Fig. 7 A, B)

cells, respectively. The TCS mediated down-regulation of cyclin

A, D1 in HeLa cells (Fig. 5 C, D), cyclin D1 in Caski cells (Fig. 6

C, D) and cyclin A in SW1990 cells (Fig. 7 C, D) were reversed by

the combination of CRE and TCS.

Figure 2. Effects of TCS on HeLa cell cycle progress and cell cycle regulatory proteins. HeLa cells were treated with indicated doses of TCS
for 24 h. Cell number of S phase increased significantly (A) and expressions of cyclin A, D1 and CDK2, 4 significantly decreased (B). Data represent
means 6 SD of three independent experiments (*p ,0.05 compared with control).
doi:10.1371/journal.pone.0065661.g002

Table 2. Cell cycle effects of TCS on cancer cells. n= 3, Mean 6 SD.

Group HeLa Caski SW1990

G1 S G2/M G1 S G2/M G1 S G2/M

Control 45.8562.12 31.7961.51 22.3663.04 40.9961.34 8.9762.51 50.0460.38 66.6863.21 31.1261.11 2.261.24

20 mg/ml 37.2364.28 44.4663.19 18.3160.97 53.4262.47 2.9861.18 43.6061.63 56.1561.56 23.4962.0 20.3661.56

60 mg/ml 26.9363.47* 49.1360.42* 23.9461.15 66.1562.19* 2.9960.99 30.8662.10 35.5862.41* 21.2261.54 43.2061.98*

100 mg/ml 21.1263.42* 57.8562.63* 21.0362.54 80.6763.44* 1.3362.61* 18.063.51* 11.8862.54* 22.2761.57 65.8561.67*

*p ,0.05 vs control group.
doi:10.1371/journal.pone.0065661.t002
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Figure 3. Effects of TCS on Caski cell cycle progress and cell cycle regulatory proteins. Caski cells were treated with indicated doses of TCS
for 24 h. Cell numbers at G1 phase increased significantly (A) and expressions of cyclin D1, E and CDK2, 4 significantly decreased (B). Data represent
means 6 SD of three independent experiments (*p ,0.05 compared with control).
doi:10.1371/journal.pone.0065661.g003

Figure 4. Effects of TCS on SW1990 cell cycle progress and cell cycle regulatory proteins. SW1990 cells were treated with indicated doses
of TCS for 24 h. Cell numbers at G2/M phase increased significantly (A), the expressions of cyclin A, B1, E and CDK2 significantly decreased (B). Data
represent means 6 SD of three independent experiments (*p ,0.05 compared with control).
doi:10.1371/journal.pone.0065661.g004
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These results confirmed and extended our earlier reports

showing that TCS has a cytotoxic effect on cancer cells [3,4],

and partly revealed the mechanisms underlying the activation of

CREB protein [5,6]. However, it has not been previously reported

whether TCS-mediated cell cycle arrest occurs through the

combination of CRE and target genes. The present study shows

that CRE decoy OGN attenuated the decrease of the expressions

of cyclin A and D1 resulting from TCS treatment, and reversed

the cell cycle arrests.

The cell cycle is tightly mediated through a complex network of

positive and negative cell-cycle regulatory molecules such as

CDKs, CKIs and cyclins [15,16]. It has been reported that the

formation of active cyclin D/CDK4 and cyclin E/CDK2

complexes controls the progression through G1 phase (G1/S

transition). Further, cyclin A binds to and activates CDK2,

promoting G1/S and G2/M cell cycle transitions. In late G2,

cyclin B/CDK2 is activated, allowing entry into mitosis [17]. In

the present study, we found that the decreased expressions of

cyclin A, D1 and CDK2, 4 were associated the S phase arrest in

HeLa cells (Fig. 2). The decreased-expressions of cyclin D, E and

CDK2, 4 were related to G1 phase in Caski and C33a cells (Fig. 3).

The expressions of cyclin A, B1 and CDK2 were significantly

down-regulated in SW1990 cells, arrested in G2/M phase (Fig. 4).

