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Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by

rock. This simple game is popular among children and adults to decide on

trivial disputes that have no obvious winner, but cyclic dominance is also at

the heart of predator–prey interactions, the mating strategy of side-blotched

lizards, the overgrowth of marine sessile organisms and competition in

microbial populations. Cyclical interactions also emerge spontaneously in evol-

utionary games entailing volunteering, reward, punishment, and in fact are

common when the competing strategies are three or more, regardless of the

particularities of the game. Here, we review recent advances on the rock–

paper–scissors (RPS) and related evolutionary games, focusing, in particular,

on pattern formation, the impact of mobility and the spontaneous emergence

of cyclic dominance. We also review mean-field and zero-dimensional RPS

models and the application of the complex Ginzburg–Landau equation, and

we highlight the importance and usefulness of statistical physics for the suc-

cessful study of large-scale ecological systems. Directions for future research,

related, for example, to dynamical effects of coevolutionary rules and invasion

reversals owing to multi-point interactions, are also outlined.

1. Introduction
Games of cyclic dominance play a prominent role in explaining the intriguing

biodiversity in nature [1–3], and they are also able to provide insights into

Darwinian selection [4], as well as into structural complexity [5] and prebiotic

evolution [6]. Cyclical interactions have been observed in different ecological

systems. Examples include marine benthic systems [7], plant systems [8–12]

and microbial populations [2,13–16]. Cyclic dominance also plays an important

role in the mating strategy of side-blotched lizards [17], the overgrowth of

marine sessile organisms [18], the genetic regulation in the repressilator [19],

and in explaining the oscillating frequency of lemmings [20] and of the Pacific

salmon [21]. The list of examples where the puzzle of biological diversity can be

explained by the interaction topology of the food web among those who

struggle for life is, indeed, impressively long and inspiring [22,23].

In addition to the closed loops of dominance in the food webs that govern

the evolution of competing species and strategies, experiments have shown that

the key to the sustenance of biodiversity is often spatial structure. In vitro exper-

iments with Escherichia coli, for example, have shown that arranging the bacteria

on a Petri dish is crucial for keeping all three competing strands alive [2,24,25].

On the other hand, in vivo experiments with bacterial colonies in the intestines

of co-caged mice, which can be considered as locally well-mixed populations,

have revealed that mobility alone is sufficient to maintain coexistence [14].

Solely because the bacteria were able to migrate from one mouse to another,

the biodiversity was preserved. Motivated by such intriguing experimental
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observations, theoretical explorations of the relevance of

spatial structure in evolutionary games have also received

ample attention in the recent past [26–31].

The importance of spatial structure has been put into the

spotlight by the discovery that interaction networks such as

the square lattice can promote the evolution of cooperation

in the Prisoner’s Dilemma game through the mechanism

that is now known as network reciprocity [32,33]. In essence,

network reciprocity relies on the fact that cooperators do best

if they are surrounded by other cooperators. More generally,

the study of spatial games has revealed the need for realistic

models to go beyond well-mixed populations [34–36]. To

understand the fascinating diversity in nature and to reveal

the many hidden mechanisms that sustain it, we cannot

avoid the complexity of such systems. Cyclical interactions

are characterized by the presence of strong fluctuations,

unpredictable and nonlinear dynamics, multiple scales of

space and time and frequently also some form of emergent

structure. Because many of these properties are also inherent

to problems of non-equilibrium statistical physics, theoretical

research on spatial rock–paper–scissors (RPS) and related

games of cyclic dominance has a long and fruitful history

[37–65], much of which is firmly rooted in methods of stat-

istical physics that can inform relevantly on the outcome of

evolutionary games on structured populations.

Cyclical interactions are in many ways the culmination of

evolutionary complexity, and they may also arise spontaneou-

sly in evolutionary games where the number of competing

strategies is three or more. For example, cyclic dominance

has been observed in public goods games with volunteering

[66,67], peer punishment [35,66,68,69], pool punishment

[70,71] and reward [72–74], but also in pairwise social

dilemmaswith coevolution [75,76] or with jokers [77]. Counter-

intuitive complex phenomena that are due to cyclic dominance

include the survival of the weakest [41,49], the emergence of

labyrinthine clustering [64] and the segregation along interfaces

that have internal structure [78], to name but a few examples.

Importantly, the complexity of solutions increases further and

fast if the competing strategies are more than three. Figure 1

depicts a transition towards more and more complex food

webs from left to right,which support the formationofdefensive

alliances [81] and subsystem solutions [82] that are not possible

in the simplest RPS game.

Although the outcome of evolutionary games with cyclic

dominance may depend on the properties of the interaction

network, the topology of the food web, and on the number

of competing strategies, there, nevertheless, exists fascinat-

ingly robust universal behaviour that is independent on

model particularities. While we may have only begun to

scratch the surface of the actual importance of cyclic domi-

nance in nature [83,84], the time is ripe for a survey of

theoretical advances that may guide future experimental

efforts. Like by the evolution of cooperation [85], in the

games of cyclic dominance, the evolutionary game theory

[86–90] is also proving to be the theory of choice for the

study of these beautifully simple yet fascinating systems.

The organization of this review is as follows. In §2, we focus

onmean-field and zero-dimensional RPSmodels to give a com-

prehensive prologue to the overview of the spatial RPS game

in §3. Within the latter, we separately review the impact of

different interaction networks and mobility, and we describe

the derivation and the proper use of the complex Ginzburg–

Landau equation (CGLE) to describe the spatio-temporal

properties and the stability of the spiralling patterns. In §4, we

depart from the RPS gamewhere the cyclic dominance is expli-

citly encoded in the food web by considering social dilemmas

and other evolutionary games. We separately review games

where cyclical interactions emerge spontaneously, the role of

time-dependent interactions, the impact of voluntary partici-

pation, and we survey evolutionary games where an alliance

between two strategies acts as an additional independent strat-

egy. From there, we focus on cyclical interaction between four

and more competing strategies, which opens the door towards

reviewing the emergence of defensive alliances and large net-

works of competitive species. We conclude with a summary

and an outlook towards promising future research efforts.

2. Cyclic dominance in well-mixed systems
While the emphasis of this review is on cyclic dominance in

structured populations, it is useful to start by considering
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Figure 1. Examples of food webs of competing strategies. The number of competing strategies and the topological complexity of the food web increases from left to

right, and so does the complexity and number of possible stable solutions: (i) the traditional RPS food web. Here rock (R) is wrapped by paper, paper (P) is cut by

scissors, and scissors (S) are broken by a rock. (ii) Four-strategy food web with different invasion rates between predator–prey pairs, which already supports the

emergence of defensive alliances [79]. (iii) Six-species food web with heterogeneous invasion rates, supporting a multitude of different defensive alliances as well as

noise-guided evolution [80]. (iv) Topologically complex food web describing bacterial warfare with two toxins. Here nine different strains compete, giving rise to a

multitude of stable solutions that amaze with their complexity and beauty [44]. Three-strategy alliances that can successfully avert an external invasion are denoted

by broken coloured lines.
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the simplest setting to study RPS games which is the mean

field limit of well-mixed populations where all individuals

can interact with each other.

A generic RPS game between individuals of three species,

A, B and C, in a population of total size N entails cyclic

competition and reproduction according to the following

reaction schemes

AB�!p A; , BC�!p B; , CA�!p C;, (2:1)

AB�!z AA, BC�!z BB, CA�!z CC (2:2)

and A;�!q AA, B;�!q BB, C;�!q CC, (2:3)

where the reactions (2.1) and (2.2) describe two forms of cyclic

dominance of species A over B, B over C and in turn, C over A,

and (2.3) accounts for reproduction into an empty space

(denoted by ;) with a rate q [28,46,91]. The reaction given by

equation (2.1) corresponds to one species dominating and dis-

placing another (dominance-removal) with rate p, whereas, in

equation (2.2), there is a zero-sum dominance-replacement

with rate z. Recent experiments have shown that in addition

to cyclic dominance, some species can mutate. For instance,

E. coli bacteria are known to mutate [2], and it was found

that the side-blotched lizards Uta stansburiana are not only

engaged in cyclic competition, but they can also undergo

throat colour transformations [92]. It is therefore also instruc-

tive to assume that each species can mutate into one of the

other species with a rate m [53,91], according to

A�!m B
C

�

, B�!m A
C

�

and C�!m A
B

�

: (2:4)

Additional evolutionary processes that should be specified

are those encoding the movement of individuals. However,

these are irrelevant in the absence of spatial structure and is

therefore introduced in §3. In themean field limit of population

size N! 1, the dynamics of the system evolving according to

equations (2.1)–(2.4) is aptly described by the following rate

equations for the densities a(t) of As, b(t) of Bs and c(t) of Cs

da

dt
¼ a[qr; þ z(b� c)� pc]þ m(bþ c� 2a),

db

dt
¼ b[qr; þ z(c� a)� pa]þ m(aþ c� 2b)

and
dc

dt
¼ c[qr; þ z(a� b)� pb]þ m(aþ b� 2c),
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(2:5)

where r; ¼ 12 (a þ b þ c) denotes the density of empty sites.

These rate equations admit a steady-state s* ¼ (a*, b*, c*) in

which A, B and C coexist at the same density a* ¼ b* ¼ c* ¼

q/(p þ 3q) encompass three types of oscillatory dynamics:

(1) When p, q. 0, z � 0 and m ¼ 0, the equation (2.5) can be

rewritten as the rate equations of the May–Leonard

model [93]. In this case, the above coexistence state is

unstable, and there are also three absorbing stationary

states corresponding to the population being composed

of only A, B or C. As in the May–Leonard model, the

dynamics is characterized by heteroclinic cycles connecting

these three absorbing states, with the population being

composed almost exclusively of either A, B or C, in

turn. It is worth noting that the heteroclinic cycles are

degenerate when z ¼ 0 [93].

