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Abstract

Many models of evolution are implicitly causal processes. Features such as causal 

feedback between evolutionary variables and evolutionary processes acting at mul-

tiple levels, though, mean that conventional causal models miss important phe-

nomena. We develop here a general theoretical framework for analyzing evolution-

ary processes drawing on recent approaches to causal modeling developed in the 

machine-learning literature, which have extended Pearls do-calculus to incorporate 

cyclic causal interactions and multilevel causation. We also develop information-

theoretic notions necessary to analyze causal information dynamics in our frame-

work, introducing a causal generalization of the Partial Information Decomposition 

framework. We show how our causal framework helps to clarify conceptual issues 

in the contexts of complex trait analysis and cancer genetics, including assigning 

variation in an observed trait to genetic, epigenetic and environmental sources in 

the presence of epigenetic and environmental feedback processes, and variation in 

fitness to mutation processes in cancer using a multilevel causal model respectively, 

as well as relating causally-induced to observed variation in these variables via 

information theoretic bounds. In the process, we introduce a general class of multi-

level causal evolutionary processes which connect evolutionary processes at multi-

ple levels via coarse-graining relationships. Further, we show how a range of fitness 

models can be formulated in our framework, as well as a causal analog of Prices 

equation (generalizing the probabilistic Rice equation), clarifying the relationships 

between realized/probabilistic fitness and direct/indirect selection. Finally, we con-

sider the potential relevance of our framework to foundational issues in biology and 

evolution, including supervenience, multilevel selection and individuality. Particu-

larly, we argue that our class of multilevel causal evolutionary processes, in conjunc-

tion with a minimum description length principle, provides a conceptual framework 

in which identification of multiple levels of selection may be reduced to a model 

selection problem.

Keywords Causality · Information theory · Multilevel selection · Price’s equation · 

Supervenience
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Introduction

Causality is typically invoked in accounts of evolutionary processes. For instance, 

for a variant to be subject to direct selection, it is necessary that it has a causal 

impact on fitness. The role of causality is made explicit in axiomatic accounts 

of evolution (Rice 2004). Further, the formal framework of Pearl’s ‘do’-calcu-

lus (Pearl 2009) has been used explicitly in analyzing Mendelian Randomiza-

tion (Lawlor et  al. 2008), the relationship between kin and multilevel selection 

(Okasha 2015), and information derived from genetic and epigenetic sources in 

gene expression (Griffith and Koch 2014b). A number of features of evolutionary 

processes, however, limit the potential for direct formalization in the ‘do’-calcu-

lus framework, which requires causal relationships to be specified by a directed 

acyclic graph (DAG), and cannot represent causal processes at multiple levels. 

In contrast, cyclical causal interactions are ubiquitous in natural processes, for 

instance in regulatory and signaling networks which lead to high levels of epista-

sis in the genotype-phenotype map (Wagner 2015). Further examples of cyclical 

causal interactions arise through environmental feedback, both in the generation 

of traits, leading to an extended genotype-environment-phenotype map (Houle 

et al. 2010), and across generations in the form of niche construction (Krakauer 

et al. 2008). Hierarchy is also ubiquitous in evolution, and many phenomena, such 

as multicellularity and eusociality, seem to require a multilevel selection frame-

work for analysis, implicitly invoking causal processes at multiple levels (Okasha 

2006). Such a framework would also seem necessary in analyzing major transi-

tions in evolution (Calcott and Sterelny 2011).

A number of frameworks have been proposed in the machine-learning literature 

for extending Pearl’s ‘do’-calculus to allow for cyclic causal interactions. These 

include stochastic models with discrete variables (Itani et  al. 2010), and deter-

ministic (Mooij et al. 2013) and stochastic (Rubenstein et al. 2017) models with 

continuous variables. Further, approaches have been introduced for analyzing 

causal processes at multiple levels using the ‘do’-calculus (Chalupka et al. 2016; 

Rubenstein et  al. 2017). In Rubenstein et  al. (2017), both of these phenomena 

are related through the notion of a transformation, which is a mapping between 

causal models which preserves causal structure. Coarse-graining is a particular 

kind of transformation, special cases of which involve mapping a causal model 

over micro-level variables into one over macro-level variables, and mapping a 

directed causal model which is extended across time into a cyclical model which 

summarizes its possible equilibrium states (subject to interventions).

In addition, the ‘do’-calculus has been combined with information theory in 

order to define notions of information specifically relevant to causal models, such 

as information flow (Ay and Polani 2008), effective information (Hoel 2017), 

causal specificity (Griffith and Koch 2014b) and causal strength (Janzing et  al. 

2013). Although not explicitly cast in causal terms, there has also been much 

interest in defining non-negative multivariate decompositions of the mutual infor-

mation between a dependent variable and a set of independent variables, which 

may be collectively described as types of Partial Information Decomposition 
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(PID) (Bertschinger et  al. 2014; Griffith and Koch 2014b; Williams and Beer 

2010). Such definitions, however, can only be applied in causal models with a 

DAG structure, leaving open the question of how causal information should be 

defined and decomposed in a system with cyclic interactions.

Motivated by the above, we propose a general causal framework for formulat-

ing models of evolutionary processes which allows for cyclic interactions between 

evolutionary variables and multiple causal levels, drawing on the transformation 

framework of Rubenstein et  al. (2017) as described above. Further, we propose a 

causal generalization of the Partial Information Decomposition (Causal Informa-

tion Decomposition, or CID) appropriate for such cyclic causal models, and show 

that our definition has a number of desirable properties and can be related to previ-

ous measures of causal information. We analyze a number of specific evolutionary 

models within our framework, including first, a model with epigenetics and envi-

ronmental feedback, and second, a model of multilevel selection which we apply to 

the particular cases of group selection and selection between mutational processes 

in cancer. We analyze the CID in the context of both models, and demonstrate the 

conditions under which bounds can be derived between components of the CID and 

components of the PID associated with the observed distribution. Finally, we dis-

cuss the causal interpretation of Price’s equation and related results in our causal 

framework. In general, our analysis is intended both to help clarify conceptual issues 

regarding the role of causation in the models analyzed, as well as to aid in the inter-

pretation of data when the assumptions of these (or similar) models are adopted, via 

the bounds introduced.

We begin in “Cyclic and multilevel causality in biology” by providing an over-

view of the issues related to cyclic and multilevel causality in evolution which moti-

vate our approach, and informally introduce the Discrete Causal Network (DCN) 

and Causal Information Decomposition (CID) frameworks which form the basis of 

subsequent analyses (full definitions are given in Appendix A). “Causal evolutionary 

processes” then outlines our general framework for Causal Evolutionary Processes 

(CEP). “Model 1: Genetics, epigenetics and environmental feedback” and “Model 

2: Multilevel selection” analyze specific models of epigenetics with environmental 

feedback and multilevel selection within this framework respectively, and “Causal 

interpretation of Price’s equation and related results” provides a causal interpreta-

tion of Price’s equation and outlines related information-theoretic results. We then 

concludes with a discussion (“Discussion”), including the potential relevance of our 

framework to foundational issues in the philosophy of biology and evolution.

Cyclic and multilevel causality in biology

We begin by outlining and motivating some of the basic concepts that will be used 

to develop our framework. We do so here in an informal way: technical definitions 

and proofs are given in Appendix A.

Cyclic causality. The do-calculus provides a compelling formalization of the 

mathematical structure of causation (Pearl 2009). However, a requirement of this 

framework is that causal relationships between variables must form a Directed 
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Acyclic Graph (DAG). A DAG is any graph (a collection of nodes and edges) which 

contains no directed loops (cycles). For instance, if gene A regulates gene B, and 

gene B regulates genes C and D (for example, the genes are transcription factors, 

and regulatory relationships are established via promoter binding), variables corre-

sponding to the expression levels of these genes can be arranged in a graph with 

no cycles. Performing manipulations on gene B (do-operations) will thus affect the 

expression of genes C and D but not A. Pearl’s calculus provides exact rules for 

deducing the distribution of all variables after an intervention, which will always 

return a valid distribution; formally, the graph is altered by cutting all incoming 

edges to the manipulated node, and the joint distribution is recalculated using a delta 

distribution to represent the intervention.

However, such well-ordered networks are the exception rather than the rule in 

gene regulatory networks (GRNs). For instance, we could add to the above net-

work a feedback interaction by assuming that gene D regulates A. Here, although 

A causes B’s expression locally, B also causes A’s expression via D. In fact, in this 

case no harm is done assuming the system has a solution as a whole, since any inter-

vention will either split the cycle (genes A, B and D), or have no effect on it (gene 

C), and hence all distributions are well defined. Alternatively, though, we could con-

sider starting with the original graph, and in addition let C regulate D and D regulate 

C. Now, by intervening on B we are not guaranteed to find a solution for every inter-

vention, even if the original system has a solution. Recent work has investigated the 

extension of Pearl’s calculus to graphs with cycles (where the graph manipulations 

are identical to the acyclic case), characterizing the situations in which solutions 

exist, and allowing systems to be defined which have a restricted set of interventions 

allowed (Itani et al. 2010; Mooij et al. 2013; Rubenstein et al. 2017). A particular 

example which has a clear solution is a deterministic network governed by linear 

differential equations: ẋi = fi(x1,… , xN) , where the x
i
 ’s may be gene expression val-

ues for instance. Here, ‘solutions’ are taken to be the equilibrium points of the sys-

tem, and these exist for any intervention provided the original system of equations 

f1,… fN is contractive, meaning that it maps a given region of state-space to one 

with a smaller volume with time (Rubenstein et al. 2017). Stochasticity can be added 

as long as the functions are contractive almost surely.

In these examples, we have considered feedback processes in gene regulatory net-

works. However, similar feedback processes can occur at many levels. For instance, 

consider a psychological trait, such as depression. This trait may be ultimately 

caused by numerous aspects of brain structure and gene expression patterns; how-

ever, since we have pharmacological interventions which can control the severity 

of depression, these can introduce a feedback process from the environment to the 

molecular layer. In general, the expression of any trait may be subject to environ-

mental feedback in this way.

We now note some features about the above. First, we have phrased both the 

GRN and the environmental feedback example in terms of a process in time. One 

way to deal with such cyclic structures is to ‘unroll’ them over time, that is, consider 

a discretized set of time points, and repeat all variables at each time, while connect-

ing a given variable, say a gene, to its regulatory parents at the previous time-step. 
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This will automatically generate an acyclic causal graph. The cyclic causal system 

corresponding to this temporal process can be considered to be that formed by the 

equilibrium distributions (assuming they exist) after certain ‘macro’ interventions 

are applied, which fix a particular variable to a given value across all times. The 

cyclic system can thus be considered a coarse-graining of the temporal acyclic sys-

tem. Not all cyclical causal systems can be formed this way (see Rubenstein et al. 

2017), but our emphasis will be on such systems, given their prevalence in biology 

(although the framework is agnostic to the system’s origins). For convenience, in 

setting up our framework, we use a ‘Discrete Causal Network’ model (DCN, Appen-

dix A; see also Fig. 1A for the relationships between all models in the paper), which 

allows cycles and variables which take discrete values, and is parameterized by a 

set of probability kernels, one for each variable, specifying the conditional distri-

bution of the variable on the values of its graphical parents. We further introduce 

dynamic-DCN and equilibrium-DCN models (Appendix A, Definition 2.6), corre-

sponding respectively to an underlying temporal process and coarse-grained equilib-

rium cyclic causal model as discussed above.

Multilevel causality. A further limitation common to straightforward applica-

tions of Peal’s do-calculus is its seeming reliance on a single level of causal analysis. 