We also found that CDK2 was significantly decreased in cell lines.

This result accords with the notion that CDK2 has a distinct and

essential function in the mammalian cell-cycle, and its mutation or

inhibition causes a G1-phase block [18].

The activation of genes bearing CRE is reported to occur by

phosphorylating CREB at Ser 133 and binding to CRE consensus

sequences in the promoter region of genes [19,20]. CREB

phosphorylation peaks during the G1-S transition and then

gradually decreases from S phase to M phase [21]. Combined

with our previously reported results [4–6,9], it is logical to

hypothesize that cell proliferation genes, bearing the CRE site,

bind to CREB and affect its phosphorylation level, thereby

interfering with cell division.

CRE locates upstream of the mRNA start sites. It has a key role

in the cyclin A [22,23] and D1 [24,25] expression via CREB

activation [26–28]. A previous study showed that the association of

CREB with vaccinia-related kinase 1 (VRK1) occurred in a cell-

cycle-dependent manner from late G1 to S phase. Furthermore,

VRK1 specifically enhanced the activity of CRE in cyclin D1

promoter by facilitating the recruitment of phosphorylated CREB

to this locus [29]. Giampuzzi et al also found that a significant

diminution of CREB protein binding to the cyclin D1 promoter

led to a dramatic inhibition of cyclin D1 protein expression in lysyl

oxidase (LOX)-up-regulated cells [30]. This phenomenon was also

confirmed in fibroblast cells [31], endometrial cell [32], INS cell

[33], hepatocyte cell [34] and other cell lines [21,35,36]. In

addition, a number of observations suggested cyclin A plays a

pivotal role on S and G2/M transition in mammalian cells and

this role is consistent with its preferential association with CDK2,

instead of CDC2, during S phase [37,38]. CRE was confirmed to

be required for efficient activation of the cyclin A promoter in

aortic smooth muscle cells [39], fibroblast cells [40] and human

Figure 5. Effects of CRE-decoy on HeLa cell cycle progress and regulatory proteins. TCS-induced increase of cell numbers in S phase was
significantly attenuated by the combined treatment of TCS + CRE (A, B). The down-regulated expression of cyclin A and D1 was reversed by TCS +

CRE. No effect was observed on other proteins (C, D). Data represent means 6 SD of three independent experiments (*p ,0.05 compared with
control, #p ,0.05 compared with TCS).
doi:10.1371/journal.pone.0065661.g005
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Figure 6. Effects of CRE-decoy on Caski cell cycle progress and regulatory proteins. TCS-induced increase of cell numbers in G1 phase was
significantly attenuated by TCS + CRE (A, B). The down-regulated expression of cyclin D1 was reversed by the treatment of TCS + CRE. No effect was
observed on other proteins (C, D). Data represent means 6 SD of three independent experiments (*p ,0.05 compared with control, #p ,0.05
compared with TCS).
doi:10.1371/journal.pone.0065661.g006

Figure 7. Effects of CRE-decoy on SW1990 cell cycle progress and regulatory proteins. TCS-induced increase of cell number in G2/M phase
was significantly attenuated by the treatment of TCS + CRE (A, B). Down-regulated expression of cyclin A was reversed by the treatment of TCS + CRE.
There was no effect on other proteins (C, D). Data represent means 6 SD of three independent experiments (*p ,0.05 compared with control, #p
,0.05 compared with TCS).
doi:10.1371/journal.pone.0065661.g007

CREB Mediates Cancer Cell Cycle Arrest
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embryonal carcinoma cells [22]. The present study clearly shows

that combined treatment of TCS and CRE attenuated the

decreases of cyclin A and D1 expression, thereby reversing the

effect of TCS on cell cycle arrest. Therefore, we suggest that

transcription factor CREB is one of the upstream regulators of

TCS-induced cell cycle arrest in cancer cells.

Conclusion

Our findings show, for the first time, that TCS induces specific

cell cycle arrests in cancer cells by inhibiting the binding of CREB

to CRE on genes related to cell proliferation.
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