(2) When p, q. 0, z � 0 and m. 0, a supercritical Hopf bifur-

cation arises at the value m¼ mH ¼ pq/(6(pþ 3q)) of the

bifurcation parameter: the coexistence steady-state is a

stable focus when m. mH, whereas it is unstable when

m, mH, and the dynamics is thus characterized by a stable

limit cycle of frequency vH �
ffiffiffi

3
p

q(pþ 2z)=[2(pþ 3q)]

[53,91].

(3) When z. 0 and p ¼ q ¼ m ¼ 0, the state ; plays no role in

the dynamics, and one recovers the cyclic Lotka–Volterra

model [39,94]. The sum and product of the densities,

a(t) þ b(t) þ c(t) and a(t)b(t)c(t), are conserved by (2.5)

which results in nested neutrally stable closed orbits

around the coexistence fixed point which is a neutrally

stable centre [95]. It is worth noting that the cyclic

dominance-replacement scheme with asymmetric rates

AB�!zA AA, BC�!zB BB, CA�!zC CC is also characterized

by a marginally stable coexistence fixed point s* ¼ [1/

(zA þ zB þ zC)](zB, zC, zA) surrounded by neutrally stable

orbits on which the mean field dynamics takes place

(figure 2) [42,50].

The evolution in well-mixed populations of finite size, N,1,

is usually described in terms of birth–death Markov chains

[96]. In this case, the interactions between a finite number of

discrete individuals lead to fluctuations that may drastically

affect the dynamics. In particular, in the presence of absorbing

states, fluctuations are responsible for the extinction of two

strategies and the fixation of the surviving one (figure 2)

[42,50]. Questions concerning the mean time necessary for

two species to go extinct and the probability that one specific

strategy survives have recently attracted significant attention

andweremostly addressed bymeans of stochastic simulations.

These are often efficiently carried out using the Gillespie

algorithm [97]: for instance, cyclic competition and reproduc-

tion according to equations (2.1)–(2.3) are implemented by

allowing at each time increment a reproduction event with

probability q/(p þ q þ z), a dominance displacement move

with probability p/(p þ q þ z) and a dominance-replacement

0 1
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Figure 2. Phase portrait of the RPS dynamics with asymmetric dominance-

replacement rates zA ¼ 2, zB ¼ 1, zC ¼ 1.5 in a well-mixed population. The

mean field rate equations predict closed orbits, here shown in black solid

lines. Their linearization around the neutrally stable coexistence steady

state s* ¼ (2/9, 1/3, 4/9) transform the orbits into circles in the coordinates

yA, yB (blue). The red flow that erratically spirals out from the coexistence

fixed point is a single trajectory obtained by simulating the stochastic

dynamics in a finite population of size N ¼ 200. This illustrates how demo-

graphic fluctuations are responsible for the extinction of two species (here A

and C ) after a time of order N. See the main text for details, as well as [42],

from where this figure is adapted.
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update with probability z/(p þ q þ z). When p. 0 and m ¼ 0

and the mean field dynamics is characterized by heteroclinic

cycles, the mean extinction time has been found to be of

order O(N). The existence of quantities conserved by the

mean field dynamics allows some analytical progress in the

case of cyclic dominance with replacement (p ¼ q ¼ m ¼ 0)

for which it was shown that two species die out after a mean

time that scales linearly with the system size N [42,98,99]. In

this class of models with asymmetric rates, it was also shown

the survival probability follows an intriguing ‘law of theweak-

est’: the strategy with the smallest dominance rate is the most

likely to survive and to fixate the population [41,49], as illus-

trated in figure 2. Some other aspects of extinction in RPS

games in finite and well-mixed populations have been con-

sidered in references [100,101] and studied in further details

in [102].

3. Rock–paper–scissors game in structured
populations

In a structured population, or alternatively, in a spatial system,

the interactions between players are defined by an interaction

network and are thus limited. Because players have only lim-

ited interactions with their neighbours, a strategy (or species)

will not necessarilymeet its superior (or predator). This restric-

tion has far-reaching consequences because it enables pattern

formation, and through that the survival of all three com-

peting strategies with a time-dependent frequency akin to

the red queen [103–105]. For example, it is possible to observe

propagating fronts and spiral waves between the competing

strategies [40,47,91], which are particularly fascinating and

complex if the invasion rates between different pairs of strat-

egies are significantly different [64]. In general, self-sustained

oscillations of all three strategies are possible in spatially

homogeneous populations [106,107] and result from periodic

dynamics around a long-lived metastable coexistence state

whose lifetime is determined by the system size (or the size

of the population) [108,109]. Hence, if the system size is suffi-

ciently large all possible combinations of invasion fronts

appear, resulting in a time-independent constant frequency

of strategies, depending only on the invasion rates between

the three competing strategies.

In comparison with a well-mixed population, a spatial

system allows us to introduce an additional microscopic pro-

cess that has no effect if everybody interacts with everybody

else, namely site exchange between strategies or between an

individual player and an empty site. This gives rise to mobi-

lity, which arguably has a profound impact on the outcome

of the RPS game as it can both promote and impede biodiver-

sity [3]. In contrast to well-mixed systems, where as seen

intrinsic noise can jeopardize the coexistence of species [42],

depending on the level of mobility, species coexistence can

be more easily maintained than under well-mixed conditions

[3,45], and stochastic effects can have counterintuitive effects

at some bifurcation point be reduced by stable patterns in

spatial systems [46].

The mentioned mixing of strategies (directly or via empty

sites) can also influence the cyclic competition in aquatic

media [110]. Furthermore, the degree of mixing determines

the way of extinction, such as the annihilation of domains,

heteroclinic orbits or travelling waves in a finite system [111].

The RPS game can also be regarded as a cyclical Lotka–Volterra

model, and indeed, it has been shown that a two-species

Lotka–Volterra system with empty cites can give rise to

global oscillations [112]. In general, however, it is important

to acknowledge that the structure of the interaction network

and mobility can both have a significant impact on the evol-

utionary outcome of cyclical interactions, and in the following

subsections, we review this in more detail as well as survey

the usefulness of the CGLE.

3.1. Interaction networks
In a structured population, species should contact in real-

space and their interaction is characterized by an appropriate

graph. Lattices are the simplest among these interaction

networks, where every player has the same number of neigh-

bours. By far the most widely used is the square lattice,

although alternatives such as the honeycomb lattice, the tri-

angular lattice and the kagome lattice are frequently

employed as well to study the relevance of the degree of

players and the role of clustering. While the square and the

honeycomb lattice both have the clustering coefficient C

equal to zero, the kagome and the triangular lattice both

feature percolating overlapping triangles, such that their clus-

tering coefficient is C ¼ 1=3 and C ¼ 2=5, respectively. In

general, lattices can be regarded as an even field for all compet-

ing strategies where the possibility of network reciprocity is

given [32]. Furthermore, as there are many different types of

lattices, it is possible to focus on very specific properties of cycli-

cal interactions and test what their role is in the evolutionary

process. In some cases, such as competition between bacteria

[2,16,28,113,114] or for the description of parasite–grass–forb

interactions [12], lattices are also an apt approximation of the

actual interaction network. In more complex systems, however,

the description of interactions requires the usage of more

intricate networks, which typically have broad-scale degree dis-

tribution and small-world properties [115,116]. The question

how the topologyof the interaction network affects the outcome

of cyclical interaction, and game-theoretical models, in general,

[26,27,29,31], is one of great interest.

As an initial departure from lattices towards more complex

interaction topologies, it is possible to consider networks

with dispersed degrees. As demonstrated by Masuda and

Konno, the resulting heterogeneity can help to maintain the

stable coexistence of species in cyclic competition [117].

Another possibility is to introduce permanent shortcut links

that connect distant players, thereby effectively introducing

small-world properties. In contrast to lattices, on small-world

networks, the frequencies of competing strategies oscillate

even in the large system size limit, as shown in [118–121].

The explanation behind this observation lies in the fact that

the introduction of shortcuts introduces quenched randomness

into the interaction network. If the magnitude of this random-

ness exceeds a threshold value, i.e. if the number of shortcut

links is sufficiently large, the amplitude of frequency oscil-

lations can be so large that the system will always terminate

into an absorbing state during the evolutionary process.

These results lead to the conclusion that not only the limited

interaction range that is imposed by structured populations,

but even more so the explicit spatial distribution of competing

species is the crucial property that determines coexistence and

biodiversity [122]. This observation becomes particularly inter-

esting if we compare it with the observationsmade in the realm

of spatial social dilemma games, where the limited interaction
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range was found to be the decisive factor for the promotion of

cooperation based on network reciprocity [26,33].

Properties that are typical of smallworlds can be introduced

not only bymeans of permanent shortcut links between distant

players, but also by means of temporary long-range links

that replace nearest-neighbour links with probability P. This

process is typically referred to as annealed randomness [118].

But while topological properties of annealed and quenched

small worlds may be very similar, there is a relevant difference

in the evolutionary outcomes of cyclical interactions taking

place on them. Namely annealed randomness no longer gives

rise to oscillatory frequencies of the three competing strategies

in the RPS game. For sufficiently large values of P, the oscil-

lations are replaced by steady-state behaviour [123], as is

commonly observed on regular lattices. Interestingly, similar

results were also reported for a four-strategy cyclic dominance

game in [124]. But as we review later, the transitions between

stationary and oscillatory states in cyclical interactions can,

in fact, be driven by many different mechanisms, even if the

interaction network thereby remains unchanged.

The topologyof the interaction networkmay also change as

a result of a particular coevolutionary rule, as studied fre-

quently before in the realm of social dilemma games. Note

that when not only individual strategy, but also other player-

specific character (such as connectivity, strategy adopting or

passing capacity, etc.) may change in time thenwe can observe

parallel evolutions, coevolution of strategies and other quan-

tities, see [29] for a review. In particular, rewiring could be

the consequence of invasions between strategies [75,125].

