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Cyclic-Averaging for High-Speed
Analysis of Resonant Converters

Martin P. Foster, H. Isaac Sewell, Chris M. Bingham, Member, IEEE, David A. Stone, Dirk Hente, and Dave Howe

Abstract—The paper describes the development and appli-
cation of a cyclic-averaging technique for the rapid analysis of
high-order resonant power converters. To provide a focus to the
paper, particular emphasis is given to a 3rd-order LCC voltage
output converter topology. The proposed methodology predicts
steady-state voltages and currents throughout the circuit, and
provides estimates of the stresses on the resonant circuit compo-
nents. State-space simulations and experimental results from a
350 V-input/150 V-output converter are used to demonstrate a pre-
diction accuracy comparable with time-domain integration-based
techniques is achievable, while requiring only 1/10,000th of the
computation time. In addition, a comparison with Spice simula-
tion results shows that cyclic averaging provides commensurate
predictions of voltage and current stresses on the resonant circuit
components. Issues arising from the stray capacitance associated
with the resonant inductor, and the corresponding sensitivity of
the predicted output voltage, are also considered.

Index Terms—Modelling, resonant power conversion, simula-
tion.

I. INTRODUCTION

RESONANT power converters offer a higher efficiency and
reduced size compared with traditional switched-mode

counterparts. Thus, there is significant interest in high-order
resonant systems, such as that shown in Fig. 1, particularly
in the consumer product industry, to satisfy the requirement
for smaller power supplies for compact electronic equipment.
However, the increased circuit complexity makes it more
difficult to accurately predict the performance of the converters
during an iterative design process, due to the protracted
simulation times required for component-based simulation
packages, such as Spice. Computationally efficient algorithms
are, therefore, sought to accurately predict current and voltage
waveforms throughout such converters, so as to facilitate their
design.

Utilizing state-variable models, and exploiting the periodic
behavior of resonant converters in the steady-state, cyclic-aver-
aging techniques will be shown to provide an attractive alter-
native to traditional ‘integration-based’ and harmonic analysis
methods for converter performance evaluation, and component
stress prediction.
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II. M ODELLING CYCLIC BEHAVIOUR

The proposed approach is considered to be a variant of
Floquet-based techniques, [1], whereby averaged, steady-state
values of state-variables are determined. Due to the multiple
operating modes of resonant converters, Fig. 2, “classical”
steady-state operating points cannot be determined due to the
continuous switching nature of the input voltage. However, by
considering converter operation to be periodic, then

(1)

where the state vector,, describing converter operation at time
is equal to the state vector at time , being the pe-

riod of the applied input voltage andan integer. The resulting
performance of the converter can then be obtained from ana-
lytical equations without the need for integration. The method
can, thereby, provide steady-state performance predictions ex-
tremely rapidly.

In the steady-state, each period of a cycle can be decom-
posed into multiple operating modes, each dependent on the
state of the input voltage and the rectifier input/output volt-
ages and currents. Fig. 2 shows typical steady-state voltage and
current waveforms for the resonant converter circuit shown in
Fig. 1, together with the sub-division of the cycle into operating
modes, .

In general, power converters operating in a cyclic-mode
can be modeled by a system of piecewise linear (state-space)
equations which describe the converter in each operating mode
during the cycle; i.e.

(2)

where is the state vector, is the dynamical matrix and
is the input vector, in the operating mode of the converter.
Thus, they consist of a linear combination of circuit voltages
and currents. For the mode, (2) can be solved analytically

(3)

where , , and
are the initial conditions for the mode. If the time during

which the circuit operates in the mode is , where is the
associated duty-cycle, the complete solution for the dynamics of
the converter can be obtained by employing the state vector at
time as the initial condition for the subsequent dynamics
of the mode. Nevertheless, the solution of (3) is com-
plicated by the need to evaluate the integral, which is a major
contribution to the computational overhead when analyzing the
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Fig. 1. Third-order LCC resonant converter (including parasitic elements).

