CYCLIC DIRECTED FORMATIONS OF MULTI-AGENT
SYSTEMS

Paulo Tabuadat

Instituto de Sistemas Robotica
Instituto SuperiorTécnico
1049-001Lisboa- Portugal

Fax: (351)218418291
{t abuada, pal }@sr.ist.utl.pt

Keywords: Multi-Agent systemsformations,cyclic graphs.

Abstract

Formationsof multi-agentsystemssuchassatellites aircrafts
and mobile robotsrequirethat individual agentssatisfy their
kinematicequationswhile constantlymaintaininginteragent
constraints. In previous work we introducedthe conceptof
undirectedformationgraphsanddirectedformationgraphsto
modelsuchformationsandpresentedonditionsto determine
formation feasibility. However the directedformationswere
only analyzedn the absencef cyclesin the formationgraph.
In this paperwe extend our previous resultsto accommodate
alsothe presencef cyclesin directedformations.Differential
geometricandalgebraicconditionsare presentedo determine
feasibility of directedformationswith possiblecycles.

1 Intr oduction

Advancesn communicatiorandcomputatiorhave enabledhe

distributed control of multi-agentsystems. This philosophy
hasresultedin the next generatiorof automatechighway sys-

tems[10], coordinationof aircraftin futureair traffic manage-
mentsystemg9], aswell asformationflying aircraft,satellites,
andmultiple mobilerobots[3, 4, 5, 6].

The control of multiple homogeneousr heterogeneousgents
raisesfundamentalquestionsregardingthe formation control
of agroupof agents Multi-agentformationsrequireindividual
agentsto satisfy their kinematicswhile constantlysatisfying
inter-agentconstraints.In typical leadeffollower formations,
theleadethastheresponsibilityof guidingthegroup,while the
followershave theresponsibilityof maintainingtheinter-agent
formation. Distributing the group control tasksto individual
agentsnustbe compatiblewith the controlandsensingcapa-
bilities of the individual agents.As the interagentdependen-
ciesgetmorecomple&, asystematidramework for controlling
formationsis vital.

In our previouswork [8] aframework for formationcontrol of
multi-agentsystemswvas proposed Formationsweremodeled
using formation graphswhich are graphswhosenodescap-
ture the individual agentkinematics,and whoseedgesrepre-
sentinteragentconstraintsthat must be satisfied. A similar
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approacthasalsobeenproposedn [6] andin [2] thecoordina-
tion betweeragentss specifiedby a discretesetof way points
insteadof rigid inter agentconstraints.We assumekinematic
modelsfor eachagentdescribedoy drift free control systems.
This classof systemss rich enoughto capturenholonomic,non-
holonomic,or underactuatedgents. The resultspresentedn
this paperextendthe feasibility criteriafor directedformations
with possiblecycles Thesecriteriaarebasedon the concepts
of undirectedformationsanddirectedformationsthatwerealso
introducedn [8].

In thispaperwe proposeacriteriato determindeasibility of di-
rectedformationswith possiblecycles. Thecyclesareanalyzed
individually andreplacedy macio-verticesconstitutinganab-
stractionof the kinematicsof the agentslinked by the cycle.
After all cycleshave beenreplacedthe resultingacyclic for-
mationgraphcanbeanalyzedy the methodsdescribedn [8].
Theresultsareillustratedby analyzinga cyclic formationcon-
ceivedto model3 robotstransportingarigid objectlik e atable
or abox.

2 FeasibleFormations

In this sectionwe will review the conceptsof undirectedan
directedformationsaswell asits feasibility characterizations
thatwereintroducedin [8]. We assumehe readeris familiar
with variousdifferentialgeometricconceptsatthelevel of [1].

Considem heterogeneouagentswith statese;(t) € M;, i =
1, ...,n whosekinematicsaredefinedby drift free controlled
distributionson manifoldsM; as:

A o= ) Xjuy @
J

whereU; is the control space andthe vectorfields X; form
a basisfor the distribution. The controlled distributions are
generakenoughto modelnonholonomyandunderactuationA
distribution A; canbe equialently definedby its annihilating
codistritutionwg, definedas[7]:
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wr, ={aeT*M; | a(A)=0} (2
The formation of a setof agentsis definedby the formation
graphwhich completelydescribesndividual agentkinematics

andglobalinteragentconstrains.