Although games of cyclic dominance received comparatively

little attention in this respect, there is a study by Demirel

et al. [126], which builds exactly on this premise. Namely the

loser of each particular instance of the game can either adopt

the winning strategy (an invasion occurs), or it can rewire the

link that brought the defeat. It was shown that non-equilibrium

phase transitions occur as a function of the rewiring strength, as

illustrated in figure 3. The observation of the ‘stationary!
oscillatory! absorbing! stationary’ phase transitions is con-

ceptually similar to those observed in the realm of interaction

networks with annealed randomness. In general, it is thus

possible to conclude that oscillatory behaviour in coevolving

networks is a robust phenomenon—a conclusion that is further

corroborated by agent-based simulations showing that coevol-

ving networks can influence the cycling of host sociality and

pathogen virulence [127].

3.2. Mobility
As briefly explained above, besides the properties of the

interaction network, mobility, as is the case in general for evol-

utionary game-theoretical models [128–132], can also play a

decisive role in the maintenance of biodiversity in games of

cyclic dominance. The consideration of mobility has both

theoretical and practical aspects. Theoretically, the question is

whether mobility affects the stability of spatial patterns that

typically emerge in structured populations, and if yes, how?

From a practical point of view, it is important to acknowledge

the fact that in real-life prey and predators are frequently on the

move in order to maximize their chances of survival. Accord-

ingly, their neighbourhoods change, which is in agreement

with the effect that is brought about bymobility in simulations.

The crucial point to clarify is whethermobility simply shifts the

evolutionary outcomes towards those observed in well-mixed

populations, or whether there emerge unexpected phenomena

that disagree with mean-field predictions. As we review in

what follows, the introduction of mobility in structured popu-

lations is certainlymuchmore than simply a transition towards

well-mixed conditions.

Pioneering work on the subject has been done by

Reichenbach et al. [3,133], who showed that mobility (or

migration) has a critical impact on biodiversity. In particular,

small mobility that is below a critical threshold promotes

species coexistence, whereas large mobility that is above the

threshold destroys biodiversity. Behind these observations

are spontaneously emerging spiral patterns, which, in gen-

eral, sustain the coexistence of all three competing strategies

[40,134]. Under the influence of mobility, however, the spirals

grow in size, and above the critical threshold, they outgrow

the system size causing the loss of biodiversity. Accordingly,

in [3], it was thus argued that mobility can both promote and

jeopardize biodiversity in RPS games.

As most studies on this subject, in this section, we focus on

RPS games on two-dimensional square lattices of total size N

(here, linear size is
ffiffiffiffi

N
p

). The population’s composition changes

according to the dominance-removal reactions given by

equation (2.1) and reproduction reactions given by equation

(2.3) (i.e. q, p. 0 and z ¼ m ¼ 0, which yields degenerate het-

eroclinic cycles at mean field level; see §2). Furthermore, it is

0

1

p = 0.2 p = 0.3

p = 0.8p = 0.4

[P
]

6000

1

time

[P
]

0 600
time

[S]

[P]

[R]

Figure 3. Transitions between ‘stationary ! oscillatory ! absorbing !
stationary’ phases in a coevolutionary RPS game where an invaded player

can sever the link towards its predator with a probability P. For further

details, we refer to [126]. The reported non-equilibrium phase transitions

are qualitatively similar to those observed in interaction networks with

annealed randomness [118], as well as those observed in coevolutionary

social dilemma games [75,125]. The emergence of oscillatory behaviour

akin to the red queen thus appears to be a robust phenomenon in

coevolving networks.
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assumed that individuals canmove by swapping their position

with any neighbour at rate g according to the scheme

XY�!g YX

and X;�!g ;X,

9

=

;

(3:1)

where X, Y [ (A, B, C). In many references, mobility is

measured in continuum limit by introducing the mobility or

diffusion coefficient m ¼ 2g/N, where N is the system size [3].

To focus on the effects of mobility m on pattern formation

and biodiversity, the rate of competition p and reproduction q

can initially be set fixed at 1. Starting from random initial

conditions where each lattice site is with equal probability

either occupied by rock A, paper B, scissor C or left empty,

we find that the emerging spatial patterns depend sensitively

on mobility. As shown in the top row of figure 4, as mobility

increases from left to right, the characteristic scale of spiral

waves also increases. It was found that at a critical value

of mobility, m ¼ mc ¼ (4.5+0.5) � 1024 for p ¼ q ¼ 1, the

length scale of the spiralling patterns outgrows the system

size resulting in two species dying out and the dynamics

settling in the absorbing of the remaining species [45–47,136].

The diversity is lost, whereby the extinction probability is

defined as the disappearance of two species after a waiting

time that is proportional to the system size. As the system size

increases, this probability approaches zero if m, mc, and it

tends to 1 if m. mc.

In contrast to mobility, competition promotes coexistence

of species because the typical length of the spatial patterns

decreases with increasing competition rate p. This is illustrated

in the bottom row of figure 4 from left to right. Macroscopic

spiral waves emerge at p ¼ 0.1, but they become smaller and

fragmented as p increases. The fragmentation is due to the

fact that large competition rates introduce empty sites around

small patches that contain all three competing strategies

(i.e. at the spiral core), which, in turn, leads to the disintegration

of macroscopic spirals typically observed away from the core.

Diversity is therefore favoured at larger values of p, as they

effectively prevent the spirals outgrowing the system size.

Similar phenomenon can also be observed in the generic

metapopulation model. In the latter case, however, the frag-

mentation is a consequence of the meeting of spiral fronts, as

illustrated figure 8 [91,137].

Because pattern formation obviously plays a critical role in

warranting the coexistence of the three competing strategies,

it is particularly important to understand how the spatial

patterns evolve. Prepared initial conditions are strongly rec-

ommended in such cases, as they can help identify critical

processes that may either enhance or destroy the stability of

coexistence. The emergence of spirals can be engineered if the

evolution is initiated from three roundish areas, each holding

a particular strategy, whereas the rest of the lattice is empty

[138]. Based on such a procedure, it has been shown that

there exists a critical competition rate, pc, below which single-

armed spirals in finite populations are stable. For p. pc, the

spirals break up and form disordered spatial structures,

because too many empty sites allow the emergence of compet-

ingmini spirals [135]. This transition is demonstrated in the top

row of figure 5 from left to right.

Although Monte Carlo simulations are applied most fre-

quently for studying spatial evolutionary games (see reviews

[26] and [31] for details, and [91] for the use of the spatial

Gillespie algorithm [97]), when density fluctuations are neg-

lected, the dynamics of the spatial RPS game on a domain of

unit size can be described by the following partial differential

equations (PDEs) obtained by letting the lattice spacing 1/N

vanish in the continuum limit N! 1:

@ta(r, t) ¼ Dmr2a(r, t)þ qa(r, t)r; � pc(r, t)a(r, t)
@tb(r, t) ¼ Dmr2b(r, t)þ qb(r, t)r; � pa(r, t)b(r, t)
@tc(r, t) ¼ Dmr2c(r, t)þ qc(r, t)r; � pb(r, t)c(r, t),

(3:2)

m

0.1
p

A

ƒ

B

C

0.5 5.0

1.0 × 10–5 1.0 × 10–4 4.0 × 10–4

Figure 4. Typical spatial patterns, which emerge spontaneously from random

initial conditions on a square lattice. Top panels illustrate how the characteristic

length scale of spiral waves increases with increasing mobilitym from left to right.

Here the competition and reproduction rate are both p ¼ q ¼ 1. Bottom panels

show the reverse transition, where the characteristic length scale of spiral waves

decreases as the competition rate p increases from left to right. Here, the mobility

m ¼ 1024 and the production rate q ¼ 1.0 are fixed. Colours red, blue and

green denote rock (species A), paper (species B) and scissor (species C ), respect-

ively. Empty sites are grey and denoted by �. The system size is N ¼ 5122. For

further simulation details, we refer to [135].

A

ƒ

B

C

p

p

1.0 10.0pc0.1

1.0 10.0pc0.1

Figure 5. Disintegration of single-armed spiral waves as the competition rate

p increases past the critical values pc. Depicted are typical spatial patterns

that emerge from a prepared initial state (see fig. 2 in [135] for details)

for different values of p (see legend). The top row depicts results obtained

with Monte Carlo simulations for m ¼ 5.0 � 1025 and q ¼ 1, while the

bottom row depicts results obtained with partial differential equations describing

the spatial RPS game (see equation (3.2)) for Dm ¼ 5.0 � 1025 and q ¼ 1.

Disordered spatial patterns emerge as soon as p. pc ¼ 2.3. Colours red,

blue and green denote rock (species A), paper (species B) and scissor

(species C ), respectively. Empty sites are grey and denoted by �. For further

simulation details, we refer to [135].
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where r labels the two-dimensional position, whereas rØ and

Dm denote the density of empty site and the diffusion coeffi-

cient (on a domain of unit size, Dm coincides with m),

respectively. This set of PDEs can be solved numerically by

standard finite difference methods, and as illustrated in the

bottom row of figure 5, the results are similar to those obtained

via Monte Carlo simulations.

By exploiting further the potential of prepared initial con-

ditions, it is also possible to observe multi-armed spirals, as

well as pairs of anti-spirals with a finite number of arms and

pairs [57]. We show examples of this fascinating pattern for-

mation in figure 6. An in-depth qualitative analysis reveals

that such multi-armed spirals and anti-spirals are more robust

to mobility than single-armed spirals, persisting not only at

small, but also at intermediatemobility rates. In addition to pre-

pared initial conditions, periodic currents (or localized forcing)

can also be applied to evoke specific spatial patterns. If a peri-

odic current of all three strategies is applied at the centre of

the lattice, target waves can be observed, as reported in [139].