Fig. 2. Voltages and currents of a third order voltage output LCC resonant
converter.

system in this manner. However, by combining and to
form an augmented system matrix, (4), the integration overhead
can be eliminated at the expense of obtaining only the cyclic
steady-state description

or

(4)

Consider the solution of the state vector, (4), at the transition
time between modes 1 & 2, (denoted)

(5)

where are the initial conditions of the cyclic mode, and
. In a similar manner, the solution of

the state-vector at the end of mode 2 can be obtained from

(6)

In general, for a system with -modes, the state-vector at the
end of the mode is

(7)
where is the state-vector at time ,

and Due to the peri-

odic nature of the system, the initial condition, , for
operation in a cyclic mode is given by

(8)

where and

From (7), the value of the state-variables at any particular
instant in time, , within a cyclic mode can be predicted by
using knowledge of the initial conditions, , for a partic-
ular mode,

(9)

where

III. A VERAGED STATE-VARIABLES

In order to obtain the average steady-state output voltage of
the converter, the mean values of the state-variables over a com-
plete cycle are found from

(10)

Again, the requirement for integration impedes efficient
analysis of the system. However, by augmenting the state-vector
with , the solution of the resulting system
can be simplified. From [1], the dynamics of the converter
during the mode of a cycle are given by

(11)

with the resulting dynamic description

or

(12)
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The initial conditions for the cyclic mode are now:

(13)

In a manner similar to that presented in the previous section,
the averaged state-vector is obtained as follows

(14)

from which the average output voltages (or currents) of
switching converters, together with the average voltages (or
currents) across (or through) the reactive components in the
circuit, , are determined.

IV. STATE-SPACE MODEL OF LCC VOLTAGE

OUTPUT CONVERTER

To demonstrate the attributes of cyclic averaging for the anal-
ysis of resonant power converters, a 3rd order LCC voltage
output converter, is considered, Fig. 1. The optional filter in-
ductor, is often included for use in high-power converters
and those which require a low output current ripple, and facili-
tates a reduction in the size of the output filter capacitor. How-
ever, to limit the physical size of the converter, and to reduce
cost, the filter inductor is usually omitted. This does, however,
significantly complicate the analysis since the voltage across the
parallel resonant capacitor is clamped at the output voltage when
the rectifier conducts, and cannot be considered to be sinusoidal
(as in a FMA analysis). The treatment presented in the paper is
solely concerned with the converter operating without a filter
inductor.

To obtain the state-variable equations that describe the con-
verter operation (omitting ), the circuit is first partitioned into
two sub-systems, [2]. The filter capacitor and load are repre-
sented by a ‘slow’ sub-system and the resonant circuit by a ‘fast’

sub-system; the interaction between the two being through a rec-
tifier coupling equation. The differential equations describing
the fast sub-system are

(15)

and, similarly, for the slow sub-system

(16)

The coupling equation is obtained by equating the voltages
across both sides of the rectifier; viz:

(17)
where is the rectifier voltage drop. Assuming the parasitic
resistance of each capacitor has a negligible effect, (17) reduces
to

(18)

from which the dynamic equation describing the parallel capac-
itor voltage is obtained as

(19)

Substituting (15) and (16) into (19) for the appropriate capac-
itor currents, and solving for the rectifier current,, yields

(20)

The combined state-space model and coupling equation are
then given by (21) and (22), shown at the bottom of the page.
Note: For use in signal-conservative simulation packages, e.g.,
Simulink, modifications to the coupling equation are required
to ensure the rectifier commutates correctly, see [3].

V. DERIVATION OF CYCLIC MODEL

Analysis of the behavior of the third-order voltage output
LCC converter, Fig. 1, shows that for switching frequencies
above, and in the region of, the resonant frequency, six oper-
ating modes are present in each periodic cycle, with respect

(21)

(22)
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to the polarity of the input voltage and the state of the recti-
fier current, Fig. 2. Although other mode sequences can occur,
for operation well above resonance, these impart poor switch
power-factor characteristics, and are not normally considered
for design purposes.