For instance, in analyzing the causes of an action, it seems appropriate to identify 

A B

C D

Fig. 1  Summary of models. A Shows the relationships between the main models defined in the paper, 

where the arrows point from larger to smaller model classes, the latter being a special case (subset) of 

the former (see Appendix A for DCN and DDCN definitions). B Shows a schematic of a Causal Evo-

lutionary Process, showing a population of size N = 3 at two time steps (nodes representing all vari-

ables associated with an individual at time t). � , e, w and � represent phenotype, environment, fitness 

and parental map respectively, where the latter is also represented explicitly by the dotted arrows, which 

connect each individual at t = 1 to its parent at t = 0 . C and D illustrate the CTCM* and MCEPmut-proc 

models described in “Model 1: Genetics, epigenetics and environmental feedback” and “Model 2: Mul-

tilevel selection”  respectively. The first is a model of a complex trait, with genetics (X), epigenetics (Y) 

and feedback between behavior (Z) and environment (e), while the second is a model of multilevel selec-

tion in cancer with genetics (X) and mutational processes (m). Solid arrows here represent the directed 

graphical structure of the underlying discrete causal network [the Pa relation, which is distinct from the 

� evolutionary variable in (B)]. Nodes and edges are labeled with variable and kernel names respectively 

as defined in these models
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causes at multiple levels, such as nerves firing, muscles contracting, psychological 

beliefs, desires and past learning. Indeed, in analyzing group selection using causal 

graphs, a recent approach has distinguished between causal and supervenient rela-

tionships between variables, while maintaining a DAG graphical structure overall 

(Okasha 2015). Recent approaches have formalized the idea that a causal system can 

be described at multiple levels, by introducing coarse-graining mappings between 

causal structures at different scales (Rubenstein et al. 2017). Such approaches cap-

ture the relation of supervenience, since multiple fine-grained interventions in one 

model may be mapped to the same intervention in another provided the causal struc-

ture is preserved by the mapping.

The possibility of multiple levels of causation is arguably of central importance 

in evolution. In particular, we argue that multilevel selection should be seen as a 

special case of multilevel causality, and introduce a ‘Multilevel Causal Evolutionay 

Process’ model (MCEP) as a general framework for analyzing such processes. In 

particular, fitness is treated as a causal variable at each level of the MCEP, allow-

ing coarse-grained fitness to supervene on lower-level fitness values (and other 

evolutionary variables). A particular case we consider is cancer evolution. As has 

been recently demonstrated (Alexandrov 2013; Dentro et  al. 2020; Temko et  al. 

2018), tumors not only acquire particular sets of mutations (with positive, negative 

and neutral effects on growth) over their development, but also acquire prototypi-

cal mutational processes. These processes are caused by factors such as disruption 

of the DNA repair machinery or other cellular mechanisms such as DNA methyla-

tion, or environmental effects such as carcinogens, which cause particular mutations 

to become more prevalent depending on local sequence characteristics or chromo-

somal position. The fact that such processes introduce bias into the way variation is 

acquired in the tumor means that they can contribute towards the tumor’s evolution. 

At a fine-grained level, it is the individual mutations themselves which are respon-

sible for fitness variations among cells, and the mutational processes are simply a 

source of variation. We show however, that by considering a multilevel model, fit-

ness across larger time-scales can be driven by a combination of individual muta-

tions and mutational processes, potentially even primarily by the latter as suggested 

by recent results (Dentro et al. 2020; Kumar et al. 2020; Temko et al. 2018).

Causal transformations. The models we develop in response to the above (cyclic 

and multilevel causation) both rely on the technical apparatus of a transformation 

between causal systems, as introduced in Rubenstein et al. (2017). In general, this 

can be thought of as a structure preserving map between causal systems, analogous 

to a homomorphic map between groups or other algebraic structures. A causal trans-

formation requires that variables and interventions in one causal system are mapped 

to those in another, while preserving all causal relationships in the first system as 

seen ‘from the viewpoint’ of the second. Like a group homomorphism, a transfor-

mation of causal systems is not necessarily one-to-one or onto, and so the mapping 

may embed the first causal system in the second, or map many variables in the first 

onto a single variable in the second. The transformations we consider typically cor-

respond to the latter possibility, and thus can be seen as forms of coarse-graining. 

However, it is important to stress that transformations are not limited to coarse-

graining relationships, and are a general mechanism for relating causal systems. We 
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explicitly define the notion of transformation we need for the special case of discrete 

causal networks in Appendix A, Definition 2.2.

Information in causal systems. An advantage of framing evolutionary models in 

explicitly causal terms is that it becomes possible to make distinctions between dif-

ferent ways in which evolutionary variables may interact, which are difficult to make 

otherwise. For instance, it is common to trace variation in a particular trait (such as 

height) to genetic and environmental sources. With genetics, the (broadly justified) 

assumption is made that variation in the trait is in response to genetic variation, and 

thus intervention is not required to assess the causal impact (having controlled for 

confounders such as population structure). However, the situation is less clear when 

variation at other levels such as epigentics (transcriptomics, DNA methylation), or 

environmental factors are considered in relation to high-level trait variation (height, 

depression). Here, we would like to be able to trace variation to sources which may 

be involved in cyclic interactions. In general, interventions may be required to assess 

the causal impact of one variable on another, but it may also be possible to combine 

observations and assumptions to infer aspects of the causal structure.

For this reason, we also consider how to define a general notion of causal impact 

in cyclic causal systems, by generalizing the Partial Information Decomposition 

framework (PID, Williams and Beer 2010), which cannot handle cyclic interactions, 

to a Causal Information Decomposition framework (Appendix A, Definition  2.4). 

We show that bounds may be derived in this framework that potentially allow direct 

causal relations between variables to be inferred from observational data by observ-

ing non-zero unique information, and differences in observed and causal information 

between variables to be predicted given assumptions about feedback and interfer-

ence. We provide technical background for these bounds in Appendix A (Theorems 

2.10 and 4.3), draw connections with alternative definitions of causal impact and 

related bounds (Proposition 2.5), and summarize the implications as they apply to 

models of epigenetics and multilevel selection in the relevant sections (Theorem 4.3 

and Proposition 5.5). These results are intended both to motivate the application of 

models using PID and CID frameworks in analyzing data, and also contextualize the 

issues underlying existing approaches, even when not couched explicitly in informa-

tion-theoretic terms.

One application may be in decomposing the genetic, epigenetic and environ-

mental causal factors underlying observed traits, for instance, psychological traits 

such as depression in the example mentioned above. In this context, methods such 

as TWAS (Zhu et al. 2016) and related non-linear models (Wang et al. 2018) aim 

to isolate the genetic component which is causative for a given trait (for the latter, 

as mediated by gene expression). However, a more complete picture of underlying 

causation for a given trait would consider the complete causal effect of (say) gene 

expression on a trait, and not only the component which mediates genetic risk (since 

therapeutic interventions are not limited to targeting mediated genetic effects). Envi-

ronmental variables may also play a role, whose effects may be mediated by epige-

netic factors, be independently mediated, or be reflective of rather than causal for a 

trait (for instance, medication effects). The PID provides a guiding framework for 

partitioning trait-relevant information between genetics, epigenetics and environ-

ment (say). However, it cannot distinguish between causal feedback and feedforward 
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influences of variables on the trait, which is our motivation for introducing the CID; 

our Theorem 4.3 characterizes the discrepancy between these two frameworks, and 

thus places a limit on how far the PID can fail to estimate the CID, which (as we 

show) is characterized by the relative strength of feedforward and feedback pro-

cesses. While precise estimates of the quantities involved may be difficult, it may 

be possible to provide plausible empirical approximations; for instance, the feedfor-

ward causal epigentic component is bounded by mediated genetic effects, and the 

feedback component from medication effects can be estimated using animal mod-

els, as in recent studies of psychotic medications (Benton et al. 2012; Fromer et al. 

2016). In “Model 2: Multilevel selection” we also discuss an application in cancer 

genomics, where we argue that mutation-process specific effects on subclonal fit-

ness may be identified using non-zero mutual information between such processes 

and growth rate [which can be estimated from sequencing data, as in Salichos et al. 

(2020)] via Theorem 2.10 and Proposition 5.5.

Deterministic, stochastic and causal models. Finally, we wish to emphasize the 

intrinsic differences between the mathematical structures underlying deterministic, 

stochastic (or probabilistic) and causal models. These kinds of models can be seen 

as strictly nested inside one another: deterministic models are simply stochactic 

models whose probabilities are all taken to be either 0 or 1, while stochastic models 

are causal models which are not subject to any interventions (i.e. subject to the null 

intervention). In this sense, causal models contain strictly more information than 

stochastic models, since they represent a family of distributions parameterized by 

all possible interventions, rather than a single distribution. Alternatively, we can say 

that causal models contain counterfactual as well as probabilistic information. As 

stressed in axiomatic accounts of evolution (Rice 2004), we view causal structure as 

intrinsic to the definition of an evolutionary process, and thus causal models as the 

appropriate mathematical structure for a complete description of such a process. In 

“Causal interpretation of Price’s equation and related results”, we briefly consider 

this viewpoint in relation Price’s Equation and a related information-theoretic result 

based on the Kullback–Leiber divergence (used in information theory as a quasi-

distance measure between probability distributions, here the trait distribution at two 

time-points), discussing their analogues in stochastic and causal models and stress-

ing how the causal viewpoint offers a more complete picture (albeit, one implicit in 

other modeling frameworks).

Causal evolutionary processes

We begin by introducing a general model of a causal evolutionary process. In its 

general form, the model is a formalized ‘phenotype-based theory’ of evolution (see 

Rice 2004), which is agnostic about underlying mechanisms. As argued in Rice 

(2004) (and as we will be elaborated in subsequent sections), such a perspective nat-

urally embeds traditional population genetics models as a special case, since geno-

types may be treated as special kinds of discrete phenotypes, while offering a more 

general viewpoint. For notational convenience, we introduce all definitions and 

examples below in the context of an asexual population of constant population size, 
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although the model naturally generalizes to mating populations and varying popula-

tion sizes. Figure 1B illustrates the model definition below.

Definition 3.1 (Causal Evolutionary Process (CEP)): A CEP is a Discrete Causal 

Network (DCN) over the variables �
nt

, e
nt

, w
nt

, � (all variables discretized, and 

�
nt
∈ {1…N}), representing the phenotype, environment, fitness and parent of the 

n’th individual in the population at time t respectively, where ‘fitness’ and ‘par-

ent’ are to be understood in a structural sense to be defined, and n ∈ {1…N}, 

t ∈ {0…T}. We write �
t
, e

t
, w

t
, �

t
 for the collective settings of these variables at 

t, and for convenience use identical notation for names and values taken by ran-

dom variables. Further, �
nt

 and e
nt

 may be viewed as a collection of sub-pheno-

types and sub-environmental variables, in which case we write �
nst

 and e
nst

 for 

the value of sub-phenotype (resp. environment) s of individual n at time t. We set 

Pa(�
0
) = Pa(e

0
) = Pa(�

0
) = {} (noting that Pa stands for the ‘graphical parents’ 

of a variable in the causal graph, while �
nt

 is the evolutionary variable represent-

ing the parent of individual n at time t, whose values are indices of individuals at 

t − 1). For all other variables, we set Pa(w
t
) = {�

t
, e

t
}, Pa(�

t
) = {�

t−1, e
t
,�

t
}, 

Pa(e
t
) = {e

t−1,�
t
,�

t
}, Pa(�

t
) = {w

t−1
}. A model is specified by defining the follow-

ing kernel forms, where we use 
∏

 to denote a ‘kernel product’ (this corresponds to 

multiplication for directed acyclic causal graphs, but is defined more generally for 

cyclic graphs as described in Appendix E), (=) for an optional kernel factorization, 

and set the underlying variables of the DCN to correspond to the lowest-level fac-

torization consistent with the model kernels:

Fitness kernel:

Heritability kernel:

Structure kernel:

For the environmental variables, we have the following alternative kernel forms:

(1)

K(wt|Pa(wt)) =f (wt|�t, et)

(=)
∏

n

fn(wnt|�t, et),

(2)

K(𝜙
t
|Pa(𝜙

t
)) =h(𝜙

t
|𝜙

t−1, e
t
,𝜋

t
)

(=)
∏

ns

h
ns
(𝜙

nst
|𝜙(𝜋

t
(n),t−1), e

nt
,𝜙

ns̄t
),

(3)

K(�
t
|Pa(�

t
)) =i(�

t
|w

t−1)

(=)
∏

n

i
n
(�

nt
|w(n,t−1)).
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In Eq. 4, we refer to factorizations (a) and (b) as independent and interactive envi-

ronmental kernels respectively, and (c) as an environmental heritability kernel (rep-

resented by the symbol ℏ). Additionally, kernels must be given over the remaining 

variables for which Pa(.) = {} to completely specify a CEP model, and s̄ denotes the 

complement of s.

