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Despite the general interest in nonlinear dynamics in animal populations, plant populations are supposed
to show a stable equilibrium that is attributed to fundamental differences compared with animals. Some
studies find more complex dynamics, but empirical studies usually are too short and most modelling
studies ignore important spatial aspects of local competition and establishment. Therefore, we used a
spatially explicit individual-based model of a hypothetical, non-clonal perennial to explore which mech-
anisms might generate complex dynamics, i.e. cycles. The model is based on the field-of-neighbourhood
approach that describes local competition and establishment in a phenomenological manner. We found
cyclic population dynamics for a wide spectrum of model variants, provided that mortality is determined
by local competition and recruitment is virtually completely suppressed within the zone of influence of
established plants. This destabilizing effect of local processes within plant populations might have wide-
ranging implications for the understanding of plant community dynamics and coexistence.
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1. INTRODUCTION

The study of nonlinear population dynamics has bloss-
omed in recent decades. Especially in the animal ecology
literature does one find widespread evidence for nonlinear
dynamics of population sizes that arises from overcompen-
sating density dependence, time-lags or high-fecundity
values (Krebs 1996; Berryman 1999; Hansen et al. 1999;
Bjornstad 2000; Johnson 2000; Sherratt et al. 2000;
Dennis et al. 2001; Turchin & Batzli 2001).

For plant populations, however, it has been supposed
that cyclic or chaotic behaviour is unlikely to be found
and that the existence of a stable equilibrium has been the
dominant notion in plant ecology (Crawley 1990). Very
few publications discuss the role of nonlinear behaviour
in plant populations and this topic mostly seems to be of
minor importance to most plant ecologists (Cousens
1995; Stone & Ezrati 1996). Changes in population size
have often been attributed to other mechanisms such as
disturbances, variability of environmental factors and
pathogens (Wiegand et al. 1998; Eriksson & Eriksson
2000). It has been assumed that the stability of plant
populations comes from several fundamental differences
compared with animals. First, plants show extreme
physiological plasticity and can reproduce at very small
sizes. The effects of crowding can be ameliorated by long-
distance dispersal and, additionally, recruitment from
long-lived seed-banks could also stabilize population
dynamics (Rees & Crawley 1989; Crawley 1990).

Evidence for the nonlinear behaviour of plant popu-
lations is also rare but this does not necessarily mean that
plant populations are inherently stable. Empirical
examples of nonlinear behaviour in plant populations can
be found in Symonides et al. (1986), Thrall et al. (1989),
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Silvertown (1991), Tilman & Wedin (1991) and Crone &
Taylor (1996).

However, as argued by Crone & Taylor (1996), it is
generally difficult to interpret the results of studies that
found stable equilibrium dynamics, because extremely few
authors have studied population dynamics over several
generations—an argumentation also made by Dodd et al.
(1995). In their study, Crone & Taylor (1996) monitored
population dynamics in a replicated experimental popu-
lation of a greenhouse weed, Cardamine pensylvatica. They
tested for density dependence and fitted the data to both
non-lagged and lagged time-discrete density-dependent
functions. By contrast to the prevailing notion of equilib-
rium dynamics, a strong cyclical population dynamics was
found that could not be accounted for by changing
environmental conditions (Crone 1997b).

Furthermore, few modelling studies exist that have
searched for the conditions of nonlinear behaviour in plant
populations (e.g. Pacala & Silander 1990; Silander &
Pacala 1990). Silander & Pacala (1990) attempted to
determine the conditions for oscillatory and chaotic
behaviour in annual plant populations. Such behaviour
was found to be more probable when annuals had a low
seed dormancy, high germination success, a minimum
plant-size threshold for reproduction or high soil fertility.
They demonstrated with their model a range of dynamic
behaviour from a stable equilibrium to damped and stable
oscillations and apparent chaos. The authors argued that
seed dormancy leading to a time-lag actually stabilizes a
plant population that would otherwise tend to oscillate.