Such phenomena emerge owing to the interplay between

local and global systemdynamics, in particular, the intermittent

synchronization between the periodic current and the global

oscillations of the density of the three competing strategies on

the spatial grid. In figure 7, we show how the global target

wave (top row from left to right) emerges owing to the emer-

gence of resonance between the periodic current and the

global oscillations (bottom row from left to right).

The impact of mobility can also be studied in off-lattice

simulations, where the radius of the interaction range crucially

affects coexistence. In particular, a transition from coexistence

to extinction is uncovered with a strikingly non-monotonous

behaviour in the coexistence probability [140]. Close to the

minimal value of the coexistence probability and under

the influence of intermediate mobility, it is even possible to

observe transitions between spiral and plane waves over

time, as depicted in fig. 2 of [140]. In general, strong mobility

can either promote or impair coexistence depending on the

interaction range, although diversity is quite robust across

large regions of the parameter space [52]. Importantly, these

phenomena are absent in any lattice-based model, and it is

possible to explain them using PDEs similar to equation (3.2).

Off-lattice simulations of RPS and related evolutionary games

are still relatively unexplored. Partly, this is surely owing to

significantly higher computational resources that are needed

to simulate such systems in comparison with traditional

spatial games, yet, on the other hand, the efforts may be well

worthwhile as the off-lattice set-up is closer to some actual

conditions than lattice-based simulations.

Another interesting phenomenon to consider that is directly

related to mobility is epidemic spreading. The effects of epi-

demic spreading on species coexistence in a spatial RPS game

have been studied in [51,54,141]. It has been shown that in the

absence of epidemic spreading, there exist extinction basins

that are spirally entangled form. mc, whereas basins of coexis-

tence emerge for m, mc. Moreover, it has been discovered

that intraspecies infection promotes coexistence, whereas

interspecies spreading fails to evoke the same effect [51,54,141].

Figure 6. Beautiful examples of multi-armed spirals with two, three and four

arms (top row from left to right), as well as anti-spirals with one, two, and

three pairs (bottom row from left to right panels). Special initial conditions

have been used, which may provide further insight with regards to the

robustness of biodiversity against mobility. Colours red, blue, green and

grey denote rock (species A), paper (species B), scissor (species C ) and

empty sites, respectively, same as in figures 4 and 5. Here the mobility

rate is m ¼ 6.0 � 1025 and the system size is N ¼ 5122. For further

simulation details and the special conditions we refer to [57].

time

time

500

250

x

0

0 200T0 400T0 600T0

disordered resonancet2t1

Figure 7. Emergence of target waves owing to the application of a periodic

current of all three strategies at the centre of a square lattice. The top panel

shows characteristic snapshots of the spatial grid over time from left to right

(note how the initial random state is gradually transformed into a global

target wave). The bottom panel shows the corresponding space–time

plot, where the emergence of the cone in the travelling front indicates

the emergence of resonance between the periodic current and the global

oscillations. Colours red, blue, green and grey denote rock (species A),

paper (species B), scissor (species C ) and empty sites, respectively, as in

figures 4 and 5. The system size is N ¼ 5122. For further details, we refer

to [139].

(b)(a)

Figure 8. Influence of nonlinear mobility on spiralling patterns in the meta-

population RPS model defined by (2.1)– (2.4) and (3.3) with (gd, ge) ¼

(0.05, 0.05), (0.20, 0.05) from left to right, respectively: typical snap-

shots in lattice simulations starting from ordered initial conditions

and with parameters L2 ¼ 1282, N ¼ 1024, p ¼ q ¼ 1, z ¼ 0.1 and

m ¼ 10�6 � mH ¼ 0:042 (far below the Hopf bifurcation point).

(a) Nonlinear mobility enhances the convective instability and far field

breakup of spiral waves. See [91] and movies [145] for further details.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
11:

20140735

7

 on September 18, 2014rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


To close this section, we note that many more interesting

and counterintuitive phenomena are observable when more

than three strategies compete for space. In a four-strategy

system, for example, when a two-strategy neutral alliance

may emerge, the intensity of mobility is able to directly

select the winning solution of the subsystem [142]. More

specifically, if the mobility is small the RPS-type cyclic

dynamics is dominant, whereas if the mobility is large, the

two-strategy neutral alliances take over. Further fascinating

examples related to cyclical interactions between more than

three strategies are reviewed in §5.

3.3. Metapopulation and nonlinear mobility
In §3.2, as in the vast part of the literature, the two-dimensional

RPSmodels were implemented on square lattices whose nodes

were either empty or occupied by an A, B or C player, and the

interactions described by equations (2.1), (2.3), (3.1) involved

agents on neighbouring sites. Inspired by the experiments of

[2,16,24], an alternative metapopulation modelling approach

allowing further analytical progress has recently been put

forward [91,136,143]. In the metapopulation formulation, the

lattice consists of an array of L � L patches each of which

comprises a well-mixed (sub)population of constant size N

(playing the role of the carrying capacity) that consists of

A, B or C individuals and empty spaces. The RPS game is

then implemented according to the general reactions equations

(2.1)–(2.4) between individuals within the same patch (intra-

patch reactions), whereas the spatial degrees of freedom are

granted by allowing the individuals to move between neigh-

bouring patches. At this point, it is interesting to divorce the

pair-exchange (with rate ge) from the hopping (with rate gd)

process, according to the scheme (X, Y ¼ A, B, C)

XY�!ge YX

and X;�!gd ;X:

9

=

;

(3:3)

As shown in [91,144], this leads to nonlinear mobilitywhen ge=

gd (see also [50,109]). In biology, organisms are, in fact, known

not to simply move diffusively, but to sense and respond to

their environment. Here, equation (3.3) allows us to discrimi-

nate between the movement in crowded regions, where

mobility is dominated by pair-exchange, and mobility in

diluted regions where hopping can be more efficient.

The generic two-dimensional metapopulation model of

equations (2.1)–(2.4), supplemented by equation (3.3), is

ideally suited to capture stochastic effects via size expan-

sion in N [96] and, to lowest order (where all fluctuations

are neglected) and in the continuum limit [144], yields the

following PDEs

@ta ¼ gdr2aþ gnl[ar2(bþ c)� (bþ c)r2a]

þ a[qr; þ z(b� c)� pc]þ m(bþ c� 2a),

@tb ¼ gdr2bþ gnl[br2(aþ c)� (aþ c)r2b]

þ b[qr; þ z(c� a)� pa]þ m(aþ c� 2b)

and @tc ¼ gdr2cþ gnl[cr2(aþ b)� (aþ b)r2c]

þ c[qr; þ z(a� b)� pb]þ m(aþ b� 2c),

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(3:4)

with gnl ¼ gd 2 ge and the notation a; a(r, t), b; b(r, t) and

c; c(r, t). We note that nonlinear diffusive terms of the form

ar2(b þ c)2 (b þ c)r2a arise when gnl= 0. In [91,137,144],

the solutions of equation (3.4) have been shown to accurately

match the stochastic simulations of the metapopulation model

performed using a spatial version of the Gillespie algorithm

[97]. It has been shown that the PDEs (3.4) accurately capture

the properties of the lattice metapopulation model as soon

as the carrying capacity is N � 64, whereas their derivation

assumesN � 1 [91,144]. Quite remarkably, it turns out that cer-

tain outcomes of stochastic simulations with N ¼ 2216 are

qualitatively reproducedby the solutions of equation (3.4) [145].

In §3.4, we shall discuss how the PDEs (3.4) can be used

to derive a CGLE, with an effective linear diffusive term,

from which many of the spatio-temporal properties of the

spiralling patterns that we have encountered can be pre-

dicted. Yet, some intriguing features of the model triggered

by nonlinear diffusion cannot be captured by the CGLE.

An interesting effect of nonlinear mobility appears in the

RPS model of equations (2.1)–(2.4) at low mutation rates

when gd. ge: as illustrated in figure 8, in this case, the non-

linear mobility promotes the far field breakup of spiral waves

and enhances their convective instability [91,144,145].

3.4. Complex Ginzburg–Landau equation
The CGLE is a celebrated and well-studied nonlinear equation

commonly used in the physics community to describe a variety

of phenomena spanning from superconductivity, superfluidity,

liquid crystals to field theory [146]. After the introduction of a

phenomenological time-dependent Ginzburg–Landau theory

for superconductors [147], the CGLEwas derived in the context

of fluiddynamics [148,149] and is known for its ability topredict

the emergence of complex coherent structures, such as spiral

waves in two-spatial dimensions, as well as chaotic behaviour.

Its fascinating properties have received considerable interest

and are the subject of numerous reviews [146,150]. It has

recently been realized that many of the spatio-temporal proper-

ties of the two-dimensional RPS models can be understood by

means of a suitable mapping onto a CGLE [3,45,133].

The first attempts to use the CGLE in the context of spatial

RPS games have been carried out in [3,45,133] for the model

with dominance-removal reactions (2.1), whereas z ¼ m ¼ 0,

and pair exchange in equation (3.1). At mean field level, this

model is characterized by an unstable coexistence fixed point

s* with one stable eigenvector, and the dynamics quickly

approaches a manifold tangent to the plane normal to the

stable eigenvector of s*. In [3,45,133], that manifold was com-

puted to quadratic order around s*. On such manifold, the

dynamics becomes two-dimensional, and the mean field flows

approach the absorbing boundaries of the phase portrait where

they linger and form a heteroclinic cycle [87,93]. Exploiting a

suitable nonlinear (‘near-identity’) transformation, effectively

mapping (a,b,c)2 s* onto the new variables z¼ (z1,z2) and by

retaining terms up to cubic order in z, the rate equations (2.5)

were then recast in the normal form of a Hopf bifurcation. As

explained in [28,133], where details of the derivation can be

found, space and movement were finally reinstated by adding

a linear diffusive term to rate equations in the zvariablesyielding

a CGLE. It has to be noted that such an approach relies on three

uncontrolled approximations:

(1) It consists of approximating heteroclinic cycles by stable

limit cycles resulting from a fictitious Hopf bifurcation.