Definition 2.1 (Formation Graph) A formation graph F =
(V, E,C) consistf:

o Afinite setV of verticeswho's cardinality is equalto the
numberof agents.Eachvertexv; : M; x U; — TM; isa
distribution A; modelingthe kinematicsof ead individ-
ual agentasdescribedn (1).

e AbinaryrelationE C V x V representinca link between
agents.

e A family of constaints C indexed by the setE, C =
{ce}ecr. Foreah edgee = (v;,v;5), ce isapossiblytime
varyingfunctione, (z;, z;,t) = 0 describingthe ¢(e) in-
dependentonstaints betweerverticesy; andv;. For a
genericedgee = (v;,v;), ¢e is mathematicallydefinedas
Ce: Mix M; x R — R g(e) €N Veep.

Although our framework allows time-varying constraintswe

shallassumdime invariantconstraintdor the sale of clarity.

We deferthereaderto [8] for the full timed version. Two dif-

ferenttypesof formationgraphswill beconsideredundirected
formationswhere (V, E) will be an undirectedgraphand di-

rectedformationswhere (V, E) will be a directedgraph. In

undirectedformations,for eachedgee = (v;, v;) bothagents
are equally responsiblefor maintaining the associateccon-
strainte., whereas for directedformationsthe constrainte,

mustbe maintainedoy agent:.

2.1 UndirectedFormations

In undirectedformationseachagentis equallyresponsibldor
maintainingconstraintsBecausef this propertyit will beuse-
ful to collectall agentkinematicsand constraintson a single
manifold:

(3)

Givenan elementz of M the canonicalprojectionon the ith
agent:

mi M — M; (4)

allow usto denotethe stateof the individual agentsby z; =
mi(z). Theformationkinematicsis obtainedby appendingn-
dividual kinematicgthroughdirectsum,thatis:

A:MxU—TM

A=l A (5)

whereU is takento be U = [, U;. To lift theindividual

constraintg, from M; x M; xR, i,j € {1,2, ... ,n} tothe
groupmanifold M we defineC, by:
C. M x R — R
Ce(z,t) = ce(mi(z),m;(2),1) (6)

As explainedin [8] all therelevantinformationregardingfea-
sibility canbeencodedn asingleobject. Consideranenumer
ation{1,2,...,m} of theedgessetE. Basedon this enumer
ationwe definethefollowing vectorvaluedform?:

dCy
dC,
. ()

Wp =
dCr,
The kinematicscan also be modeledas differential forms by

constructinga vectorvaluedform wg thatannihilatescontrol
system(5) (seefor e.g. [7]), thatis:

WK (X) =0 (8)
By combiningthe previous differential forms into the single
object:
_ |wF
o- 2]

we cancheckfor formationfeasibility in a singleequationas
describedn the next proposition:

Proposition2.2([8]) If theformationconstaintsC are time-
invariant then the undirected formation is feasible iff
(thoughtas a pointwiselinear map betweervectorspaces)s
notof full rank.

A solutionof equation}(X') = 0 specifieghe motion of each
individual agent. When more than one independensolution
exists, a changein the directionof a singleagentmay require
thatall otheragentsalsochangetheir actionsto maintainfor-

mation. This shaws that, in general,solutionsfor undirected
formationsarecentralizedandrequireinter-agentcommunica-
tion for theirimplementation.

1This definitionis independenbf the choserenumeratiorascanbe easily
verified.
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2.2 DirectedFormations

Anotherimportantclassof formationscanbe modeledby di-

rectedgraphs.A directedgraphassigngesponsibilitiedo the
formation membersin an asymmetricway. For eachedge
e = (v;,v;) agenti is responsiblefor maintainingthe con-
straintsc,, while agentj is notaffectedby the constrainof the
edge.

Contraryto theundirecteccasewerethesymmetriadistribution
of responsibilitieded to a singlerepresentatiofor theproblem
andits solutions,in the directedcasethe feasibility problemis
naturally castedinto a recursve procedure.This requiresthe
following operators:

Definition 2.3(Postand Pre) Let I = (V, E,C) be a di-
rectedformationgraph. ThePostoperator is definedby

Post:V — 2V

v; {’Uj eV (Ui,Uj) € E} (10)
Similarly, the Preopetrator is definedas:
Pre:V — 2V
v; {’Uj eV . (Uj,Ui) € E} (12)

Intuitively, Post(v;) will returnthe agentsthat are leading
agenti, while Pre(v;) will returnall the agentsthat are fol-
lowing agenti. Post and Pre extendto setsof verticesin
the naturalway, Post(P) = Upcp Post(p) and Pre(P) =
Upep Pre(p).

Definition 2.4 (Leaders) A vertex v; is called a leader iff
Post(v;) = .