In general, most models that investigate nonlinear
behaviour in plant populations did not include space as
an explicit feature (e.g. Solbrig et al. 1988, but see Dur-
rett & Levin 1998). Space, however, is important because
of the localness of competition, the monopolization of
space by established plants and general issues of spatial
distribution (Crone 1997a). A natural approach to model-
ling plant population dynamics would be a spatially
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explicit individual-based model (Huston et al. 1988;
Grimm 1999). Realistic individual-based plant population
models should contain the following key elements: each
individual has an explicit spatial location, a basal extension
where no other plant can exist and a zone of influence in
which interactions with neighbouring plants occur (Stoll &
Weiner 2000). Furthermore, the number, size and
location of any neighbours should also be taken into
account (Stoll & Weiner 2000). Although there exist such
model approaches, for example the zone of influence (e.g.
Wyszomirski et al. 1999; Weiner et al. 2001) and the
ecological-field (Wu et al. 1985; Walker et al. 1989)
approaches, questions concerning population dynamics
have not been investigated under these approaches.

We investigated the dynamics of a hypothetical, isolated
population of non-clonal perennials with an individual-
based model based on the recently developed field-of-
neighbourhood (FON) approach (Berger & Hildenbrandt
2000, 2001; Bauer et al. 2002; Berger et al. 2002). The
FON approach fulfils the criteria of a realistic plant popu-
lation model (Stoll & Weiner 2000). Individual plants are
represented by circular areas around their stemming
points. These circular areas determine the extension of a
plant’s zones of influence and, additionally, a field super-
imposed on the zone of influence defines the intensity of
influence on a potential neighbour. In particular, we
investigated the following points:

(i) whether stable equilibrium, oscillatory or chaotic
dynamics represent a model population of perennials
based on the FON approach;

(ii) the circumstances under which cyclic patterns occur
in population dynamics; and

(iii) whether reproduction, recruitment, seed dispersal or
mortality mechanisms drive a population to cycle.

2. MODEL AND METHODS

(a) General model description
Our model is individual based and spatially explicit and based

on the FON approach (Berger & Hildenbrandt 2000). At the
beginning of each model run, an initial number of individuals is
randomly distributed over a 50 m2 study area. The results
presented are largely independent of the initial number, age and
spatial distribution of the plants. During each time-step individ-
uals grow, reproduce or die according to the rules listed in § 2c–
f. For the analysis of population dynamics, the model was run
over 1000 time-steps.

(b) Individual characteristics
All individuals are characterized by their spatially explicit pos-

ition, size and age. The size of an individual is represented by
its basal extension, e.g. stem, tussock or tuft area. Furthermore,
each individual has a zone of influence where it interacts with
its neighbours. The extension of this zone is determined by a
nonlinear function of the basal radius as follows:

RFON = aRb
basal,

with a = 10.0 and b = 0.9. By contrast to the zone-of-influence
models, the FON approach superimposes a field on the zone
of influence to quantify the strength of competition (Berger &
Hildenbrandt 2000). Herein, the influence of the focal individ-
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ual on potential neighbours is described in a phenomenological
manner and thereby avoids the definition of resource uptake
dynamics. This approach also assumes that the influence of
more neighbours and their position can be taken into account.
For the quantification of the neighbours’ influence on the kth
individual, the field values in the overlap areas are calculated
and summarized as:

Fk
A =

1
A �

n � k

�
A�

FONn(x,y) da,

where A is the area of the FON of the kth individual and
FONn(x, y) is the value of the FON of the neighbouring plant
n in the overlap areas A�.

(c) Growth of individuals
Individuals grow according to their neighbourhood situation

and their actual size. An isolated individual shows sigmoidal
growth, i.e. its growth rate, GR, is quadratically dependent on
its size, Rbasal

GR = S × MGR,

where MGR is the maximum growth rate and the correction
factor for size S is given by

S = c
Rbasal

Rmax
�1 �

Rbasal

Rmax
�,

where Rmax is the maximum basal radius, c is a constant prop-
ortionality factor and Rbasal is the actual basal radius.