(2) While the new variables z1 and z2 are assumed to be

small quantities, and therefore the mapping is expected

to be suitable near s*, its use is not restricted to the

vicinity of s*.
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(3) Even though mobility is mediated by pair exchange in

equation (3.1), which results in linear diffusion in the

PDEs (3.2), the nonlinear mapping (a,b,c) 2 s*! z gener-

ates nonlinear diffusive terms that are ignored by the CGLE.

Notwithstanding, this approach has been able to explain

many qualitative features of the above model and, upon

adjusting one fitting parameter, even obtain approximations

for the wavelength of spiralling patterns and the velocity of

the propagating fronts [3,45,133]. This treatment was then

extended to the case of dominance-removal and domi-

nance-replacement cyclic competitions with linear mobility

and no mutations ( p, z, g. 0, m ¼ 0) [46,143]. Recently, a

class of RPS-like models with more than three species (with

dominance-removal and hopping but no mutations) has

also been considered by generalizing this approach [151].

Recently, an alternative analytical treatment has been

devised to derive perturbatively the CGLE associated with the

generic class of RPS models defined by the reactions equations

(2.1)–(2.4), and with mobility mediated by pair-exchange and

hopping in equation (3.3) [91,144]. This alternative derivation

has been carried out within the metapopulation formulation

outlined in §3.3. The key observation is that the mean field

dynamics of the model defined by equations (2.1)–(2.4) is

characterized by a Hopf bifurcation at m ¼ mH (see §2) and

by stable limit cycles when m, mH. A multiscale expansion

around the Hopf bifurcation is appropriate to derive a CGLE

that aptly describes the fascinating oscillatory patterns arising

on two-dimensional lattices when m, mH. As explained in

[91,137], a space and time perturbation expansion in the par-

ameter e/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mH � m
p

is performed by introducing the ‘slow

variables’ (T, R) ¼ (e2t, er) and by expanding the densities in

powers of e [152]. Hence, after a suitable linear transformation

(a, b, c)2 (a*, b*, c*)! (u, v, w), wherew decouples from u and

v (to linear order), one writes u(r, t) ¼ P3
n¼1 enU(n)(t, T, R),

v ¼ P3
n¼1 enV(n) and w ¼ P3

n¼1 enW (n), where the functions

U(n), V(n), W (n) are of orderO(1). Substituting these expressions

into equation (3.4) with U(1) þ iV(1) ¼ A(T, R)eivHt, where A is

a (complex) modulated amplitude, the CGLE is thus derived

by imposing the removal of the secular term arising at order

O(e3), which yields [91,137,144]

@TA ¼ dDRAþA� (1þ ic)jAj2A, (3:5)

where d ¼ (3qge þ pgdÞ=ð3qþ p), DR ¼ @2
r1
þ @2

r2
and, after

rescaling A by a constant [137],

c ¼ 12z(6q� p)(pþ q)þ p2(24q� p)

3
ffiffiffi

3
p

p(6qþ p)(pþ 2z)
: (3:6)

It is worth stressing that the CGLE (3.5) is a controlled

approximation of the PDEs (3.4) around the Hopf bifurcation

point, and it is noteworthy that it involves a linear (real)

effective diffusion coefficient. The CGLE (3.5) permits an

accurate characterization of the spatio-temporal patterns in

the vicinity of the Hopf bifurcation point. For the sake of sim-

plicity, we here restrict s and z into [0,3]. Using the well-

known phase diagram of the two-dimensional CGLE

[146,153], one thus distinguishes four phases separated by

the three critical values (cAI, cEI, cBS) � (1.75, 1.25, 0.845),

as illustrated in figure 9a: the absolute instability (AI) phase

in which stable spiral waves cannot be sustained (when c.

cAI), the Eckhaus instability (EI) phase in which spiral waves

are convectively unstable, with spirals’ arms that far from the

cores first distort and then break up (when cEI, c, cAI), the

bound state (BS) phase characterized by stable spiral waves

with well-defined wavelength and frequency (when cBS, c,

cEI), and a phase in which spiral waves annihilate when they

collide (SA phase, when 0, c, cBS).

The properties of the CGLE (3.5) have also be exploited to

gain insights into the properties of the spatio-temporal pat-

terns arising away from the Hopf bifurcation, where the SA

phase appears to be generally replaced by an extended BS

phase [137,144,145]. Yet, it has also been found that when

p � z an Eckhaus-like far-field breakup of the spiral waves

occurs away from the Hopf bifurcation, very much like in

figure 4 (bottom panel; see [144]).

4. Evolutionary games with spontaneously
emerging cyclic dominance

Cyclic dominance occurs not only in RPS and related evol-

utionary games where the closed loop of dominance is

explicitly imposed on the competing strategies through the

directions of invasions between them (figure 1). Quite

remarkably, cyclical interactions may occur spontaneously

in any evolutionary game where the competing strategies

are three or more, and it is also possible to observe them in

two-strategy games if certain player-specific properties are

time-dependent [76]. Well-known examples include the clas-

sic public goods game [31], where in addition to cooperators

and defectors the third competing strategy is volunteering

[66,67,154–157], rewarding [73,74,158–160] or punishing

[68,69,161–164]. Further examples include the ultimatum

game with discrete strategies [165], the public goods game

with pool punishment [71,166–168] as well as the public

goods game with correlated positive (reward) and negative

(punishment) reciprocity [169].

3.0

2.0

1.5

1.0

0.5

0 0.5 1.0

AI EI BS SA

1.5

p

z

2.0 2.5

c
AI

= 1.75

c
EI

= 1.25

c
BS

= 0.845

3.0

2.5

(a)

(b)

Figure 9. (a) Typical snapshots of the phases AI, EI, BS, SA (from left to

right) obtained from lattice simulations with parameters q ¼ ge ¼ gd ¼ 1,

m ¼ 0.02, L ¼ 128, N ¼ 64 and, from left to right, z ¼ (1.8, 1.2, 0.6, 0).

(b) Phase diagram of the two-dimensional RPS system (2.1)–(2.4) around the

Hopf bifurcation point with contours of c ¼ (cAI, cEI, cBS) in the p2 z plane,

see text. We distinguish four phases: spiral waves are unstable in AI, EI and

SA phases, whereas they are stable in BS phase. The boundaries between the

phases have been obtained using (3.6). See [91] for full details.
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As in the original RPS game, in these evolutionary games,

the spontaneous emergence of cyclic dominance also pro-

motes the coexistence of competing strategies, and through

that it stabilizes solutions that would otherwise be unstable.

As such, the spontaneous emergence of cyclic dominance

is one of the main driving forces behind complex pattern

formation, which, in turn, is responsible for the many differ-

ences between evolutionary outcomes reported in well-mixed

and structured populations. Examples include the stabiliz-

ation of reward [73] and punishment [68] in structured

populations, the evolution of empathy and fairness in

human bargaining [165], as well as an oscillatory coexistence

of defection and cooperation with the ‘tit-for-tat’ (T ) strategy

[170–172]. The latter example is particularly instructive, as

there is a transition from a three-strategy stationary state to

a three-strategy oscillatory state that depends on the cost of

the ‘tit-for-tat’ strategy. This phase transition is possible

only in a structured population, and because there is a spon-

taneous emergence of cyclic dominance only between the

three competing strategies. The complete phase diagram is

shown in figure 10, where the dotted blue line delineates to

two three-strategy phases. It is worth emphasizing that an

oscillatory state emerges not because of a time-varying inter-

action network (the importance of which we have

emphasized in §31 in the realm of the RPS game), but solely

owing to the relations between the competing strategies as

defined via the pay-off matrix.

Another example that merits attention is the stabilization

of punishment in the realm of the public goods game. In gen-

eral, punishers bear an additional cost if they wish to sanction

defectors, and thus face evolutionary pressure not only from

defectors, but also from pure cooperators, which effectively

become second-order free-riders [173–175]. Accordingly,

in well-mixed populations, punishment is evolutionarily

unstable in the absence of additional mechanisms or further

strategic complexity. In structured populations, however,

punishment alone introduces cyclic dominance such that

punishing cooperators are able to invade defectors, defectors

are able to invade pure cooperators, and pure cooperators are

able to invade punishers [68]. Evenmore complex evolutionary

outcomes are possible in the case of pool punishment [71],

where one ‘strategy’ in the closed loop of dominance can be

an alliance of two strategies (for further details, we refer

to §4.3). Interestingly, the introduction of self-organized pun-

ishment, when the fine increases proportional to the activity

of defectors, prevents the spontaneous emergence of cyclic

dominance and results in a more effective way of punishment

[176]. In the latter case, however, the stability of punishers is

not directly challenged by pure cooperators (second-order

free-riders), as the punishing activity (and the additional cost

of sanctioning) ceases in the absence of defectors.

4.1. Time-dependent learning
As we have noted previously, cyclical interactions may occur

spontaneously not only if the competing strategies are three

or more, but also in two-strategy games if certain player-

specific properties are time-dependent. One such example

concerns time-dependent strategy learning ability of players

in the spatial Prisoner’s Dilemma game [76]. In a preceding

work [177], it has been shown that a limited teaching activity

of players after a successful strategy pass modifies the propa-

gation of strategies in a biased way and can promote the

evolution of cooperation in social dilemmas. A significantly

different effect, however, can be observed if the learning ability

of players is time-dependent [76]. A temporarily impaired

learning activity generates cyclic dominance between defectors

and cooperators, which helps to maintain the diversity of

strategies via propagating waves, as illustrated in figure 11.