We will assumefor now, that a directedformation graphis
a directedagyclic graph. In the next sectionwe will seehow
cyclesin formationscanalsobeaccommodateih theproposed
framework.

We shall akusenotationa representhe distribution A; defin-
ing the kinematicsof agentv; by A(v;) andfor the set of
agentsPost(v;), A(Post(v;)) = @pepost(v;) A(p) defined
over Il ¢ post(v;) Mp. Similarly to the undirectedcasewe de-
fine thefollowing objectsfor eachagent::

de |z; fixed det |z; fixed

; dea|z; fixed i dez |z; fixed
Wp = . Wp = — (12)

derm |z; fied det |; fixed

where{1,2,...m} isanenumeratiorof the edgessetbetween
agenti andits leadergPost(v;)). Similarly to the undirected
casewe define:

ol e

wherewt, is avectorvaluedform thatannihilatesagent; kine-
matic distribution A(wv;). This motivatesthe following result
analogougo theundirecteccase:

Proposition2.5([8]) A directedformationis feasibleiff the
range of 7| A (post(v;)) is containedn therange of Q¢ for each
agenti.

SinceProposition2.5 mustbetrue for all agentsanalgorithm
canbeconstructedo determindfeasibility.Let . C V beaset
of leadersanddenoteby (Q¢)~!(X) thesetof preimage®f X
underQ? andby R(S) therangeof operatorS.

Algorithm 1 (Dir ectedFeasibility)
initialization : V := L
while Pre(V) # @ do

V = Pre(V)
for all v; € V do
Av;) =0

if R(leA(Post(vi)) ,‘Z R(Ql)
return UNFEASIBLE
STOP
else
A(’Ul) =
endif
end

Avi) + ()T (R(Y | a(post(vi))

end

Theorem2.6([8]) LetF = (V, E,C) bean acyclic,directed
formationgraph. Algorithm 1 terminatesn a finite numberof
stepsandreturns:

e Unfeasiblef theformationis notfeasible

e A distribution per agent specifyingthe available direc-
tionsto maintainformationif the formationis feasible

3 Cyclic DirectedFormations

To determindeasibility of directedformationswith cycles,we
analyzeeachcycle individually to determinéts feasibility. In
caseall cycles are feasiblethey are replacedby macrover
tices, therebytransforminga directedcyclic formationsinto
an agyclic one. We startby consideringa directedformation
consistingof a singlecycle. We proposea concepiof solution
andgive conditionsto determinefeasibility of this formation.
Whenthereare several cyclesin a formationwe analyzeeach
cycleindividually andif solutionsexist we replaceit by its ab-
stractionthat we considerasa macrovertex. This procedure
transformsa cyclic directedformationinto aacyclic onewhere
themethodglescribedn the previoussectioncanbeappliedto
determindeasibility of theresultingagyclic formation.
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3.1 Feasibility of Cycles

Determininga conceptof solutionfor a directedcycle is nota
simpletasksincethecyclic natureof thegraphpreventusfrom
usingthe conceptantroducedfor agyclic graphs. A solution
must respectthe distribution of roles dictatedby the arrows
in the graph,however it is not clearto saythatagentl is the
only responsibldor theconstrainbetweerl and2 since2 may
dependon 3 and3 on 1. To settheideasconsidera cycle with
threeagentsaspicturedin 1.

Figure1l: Graphassociateavith a directedformationconsist-
ing of cycle with threeagents.

Thefirst requirementhata conceptof solutionmustsatisfyis
to be a (not necessarilyproper)subsetof the setof solutions
of its undirectedcounterparigraph. Clearly if no undirected
solutionsexist, thereare also no directedones. The second
characteristiof a solutionof a cycle is basedon the following
obsenation. Supposethat agentl flows alongdirection Y11
andrespondingo that,agent3 maintainghe constraintassoci-
atedwith edgees by flowing alongY3z,. Agent2, responsible
for constraintassociatedvith edgees choosego flow along
Y55 andfinally agentl to maintainthe constraintthatlinks it
with agent2 is forcedto flow alonga directiondifferentfrom
theinitial one. This procesof changingvectorfields depend-
ing onthelocalleaderamayrepeatundefinitvely sincethereis
no cooperatiorbetweernagentsto negotiatetheir behaior co-
herently Ruling out this kind of situationsnaturally leadsto
thefollowing definition:

Definition 3.1 Let F' bea directedformationgraphconsisting
of a singlecycle Theformationdefinedby F' is feasibleiff it is
feasibleasan undirectedformationandfor everyagents in the
formationthefollowing musthold:

Let X* be an undirectedsolutionof F' andlet X ¢ be a solu-
tion of thedirectedgraph F, obtainedfrom F' by remasing the
outgoingarrowe fromvertex i. If m;(X%) = m;(X¢) thenX®
mustbe an undirectedsolutionof F'. If theseconditionsare
met,thesolutionsof F" are thengivenby | J,c ; X°.