The interaction of the fitness and structure kernels (f and i resp.) give rise 

to different possible fitness models. We summarize some of these possibilities 

below:

Definition 3.2 (Fitness models): We define the following CEP fitness models:

Classical fitness representation:

Multinomial model ( �
nt
= w

nt
∕(
∑

n
w

nt
) denotes normalized fitness):

Moran model:

where S
n∗

 is the set of all vectors in NN containing exactly two entries with the value 

n
∗, and all other values appear at most once.

In the classical fitness representation, the variable w
nt

 directly represents the 

number of descendants of individual n at time t in the following generation, and the 

structure kernel i simply ensures the parent map � is consistent with these values. In 

the multinomial model, the values w
nt

 determine the relative fitnesses of individuals 

(4)

K(e
t
�Pa(e

t
))

= K
e
(e

t
�e

t−1,𝜙
t
,𝜋

t
)

(=)

⎧
⎪⎨⎪⎩

∏
n

P
e
(e

nt
) (a)∏

ns
K

e
(e

nst
�𝜙

nt
, e

ns̄t
) (b)∏

ns
�

ns
(e

nst
�e(𝜋

t
(n),t−1),𝜙nt

, e
ns̄t
). (c)

(5)

f (wt|�t, et) =P({w1,… , wN}|�t, et)

i(�t|wt−1) ∝
∏

n

[(
∑

m

[�t(m) = n]) = wn],

(6)

f (wt|�t, et) =
∏

n

P(wnt|�t, et)

i(�t|wt−1) =Mult ({(
∑

m

[�t(m) = n])|n = 1…N}|{�(n=1…N,t−1)}),

(7)

f (wt|�t, et) =
∏

n

P(wnt|�t, et)

i(�t|wt−1) ∝

{
w(n∗,t−1) if �t ∈ Sn∗

0 otherwise .
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at time t and the actual numbers of descendants are determined by multinomial sam-

pling, implemented by i (as in the Wright–Fisher model with selection Felsenstein 

2016). In contrast, in the Moran model, the w
nt

 ’s determine the probability that an 

individual is chosen to reproduce, and i implements the constraint that only one indi-

vidual reproduces and dies per generation, with the latter being chosen uniformly. 

Although both Multinomial and Moran models could be represented in the classical 

fitness representation, this would be at the expense of using a non-factorized form 

of the f kernel; hence we argue that the representations in Eqs. 6 and 7 are more 

natural parameterizations of these models (so that, in general, ‘fitness’ is not exclu-

sively interpreted as the number of offspring at time t + 1 , but rather a set of suffi-

cient statistics for generating the parental map at time t + 1 ). Further, we note that, 

as in the case of the Moran model, the time steps t need not correspond to discrete 

generations.

Finally, we define a transformation between CEPs:

Definition 3.3 (Transformation between CEPs): A transformation between CEPs is 

defined as a transformation between their underlying DCNs in the sense of Defini-

tion 2.2 (Appendix A).

In relation to Definition 3.3, we note that a transformation between CEPs need only 

preserve the causal structure; hence, it may (for instance) map environmental onto 

phenotypic variables, or a large population onto a small population by merging indi-

viduals. All that is necessary is that the resulting causal structure may be interpreted 

as an evolutionary process in some way. We shall give examples in the following 

sections of transformations with characteristics such as above.

Model 1: Genetics, epigenetics and environmental feedback

The CEP model as introduced in “Causal evolutionary processes” does not include 

a model of genetics. However, as noted, the genotype may be regarded as a special 

type of discrete phenotype, and the process of genetic transmission with mutation 

can be naturally modeled in the heritability kernel. Here, we describe a type of CEP 

which includes both genetics and epigenetics, along with potential effects from and 

impacts on the environment (environmental feedback), for instance via behavior or 

drugs used in treating diseases. The model thus formalizes a gene-environment-phe-

notype map (G–E–P map) of the kind described informally in Houle et al. (2010) 

(for simplicity, we refer to any ‘intermediate phenotype’ as epigenetic, including 

indicators of cell/tissue state such as the the transcriptome). Our purpose is to pro-

vide a general model appropriate for analyzing the causal factors underlying com-

plex traits, such as psychiatric disorders. As we show, using this model, the causal 

information decomposition (CID) described in “Cyclic and multilevel causality in 

biology” and Appendix A provides a principled framework for breaking down the 

variation in a complex trait due to genetic, epigenetic and environmental factors; 
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the model is more general than other models with similar goals, for instance TWAS 

(see Zhu et al. 2016), since it aims to model both genetic and other causes of a trait, 

allowing feedback with the environment at the epigenetic level, and uses an informa-

tion theoretic framework to decompose the variation and hence is appropriate in the 

context of arbitrary (non-linear) dependencies.

We first define a general CEP model with the above characteristics:

Definition 4.1 (Complex Trait Causal Model (CTCM)): We define a CTCM as 

a CEP with the following special structure. In terms of phenotypes, we require 

three sub-phenotypes which we denote X, Y and Z, hence �nt = {xnt, ynt, znt
}, which 

represent genotype, epigenome (including transcriptome), and observed trait(s) 

respectively. Environmental variables are referred to collectively as e. Further, we 

use the factorized form of the heritability kernel in Eq. 2, and require the fol-

lowing special forms for the sub-kernels (using the kernel product notation from 

Appendix E):

where g
1
 and g

2
 are referred to collectively as the genotype-phenotype map, and 

independently as the genetic-epigenetic and epigenetic-observed kernels respec-

tively, while h
x
 is referred to as the genetic transmission kernel. Further, the CTCM 

uses an environmental kernel having either an independent factorization, or an 

interactive form (Eq. 4 (a) and (b) resp.); the latter takes the form:

and g
1
, g

2
 and g

3
 are referred to collectively (when all present) as the genotype-

environment-phenotype map. [We note that ‘map’ here and following Eq. 8 refers in 

general to a stochastic map.]

We next define a special class of CTCMs which embed a DDCM over the �
nt

 and 

e
nt

 variables at each time-point; hence, we model the genetic, epigenetic, observed 

trait and environmental interactions by an embedded dynamic causal process. We 

can then coarse-grain this process to a cyclical CTCM over these variables at equi-

librium (see Fig. 1C for a related schematic). For conciseness, the full definition of 

the CTCM* is given in Appendix B, Definition 4.2.

Definition 4.2 (CTCM with embeded DDCM (CTCM*)): See Appendix B.

The CTCM* model gives us a convenient way of decomposing the variation/infor-

mation in a trait into components which depend on unique, redundant and synergis-

tic combinations of genetic, epigenetic and environmental factors. Using the CID 

definition and notation from Appendix A, we propose that, for a population at time 

t > 0 , this is achieved by selecting an arbitrary individual n, and calculating the 

(8)
hn(�nt|�(n,t−1), ent,�t) =hx(xnt|x(�t(n),t−1)) ⋅ g1(ynt|xnt, ent)⋅

g2(znt|ynt, ent),

(9)Ke(ent|�nt) = g3(ent|znt),
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backward causal information decomposition CID(S → Z
nt
) , where S ⊂ {X

nt
, Y

nt
, e

nt
} , 

in the eq-CTCM* associated with the original CTCM* (assuming it exists, and that 

the structure kernel i is invariant to permutations of the population indices). Since 

we specify in Definition 4.2 that the embedded DDCM kernels have a self-separabil-

ity property, Theorem 2.9 implies that this is a strict decomposition of the variation 

in Z
nt

 , i.e. CID(S → Z
nt
) ≤ H(Z

nt
) . Further, if g

3
 is an independent rather than an 

interactive environmental kernel, Theorem 2.10 implies that we can lower-bound the 

forward-CIDs CID(X
nt
→ Z

nt
) , CID(e

nt
→ Z

nt
) , and CID(Y

nt
→ {Z

nt
, X

nt
, e

nt
}) , using 

the observed unique information between each variable and Z (i.e. the observed 

unique information is predictive of the consequences with respect to an observed 

trait of performing manipulations on each variable). We note that the PID of the 

observed distribution in this case is identical to the backward-CID as above.

In the case that g
3
 is an interactive kernel, we have environmental feedback from 

the observed trait to the epigenetic levels, making it harder to relate the observed 

phenotype distribution to the proposed causal decomposition. However, we can out-

line a number of possible relationships. For this purpose, we introduce an alternative 

representation of a CTCM*. We consider that all transition kernels share a common 

parameter � from the self-separable representation, Eq. 28 (with K
1
 set to the iden-

tity). Since Eq. 28 has the form of a mixture distribution, an equivalent represen-

tation of a CTCM* is formed by introducing latent variables, C
Y
(�) , C

Z
(�) , C

e
(�) , 

which are Bernoulli variables (or collections of Bernoulli variables if Y, Z or e are 

factorized) with mean 1 − � . If C
V
(�) = 0 , variable V ∈ {Y , Z, e} does not update 

at time-step � , otherwise V updates according to the K
2
 component of the self-sep-

arable representation in Eq.  28. If � is set large enough with respect to the num-

ber of variables, we can ensure that with probability 1 − � , with � arbitrarily small, 
∑

V
C

V
(�) ≤ 1 , i.e. at most one variable updates at a given time-step. Conceptually, 

we can view an increase in � as effectively a reduction in the duration of the time-

step � . We also introduce C∗(�) ∈ {X, Y , Z, e, �} , writing C∗(�) = V  when V is the 

most recent variable for which C
V
(𝜏� < 𝜏) = 1 assuming V is unique, and C∗(�) = � 

when V is not unique. We can then make the following observation (see Appendix B 

for the proof):

Theorem  4.3 (Backward-CID bounds): For a CTCM* represented as above with 

latent factors C, and associated eq-CTCM*, where S ⊂ {X, Y , e} , V ∈ {X, Y , Z, e} , 

(.)
V
 denotes the mean over values of V, and II is the interaction information 

( II(S;Z;C
∗) = I(S;Z|C∗) − I(S;Z) ), in the limit � → 1 we have that:

and similarly:

(10)
[II(S;Z;C∗) ≤ 0] ∧ [CID(S → Z) ≤ (CID(S ∶ Z|QV ))V ] ⟹

PID(S ∶ Z) ≥ CID(S → Z),

(11)
[II(S;Z;C∗) ≥ 0] ∧ [CID(S → Z) ≥ (CID(S ∶ Z|QV ))V ] ⟹

PID(S ∶ Z) ≤ CID(S → Z).
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where all II, CID and PID quantities are evaluated in the eq-CTCM* model 

(at a given n and t, where C
∗ is treated as an additional phenotype). Further, 

QV = Peq(¬V)KV
2
(V|¬V) (unrelated to the notation QXA

 used in Definition 2.4) with 

K
V

2
 the second component of V’s kernel, as in Eq. 28, and we assume Y, Z and e are 

not factorized. For the case that Y, Z or e are factorized, S and V are subsets and 

elements of the sets of relevant factorized variables respectively, and Eqs. 10 and11 

hold identically.