The derivation of the piece-wise linear equations required for
cyclic averaging is complicated by the requirement for calcu-
lating the magnitude of the rectifier current, (i.e. is a
nonlinear function of and ). However, a simplified ex-
pression for can be obtained by noting that the filter capac-
itor, , is much larger in value than the parallel capacitor,,
for a ‘ripple-free’ output voltage. Hence, in (22) can be ne-
glected. Thus

(23)

the dynamic matrices, , and the input matrices, , are found
by substitution of (23) into (21) and taking account of the po-
larity of the input voltage and the direction of the rectifier cur-
rent. In particular, for operation in mode 1 ( , ) as
(24), shown at the bottom of the page, and the coupling equation
is

(25)

Similarly, the modal equations describing mode 2 ( ,
) are

(26)

whilst for mode 3 ( , ) as (27), shown at the bottom
of the page.

Due to symmetry, the modal matrices for modes 4,5,6 are
equivalent to those given previously, i.e.

(28)
The time-periods associated with each mode are derived

from an equivalent circuit based on a modified Rectifier-Com-
pensated Fundamental Mode Analysis (RCFMA) [4] technique.
The equivalent circuit models the combined nonlinear effects
of the bridge rectifier and the output filter, by an equivalent
resistance, , and capacitance, , Fig. 3, is described by

(24)

(27)

(29)
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Fig. 3. Equivalent circuit of an LCC voltage output converter.

(29), shown at the bottom of the previous page. The converter
is analyzed by assuming the action of the rectifier is to clamp
the parallel capacitor voltage (to ) when the rectifier is con-
ducting. The parallel capacitor voltage can then be described by
(30), shown at the bottom of the page, where
and is the input current to the converter,is the switching
frequency, and is the parallel capacitor charging angle.

The duty-cycle for mode 1 is found by assuming the
output voltage is ripple free. Hence, when the bridge rectifier
is conducting the current flowing through is negligible. The
current flowing through the rectifier is then equal to the inductor
current, i.e. . The time is defined as the time at
which , and can be derived by finding the impedance of
the equivalent circuit in Fig. 3

(31)

where . is obtained from the polar
representation of (31) and is normalized by dividing by

(32)

The duty-cycle for mode 2 is found from the integral

(33)

which describes the parallel capacitor voltage when . By
noting that at time , and at time ,

, (33) can be solved for . The duty-cycle is then
given by

(34)

Fig. 4. Comparison between output voltage predicted by the state-space model
(s-s) and cyclic averaging (cyc).

Fig. 5. Comparison between output voltage predicted by cyclic averaging
(cyc) and measured on experimental converter (exp).

The remaining duty-cycles are found by symmetry

(35)

Finally, from the state-space descriptions of each mode in a
cycle, (26)–(28), and the duty-cycles which determine the time
duration of each mode, it is possible to describe the converter in
the cyclic mode from (8), (9), (13), and (14).

(30)
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(a) (b)

Fig. 6. (a) Equivalent circuit of resonant inductor and (b)L versus frequency.

VI. SIMULATION AND EXPERIMENTAL RESULTS

The cyclic averaging methodology is now employed to
rapidly predict the steady-state output voltage of a converter
model, and the accuracy of the results is assessed. A benchmark
converter has been designed to provide an output voltage of
150 V at a nominal operating frequency of 160 kHz, with an
input voltage of 350 V. The resulting circuit component values
are H (measured), nF, pF,

F and .
Fig. 4 compares the output voltage obtained by simulating

the state-space model to steady-state (20 ms) to that predicted
by cyclic-averaging, for a variety of loads. As will be evident,
the results compare favorably, although the data obtained using
cyclic averaging took only 1/10 000th of the execution time of
the state-space model. (However, of course, only steady-state
results are obtained).

In order to determine the accuracy of the proposed cyclic-av-
eraging methodology for determining the steady-state operation
of a practical converter, a half-bridge LCC voltage output con-
verter is having the component values given previously, is con-
sidered. Fig. 5 compares the output voltage of the experimental
converter with predictions from cyclic averaging, for a range of
loads.

The discrepancy between the cyclic averaging predictions
and the experimental results is indicative of a shift in resonant
frequency, and is attributed to the self-capacitance of the
resonant inductor . The stray-capacitance of the resonant
inductor was measured as52 pF at resonance. To incorporate
the effects of the self-capacitance, the parallel combination of

and its parasitic capacitance is modeled by an equivalent,
frequency dependent, inductance (36), as illustrated in
Fig. 6.