This definition rulesout the pathologicalsituationspreviously
describecandadmitsthe following simplerfrom. Consideran
enumeration{ey, ez, .. ., ey} of the edgessetsuchthate; =
(vi,vi11) for i modn andlet S denotethe setof undirected
solutionsof theformationF'. Denoteby S,, thesetof solutions
of theformationF, obtainedfrom F' by removing the edgee;

and satisfyingme, (Se,) = m., (S). If F is feasiblewe must
have S;;, C S for everye; € E. Althoughwe have provided
a characterizatiorof the feasibility of a cycle, this definition
requiressolvingtheundirectedcounterparbf the cycle aswell
asall thedirectedagyclic formationsinducedby the subgraphs
with n — 1 edgesandn vertices. A more corvenientway to
determindeasibility is givenin the next result.

Proposition3.2 Let F' be a directed formation graph con-
sisting of a single cycle of n agents. F is feasible if
dcei z; fixed = —dcei 2341 fixed for all ¢ modn.

The proof of the above resultrequiresthe following standard
lemmathatwe statewithout proof:

Lemma 3.3 Letw; andws be two constant-ank codistritu-
tions on a smoothmanifold M. Denoteby A; the sublundle
of T M annihilatedby w;. We havetheinclusionA; C Ay iff
wo Q wi.

Letsreturnto the proof of Proposition3.2.

Proof: Feasibilityof the formation F' is by definition equiv-
alentto S,; C S for all e; € E. The setof solutionssS,,
is equivalently describedyy its annihilatingcodistritution w¢:
givenby:

€

w = Span{de,,,dce,,...,dece,_,,0dce;,q,-- ., dee, }
+  Span{wy,wk,...,wk}
+  Span(wiw®®) (14)

wherew® is thecodistritutionon M; annihilatingr; (X*). By
lemma3.3we have that

{dece,, ey, - - -, Aee, , Wk, W,y - - -, Wh} C W (15)
andby constructiorof w® thelastinclusionreduceso de,; €
Span(w®). If the conditiondcg, |4, fixed = —dee, zig1 fixed for
all ¢ mod n holds straight forward computationsshov that
de,; € Span(de;), i # j andtheresultis proved. m

Propositior3.2 providesaeasilycheckablesufficient condition
to determinethe cycle feasibility. However underthosecondi-
tionswe have the following resultrelatingthe solutionsof the
cycle formationwith anagyclic one.

Proposition3.4 Let F be a directed formation
graph consisting of a single cycle of n agents. |If
dee; |2; fixed = —0ce; |z; 11 fixed fOr all ¢ mod n holds then
the solutionsof F' canalsobe obtainedby removing any of the
formationconstaintsbetweerthe agents.

Proof:  From the proof of Proposition3.2 we seethat the
conditionde; | z; fixed = —0ce; | ;1 fixed fOr all i modn implies
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thatde,, € Span(de;), i # j meaningthatary of the for- objectlike a tablefor example. We will assumea formation
mationconstraintscanbe removed without alteringthe vector asrepresentedn Figure 1 and considerthree nonholonomic
spacespannedy {de,, ..., dc., }. In particularwe havethat robotswith kinematicsgivenby:

Se; = Se; andthereforeSe; = |J,cp Se forary j = 1,...,n.

We havethenthatthesolutionsS,, for ary fixedi € {1,...,n}

equalthe solutionsof theformation F'. ™
cosb; 0
This propositionshavs how the feasibility conditionsfor a di- X; = |sin6; | up + |0] uy (18)
rectedformationconsistingof asinglecycle areextremelytight 0 1
andsuggesthatthe modelingpower offeredby themis some-
whatreduced.

fori = 1,2,3 onmanifoldsM; = R? x S!. Sincethetableis a
rigid objecttheformationmustalsobehae asarigid objectin
ordernotto droptheobject. Thenaturalconstraintgo associate
Whenthedirectedcycle resultsin afeasibleformation,theso- With eachedgeof theformationare:

lution spaceof thecycle providesanabstractiorof thekinemat-

ics of the agentsconnectedy the cycle. This solutionspace

canbedeterminecdy the methodologydescribedn Section?2.