Proof. See Appendix B.

Theorem 4.3 shows that we can identify certain situations in which the observed 

PID components at equilibrium consistently under or over-estimate the equivalent 

components of the CID. The LHS of Eqs. 10 and 11 each contain two conditions, 

the first depending on the sign of an Interaction Information (II) term, and the sec-

ond comparing two CID terms. Broadly, the latter condition implies that if the feed-

forward interaction between S and Z is strong compared to any feedback interac-

tions, the PID will tend to underestimate the CID (Eq.  11), and vice-versa if the 

feedback is stronger (Eq. 10). However, the first condition makes this dependent on 

the type of feedback interactions present: if these tend to interfere with the feedfor-

ward interactions so that the net effect is to reduce the mutual information between 

S and Z (I(S;  Z)), the II term will be positive as in Eq.  11, while non-interfering 

interactions will tend to increase I(S; Z), potentially leading to a negative II term as 

in Eq. 10 (note that we use the same sign convention for the interaction information 

as in Williams and Beer (2010)). Potentially, the situation in Eq. 11 may apply when 

Z is a disease trait, and S is the transcriptome in a relevant tissue, where the feedfor-

ward interaction is strong (the trait is strongly determined by S), and the feedback (in 

terms of treatment) reduces the severity of the disease by directly interfering with 

the underlying mechanisms. In contrast, the situation in Eq. 10 will apply if the feed-

forward effects are weak, and there is not a strong interference with feedback inter-

actions at the level of S (for instance, a disease treatment which targets symptoms 

in a different tissue, inducing variation in S orthogonal to the causal factors for the 

disease).

Model 2: Multilevel selection

Multilevel selection has been identified as an important component in a number 

of evolutionary contexts, such as eusociality in insects (Nowak et al. 2010), bacte-

rial plasmid evolution (Paulsson 2002), and group selection (Traulsen and Nowak 

2006). It has also been proposed that multilevel selection is a driving force behind 

major evolutionary transitions, such as the transition to multicellularity (Calcott and 

Sterelny 2011; Okasha 2006). Here, we propose a basic definition of a multilevel 

causal evolutionary process (MCEP) in the framework introduced above, which nat-

urally connects the notion of evolution occurring at multiple levels to coarse-grain-

ing transformations in the sense of Defs. 2.2 and 3.3. We then show how two types 

of multilevel evolutionary process are special cases of our model (group selection, 
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and selection acting on mutational processes in cancer). Our general definition takes 

the following form:

Definition 5.1 (Multilevel Causal Evolutionary Process (MCEP)): An M-level 

MCEP is a collection of causal evolutionary processes, E1, E2,… , E
M

, such that 

each pair of adjacent processes forms a 2-level MCEP in the following sense. CEPs 

E and F form a 2-level CEP iff there exists a transformation from E to F (denoted 

(�,�)) in the sense of Definition 3.3, along with a partial map � of time-points in 

F to time-points in E (which may depend on (�, e, w,�) across all variables in E), 

and the following conditions apply. (1) We have that |F|
N(t) ≤ |E|

N(�(t)) ∀t, and 

|F|
T
≤ |E|

T
, where we write |A|

N(t) for the ‘actual population size’ of process A at 

time t, and |A|
T
 for the ‘actual number of time-points’ in process A. Each of these 

may be different from the values of N and T in A, since we will allow a null phe-

notype value to be declared in each CEP (whose parents are arbitrary, and whose 

offspring are all null): any individuals having �
nt
= null will not count towards 

|A|
N(t), and time-points for which all individuals are null do not count towards |A|

T
, 

these being the only time-points excluded from the domain of �; further, time-points 

beyond max
t
{t|∃t

�
�(t�) = t} do not count towards |E|

T
 . (2) We require at least one 

of the inequalities in (1) to be strict. (3) We require that for any time-point t in E for 

which �(t�) = t, the projection of the map � onto �
t′
 in F is not independent of �

nt
 in 

E for any (non-null) individual n (i.e. it does not take the same value for all settings 

of �
nt

 given a joint setting of all other variables in E), so that no individual’s pheno-

type is entirely ‘projected out’ at these time-points by �.

We now show how the group-selection model of Traulsen and Nowak (2006) can 

be represented as an MCEP:

Example 5.2 (Group Selection model ( MCEPgroup)): We fix an N and T for process 

E. For all individuals in E, �
nt
∈ {C, D, null }, where C and D represent coopera-

tors and defectors respectively. e
nt
∈ {1…M} represents the group membership of 

an individual (where M is the maximum number of groups), and fitness w
nt

 is deter-

mined by the expected pay-off for an individual when interacting with other mem-

bers of the same group according to a fixed game matrix (see Traulsen and Nowak 

2006). A maximum group-size is fixed at N
G

, such that N = N
G

M. The heritabil-

ity and environmental kernels (h and ℏ) enforce strict inheritance of phenotype and 

group membership (with the exception noted below), while structure kernel i imple-

ments Moran dynamics (Eq. 7), so long as doing so will not allow a group to exceed 

N
G

; otherwise, with probability (1 − q) a random individual from the same group 

dies, and with probability q the group divides (implemented by the environmental 

kernel as a random partition) while all members of another uniformly chosen group 

die. Since the population number may fluctuate below N, null values are used to 

‘pad’ the population as required.

For process F, we set the population size to be M and the number of time-

steps to be T. We map t = 1 in F to the first time-point in E, and subsequent time-

points in F to the times at which the 1st, 2nd, 3rd... group divisions occurred in E. 
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The ‘individuals’ in F correspond to the groups in E; hence, we let �
nt
= (�

n
, C

n
),  

where �
n
 is the number of individuals in group n at time �(t) in E, and C

n
 is the 

proportion of cooperators in group n (we set �
nt
= null if �

n
= 0). In F, e

nt
= {}.  

We can naturally specify the parental map �
nt

 on F by mapping a group at t to 

the group at t − 1 when the groups they correspond to at �(t) and �(t − 1) in E are 

either the same or split from one another. The fitness model can be specified by 

letting w
nt

 be the probability that group n will split first (in the context of all other 

groups). The structure kernel i then simply needs to implement Moran dynamics, 

unless the number of groups is less than N
G

, in which case a null group is chosen 

for replacement in place of uniform sampling. The heritability kernel in F then 

needs to implement a conditional distribution over �
t
 corresponding to the joint 

distribution over the sizes and cooperator prevalences in group at t, given that a 

particular group from the previous generation divided first (we note that since, in 

general, dependencies will be induced between the group phenotypes by the inter-

vening dynamics in E, the unfactorized version of the heritability kernel in Eq. 

2 must be used). Time-points in F following the last time-point for which �(t) is 

assigned are padded with null phenotype values (clearly, |F|
T
< T , since at most 

T − 1 group divisions can occur in E).

By construction, the pair of CEPs E and F above form a 2-level MCEP. For the 

required transformation, we simply take � to map a configuration in E to the con-

figuration in F which consistently represents the sizes and proportions of cooper-

ators in each group a at the times �(0),�(1)… by (�
a0, C

a0), (�a1, C
a1),…. For the 

mapping � we must be careful to restrict the interventions allowed on E to those 

which fix all phenotypes and environments at a given time t. With this restric-

tion, these can be mapped many-to-one onto interventions in F which match the 

induced group characteristics. The first two conditions in Definition 5.1 are sat-

isfied by construction, while the third follows since a change in phenotype of a 

individual in E at a time point �(t) necessarily induces a change in the proportion 

of cooperators in one group, and hence changes �
t
 in F.

We note that the MCEPgroup example above illustrates how the division and 

complexity of interactions between individuals and environment may depend on 

the level at which an evolutionary process is viewed (as well as the particular 

representation): In process E, group indices are considered environmental vari-

ables, which induce complex inter-dependencies in the fitnesses and heritabili-

ties (phenotypic and environmental) between individuals; however, in process F, 

the groups are themselves considered individuals with their own properties, and 

much of the complexity at the underlying level is folded into the heritability of 

group phenotypes, along with a simpler fitness model.

Before outlining our final example, we introduce a general kind of MCEP over 

multiple temporal levels:

Definition 5.3 (Regular MCEP with multiple time-scales  (MCEPtemp)): An 

MCEPtemp is an MCEP over processes E and F with total time-steps T
E
 and T

F
,  

where T
E
= T

F
T

S
 (with T

S
> 1 a ‘temporal scaling factor’), and �(t) = t ⋅ T

S
.  

The transformation � involves the projection of all phenotype and environmental 
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variables in E onto their values at {�(0),�(1),…}, while the variable �
nt

 in F is set 

to the ancestor of n at time-step �(t − 1) in E. The fitness variable w
nt

 in F is set to 

the absolute number of offspring of n at t + 1, and a classical fitness model is used 

as in Eq. 5. In general, the fitness, heritability and environmental kernels in F will 

need to take unfactorized forms to capture the complex dependencies induced by the 

low-level dynamics in E. Further, we restrict interventions in E to interventions on 

the phenotypes and environments of variables at {�(0),�(1),…}, and map these to 

corresponding interventions in F.

We note that any CEP may be converted to an MCEPtemp by simply fixing a 

temporal scaling T
S
 , setting the original CEP as E, and following the construction 

above to form F. In this context, the values w
nt

 represent a limited form of ‘inclu-

sive fitness’ over the period �(t) to �(t + 1) in E, with respect to genealogical 

relatedness relative to a base population at �(t) (see Okasha 2015 for a discussion 

of genealogical relatedness and genetic similarity based definitions of inclusive 

fitness, the former corresponding to Hamilton’s formulation). As our final exam-

ple, we use the above to illuminate the interaction of mutational processes and 

selection in cancer. As cancers evolve, subclones acquire not only distinct sets 

of mutations, but also distinct mutational processes governing the random pro-

cess by which mutations are generated (see Alexandrov 2013). For instance, by 

disrupting the DNA repair machinery, certain mutations may increase the muta-

tion rate, or make it more likely that specific mutations (e.g. in particular trimer 

or pentamer contexts) are acquired in the future. Recent evidence has emerged 

that cancer driver mutations are differentially associated with the presence of par-

ticular mutational processes, and that the prevalence of particular mutational pro-

cesses change in prototypical ways across the development of particular cancers 

(Dentro et al. 2020; Temko et al. 2018). To analyse the interaction of mutational 

processes with subclonal fitness, we introduce the following MCEP model (see 

Fig. 1D for related schematic):