The influence of competition on growth is considered by a
correction factor for competition, C, which takes into account
the negative influence of the neighbouring plants, FA:

C = �1 � 2FA for FA � 0.5

0 for FA � 0.5.

The increment of the basal radius, �Rbasal, consequently is given
by �Rbasal = GR × C. Growth may thus be completely suppressed
if local competition by neighbouring plants is too high. The
competition under this approach is generally asymmetric (Bauer
et al. 2002).

(d) Reproduction
Individuals in the model reproduce by dispersing seeds. Ind-

ividuals started to reproduce at a particular size and seed pro-
duction linearly increased with size such that a particular
amount of seeds was reached at maximum size. Seeds are dis-
persed locally around the mother individual. For the calculation
of the location of a seed, a two-dimensional exponential prob-
ability function was used,

p(r) = exp��
r
��,

where � is the mean of the probability distribution and r is the
particular dispersal distance.

(e) Establishment
Seeds can never establish themselves in the basal areas of

established plants. On all other locations the seed’s establish-
ment depends on the competitive situation. Whenever the local
field value F(x, y), which is defined as the sum of all plants’
fields at point (x, y)

F(x, y) = �n
i = 1

Fi(x, y)
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falls below a particular threshold, the seed is assumed to germ-
inate and establish itself. If F(x, y) exceeds this limit the seedling
is assumed to die because the competitive pressure is too strong
for germination and establishment.

(f ) Mortality
We assumed that plants suffering from high competitive press-

ure have a higher mortality risk than isolated plants. Addition-
ally, plants that have grown to their maximum size are senescent,
and thus mortality increases. Competitive pressure and sen-
escence are combined in an individual’s vigour v at time t

vt = �C × S,

where C and S are the correction factors for competition and
size, respectively (see § 2c).

The vigour values of the last time-steps are averaged assuming
that a plant remembers the experience of the competition past

v̄ =
vt � v t�1 � vt�2 � vt�3 � vt�4

5

with vt being the vigour at time t. If the average vigour falls
below a particular threshold, the individual is assumed to die.
The memory approach allows plants to be able to tolerate com-
petitive pressure for some time, but then die. Alternatively,
plants may recover from competition (i.e. forget former
competition) if competitive pressure is released owing to the
death of neighbouring plants.

(g) Model scenarios
The following parameterizations were used in all scenarios:

maximum basal radius Rmax = 0.3, and local seed dispersal with
a mean of the probability distribution � = 1.5Rbasal.

The base model includes growth, mortality and reproduction
with the following attributes:

(i) a growth rate of MGR = 0.03;
(ii) seed production as a linear function of size, where with no

size threshold and at maximum size, individuals disperse
five seeds;

(iii) establishment of seedlings when the local field value
reaches F(x, y) = 0.0;

(iv) memory mortality of v̄ � 0.5 with v̄ = (vt � vt�1 � v t�2

� vt�3 � vt�4)/5. The model scenarios deviate from the
base model as regards mortality, reproduction, establish-
ment and growth.

Mortality varied according to the different memory functions
and vigour thresholds. Hence, plants remembered the comp-
etition of preceding time-steps 1–5. Changing the vigour thresh-
old led to plants being more robust (v̄ = 0.3) or susceptible
(v̄ = 0.7) when faced with competition.

The scenarios for reproduction included an alteration of the
minimum size for reproduction (0.0 � Rbasal � 0.2) and differ-
ent amounts of seeds at maximum plant size (between 5 and
25).

The establishment of the seedlings was changed so that they
could bear different degrees of competition. The threshold local
field value F(x, y) for successful germination was varied between
0.0 (i.e. no other plant must overlap the germination point) and
1.0 (i.e. overlaps of fields of influence are allowed but no other
plant must have its basal area at the germination point).

The growth rate, MGR, was altered between 0.03 and 0.29

Proc. R. Soc. Lond. B (2002)

so that plants reached their maximum size in about 20 time-
steps at MGR = 0.03 and in about 1 time-step at MGR = 0.29.