Consequently, cooperators can coexist with defectors even

under extremely adverse conditions. This result is particularly

inspiring because it indicates the possibility of a time-dependent

player-specific property to effective replace a third strategy

in a closed loop of dominance. Hence, cyclic dominance can

emerge only between two competing strategies. Other works

on dynamical learning in games with cyclic interactions,

where agents sample a finite number of moves of their

opponents between eachupdate, have shownhowdemographic

fluctuations can lead to noise-sustained cyclic orbits [178,179].

4.2. Voluntary participation
Evolutionary games with voluntary participation were among

the first to record the spontaneous emergence of cyclic domi-

nance outside the realm of the traditional RPS formalism. In

particular, the coexistence of cooperators and defectors owing

to the presence of volunteers (or loners) was initially reported

in well-mixed populations [66,67], where the cyclic invasions

among the three competing strategies resulted in an oscillatory

state. Inspired byAlice’s Adventures inWonderland, where the

red queen found that it takes a lot of running to stand still,

the emergence of oscillations that were needed to sustain

cooperation was dubbed accordingly as the ‘red queen’ effect.

Notably, the terms were proposed in the early 1970s [103] as

an evolutionary hypothesis based on which organisms must

constantly adapt and evolve, not merely to gain a reproductive

advantage, but also simply to survive.

Today, volunteering is known as a viable mechanisms to

avert the tragedy of the commons [180] within the realm of

the public goods game. Hauert et al. [66] studied this

phenomenon by assuming that individuals have three avail-

able strategies, namely unconditional cooperation, defection

and volunteering, which resulted in a RPS-like evolutionary
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Figure 10. Phase diagram of an evolutionary Prisoner’s Dilemma game with

the ‘tit-for-tat’ (T ) strategy, as obtained on a random regular graph. In

addition to the pure defection (D) phase, the stationary two-strategy C þ
D phase, and the stationary three-strategy C þ D þ T phase, there also

exists a parameter region where all three competing strategies coexist in

an oscillatory phase (O). The spontaneous emergence of cyclic dominance

therefore sustains cooperation (C ) even at prohibitively high temptations to

defect. For further details, we refer to [170].
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dynamics. In particular, if there are nc cooperators, nd defec-

tors and nl loners in the group, then actually only k ¼ nc þ nd
individuals are involved in the public goods game. Defectors

thus get the pay-off rnc/k, where r . 1 is the multiplication

factor that takes into account the synergetic effects of a

group effort, whereas cooperators gain (rnc/k) 2 1 (here 21

is due to their contribution to the common pool, which

defectors withhold). At the same time, loners who do not

participate in the game, get a fixed small pay-off s, such

that 0, s, r 2 1. Based on numerical simulations and the

analysis of the replicator equation, it quickly follows that

frequencies of all three strategies exhibit oscillations over

time if r . 2. These theoretical results have been confirmed

by human experiments performed by Semmann et al. [67],

which revealed that volunteering reduces the size of groups

engaged in the public goods game, and that cooperation is

indeed promoted through time-dependent oscillations. The

rationale is that defectors outperform cooperators in a large

predominantly cooperative group, yet as soon as defectors

become the predominant force, it pays more to be a loner.

But as loners grow in numbers and the actual size of the

group participating in the game decreases, cooperation

again becomes viable, and so the loop of dominance closes.

Motivated by the pioneering human experiments of [67],

a new experiment has been designed and conducted with a

total of 90 undergraduate students from Wenzhou Univer-

sity, who participated in repeated public goods games with

volunteering in groups of five. The principal goal was to

measure the average frequencies of strategies over time. The

pay-offs were the same as described in the preceding para-

graph, thus designating s and the multiplication factor r as

the two main parameters. The results are summarized in

figure 12, which confirm that all three strategies coexist

within a wide range of parameter values. However, the

time-averaged frequencies depend on the actual values of

s and r. As shown in figure 12a,b, defectors are most

common for s ¼ 0.5 and r ¼ 3.0, which reverses in favour

of loners for s ¼ 1.5 and r ¼ 3.0, thus experimentally con-

firming the expected promotion of loners as s increases.

The dominance of loners is even more remarkable for s ¼ 2.5

and r ¼ 3.0, but shifts towards cooperators for s ¼ 2.5 and

r ¼ 6.5, as shown in figure 12b. This, in turn, confirms the

evolutionary advantage of cooperators that is warranted by

higher multiplication factors. Interestingly, the outcome of

these experiments indicates that the coexistence of the three

strategies is more widespread than predicted by theory. For

example, all three strategies coexist even for s. r2 1 (see

s ¼ 2.5 and r ¼ 3.0 case in figure 12b), which may be attribu-

ted to the bounded rationality and emotions of participants

that are not accounted for in simulations.

(b) (c)(a)

Figure 11. Spontaneous emergence of cyclic dominance due to the introduction of time-dependent learning ability of players in the spatial Prisoner’s Dilemma

game. Cooperators (blue) and defectors (red) become entailed in a close loop of dominance, which is mediated by the time-varying learning ability. Pale (dark)

shades of blue and red encode low (high) learning ability of cooperators and defectors, respectively. Travelling waves emerge from an initial cluster of cooperators

located in the centre of the square lattice (not shown). From there on, the waves spread across the whole population (from (a) towards (c)), thus allowing the

survival of cooperators even at very high temptations to defect. For further details, we refer to [76].
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Figure 12. Widespread coexistence of cooperators, loners and defectors in an experimental public goods game with volunteering. Columns displays the time-

averaged frequencies that were chosen by the 90 participants of this human experiment, depending on the pay-off of loners s and the multiplication factor r.

(a) The multiplication factor r ¼ 3.0 was set fixed, whereas two different values of s were considered (see figure legend). (b) The pay-off of loners s ¼ 2.5 was

set fixed, whereas two different values of r were considered (see figure legend). Importantly, the coexistence of all three strategies is significantly more widespread

than predicted by theory, which may be attributed to the bounded rationality and emotions that are not accounted for in simulations. The whiskers in both panels

show the standard error of the displayed time-averaged frequencies (rates).
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Aside from the theoretical explorations of the public

goods game with volunteering in well-mixed populations

and the above-described human experiments, the public

goods game with volunteering in structured populations

also received its fair share of attention. In the light of the

reviewed results on the spatial RPS game, it is perhaps little

surprising that structured populations also maintain the sur-

vival of all three competing strategies, but they do so not

through the emergence of oscillations, but rather through

time-wise constant fractions of cooperators, defectors and

loners [154]. However, the topology of the interaction net-

work can play a key role, much the same as by the RPS

game [118,119]. Specifically, if the interaction network has suf-

ficiently strongly pronounced small-world properties (there

exists a threshold in the fraction of shortcut links that must

be exceeded), then the stationary three-strategy phase gives

way to an oscillatory three-strategy phase [155,181]. Further

strengthening the analogies between the RPS game and the

public goods gamewith volunteering, we note that oscillations

in the latter can also be evoked not only through changes in the

topology of the interaction network, but also through changes

in the pay-offs, as illustrated in fig. 1 of [181].

Interestingly, the so-called joker strategy, introduced by

Arenas et al. [182], is conceptually different from the loner

strategy, but has a similar impact on the evolution of

cooperation in social dilemmas. In particular, in finite well-

mixed populations oscillations emerge spontaneously, and

this is irrespective of the system size and the type of strategy

updating [77,182], thus adding yet further support to the

relevance of cyclic dominance in evolutionary games.

4.3. When three competing strategies are more

than three
If the competing strategies in an evolutionary game are more

than two (with some exceptions, as described in §4.1), this

opens up the possibility for the spontaneous emergence of

cyclic dominance with much the same properties that charac-

terize the classical RPS game. Sometimes, however, three

competing strategies are more than three, because some

subsystem solutions, typically composed of a subset of the

three original strategies, manifest as an additional ‘strategy’.

The fourth ‘strategy’ is not exactly equivalent to the original

three strategies because it only emerges during the evolu-

tionary process, yet its involvement in the closed loop of

dominance is just as important. These rather exotic solutions,

which can be observed only in structured populations, have

recently been reported in the spatial public goods game

with pool punishment [71], and in the spatial ultimatum

game with discrete strategies [165].

In the spatial public goods gamewith pool punishment, we

initially have three competing strategies, which are cooperators

(C), defectors (D) and pool punishers (P). Quite remarkably, at

certain parameter values (see [71] for details), defectors and

pool punishers form a stable alliance, which effectively mani-

fests as a strategy, and this strategy forms a closed loop of

dominance with cooperators and defectors. Cyclic dominance

ensues, where in addition to the two pure strategies C and D,

the D þ P alliance is the third competing strategy. As a conse-

quence, the characteristic spatial patterns feature propagating

fronts made up of all the mentioned competitors, as illustrated

in figure 13a.

The peculiarity of the above-described solution indicates

that it may not be satisfactory to describe the actual state

of a three-strategy system by a single ‘point’ in a ternary

phase diagram. Namely just the fractions of the competing

strategies do not necessarily determine the actual state of

the system in an unambiguous way, and this is because spa-

tiality offers an additional degree of freedom in comparison

with solutions that can be observed in well-mixed popu-

lations. As described in [71], this new degree of freedom

may give rise to an additional ‘strategy’ that is as such not

present at the start of the evolutionary process.