3.2 Cyclesand Macro Vertices

To computethe abstractiorof macro-\ertex onedeterminesa el = [xl — 2= dg] o = [9@ — T~ dg]
basis{K1, K>, ..., K3} for thesolutionspace Thebasisvec- -y —d Y2 —ys —ds
torsdefineacontrolleddistributionon My x My x . .. x M,,, by o = [xg -z — dg] (19)
theexpressioan:1 K;u;. Thenew formationgraphis there- ys —y1 — dy

fore obtainedfrom F = (V, E, C) by introducingthe equiva-

lencerelation:

whered?, d¥, d%, d%, d% anddy arepositive constantgepre-
sentingthe distancegin the z andy directions)to be main-
tainedbetweenthe robots. To analyzefeasibility of the cycle

RcVvxV (16) we needto computethefollowing differentialforms:

(vs,v5) € Riff bothy; andv; belongto thecycle

The quotientformationgraph#/R = (V/R,E/R,C/R) can

be describedyy identifying all theverticesi_n V thatbelo_ngto 0 |4 fixed = 3961 = —des |z fixed
thecycle. Therepresentaraf the cycle equivalenceclassis the |91 ]
macro-\ertex [d, |
dez |z fixed = dyz = —dei |4, fixed (20)
s :
v N X V - TN d63|w1 fixed — _dyz_ - _d02|w2 fixed

k

(Wu) = D K@i (17)

i=1 The conditionsof Proposition3.2 are clearly satisfiedandthe
cycleis feasible.To determinehe abstractiorof this cycle one
whereN = My X My X ... x M, andV =U; x Uy x ... x computeghevectorvaluedform 2 to obtain:
Uy,. Thenew edgessetE/ R is obtainedfrom E by replacing
all pairs (v;,v;) € E suchthatv; or v; belongto the cycle
by (v,v;) or (v;,v), respectiely andeliminatingall the edges _ ;

definingthe cycle. Thefamily of constraint<’'/ R is givenby dz,
all theconstraintsn C' now associateavith edgesn E/R. gy1
44

In generabivena directedformationwith cycles,if all the cy- dyz
clesarefeasible,they canbe replacedoy macroverticesand 0= dzs (21)
the remainingagyclic directedformation can be analyzedby dys
thealgorithmdescribedn Section2. sin 8, dz; — cos 6 dy,

sin Ao dzo — cos fadys
4 Examp|e _sin 03 dxs — cos 03dy3_

Toillustratetheproposednethodo analyzecyclic directedfor-
mationswewill considerateamof 3 robotstransportingarigid Thecorrespondindkernelis generatedby thevectors:
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[cos 6]
sin @
0
cosf
sin @
0
cosf
sin @
0

K K, (22)

Il
HOOHOOHROO

with 8 = 6; = #; = 3. The abstractingmega vertex v is
anow control systemon M = M; x M; x M3 definedby
X = Kju;1 + Ksus. Proposition3.4tell usthatwe canremove
ary of the constraintswithout alteringthe solutionsof the for-
mation. This is a consequencef thetight conditionsgivenby
Proposition3.2. To illustratethis factit is worth to realizethat
theconstraints:

a = (1 —2:2)° + (11 —y2)° — (d)® — (d¥)*
c2 = (m2 — 23)” + (y2 — y3)” — (d5)” — (d})?
cs = (z3 —21)” + (ys — 11)” — (d§)* — (d¥)* (23)

cannotbe usedto specifythis cyclic formation.If oneremoves
the edgees a possibleconfigurationfor the resultingdirected
formationis displayedin Figure 2 which is not a solution of
F if consideredasanundirectedormationsincev; andvs no
longerrespectes. However both constraints(19) as well as
constrainty23) producethe samesolutionsfor F asan undi-
rectedformation.

G 6162

Figure 2: Possibleconfigurationof the formation obtained
from F' by removing the constraintassociateavith edgees.

5 Conclusions

This paperhasextendedour previous resultson feasibility of
directedformationsby addressinghe existenceof cyclesin the
formation. Thefeasibility of suchformationshasbeencharac-
terizedin termsof thekernelsof theconstraint@ssociateavith
thecycle edgesHowevertheobtainedconditionsareverytight
andimply theexistenceof agyclic formationswith thesameso-
lutions. This resultmotivatesthe needfor a betterunderstand-
ing of therelationbetweerdirectedandundirectedormations.
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