Example 5.4 (MCEP with mutational processes ( MCEPmut-proc)): We build 

an MCEPmut-proc model by introducing a CEP model of mutational processes 

as E, and forming F directly by applying the MCEPtemp definition in Defini-

tion 5.3. For E, we set the phenotype variables as �
nt
= {x

nt
, m

nt
}, where x and 

m represents the genotype and mutational processes acting in cell n at time t 

respectively. We use the factorized form of heritability kernel in Eq. 2, setting 

h
n
= h

x
(x

nt
|x(�

t
(n),t−1), m(�

t
(n),t−1)) ⋅ h

m
(m

nt
|x

nt
, m(�

t
(n),t−1)). We note that this incorpo-

rates a genetic transmission kernel h
x
 which is influenced by the mutational pro-

cesses operating in the parent cell, and a mutational process kernel h
m
 which allows 

for potential epigenetic inheritance of mutational processes across generations (as 

well as determination from the genotype). Further, we use a factorized fitness kernel 

of the form fn(wnt|xnt); hence we assume that the genotype acts as a ‘common cause’ 

to the mutation processes and fitness of a given cell, but that the latter two variables 

are not directly causally linked. The structure kernel can be of arbitrary form, and 

all environments are empty.
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The MCEPmut-proc example above illustrates the following points. First, we note 

that for any individual in the lower-level process E, the mutational processes m
nt

 

are causally indendent of fitness w
nt

 ; that is, intervening on m
nt

 will not affect 

w
nt

 (by definition). However, this is no longer the case in the higher-level pro-

cess F; here, because of the intervening lower-level dynamics, there is a feedback 

between the mutational processes and fitness in E across multiple time-steps, 

meaning that w
nt

 for an individual in F is affected by interventions on both x
nt

 and 

m
nt

 . In fact, in F we have the following:

Proposition 5.5 (Unique Information bounds for MCEPmut-proc ): For an individual n 

at time t in the high-level component process (F) of an MCEPmut-proc as above, we 

have that UI(w
nt
∶ x

nt
�m

nt
) ≤ CID(x

nt
→ w

nt
) , and 

UI(w
nt
∶ m

nt
�x

nt
) ≤ CID(m

nt
→ w

nt
) + C , with C defined as in Theorem 2.10. 

(Appendix A)

The proof of Proposition 5.5 follows directly from Theorem 2.10, along with the 

MCEPmut-proc definition, which implies that x
nt

 causally influences, but is not influ-

enced by m
nt

 (in both E and F), and both influence and are not influenced by w
nt

 (in 

F). We note that Proposition  5.5 implies that the unique information components 

of the observed distribution PID over x
nt

, m
nt

, w
nt

 across multiple generations are 

informative about the potential contributions of x
nt

 and m
nt

 on subclone fitness. Par-

ticularly, UI(w
nt
∶ m

nt
�x

nt
) > 0 implies that there is a generic impact on fitness from 

the mutational processes across a particular time-scale, providing a lower-bound 

up to the additive constant C. Further, we note that while the MCEPmut-proc model 

above postulates no intra-generational feedback of the mutational processes on the 

genotype (only inter-generational feedback), the analysis above can be elaborated to 

include such feedback within generations, and can be expected to hold so long as the 

intra-generational feedback is weaker than that across generations.

Causal interpretation of Price’s equation and related results

We finish by outlining a number of relationships which can be shown to hold in our 

CEP framework, including Price’s equation an a number of analogous results. First, 

we can show:

Theorem  6.1 (Price’s Equation with probabilistic and causal analogues (assum-

ing perfect transmission)): In a CEP, with empty environmental contexts and per-

fect transmission (hence, the heritability kernel factorizes and takes the form 

h
n
(�

nt
|�(�

t
(n),t−1)) = �(�

nt
|�(�

t
(n),t−1)) , where �(.|a) is a delta distribution centered on 

a), and a classical fitness model as in Definition 3.2, we have:

(a) Price’s Equation:
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(b) Probabilistic Price Equation (Rice’s Equation, Calcott and Sterelny 2011; Rice 

2004):

(c) Causal Price Equation:

where we writeā for the average of a across individuals in a single, observed popu-

lation, and â for the expected average of a across the ensemble of populations mod-

eled by the CEP (following Rice 2004), 𝛺
n
= (w

n
∕w̄|w̄ ≠ 0) is relative fitness (see 

Rice 2004); Cov (.|.) is the covariance; and the subscripts do (� = �
0
) indicate that 

a given quantity is evaluated under the distribution after intervening on � (setting � 

for all individuals at a given time-step).

Proof. For proofs of (a) and (b) see Okasha (2006) and Rice (2004), which can be 

applied directly since no interventions are specified. For (c), we note that, having 

applied the operation do (� = �
0
) , we produce a derived CEP whose underlying dis-

tribution is P
do (�=�

0
) . Eq. 14 then follows directly by applying (b) to this derived 

CEP.   ◻

We note that the distinctions between the original, probabilistic and causal ver-

sions of Price’s equation in Theorem 6.1 allow us to make fine distinctions corre-

sponding to direct and indirect selection on traits. For instance, although 𝜙 + 𝛥�̄� 

and 𝜙 + 𝛥�̂� will vary with � for any trait which covaries with fitness or expected 

fitness, for 𝜙
0
+ 𝛥

do (𝜙=𝜙
0
)�̂� this will only be the case for traits which have a causal 

impact on fitness (provided the intervention �
0
 does not fix all individuals to a single 

phenotype).

Finally, we note an information-theoretic analogue of the Price equation based on 

the KL-divergence, which we believe has not been previously observed:

Theorem 6.2 (Analogue of Price’s Equation based on KL-divergences): In a CEP 

with restrictions and notation as in Theorem 6.1, we have:

where P� and P′

�
 are the observed (sample-level) distributions across trait � at arbi-

trary time-points t and t + 1 resp., KL(A��B) =
∑

i
A

i
log(A

i
∕B

i
) is the KL-divergence 

between (possibly unnormalized) distributions A and B, H(.) is the Shannon entropy, 

and �† is a vector of relative fitness values for each value of the phenotype.

(12)𝛥�̄� =
1

w̄

Cov (𝜙, w),

(13)𝛥�̂� =Cov (𝜙, �̂�),

(14)𝛥 do (𝜙=𝜙0)
�̂� =Cov do (𝜙=𝜙0)

(𝜙0, �̂�),

(15)K̂L(P�||P
�

�
) =K̂L(P�||�

†) + H(P�),
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Proof. From the replicator equation, we have:

where the subscript i ranges across values of the phenotype. The result follows by 

substituting Eq. 16 into the LHS of Eq. 15 and rearranging:

  ◻

Using a similar argument to Theorem 6.1 part (c), we can also state a causal ana-

logue to Eq. 15:

Corollary 6.3 (Causal analogue of Theorem  6.2): Using the notation of 6.2, and 

writing do (�
0
) for do (� = �

0
):

Eqs. 15 and 18 are similar in form to the Price equation, since they determine the 

distance a trait will move (measured using displacement of its mean or KL diver-

gence over the population-level distribution, for the Price equation and KL-analogue 

respectively) based on the similarity between the distributions of the trait and rela-

tive fitness (measured using the covariance or KL divergence respectively). For 

complex traits and evolutionary dynamics, the KL-analogues may be more informa-

tive, since they model the change in the whole trait distribution, as opposed to only 

its mean. For instance, at an evolutionary fixed point, we require not only that 

𝛥�̄� = 0 but also K̂L(P�||P
�
�
) = 0 (assuming a large population). We also note the 

following properties of Eq. 15: Unlike the Price equation, Eq. 15 includes a depend-

ency on the trait’s entropy; further, the KL-‘distance’ moved by a trait’s distribution 

increases as the (unnormalized) KL distance between trait and fitness distributions 

increases, or the entropy increases; the KL divergence thus need not go to 0 to reach 

a fixed point, but may be balanced by the entropy term, which may occur since the 

unnormalized KL divergence is not strictly positive, although it is bounded below by 

−H(P�) since the LHS of Eq. 15 is non-negative (for instance, the uniform distribu-

tion on a trait whose values all have equal fitness is a fixed point for which 

K̂L(P�||�
†) = −H(P�) ). Finally, we briefly compare the relationship in Theo-

rem 6.2 with the associations between Price’s equation and information theory that 

have been drawn in Frank (2009): There, the mean change in a trait associated with 

Price’s equation is re-expressed in terms of the Fisher Information between the trait 

(16)P
�

i
= P

i

(

w
i

w̄

)

= P
i
𝛺

†

i
,

(17)

K̂L(P�||P�
�
) = �[

∑

i

P
i
log(P

i
∕P

�
i
)]

= −H(P�) − �[
∑

i

P
i
log(P�

i
)]

= −H(P�) − �[
∑

i

P
i
log(P

i
�†

i
)]

= K̂L(P�||�†) + H(P�).

(18)K̂L
do (�

0
)(P�

0
||P�

�
0

) = K̂L
do (�

0
)(P�

0
||�†) + H(P�

0
).
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and the environment (or an equivalent form involving the Shannon information), and 

it is shown that Fisher’s Fundamental Theorem (FFT) arises by maximizing the 

information captured by the population; in contrast, Theorem 6.2 does not rederive 

Price’s equation or FFT, but rather relates two KL divergences involving analogous 

quantities to those in the former, leading to a distinct view of trait evolution at the 

distribution level as discussed.

Discussion

The framework of Causal Evolutionary Processes introduced in this paper pro-

vides a principled way to formulate evolutionary models, allowing both for cyclical 

interactions between evolutionary variables, and the analysis of evolutionary pro-

cesses at multiple levels. We have developed a technical apparatus appropriate for 

this analysis in the form of Discrete Causal Networks and the Causal Information 

Decomposition, and have shown how a diverse range of evolutionary phenomena 

can be captured in our framework, including complex traits produced by feedback 

processes acting between epigenetic, behavioral and environmental levels, and mul-

tilevel selection models, including the selection of mutational processes in cancer. 

We have explored the properties of these models and our general framework, show-

ing that under certain circumstances the causal impact of a given variable on another 

(for instance, a variant’s impact on a trait) can be bounded by observed information-

theoretic quantities, and that a number of generalizations of Price’s equation hold in 

our framework.

Our framework may be extended in various ways. For convenience, we have 

restricted our attention to discrete models in the above analysis (having both discrete 

time and discrete evolutionary variables). Our current framework may be formulated 

in the more general context of Cyclical Structural Causal Models (Bongers et  al. 

2020) (see Appendix C), allowing for a measure-theoretic analysis including con-

tinuous variables and time. Further, we have restricted attention to the case of evo-

lutionary processes with asexual reproduction; generalization to processes involv-

ing sexual reproduction is straightforwardly handled by altering the structure of the 

parental map � so that individuals are mapped to subsets of individuals in the previ-

ous generation as opposed to single individuals, while processes such as recombina-

tion and assortative mating can be modeled by using particular forms of heritability 

and structure kernels.

Further, we have not considered the problem of learning the causal structure and 

kernel forms from data. Methods relying on Mendelian randomization (e.g. Lawlor 

et al. 2008) can estimate the causal effects of variants on a trait assuming a linear 

relationship, but in general we may be interested in the causal effects of variables 

above the genetic level (e.g. epigenetics) and environmental factors on a trait, as well 

as non-linear models. In general, this is a hard problem, but general methods have 

been proposed, for instance the multi-level approach of Chalupka et al. (2016), or 

the information-theoretic approach of Janzing et al. (2013), which may be imported 

into our framework. Further, we intend the unique information and backward-CID 

bounds in Theorem 2.10 and 4.3 to be relevant for approximating the causal impacts 
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of variables when certain assumptions are made, and in general these may be seen in 

the context of a host of bounds which relate various kinds of causal effect to observ-

ables (without interventions) under a range of assumptions (see Geiger et al. 2014; 

Janzing and Schölkopf 2010).