Importantly, although such evolutionary solutions may at

first glance appear as special and perhaps even limited out-

comes of a particular evolutionary game, we emphasize that

they may in fact be common place. To corroborate this, we

review a completely different evolutionary game, namely the

spatial ultimatum game with discrete strategies [165]. Unlike

in the public goods game, in the ultimatum game, the focus is

(b)(a)

Figure 13. In structured populations, three competing strategies can in fact be more than three. The spontaneous emergence of cyclic dominance can be driven by

pure strategies, as well as by stable alliances of a subset of pure strategies, which in the closed loop of dominance act just the same. (a) Cyclic dominance between

cooperators (blue), defectors (red), and a stable alliance between defectors and pool punishers (red and green). Here, defectors beat cooperators, who beat the

alliance of defectors and pool punishers, who in turn beat pure defectors [71]. Note that one ‘strategy’ in the closed loop of dominance is thus an alliance of two

strategies. (b) Cyclic dominance in the spatial ultimatum game with discrete strategies [165]. Two emphatic strategies, E1 (light blue) and E2 (navy blue), compete

with the strategy A (red) that is characterized by a particular ( p, q) pair. Here, E1 beats the stable alliance of E2 þ A, who in turn beats E2, who in turn beats E1,

thus closing the loop of dominance. As in the spatial public goods game with pool punishment, here one ‘strategy’ in the loop is an alliance of two strategies.
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not on the aversion of the tragedyof the commons, but rather on

the evolution of empathy and fairness [183]. While discrete

strategies still cover the whole (p, q) proposal–acceptance par-

ameter plane, the discreetness takes into consideration the fact

that in reality these levels are coarse-grained rather than con-

tinuous. Thus, instead of the infinite number of continuous

strategies, we have N discrete strategies Ei, defined according

to their ( p, q) interval (see [165] for details). If p ¼ q, we have

N different classes of empathetic players who can compete

with an additional strategy A that is characterized by an

arbitrary (p, q) pair.Most crucially, the finite numberof compet-

ing strategies enables pattern formation, and as illustrated in

figure 13b, cyclic dominance may emerge spontaneously

where a member in the closed loop of dominance can be an

alliance of two strategies. This example, in addition to the pre-

viously described one concerning the spatial public goods

game with pool punishment [71], thus corroborates the fact

that in structured populations three competing strategies can

in fact be more than three.

5. Cyclic dominance between more than three
strategies

Extensions of the classical RPS game tomore than three compet-

ing strategies are straightforward (figure 1), and in addition to

their obvious appeal from the theoretical point of view

[81,94,121,151,184], such games also find actual applicability

in describing competition in microbial populations [82] and

larger ecological food webs and communities [22,23,185–188].

Based on the review of results concerning the RPS and related

three-strategy evolutionary games with cyclic dominance, it is

little surprising that the complexity of spatial patterns, and

indeed the complexity of evolutionary solutions in general,

increases drastically as we increase the number of strategies

that form a closed loop of dominance. The spontaneous emer-

gence of defensive alliances and numerous stable spatial

distributions that are separated by first and second-order

phase transitions are just some of the phenomena that one is

likely to observe.

The reason behind the mushrooming number of stable sol-

utions with the rising number of competing strategies lies in

the fact that the solutions of subsystems, where some strategies

aremissing, can also be solutions of thewhole system. The final

stationary state can thus be determined not only by the compe-

tition of individual strategies, but also by the competition of

subsystem solutions (defensive alliances) that are characterized

by their own composition and spatio-temporal distribution of

strategies (we have already reviewed two such examples in

figure 13). Consequently, the general understanding of evol-

utionary games with many competing strategies requires the

systematic analysis and comparison of all possible subsystem

solutions, i.e. solutions that are formed by just a subset of all

available strategies.

The simplest generalization of the RPS game is towards

a four-strategy cyclic dominance game [47,189–191]. As

reported in [47], the formation of spiral patterns takes place

only without a conservation law for the total density, and

like in the three-strategy case, strong mobility can destroy

species coexistence. Cyclic dominance among four strategies

also gives rise to so-called neutral strategies, which do not

invade each other—an option that is not available among

three competing strategies. In the absence of mixing, neutral

strategies can easily result in population-wide frozen states,

where only those strategies that do not invade each other are

present. More precisely, the coexistence of all four strategies

is limited to a rather narrow range of invasion rates, whereas,

otherwise, the system evolves into a frozen state where only

neutral strategies are present [79]. This observation further

supports the fact that the topology of the food web alone

cannot unambiguously determine the evolutionary outcome

of cyclical interactions. In addition, the invasion rates and the

interaction range are likewise crucial parameters that deter-

mine the transitions from coexistence to uniformity among

cyclically competing strategies [188,192,193].

Globally synchronized oscillations in a four-strategy

cyclic dominance game are also possible, as reported in

[121] and presented in figure 14. In fact, Rulquin & Arenzon

[121] have shown that such coexistence phases require less

long-range interactions than three-strategy phases, although

intuitively one would expect the opposite. Because the emer-

gence of long distance, global synchronization states is thus

possible even when the food web has multiple subloops

and several possible local cycles, this leads to the conjecture

that global oscillations might be a general characteristic,

even for large, realistic food webs.

In addition to the coexistence of all competing strate-

gies, the emergence of ‘frozen’ states, and global oscillations

mentioned above, curvature-driven domain growth is also

possible when the evolutionary dynamics is governed by

interactions of equal strength among more than three

strategies [56,59,60]. In this case, the time-dependence of

the areas of different domains, which can be quantified

effectively by means of the length of domain walls, confirms
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Figure 14. Globally synchronized oscillations in a four-strategy cyclic dominance game [121]. Depicted are simplex representations of the time evolution of the four

densities for three different combinations of the fraction of long-range links Q and the heterogeneity of the food web x (see legend). Starting from the initially

random homogeneous state (black dot), the system evolves (left) towards finite size, stochastic fluctuations around the asymptotically stable fixed point (the ampli-

tude of these fluctuations decreases with increasing system size [192]), (middle) towards global oscillations, where the asymptotic state is a limit cycle whose

perimeter may be used as an order parameter for the transition, or (right) towards global oscillations, where the orbit approaches the heteroclinic one and

the average perimeter is close to the maximum value. We refer to [121] for further details.
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to the well-known algebraic law of the domain growth

process [194].

5.1. Alliances
The subject that deserves particular attention within the

realm of cyclic dominance between more than three strategies

is the formation of alliances. As described in the introductory

paragraphs of this section, alliances play a key role in the fas-

cinating complexity and multitude of solutions that grace

such systems, particularly through the formation of subsys-

tems solutions that together with the pure strategies form

the complete solutions of the whole system.

Alliances can emerge in strikingly different ways, although

the most common one is the formation of so-called defen-

sive alliances. For example, in a four-strategy predator–prey

system, two neutral strategies can defend each other from the

twoexternal invaders [195], hence thenamea ‘defensive alliance’.

The protective role of an alliance can also be observed when

three cyclically dominating strategies are present. In this case,

they can protect each other from an external invader by invading

the predator of their prey [184]. We also emphasize that cycli-

cally dominant strategies may not necessarily form defensive

alliances, even if the governing food web is complex and large.

Forexample, in figure 1d, the strategiesRSþ KSþ SS formasub-

system solution, but this is not an alliance as it is vulnerable to

the invasion of an external strategy. On the other hand, the

strategies RS þ KR þ SK form an actual alliance, and a mem-

bership in the latter can effectively protect all three strategies

within the loop from an external invasion.

Moreover, if the number of competing strategies is high

enough, it is also possible to observe the competition between

the different alliances [81].Alliance-specific invasion rates, how-

ever, canbreak the symmetryof the foodweb, and subsequently

only a single alliance survives [196]. The complexity of a six-

species predator–prey foodwebwithalliance-specific invasions

rates also enables noise-guided evolution within cyclical inter-

actions [80], which is deeply rooted in short-range spatial

correlations and is conceptually related to the coherence reson-

ance phenomenon in dynamical systems via the mechanism of

threshold duality [197–200].

When it comes to the study of alliances within games of

cyclic dominance, the general question to answer is which strat-

egies are capable of forming alliances? As we have reviewed

above, two strategies are sufficient to form an alliance, but of

course three or even more strategies could also form one. The

phase diagram presented in figure 15 demonstrates that, in

fact, all the mentioned alliances can be present in the stable sol-

utionof the system,dependingalsoon theparameter values that

determine invasion and mixing in the studied six-species pred-

ator–prey system [201]. The key property that determines

whether an alliance is viable or not is its ability to invade

other alliances or resist such an invasion itself. Similar to the

competition among pure strategies, here too the appropriate

approach is tomeasure directly the velocity of invasion between

competing domains that contain specific subsystem solutions

[63]. The use of special initial conditions, like the one illustrated

in figure 16 (remnants of the straight vertical interface that sep-

arated two three-strategy cyclic alliances can still be clearly

inferred), is thereby very useful and recommended. Unlike

pure strategies, however, here we first need to partition the

population and wait for the appropriate subsystem solutions

to emerge before removing the barriers along the interfaces.

Importantly, the formation of alliances is not always the con-

sequence of specific relations within the governing food web.

Alliancesmayalso emerge spontaneously during the evolution-

ary process, for example owing to pay-off relations between the

competing strategies that are owing to multi-point (group)

interactions. The phenomenon was observed in the spatial

public goods game,where in addition to cooperators and defec-

tors both pool (O) and peer (E) punishers competed for space

[202]. Figure 16 illustrates an example of the spontaneous
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Figure 15. Who can form an alliance? The displayed phase diagram of stable

solutions in dependence on the invasion rate (a) and the strength of mixing (X )

in a six-species predator–prey system reveals that in fact all possible alliances

between two or more competing strategies can be viable at specific parameter

regions [201]. In the upper left corner, the three-strategy cyclic alliance 0 þ
2 þ 4 or the three-strategy cyclic alliance 1 þ 3 þ 5 will dominate the

system. In the parameter region marked by T C(D), on the other hand, three alli-

ances, each consisting of two-neutral strategies, play the RPS game at a higher

level, i.e. at the level of competing alliances (rather than pure strategies). Within

the shadowed parameter region all the mentioned alliances coexist.