(h) Time-series and spatial pattern analysis
The model time-series were analysed regarding their auto-

correlation function (ACF) with Statistica 5.0 so that cycles
in the population dynamics could be identified in addition to
their periodicity.

We characterized the spatial distribution of individuals in the
model output via Ripley’s L-function analysis (Ripley 1977;
Cressie 1991; Bailey & Gatrell 1995) across a range of h scales.
The scale h corresponds to a circular area of radius h around
individual points of the pattern being analysed. All analyses are
based on the general function of L(h) used to characterize the
degree of clustering or hyperdispersion in comparison with a
randomly distributed set of points. We used the standard form-
ulae for the calculation of L(h) as given in Bailey & Gatrell
(1995, pp. 120–121).

The values of L(h) were interpreted as follows: a spatially rand-
om pattern at scale h has an expected value of L(h) = 0. Con-
sequently, L(h) 	 0 indicates clumping whereas L(h) � 0 results
from overdispersion, i.e. more regular distributions. However,
the absolute L(h) value was of little use and any comparison
between scenarios was not meaningful. We tested for the sig-
nificant departure from spatial randomness by estimating the
95% confidence intervals using Monte Carlo simulations
(Cressie 1991; Bailey & Gatrell 1995). The confidence intervals
were constructed by randomizing 19 times the positions of the
points in the pattern being analysed (Haase 1995; Jeltsch et al.
1999). Thereafter, the L(h) values of these randomized patterns
were calculated. We concluded that there was significant clust-
ering when the L(h) value of the model output was smaller than
the smallest L(h) value obtained from the randomized patterns.
Accordingly, overdispersion, i.e. regularity, resulted in L(h)
values that were larger than the largest L(h) obtained in the ran-
domization procedure. L(h) values that fell in between these
boundaries were considered to be spatially random.

3. RESULTS

(a) The base model
In the base model the population size fluctuated

between boundary population sizes of 550 and 900 ind-
ividuals (figure 1a). Splitting the population into three size
classes revealed that the smallest size class contributes
most to the fluctuations (figure 1b). Additionally, the
fluctuations of the medium- and large-size classes have
lower amplitudes and follow the peaks of the lowest size
class with a particular lag (figure 1b). The ACF of these
time-series fluctuations showed cyclic changes that even
at high lags did not fall below the significance level.

Age distribution in the population at a peak point (t =
515) was characterized by the dominance of young indi-
viduals. At a trough point (t = 530) the distribution was
much flatter with a thicker tail indicating the larger occurr-
ence of medium and high ages (figure 2).

The spatial distribution of the largest size class was reg-
ular at lower scales, i.e. to a distance of up to ca. 4–5 m
(figure 3b). At larger scales the pattern was predominantly
a random distribution. In the smallest size class, the spatial
distribution showed mostly clumps (figure 3a).
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Figure 1. Population dynamics produced by the base model.
(a) Time-series of total population size. (b) Same time-series
as in (a) but distinguished by three size classes where size
class 1 (light grey line) contains those individuals that have a
size smaller than one-third of the maximum size, size class 2
(dark grey line) individuals have a size between one-third
and two-thirds of the maximum size and size class 3 (black
line) individuals are larger than two-thirds of the maximum
size.
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Figure 2. Age distribution in the population at the time-
steps (a) t = 515 and (b) t = 530 of figure 1. The time-steps
refer to a high population size at t = 535 and a low
population size at t = 550. The age distribution shows that
at high densities young individuals prevail, whereas at low
population size the distribution is more flattened, indicating
a higher proportion of larger individuals.

(b) Mortality scenarios
Cycles occurred in many mortality scenarios (figure 4a).

In extreme cases, e.g. very high robustness against comp-
etition (vigour threshold = 0.3), the cycles disappeared or
were not detectable. Both the memory function and the
vigour threshold influenced the cycle period with a
decreasing vigour threshold generally increasing the cycle
period. High vigour thresholds indicate the strong influ-
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ence of competition on mortality because plants that
experience only slight competitive pressure already suffer
higher mortality. By contrast, at low vigour thresholds
plants can bear stronger competitive pressure before
experiencing a higher risk of mortality.