Finally, we intend our framework to be useful in clarifying foundational con-

ceptual issues regarding causation and evolution. For instance, identifying a real-

ized evolutionary process in nature requires providing criteria for identifying ‘indi-

viduals’ on which the process acts, and separating these from an ‘environment’; 

attempts have been made to cast such criteria in information-theoretic terms (see 

for instance Krakauer et al. 2020), and our framework provides a natural language 

for expressing such ‘connecting principles’. We may for instance declare that, to a 

first approximation, a single level evolutionary process requires environmental var-

iables which are independent of an individual’s identity given its generation, act-

ing as a ‘thermal-bath’ to the system; features such as spatial population structure, 

behavior-environmental feedback and niche construction (leading to more complex 

forms of heritability kernel) would then be taken as second-order principles which, 

if strong enough, may disrupt the ‘individuality’ of the entities in the original sys-

tem (and hence the system’s ‘existence’ qua system). Such considerations may also 

help sharpen questions regarding multilevel selection, whose role has been called 

into question in explanations of evolutionary processes (see Okasha 2006, 2015 for a 

summary of the issues). Potentially, a model such as the multilevel CEP we outline, 

along with principles concerning which types of kernels are more or less ‘preferred’ 

at each level (for instance, in terms of description length, where lower-level ker-

nels may inherit structure from kernels at higher-levels), could allow us to perform 

model selection among MCEPs with different numbers of levels. The problem of 

identifying multilevel selection can thus be cast in the more general framework of 

identifying causality at multiple levels, where we may have multple levels of vari-

ables which supervene on one another (for instance, see Chalupka et al. 2016; Hoel 

2017; Okasha 2015); the existence of selection at multiple levels is the particular 

case of this problem when the causal relationships are constrained to have a special 

structure (such as an MCEP). In summary, we believe that consideration of explicit 

causal models of the kind we have outlined will be useful when approaching both 

computational and conceptual issues in models of evolution.
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Appendix A: Discrete cyclic causal systems and causal information

We present here a technical summary of the basic concepts we need for our frame-

work. In the process, we introduce the Causal Information Decomposition (CID), 

and summarize a number of its properties. First, we define a model of discrete cyclic 

causal systems, a Discrete Causal Network (DCN), which we will use as our basic 

model throughout the paper (see Fig. 1A for a summary of the relationships between 

the main models of the paper). We focus on discrete models to avoid the need to use 

differential entropy when defining information theoretic quantities, and leave gener-

alization of our framework to the continuous case for future work.

Definition 2.1 (Discrete Causal Network (DCN)): Let X = {X
i
} be a set of dis-

crete random variables indexed by i ∈ � = {1… I}, each taking values in the set 

V = 1…V , and Pa ∶ � → P(�) be a function which returns a set of parents for each 

index (where P(.) denotes the powerset, and the underlying graph of Pa may con-

tain cycles). Then, a DCN over X  consists of a collection of probability kernels 

K
i
(X

i
= x

i
|X

Pa(i) = x
Pa(i)) specifying the conditional distribution of each variable on 

its parents, and a partial ordering (I,≤) where I  is a subset of all perfect interven-

tions on X  with the inherited ordering on interventions (for �1, �2 ∈ I , �
1
≤ �

2
 iff �

2
 

fixes all variables fixed by �
1
 to matching values, and possibly fixes additional vari-

ables). Further, a solution to a DCN is a set of joint distributions P
do (�∈I)(X) such 

that the conditional distributions of all non-intervened variables X
i
 on X

Pa(i) match 

K
i
, and the marginals of all other variables are delta distributions at their respective 

intervened values.

We note that our Definition 2.1 can be viewed as a Causal generalized Bayesian 

network as introduced in Itani et al. (2010) or a special case of a Structural Causal 

Model (SCM) as in Bongers et al. (2020), with an additional restriction in each case 

to a subset of interventions (I,≤) (for an equivalent SCM formulation, see Appen-

dix C; also note that for convenience we assume all variables in Definition 2.1 have 

a common discrete codomain, V , which can be assumed without loss of general-

ity, since V may be taken large enought to embed all codomains if they are differ-

ently sized). By adding the restriction on the interventions considered, we are able to 

define a notion of transformation between DCMs, following the notion of transfor-

mations between Structural Equation Models in Rubenstein et al. (2017):

Definition 2.2 (Transformations between DCNs): Suppose we have two DCNs over 

variables X = {X
i∈{1…I}=�}, Y = {Yj∈{1…J}=�} taking values in {1…V

1
}I and 

{1…V
2
}J respectively, with kernels {K

1

i
} and {K2

j
} (resp.) and intervention posets 

over I  and J  (resp.). Let � be a map from V I

1
 to VJ

′

2
, where J� = |A| for A ⊆ �, and � 

be an order preserving surjective map from I  to J . Then (�,�) is a transformation 

of DCMs iff there exists a pair of solutions for which:

where �−1(y) is the pre-image of y under �.

(19)P do (�)(X ∈ �
−1(yA)) = P do (�(�))(YA = yA) ∀�, yA,
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Further, we wish to be able to analyse the information shared between DCN vari-

ables, and how this is affected by interventions. For this purpose, we first summarize 

the Partial Information Decomposition (PID) framework, using for convenience the 

formulation in Griffith and Koch (2014b). As originally formulated (Williams and 

Beer 2010), the PID decomposes the mutual information between a set of predictors 

X
1…I

 and a dependent variable Y , such that every collection of subsets of predictors 

is assigned an amount of (non-negative) redundant information. As noted by Griffith 

and Koch (2014b), this is equivalent to defining the union information for subsets of 

predictors, which we summarize as:

Definition 2.3 (Partial Information Decomposition (PID)): Given random variables 

X = {X
i
} indexed by i ∈ � = {1… I}, with joint distribution P(X), a collection of 

(possibly overlapping) subsets {S1, S2,… , S
J
}, ∀j ∶ Sj ⊂ I, and a subset T ⊂ I dis-

joint from all Sj’s, we use the symbol PID to denote the union information, defined 

as:

where IQ(X ∶ Y) is the mutual information of X and Y under the distribution Q, and 

� is the set of all distributions over {X
S1

, X
S2

,… , X
S

J
, X

T
} whose pairwise marginals 

over {XSj
, XT} match those of P, i.e. Q({XSj

, XT}) = P({XSj
, XT}), ∀j.

Following Bertschinger et  al. (2014), a number of fur-

ther quantities may be defined in terms of the PID in the case 

that J = 2 . These include the shared or redundant information, 

SI(X
S1

;X
S2
∶ X

T
) = I(X

S1
∶ X

T
) + I(X

S2
∶ X

T
) − PID({X

S1
, X

S2
} ∶ X

T
) , the co-infor-

mation or synergy, CI(X
S1

;X
S2
∶ X

T
) = I({X

S1
, X

S2
} ∶ X

T
) − PID({X

S1
, X

S2
} ∶ X

T
) , 

and the unique information, UI(X
S1
�X

S2
∶ X

T
) = I(X

S1
∶ X

T
) − SI(X

S1
;X

S2
∶ X

T
) . 

Analogues of these quantities may be defined for J > 2 as in Griffith and Koch 

(2014b).

To define a causal analogue to Definition 2.3, we include also a dependency on 

an interventional distribution. Hence, we set:

Definition 2.4 (Causal Information Decomposition (CID)): Given a DCN as in Defi-

nition 2.1, subsets over indices {S1, S2,… , S
J
} and T as in Definition 2.3, and a dis-

tribution over interventions, P
I
, we define the CID as:

where:

Further, we use the short-hand notations:

(20)PID({XS1
, XS2

,… , XSJ
} ∶ XT ) = min

Q∈�
IQ({XS1

, XS2
,… , XSJ

} ∶ XT ),

(21)

CID({XS1
, XS2

,… , XSJ
} ∶ XT | do (�) ∼ P

I
) =

min
Q∈�(P

I
)
IQ({XS1

, XS2
,… , XSJ

} ∶ XT ),

(22)�(P
I
) = {Q|Q({XSj

, XT}) = P do (�)∼P
I
({XSj

, XT}),∀j}.



1 3

Cyclic and multilevel causation in evolutionary processes  Page 25 of 36 50

and

when I  contains a single intervention for each configuration of X
B
 and X

A
 in Eqs. 

23 and 24 respectively, and Q
X∖XB

, QXA
 weight these according to the marginals 

P(X�X
B
), P(X

A
) (resp.), while assigning 0 to all other interventions [hence these 

intervention distributions capture the actual variation in X∖X
B
 and X

A
 resp. in the 

sense of Griffiths et al. (2015)]. We refer to Eqs. 23 and 24 as the backward- and 

forward- CIDs respectively.

The CID may be viewed as both a generalization of the PID and the effective 

information (EI) (Hoel 2017; Tononi and Sporns 2003). The EI can be defined as: 

EI(P
I
(X

A
) → X

B
) = I do (�)∼P

IA

(X
A
;X

B
) , where X

A
 and X

B
 are disjoint, and P

I
A

 is an 

intervention distribution over X
A
 (i.e., for any intervention � affecting a variable in 

X∖X
A
 , P

I
A

(�) = 0 ). We thus have:

Proposition 2.5 (Basic CID identities): Letting QXS
 be as in Definition 2.4, and writ-

ing ∅ for the null intervention with ��(.) the intervention distribution which places 

probability 1 on ∅:

Proof. For (a), setting P
I
= ��(.) in Eq. 22 makes �(P

I
) identical to the set � in 

Eq. 20, and hence the identity follows. For (b) and (c), when J = 1 in Eqs. 23 and 

24, the CID reduces to the mutual information between variable subsets under the 

intervention distributions Q
X∖XB

 and QXA
 respectively. Hence, setting the EI inter-

vention distributions identically leads to the proposition.   ◻

We now introduce a particular DCM model which will be important in later 

sections. This is a causal analogue of a Dynamic Bayesian Network (Koller and 

Friedman 2009), which we refer to as a Dynamic DCN (DDCN):

Definition 2.6 (Dynamic DCN (DDCN)): A dynamic DCN is a DCN whose vari-

ables and kernel functions have a restricted structure. Particularly, we have 

X = {X(i,t)} where i ∈ {1… I} and t ∈ {0…T}, so that X(i,t) represents an obser-

vation of a quantity i at time t. Also, for all t > 0, Pa(i, t) = (Pa
�(i), t − 1) and 

K(i,t)(X(i,t)|XPa(i,t)) = K
�
i
(X(i,t)|XPa(i,t)), where Pa

�(.) K
�
i
(.|.) are auxiliary functions, 

and for t = 0, Pa(i, t) = {}. Further, it will be useful to consider a restricted DDCN 

(23)CID(XA1
,… , XAJ

→ XB) = CID({XA1
,… , XAJ

} ∶ XB| do (�) ∼ Q
X�XB

),

(24)CID(XA → XB1
,… , XBJ

) = CID({XB1
,… , XBJ

} ∶ XA| do (�) ∼ QXA
),

(25)(a) CID({X
S

1…J
} ∶ X

T
| do (�) ∼ ��(.)) = PID({X

S
1…J

} ∶ X
T
)

(26)(b) CID(X�XB → XB) = EI(Q
X�XB

→ XB)

(27)(c) CID(XA → XB) = EI(QXA
→ XB).
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(r-DDCN) with a constrained set of interventions, where we take I  to include ∅, 

along with interventions of the form �(i, v
i
) = do (X(i,t=0…T) = v

i
) and all combina-

tions of such interventions. For an r-DDCN, we assume that the network converges to 

a unique steady-state under all interventions. Finally, we define a projected DDCN 

at time � (p-DDCN(�)) to be a DCN constructed from an r-DDCN, including vari-

ables {X
i
} and {�

i
}, with i ∈ {1… I} ranging across the same indices as the underly-

ing r-DDCN, and the X
i
’s and �

i
’s each taking values from the same set as the X(i,t)

’s, augmented in the case of the �
i
’s with a null value 0. Writing (i, 0) for the index 

of X
i
, and (i, 1) for the index of �

i
, we set Pa(i, 0) = (Pa

�(i)�i, 0) ∪ {(i = 1… I, 1)}

, Pa(i, 1) = {}, K(i,1) = �0(.), and let K(i,0) be the conditional distribution of X(i,�) 

on X(Pa�(i)�i,�) in the underlying r-DDCN under the intervention ∧
i
�(i, �

i
) (where 

�(i, 0) = �, ∀i). The set of interventions in the p-DDCN consists of ∅, along with all 

combinations of interventions involving do (�
i
= v

i
) where v

i
> 0. By construction, 

the limiting p-DDCN(�) as � → ∞ is well defined, and represents the set of equilib-

rium distributions (under interventions) of the original r-DDCN, which we denote 

eq-DDCN.