The value of the equivalent inductance, , is obtained from
the equivalent impedance of the paralleland combination

where

(36)
The predicted output voltage of the converter the after the

modified value of the inductance is incorporated into the cyclic

Fig. 7. Comparison between output voltage predicted by compensated cyclic
averaging (cyc) and measured on the experimental converter (exp).

averaging algorithm shown in Fig. 7; which again includes the
measurements for comparison purposes. The improved corre-
lation between the theoretical predictions and the experimental
data is self-evident.

VII. COMPONENTSTRESSES

During the converter design process, it is necessary to con-
sider the peak voltage and current stresses which are imposed
on the resonant components, with a view to establishing the re-
quired component ratings. It is now shown that cyclic-averaging
provides a convenient, accurate, and computationally efficient
method for addressing this issue.

Referring once again to Fig. 2, it can be seen that the peak
voltage across the series capacitor,, occurs at the instant of
time when the current that flows through the resonant inductor
passes through zero. The time at which is ob-
tained from , (32). Substitution of into (9) provides
the following expression for :

(37)
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Fig. 8. Change in inductor current waveform with increasing frequency.

Fig. 9. Equivalent circuit of LCC voltage-output converter operating in mode
3.

Fundamental mode analysis (FMA) techniques can be used to
predict the time at which reaches its maximum value. How-
ever, as the switching frequency is increased, the inductor cur-
rent waveforms become less sinusoidal and increasingly trian-
gular, see Fig. 8; and FMA thus becomes less accurate.

In order to improve the accuracy of the predictions, therefore,
the inductor current is modeled by considering the ‘equivalent
circuit’ shown in Fig. 9. This is justified since the majority of
the inductor current flows through the rectifier, and hence,
has a negligible effect on the current. Also, if the filter capacitor,

, is assumed to be sufficiently large that there is zero output
voltage ripple, the load resistance can be replaced by an equiva-
lent current sink of value , where and
is the output voltage averaged over one cycle in steady-state,
(14).

The dynamical equations governing the operation of the con-
verter in mode 3 are then

(38)

To simplify the mathematics, both of the capacitor voltages
can be represented by one state-variable, by summing their con-
tribution to produce a combined capacitor voltage[5]. Rep-
resented in state-space form, the voltage combination produces
the new system description (39)

(39)

(a)

(b)

Fig. 10. (a) Series capacitor voltage and (b) inductor current stresses for 180


load.

where , .
The solution for can be shown to be

(40)

To obtain the time at which the maximum inductor current
flows, (40) is differentiated, equated to zero, and solved for,
giving

(41)



992 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 4,JULY 2003

(42)

When operating above resonance the inductor current lags
the input voltage. As shown in Fig. 8, at high switching fre-
quencies (with respect to the resonant frequency) the inductor
current does not have sufficient time to reach its ‘natural’ peak
value, and the waveform becomes increasingly triangular (with
increasing frequency). Equation (41) is, therefore, modified to
account for this effect by limiting the maximum value at which

can occur, resulting in (42), shown at the top of the
page. From (42) it is readily shown that the maximum inductor
current is then given by

(43)
The steady-state stresses on the resonant converter compo-

nents then follow from (37) and (43). Fig. 10 compares the mea-
sured of stresses on the experimental converter with theoret-
ical predictions, all predictions utilising the modified inductance
value, (36). For completeness, results obtained from both Spice
simulations and RCFMA [4] are also included.

Again, it will be seen that good correlation exists between
predictions generated using cyclic averaging and those deduced
from Spice. However, the execution time to obtain the data by
cyclic-averaging was approximately 1/10 000 times that which
was required for the Spice simulations.

VIII. C ONCLUSION

The paper has described the application of a cyclic-averaging
based technique to facilitate the rapid analysis and design
of high order resonant power converters. It has been shown
that cyclic-averaging is an appropriate method for obtaining
steady-state performance predictions of the current and voltage
waveforms, as evidenced by comparisons with state-space
and Spice based simulations and measurements made on
an experimental converter. It has also been shown that the
method takes only 1/10 000th of the computation time of
Spice. Moreover, a comparison of results has shown that cyclic
averaging provides reliable predictions of voltage and current
stresses on the resonant circuit components.
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