Figure 16. Alliances may also form spontaneously, without support from specific

relations within the governing food web. This is particularly common in games

that are played in groups [31], where the pay-offs stemming from the multi-

point interactions may give rise to relations between the competing strategies

that make the formation of an alliance evolutionary most advantageous. One par-

ticular such example concerns the spatial public goods game with pool (O; light

green) and peer (E; dark green) punishment, where the three-strategy cyclic alli-

ance D þ C þ O and the three-strategy cyclic alliance E þ O þ D emerge

spontaneously. Subsequently, these two alliances compete for space effectively

as ‘strategies’, thereby giving rise to complex yet beautiful spatial patterns.

Cooperators are blue, whereas defectors are denoted red.
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emergence of two three-strategy cyclic alliance. Notably, either

the D þ C þO or the E þ O þ D alliance can be stable solu-

tions of the whole system at specific values of the punishment

cost and fine. But if they meet, as displayed in figure 16,

the E þ O þ D alliance will invade the D þ C þO alliance.

Remarkably, the invasion process between the two alliances is

effectively the same as it would be between two pure strategies.

Asby the competitionamongpure strategies [3], by the com-

petition of alliances too the role of mobility (or diffusion) is

likewise important. Within the framework of a nine-species

predator–preymodel [184], it has been shown that belowa criti-

cal mobility rate, the system exhibits expanding domains

of three different defensive alliances, each consisting of three

cyclically dominant species. Owing to the neutral relationship

between these three defensive alliances, a voter-model-type

coarsening starts [203], and after a sufficiently long time, only

one alliance survives if the systemhas finite size.Above the criti-

cal mobility rate, however, the three defensive alliances can all

coexist [44]. In away, the effect of highmobility is thus the oppo-

site to the one observed in the RPS game. There high mobility

rates jeopardize diversity and lead to the survival of a single

strategy [3], whereas the coexistence of defensive alliances

may receive unexpected support. Further related to the impact

of mobility on the survival of alliances, a recent study has

demonstrated that mobility-dependent selection can prefer

either a three-strategy cyclic alliance or a neutral pair of

two-strategy alliances within a four-strategy system [142].

At this point, we again emphasize that it is not enough to

simply separate random mixtures of selected strategies that

are involved in particular alliances and monitor the evolution.

Before the barriers along the interfaces are removed, a suffi-

ciently long relaxation time has to be taken into account,

which allows the actual subsystem solutions (rather than just

the random mixtures of the involved strategies) to emerge.

Only then will the actual competition between the alliances

unfold and give correct insights into the power relations

between them. In the absence of such a procedure, it may

easily happen that one of the considered subsystem solutions

cannot evolve fast enough, for example owing to requiring a

longer relaxation time than another subsystem solution, and

thus it becomes impossible to properly compare their viability.

A specific example to that effect concerns a five-strategy

predator–prey system [63,204], where if the mobility is

strong enough the dominance between the competing alliances

can vanish simultaneously. This phenomenon is then also

accompanied by a divergence in the density fluctuations of

individual strategies. In the absence of mobility, however, the

dominance between the alliances does not vanish simul-

taneously, and only a sharp peak in the density fluctuations

can be observed instead of the power-law divergence. The

phenomena observed in the realm of this five-strategy pre-

dator–prey system in fact outline a more general type of

behaviour, namely the mobility-induced reversal of the direc-

tion of invasion between the competing alliances, thus

highlighting yet again that the topology of the food web does

not always (in fact, it does so only rarely) determine the final

evolutionary outcome in structured populations.

6. Conclusion and outlook
As we hope this review clearly shows, cyclical interactions

are a fascinating subject, which have the power to captivate

with the complexity and beauty of the governing evolu-

tionary dynamics, and which in addition to this has many

real-life applications that we have only begun to fully

appreciate. We have reviewed main results in well-mixed

populations with the focus on oscillatory dynamics and the

extinction to absorbing states owing to finite system size.

We have also reviewed results on the classical RPS game in

structured populations. We have first focused on the impor-

tant role of the topology of the interaction networks, which

may induce oscillatory states, although the latter can also

be evoked by changes in the game parametrization. We

have also focused extensively on mobility, which has many

practical implications as in real-life prey and predators are

frequently on the move in order to maximize their chances

of survival. We have emphasized that mobility can either

promote or jeopardize biodiversity, and it may give rise to

fascinatingly rich pattern formation, including spiral and

target waves, multi-armed spirals with two, three and four

arms, as well as anti-spirals. Mobility can also affect the

basins of coexistence and extinction through intraspecies

and interspecies epidemic spreading. An alternative meta-

population modelling approach is also reviewed, where the

distinction of pair-exchange and hopping processes allows

us to discriminate movement in crowded and in diluted

regions. The resulting nonlinear mobility promotes the far

field breakup of spiral waves and enhances their convective

instability. Within this metapopulation formulation, we

have also derived perturbatively the CGLE.

In addition to the review of the well-mixed and spatial RPS

game, we have also given special attention to evolutionary

games where cyclic dominance emerges spontaneously, for

example between only two competing strategies through

time-dependent learning, among three strategies in public

goods game with volunteering, punishment or reward as

well as by means of the introduction of the joker strategy. We

have reviewed how alliances may effectively act as strategies

and close the loop of dominance in three-strategy evolutionary

games, including the public goods game with pool punish-

ment and the ultimatum game with discrete strategies. From

there onwards, we have surveyed cyclic dominance when the

competing strategies are more than three, where we have

emphasized the possibility of competition between alliances.

We have highlighted the importance of the correct prepara-

tion of special initial conditions that allow proper monitoring

of the invasion relations between the alliances, and we have

given prominent exposure to the fact that alliances may also

form spontaneously, without support from specific relations

within the governing food web.

There are still unexplored problems related to cyclic domi-

nance in evolutionary games thatmerit further attention.While

physics-inspired studies account for the majority of recent

theoretical advances on this topic, there also exist much exper-

imental and theoretical work that was outside the scope of this

review. Competitive intransitivity and the coexistence of

species in intransitive networks [205,206], as well as commu-

nity-scale biodiversity in ecological systems with a large

number of species [207] and the governing large competitive

networks [185–187], are just some of the topics that we did

not cover in detail. While we have mentioned several exper-

iments and empirical data that corroborate the importance of

cyclical interaction in the Introduction, covering this in detail

could easily amount to an independent review. In addition to

the often-cited examples mentioned in the Introduction, most
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recent experimental research suggests that we may have only

just begun to scratch the surface of the actual importance of

cyclic dominance in nature [83,84]. It would be desirable for

the fundamental theoretical advances to become more in

sync with the experiments by means of more dedicated and

precise mathematical modelling. It is worth noting that cyclic

dominance could be crucial not just to understand biodiversity,

but also social diversity [208–210].

In terms of future fundamental research, we would like to

point towards the basically unexplored subject of cyclic dom-

inance in group interactions. In social dilemma games, the

transition from pairwise to group interactions [211,212]

brings with it many qualitative changes in the evolutionary

dynamics (see [31] for a review), and the reasonable expec-

tation is that the same would also hold true in games of

cyclic dominance. We have recently considered the impact

of different interaction ranges in the spatial RPS game, and

found that the transition from pairwise to group interactions

can decelerate and even revert the direction of the invasion

between the competing strategies [193]. These results thus

indicate that, in addition to the invasion rates and other prop-

erties of cyclic dominance games already reviewed here, the

interaction range is at least as important for the maintenance

of biodiversity among cyclically competing strategies, and is

thus surely deserving of further attention.

Motivation for future research can also be gathered from

coevolutionary games [29], where cyclical interactions

can still be considered as being at an early stage of develop-

ment. While initially many studies that were performed

within the realm of social dilemma games appeared to be

valid also for games that are governed by cyclical inter-

actions, recent research has made it clear that this is by far

not the case. The incentives are thus clearly there to reexa-

mine the key findings, which were so far reported only for

pairwise games on coevolutionary networks, also for games

that are governed by cyclical interactions. We conclude by

noting that devising and studying cyclic dominance systems

with greater practical applicability and predictive power,

including more complex interaction networks and larger

numbers of competing strategies, should also be well

within the scope of viable forthcoming research.
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Gardeñes J, Latora V, Moreno Y. 2009 Effects of

mobility in a population of prisoner’s dilemma

players. Phys. Rev. E 79, 067101. (doi:10.1103/

PhysRevE.79.067101)

130. Sicardi EA, Fort H, Vainstein MH, Arenzon JJ. 2009

Random mobility and spatial structure often

enhance cooperation. J. Theor. Biol. 256, 240–246.

(doi:10.1016/j.jtbi.2008.09.022)

131. Cardillo A, Meloni S, Gómez-Gardeñes J, Moreno Y.
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interactions with alliance specific heterogeneous

invasion rates. Phys. Rev. E 75, 052102. (doi:10.

1103/PhysRevE.75.052102)

197. Pikovsky AS, Kurths J. 1997 Coherence resonance in

a noise-driven excitable system. Phys. Rev. Lett. 78,

775–778. (doi:10.1103/PhysRevLett.78.775)

198. Gammaitoni L, Hänggi P, Jung P, Marchasoni F.

1998 Stochastic resonance. Rev. Mod. Phys. 70,

223–287. (doi:10.1103/RevModPhys.70.223)

199. Perc M. 2005 Spatial coherence resonance in

excitable media. Phys. Rev. E 72, 016207. (doi:10.

1103/PhysRevE.72.016207)

200. Perc M. 2006 Coherence resonance in spatial

prisoner’s dilemma game. New J. Phys. 8, 22.

(doi:10.1088/1367-2630/8/2/022)
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