The memory of a plant for the competition it experi-
enced in the past has only a slight influence on the appear-
ance of cycles and their period. The longer the plants
remembered past competition the wider the range for cyc-
lic behaviour was.

(c) Reproduction scenarios
Varying the seed amount or the minimum size for repro-

duction influenced neither the appearance of cycles nor
their period (figure 4b). The cycles disappeared only in
two extreme cases where the size from which the plants
started to reproduce was very high so that the population
crashed or when very few seeds were produced. In all
other cases, the population fluctuated with a periodicity
of between 30 and 40.

However, the average population size increased both
with the amount of seeds a plant could release and with
lower reproductive size thresholds. When no size thresh-
old existed, the population size fluctuated between 320
and 900 individuals. Accordingly, with a size threshold of
0.2 the population fluctuated between 270 and 550 indi-
viduals.

(d) Growth scenarios
Increasing the MGR led to cycles in the population

dynamics that showed decreasing periods (figure 4c). At
low MGR values, the population fluctuated with a period
of about 40. At an MGR value of 0.2 the lowest cycle
period was reached (below 10) and then the cycles disap-
peared.

The population size in these scenarios decreased as the
growth rate increased from an average population size of
1000 at MGR = 0.01 to 350 at MGR = 0.29.

(e) Establishment scenarios
Establishment criteria profoundly affected population

cycling (figure 4d ): low establishment thresholds still led
to cycles although their periods decreased with a higher
F(x, y) threshold. Thresholds that were higher than
F(x, y) = 0.5 led merely to damped oscillations or a com-
plete disappearance of cycles.

Larger F(x, y) thresholds also led to higher population
sizes. While at a threshold of F(x, y) = 0.0 the population
size fluctuated between 600 and 900 individuals, with
increasing threshold values for F(x, y) population size
increased accordingly: for F(x, y) � 0.1 the population
size fluctuated between 1400 and 1700, for F(x, y) � 0.5
the population size fluctuated between 3800 and 4200 and
for F(x, y) 	 1.0 the population size was approximately
5000.

4. DISCUSSION

The occurrence of cycles in plant populations has been
doubted with plant populations instead being supposed to
show stable equilibria (Krebs 1996). Contrary to animal
ecology literature, in theoretical plant ecology few investi-
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gations have focused on nonlinear dynamics (Cousens
1995; Stone & Ezrati 1996), with these investigations
mostly not taking into account any spatial effects (but see
Silander & Pacala 1990; Durrett & Levin 1998).

We developed an individual-based model using the
FON approach (Berger & Hildenbrandt 2000) that
assumed that individual plants have a zone of influence in
which each plant interacts with its neighbours and that the
strength of influence changes with the distance from the
stemming point. These assumptions meet the conditions
for realistic individual-based models as suggested by
Stoll & Weiner (2000).

For the base model describing hypothetical perennials
the population size was found to cycle between particular
boundaries. These cycles were, in addition, characterized
by the kind of individuals involved and the corresponding
spatial pattern. We hypothesized that recruitment is
restricted due to the limited availability of free sites for the
establishment of seedlings. Consequently, we expected a
reproductive and a senescent period during one cycle in
the population. During the reproductive period, the popu-
lation is growing and consists mostly of young and small
individuals, whereas a senescent population contains
mostly a few large individuals. In accordance with this
hypothesis we found different age structures in the popu-
lation at peak and trough points. Spatial pattern analysis
indicated that large individuals are evenly distributed and
small individuals show a random spatial pattern, and these
patterns are relatively independent from cycle troughs and
peaks (figure 3).