We immediately note the following:

Proposition 2.7 For an r-DDCN and a derived p-DDCN(� ), we have a transformation 

of DCNs (�,�) from the former to the latter by setting: �(∧
i
�(i, v

i
)) = ∧

i
do (�

i
= v

i
) , 

�(�) = � and � to be the embedding (x(1…I,{0…T}��), x(1…I,�)) ↦ (x(1…I),�) , where the 

set A in Definition 2.2 is A = {(i = 1… I, 0)}.

Proof. The proposition follows directly from the definitions, along with the fact that 

�(.) as defined is order preserving, since it simply maps the basic intervention �(i, v
i
) 

in the r-DDCN to the basic intervention do (�
i
= v

i
) in the p-DDCN, implying that 

order relations between all combinations will be preserved.   ◻

Further, we introduce a special separability property on DDCN kernel functions 

which we will make use of in several places below:

Definition 2.8 (Self-separable DDCN kernels): A DDCN kernel function 

K(X(i,t)|X(Pa�(i),t−1)) will be said to be self-separable, if i ∉ Pa
�(i), or (letting � ∈ (0, 1)):

We finish by noting a number of further properties which follow from the definitions 

above. First, we summarize a number of properties of DDCNs with self-separable 

kernels as in Definition 2.8:

Theorem 2.9 (Properties of Separable DDCNs): Given an eq-DDCN, derived from 

an r-DDCN in which all kernels are self-separable, we have (writing H(.) for the 

Shannon entropy):

(28)
K(X(i,t)|X(Pa�(i),t−1)) = �K1(X(i,t)|X(i,t−1))

+ (1 − �)K2(X(i,t)|X(Pa�(i)�i,t−1)).
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Proof. For (a), we note that since P(.) is the equilibrium distribution of the underly-

ing r-DDCN, we can write (letting Y
i
= X�X

i
):

where the second line uses the self-separable property. Since the terms on the RHS 

depend only on the marginals P(X
i
) and P(Y

i
) , the theorem follows, since the mar-

ginals over Y
i
 are preserved in the intervention distribution Q

X∖Xi
.

Part (b) follows directly from (a), since CID(X�X
i
→ X

i
) is a mutual information 

involving X
i
 under the intervention distribution Q

X∖Xi
 . From (a), H(X

i
) is preserved 

under this intervention distribution, and the mutual information between two varia-

bles cannot exceed the entropy of either alone.

Part (c) follows by noting that the entropy H(S) is also preserved in the interven-

tion distribution Q
X∖Xi

 . Since the RHS is again a mutual information, the inequality 

must hold.   ◻

We summarize also a number of bounds involving the unique information in 

DCNs with a more restricted structure, namely a Pa(.) function which forms a DAG 

(i.e. containing no cycles). Particularly, we focus on the effect of an arbitrary vari-

able X on another Z, where Z has no descendants. All other variables are collapsed 

together as a single variable Y = X�{X, Z} . Further, we refer to the causal strength, 

ℭ (see Geiger et al. 2014; Janzing et al. 2013), where ℭ
X→Z

= KL(P(X)||P(Y)P(X|Y)⋅ 

P
�(Z|Y)) , writing KL(.||.) for the KL divergence, and P

�(Z�Y) =
∑

x
P(X, Y)⋅ 

P(Z|X, Y).

Theorem 2.10 (Unique information bounds): For a DCN with Pa(.) forming a DAG and 

X, Y, Z as above, we have:

where

(29)(a) P(Xi = xi) = P
do (�)∼Q

X�Xi

(Xi = xi)

(30)(b) H(X
i
) ≥ CID(X�X

i
→ X

i
)

(31)(c) H(S ⊂ X�X
i
) ≥ CID(S → X

i
).

(32)

P(xi) =
∑

xi,yi

P(xi, yi)K(xi|xi, yi)

=�
∑

xi

P(xi)K1(xi|xi) + (1 − �)
∑

yi

P(yi)K2(xi|yi),

(33)(a) UI(Z ∶ X�Y) ≤ ℭ
X→Z

(34)(b) UI(Z ∶ X�Y) ≤ CID(X → Z), if Pa(X) = {}

(35)(c) UI(Z ∶ X�Y) ≤ CID(X → {Y , Z}) + C, if Pa(X) ≠ {},
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with P�(Z�Y) =
∑

x
P(X, Y)P(Z�X, Y).

Proof. For (a), we have from Geiger et  al. (2014) that ℭ
X→Z

≥ I(Z ∶ X|Y) , where 

I(. : .|.) denotes the conditional mutual information. Further, from Rauh et al. (2014) 

we have:

with � as in Definition 2.3. Since P ∈ � , UI(Z ∶ X�Y) ≤ I(Z ∶ X|Y) ≤ ℭ
X→Z

.

For (b), from Geiger et  al. (2014) (prior to Lemma 3), we have that 

ℭ
X→Z

= I(X ∶ Z) when Pa(X) = {} . Further, for Pa(X) = {} we have 

that P
do (�)∼QX

= P , and hence I(X ∶ Z) = CID(X → Z) . Hence, from (a), 

UI(Z ∶ X�Y) ≤ ℭ
X→Z

≤ CID(X → Z).

For (c), we note that we may write the causal strength as:

Further, we may write:

Since Eqs. 38 and 39 are both weighted averages over ∪x,y{KL(P(Z|x, y)|| P�(Z, y))} , 

we must have:

with C as in the theorem. The inequality follows from Eq. 40 and (a).   ◻

Since the RHS’s of (a), (b) and (c) in Theorem 2.10 may all be regarded as meas-

ures of the impact interventions on X will have on Z (possibly in combination with 

Y), these bounds provide a way of predicting this effect from knowledge of only 

the observed unique information (i.e. without applying interventions). A corollary of 

Theorem 2.10 is that if UI(X ∶ Z) > 0 , ℭ
X→Z

> 0 , and necessarily CID(X → Z) > 0 

if Pa(X) = {} . We explore Theorem 2.10 further through simulations in “Appendix 

D”.

(36)C = max
x,y

(KL(P(Z|x, y)||P�(Z|y))) − min
x,y

(KL(P(Z|x, y)||P�(Z|y))),

(37)UI(Z ∶ X�Y) = min
Q∈�

I(Z ∶ X|Y),

(38)

ℭX→Z = KL(P(X)||P(Y)P(X|Y)P�(Z|Y))

=
∑

x,y

P(x, y)KL(P(Z|x, y)||P�(Z, y)).

(39)

CID(X → {Y , Z})

= KL(P do (�)∼QX
||P(X)P(Y)P�(Z|Y))

=
∑

x,y

P(x)P(y)KL(P(Z|x, y)||P�(Z, y)).

(40)|ℭ
X→Z

− CID(X → {Y , Z})| ≤ C,
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Appendix B: Full proofs and definitions from “Model 1: Genetics, 
epigenetics and environmental feedback”

Below, we give in full the definitions and proofs omitted from “Model 1: Genetics, 

epigenetics and environmental feedback”.

Definition 4.2 (CTCM with embeded DDCM (CTCM*)): A CTCM* is a CTCM 

with further structure as follows. We let �nt = {xnt� , ynt� , znt�} and e
nt
= {e

nt�
}, where 

� is an intra-generational time index, which runs from 0…T
�
. The kernels of a 

CTCM* have the form of an embedded DDCM:

We allow that these variables and kernels can be further factorized, for instance by 

decomposing ynt� into sub-phenotypes representing expression values of individual 

genes or gene modules, and e
nt�

 into different environmental factors, and introducing 

sub-kernels of g′

1
, g

′′

1
, g

′

3
, g

′′

3
 for each sub-variable. Given a lowest level factorization, 

we require that the all transition kernels (i.e. the kernels g
′′

1
, g

′′

2
, g

′′

3
 , or their sub-

kernels) are self-separable in the sense of Definition 2.8, where in all cases K
1
(.|.) 

in Eq.  28 is set to a delta function at the identity ( K
1
(a|a) = �(a|a) ). In analogy 

with Definition 2.6, we can define restricted and projected CTCM*’s by applying 

these constructions to the embedded DDCMs. In the former case, we restrict inter-

ventions over the variables X, Y, Z and e to those which fix the variable in an indi-

vidual at time t across all values of � , and in the latter case writing p-CTCM*(� ) 

for the CTCM* formed by projecting the phenotype/environmental variables onto 

� = � at each n and t. By taking the limit � → ∞ , we write eq-CTCM* = p-CTCM*

(∞ ). Finally, we note that there is a subtlety in that, in moving from an r-DDCN to a 

p-DDCN in Def 2.6, we introduce the ‘intervention variables’ � ; these may be con-

veniently added as extra environmental variables in a p-CTCM*, since g1, g2, g3 are 

all conditioned on e.

Theorem  4.3 (Backward-CID bounds): For a CTCM* represented as above with 

latent factors C, and associated eq-CTCM*, where S ⊂ {X, Y , e} , V ∈ {X, Y , Z, e} , 

(.)
V
 denotes the mean over values of V, and II is the interaction information 

( II(S;Z;C
∗) = I(S;Z|C∗) − I(S;Z) ), in the limit � → 1 we have that:

(41)

hx(xnt|x(𝜋t(n),t−1)) = h�
x
(xnt0|x(𝜋t(n),t−1,0)) ⋅

∏

𝜏>0

𝛿(xnt𝜏 |x(n,t,𝜏−1))

g1(ynt|xnt, ent) = g�
1
(ynt0) ⋅

∏

𝜏>0

g��

1
(ynt𝜏 |x(n,t,𝜏−1), e(n,t,𝜏−1), y(n,t,𝜏−1))

g2(znt|ynt, ent) = g�
2
(znt0) ⋅

∏

𝜏>0

g��

2
(znt𝜏 |y(n,t,𝜏−1), e(n,t,𝜏−1), z(n,t,𝜏−1))

g3(ent|znt) = g�

3
(ent0) ⋅

∏

𝜏>0

g��

3
(ent𝜏 |z(n,t,𝜏−1), e(n,t,𝜏−1)).

(42)
[II(S;Z;C∗) ≤ 0] ∧ [CID(S → Z) ≤ (CID(S ∶ Z|QV ))V ] ⟹

PID(S ∶ Z) ≥ CID(S → Z),
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and similarly:

where all II, CID and PID quantities are evaluated in the eq-CTCM* model 

(at a given n and t, where C
∗ is treated as an additional phenotype). Further, 

QV = Peq(¬V)KV
2
(V|¬V) (unrelated to the notation QXA

 used in Definition 2.4) with 

K
V

2
 the second component of V’s kernel, as in Eq. 28, and we assume Y, Z and e are 

not factorized. For the case that Y, Z or e are factorized, S and V are subsets and 

elements of the sets of relevant factorized variables respectively, and Eqs. 42 and 43 

hold identically.

Proof. For Eq.  42, we begin by considering the case that, in the underlying 

CTCM*, at index � we have C∗(�) = V ≠ � . Since all other variables ¬V  are arbi-

trarily sampled and V has just updated according to g′′

V
 (i.e. letting g��

Y
= g��

1
 , g��

Z
= g��

2
 , 

g
��

e
= g

��

3
 ), the distribution at time � is Peq(¬V)g��

V
(V|¬V) = QV . Hence, the mutual 

information between Z and S at � is CID(S ∶ Z|QV ) . Since we stipulate a common 

� for all transition kernels, the average of this quantity across samples drawn from 

the equilibrium distribution is approximately the conditional mutual information 

(neglecting the case in which C∗(�) = �):

Further, since II(S;Z;C
∗) = I(S;Z|C∗) − I(S;Z) , in the limit � → 1 and for 

II(S;Z;C∗) ≤ 0 we have:

PID(S ∶ Z) ≥ CID(S → Z) then follows from the second line of Eq. 42. For Eq. 43 

the proof is similar, with the direction of the inequalities reversed, and the generali-

zation to factorized Y, Z or e is straightforward.   ◻

Appendix C: Representing DCNs as structural causal models

In Bongers et  al. (2020), a Structural Causal Model (SCM) is defined as a tuple, 

< I, J, X, E, � , ℙE > , where I, J  are finite index sets of endogenous and exogenous 

variables respectively, X =
∏

i∈I
X

i
 and E =

∏

j∈J
Ej are products of codomains of 

endogenous and exogenous variables respectively, where each codomain is a meas-

urable space, � ∶ X × E → X  is a measurable function, and ℙE =
∏

j∈J
ℙE�

 is a prod-

uct of probability measures over the exogenous variables. A solution to an SCM is a 

pair of random variables (X,  E) taking values in X  and E resp., such that the 

(43)
[II(S;Z;C∗) ≥ 0] ∧ [CID(S → Z) ≥ (CID(S ∶ Z|QV ))V ] ⟹

PID(S ∶ Z) ≤ CID(S → Z).

(44)

I(S;Z|C∗) =
∑

C∗

P(C∗)IP(.|C∗)(S;Z)

≈ (CID(S ∶ Z|QV ))V .

(45)(CID(S ∶ Z|QV ))V ≤ I(S;Z) = PID(S ∶ Z).
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distribution of E matches ℙE , and the structural equations X = � (X, E) are satisfied 

almost surely.

We may represent a DCN as an SCM as follows (where we assume a DCN solu-

tion exists, and construct from this an SCN solution). We let I  contain indices (0, i) 

for each variable X
i
 in the original DCN, along with index (1, i) for a mirror vari-

abe �
i
 corresponding to each original variable (these collectively form the X’s of the 

SCM as defined above). We set the codomains X(0,i) to be {1…V} for the X’s, and 

{0, 1…V} for the �’s. We then set J = I
DCN

 , i.e. the intervention set in the original 

DCN, and the codomains Ej are all set to V I . The probability measure ℙE
�

 is set so 

that, if joint configuration [x1,… , x
I
] occurs with probability p under � in the origi-

nal DCN, the measure assigned to [x1,… , x
I
] under ℙE

�

 is p. We then set � so that 

f(0,i)(X, � , E) = v if � corresponds to intervention � in the original DCN and E
�
(i) = v ; 

f(1,i) is the constant 0, and all other values of � are set arbitrarily. The intervention � 

in the original DCN corresponds to making a joint setting of the � mirror variables 

in the SCM to the desired intervention values (with 0 corresponding to no interven-

tion). By construction, a joint setting of the endogenous variables surely exists under 

any intervention in the SCM constructed, since � simply ‘copies’ the joint settings 

from Ej to X, where j corresponds to the relevant intervention represented by �.

We note that, in Definition 2.1, we use the term solution in a slightly different 

sense to Bongers et al. (2020). In our sense, the conditional distributions are speci-

fied under each possible intervention, and a set of joint distributions must be found 

which match these. In Bongers et  al. (2020) however, the full joint distribution 

Fig. 2  Simulation of the Unique Information bound. Figure shows results of the simulations described 

in Appendix D. Rows correspond to simulations of the model shown on the left, and columns show the 

forward-CID (a measure of causal effect) and its unique information lower-bound calculated for each 

variable. See text for full details
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over the exogenous variables is specified by the model, and a solution consists of 

specifying the conditional distribution over the endogenous variables under each 

possible intervention and setting of E which respects the constraints imposed by � . 

Further, we note that while the SCM construction given above is fully general in 

the sense that any DCN can be represented in the form given, it is also purely ‘for-

mal’ in the sense that the fi ’s do not directly correspond to causal mechanisms in 

the original DCN (represented by the kernels). Clearly, particular DCNs may have 

more compact representations as SCMs with a stronger correspondence in this 

sense; for instance, for acyclic DCNs the � ’s are not required, and each X
i
 may be 

associated with an E
i
∈ [0 1] which is sampled independently and uniformly, so 

that fi(X, Ei) = gi(Ei|XPa(i)) , where gi(.|.) is the inverse of the cumulative distribu-

tion function of the kernel K
i
(X

i
|X

Pa(i)) , and hence the fi ’s correspond directly to the 

DCN kernels. However, even if such direct correspondences cannot be drawn, the 

general SCM construction above ensures that for any DCN an SCM exists whose 

behavior is identical on all interventions.

Appendix D: Study of the unique information bound

We explore the behavior of the bound in Theorem 2.10 both in conditions when its 

assumptions are and are not satisfied through simulations. The results are shown in 

Fig. 2. Here, we run simulations in three DDCN models over the variables X, Y, Z, 

with the connectivity of each model shown on the left (defining the Pa map). Each 

variable can take 4 values ( V = 4 ), and we use self-separable DDCN models for all 

kernels (Definition 2.8). For the kernel parameters, we set � = 1 − 10
−� , K

1
 to be the 

identity, K
2
 by sampling each transition kernel entry uniformly at random and nor-

malizing so that all conditional distributions sum to one, and we set the initial distri-

butions similarly by uniform sampling. This parameterization lets � act as a ‘stabil-

ity’ parameter, which we sweep between 0 (low stability) and 5 (high stability), 

where former implies the identity kernel is never chosen for updates, while the latter 

implies it almost always is. We first run 10 simulations of each model for T = 500 

time-steps under no interventions, where a simulation involves sampling the param-

eters as above, building the full transition matrix �  over the 43 system states, and 

analytically calculating pT = p
0
�

T . From pT , we then calculate all marginal distri-

butions, and use these to calculate CID(V → ¬V) , CID(V
1
→ V

2
) and CID(¬V → V) 

for all variables V and variable pairs V1, V2 ( V , V1, V2 ∈ {X, Y , Z} ) in the projected 

DDCN at time T = 500 , approximating the equilibrium DDCN (see Definition 2.6). 

We calculate these quantities by running further simulations under the required 

intervention models, with the intervention distributions set using the marginals cal-

culated. The latter two quantities allow us to calculate the unique information 

UI(V
1
�V

2
∶ V

3
) for all variable settings (Definition 2.3 and following). The figure 

shows, for each variable, a plot which compares the quantity CID(V → ¬V) (the 

‘forward’-CID, which may be taken to measure the causal effect of the variable), 

with the maximum value of UI(V�V
1
∶ V

2
) , where V1, V2 ∈ ¬V  . We take the aver-

age of these quantities across the 10 simulations for the plots shown.



1 3

Cyclic and multilevel causation in evolutionary processes  Page 33 of 36 50

When the assumptions of Theorem  2.10b are satisfied, the quantity 

max
V1,V2

UI(V�V1 ∶ V2) is guaranteed to be less than or equal to CID(V → ¬V) (and 

all other unique information bounds will be looser than it). These conditions are 

only satisfied for variable X in the first two models shown. However, variable Y in 

the first two models satisfies the conditions of Theorem 2.10c; as shown, the unique 

information provides a lower bound in these cases also, implying the constant C in 

Theorem 2.10c does not typically lead to a violation of the bound under the model 

sampling distribution described above (e.g. uniform sampling of transition kernels). 

Further, the last model investigates a case in which the DAG assumption of Theo-

rem 2.10 is violated, and we have feedback between X and Y. The results show that, 

again, under the model sampling distribution adopted the unique information pro-

vides a reliable lower bound here also. We note that in all models, since Z has no 

children, its causal impact ( CID(Z → ¬Z) ) is zero; the unique information bound is 

similarly pushed to 0, hence in the models tested the criterion UI(V�V
1
∶ V

2
) > 0 

provides a reliable indicator that V has non-zero causal impact. The above implies 

that the unique information bounds of Theorem 2.10b and c provide a general indi-

cator of causal impact, which are robust to conditions in which the assumptions of 

the theorem are not strictly met.

Appendix E: Factorizing kernels in discrete causal networks

We provide here further details on the notation we adopt for factorizations of DCN 

kernels. As specified in Definition 2.1, a DCN requires a kernel function to be speci-

fied for each variable K
i
(x

i
|x

Pa(i)) representing the conditional distribution of x
i
 on 

its parents. We can summarize a DCN model using a ‘product of kernels’ notation, 

which we write as either 
∏

i
K

i
(x

i
�x

Pa(i)) or K
1
(x

1
|x

Pa(1)) ⋅ K
2
(x

2
|x

Pa(2)) ⋅… . We note 

that, if the Pa relation forms a DAG, this product will directly represent the joint 

distribution over the DCN variables (subject to no interventions); however, since 

in general Pa may contain cycles, we adopt the convention that 
∏

i
K

i
(x

i
�x

Pa(i)) 

represents the set of distributions which satisfy all the kernel relations. Further, 

in general, individual kernels may themselves be sets of conditional distribu-

tions, although we assume for convenience throughout that the basic kernels use 

to define a DCN are single distributions (note that a distribution satisfies a kernel 

only if the conditional derived from the relevant variables matches one in the set 

associated with the kernel; further, we treat basic kernels notationally as distribu-

tions, despite being singleton sets). An intervention which sets x
i
 to value v may 

be implemented by replacing K
i
(x

i
|x

Pa(i)) by �(x
i
|v) , and a solution to the DCN is a 

choice function which picks a single distribution from the kernel product sets rep-

resenting each intervention (including the null intervention). For partial products, 

this notation represents a higher-order conditional kernel, for instance, consider 

K(xi, xj|xk) = K(xi|xj, xk) ⋅ K(xj|xi, xk) . Here, K(xi, xj|xk) is a set of conditional dis-

tributions over the joint variable (xi, xj) , which satisfy the kernel product relations 

between xi, xj specified by the lower-order kernels (conditioned on x
k
 ). In a given 

kernel product, we may thus combine groups of kernels together into higher-order 
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kernels, or split them into multiple lower order kernels, while maintaining the solu-

tion set for the product. A particular DCN selects a ‘base-level’ factorization, which 

determines the variable index set � and thus which interventions may be performed 

on the model; for instance, if K(xi, xj|xk) is a base-level kernel, then variables x
i
 

and xj must be treated as a single variable in the DCN, and interventions cannot be 

applied to x
i
 and xj separately. In this sense, once the base level has been set and a 

particular DCN solution chosen, all higher-order kernels are fully determined, and 

are used for notational convenience only.
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