In agreement with theoretical and empirical expect-
ations (e.g. Eccles et al. 1999; Mast & Veblen 1999), we
found a clumping of seedlings and small plants. Limited
seed-dispersal distances led to an augmented occurrence
of small individuals around their mother plant. However,
large plants were predominantly distributed in a regular
pattern. Consequently, between the seedling and adult
plant stages most individuals die. The cause of mortality
is local competition: at the seedling stage, individuals are
small and their FONs hardly overlap. Growth increases
the basal and FON radii and accordingly augments over-
lap areas. This leads to the depression of growth and vig-
our that results in a higher mortality risk. Plants suffering
from too much local competition over too long a time die.
Such self-thinning is well documented from empirical
observations (Kenkel et al. 1997; Guo & Rundel 1998;
Mast & Veblen 1999; Puigdefabregas et al. 1999), but
models of self-thinning mainly concentrate on even-aged
stands.

As known from theoretical ecology, the interplay of
mortality and recruitment may alter population dynamics
so that in overcompensating populations complex, i.e.
cyclic or chaotic, dynamics can be expected (e.g. May
1976). In order to gain detailed insight into which process
altered the cycles, all of these processes were varied as
follows.

(i) Mortality is directly influenced by competitive press-
ure via the vigour threshold and indirectly by the growth
rate as the latter rate determines how fast an individual
reaches its maximum size, and consequently senescence
and thereby an individual’s vigour. The vigour threshold,
which indicates how sensitive individuals are against com-
petition, had a major influence on the appearance of cycles
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and their period. At intermediate vigour thresholds, the
cycle period decreased as the vigour threshold increased.
Very high and very low competition sensitivity let the
cycles disappear but for different reasons: high vigour
thresholds cause a strong spatial coupling—even small
overlaps in the FON lead to higher mortality—and prob-
ably cause the disappearance of cycles by converting popu-
lation dynamics into chaotic dynamics. By contrast, low
vigour thresholds macerate spatial effects and thus, decou-
ple mortality and competition.

(ii) Population recruitment can be split into two pro-
cesses: seed production and establishment. Although the
population size changed with different minimum sizes for
reproduction and maximum seed number, these para-
meters were of minor importance as regards the cycle
appearance and period. Even discarding the size threshold
for reproduction had no influence on the occurrence of
cycles by contrast to former expectations (Rees & Crawley
1989; Thrall et al. 1989; Rees 1991). The existence of a
seed bank was not assumed, but seeds were always abun-
dant so that a shortage of seeds could not be held respon-
sible for the cycles in the population. This assumption
could be interpreted as low seed dormancy that would,
according to Silander & Pacala (1990), lead to cycles.
However, seeds in our model germinated only successfully
when ‘safe sites’ were available. Safe sites are locations
where the competitive pressure is low, i.e. no other plant
extends its field of influence to the position of the seed.

However, changing the establishment rules resulted in
profound changes in population dynamics. Seedlings
became established at a given location whenever the local
competitive pressure fell below a particular threshold. In
the most restrictive (base) scenario, seedlings could only
establish themselves when no other plant’s FON over-
lapped the location. In further scenarios, this restriction
was loosened so that seeds could establish themselves in
border areas of a FON and finally, seeds could establish
themselves everywhere except in the basal area of an
already established plant.

The part that recruitment plays on cyclic population
dynamics is thus not shortage in available seeds but short-
age of suitable sites.

Interestingly, details of our modelling approach were of
minor importance for the existence of cycles. We changed
the extension of individual FONs by varying the relation
between the basal and FON radii, which either resulted
in compressed, rapidly decreasing fields or in extended,
gradually decreasing fields. Although the population size
was generally lower for extended fields, cycles appeared
with approximately the same period and disappeared in
the same scenarios as for compressed fields (results not
shown).

We conclude from our results that populations of peren-
nial plants may show complex, nonlinear dynamics, i.e.
cycles, if established plants virtually prevent the establish-
ment of seedlings within their zones of influence. Empiri-
cally, so far only one such case has been reported, by
Tilman & Wedin (1991), where a population of perennials
was found to cycle. These perennials accumulated litter
and thereby prevented establishment of young plants.
Such a litter layer caused a time-lag in the turnover.
Theoretically, the same mechanism of cycles due to the
monopolization of space by adults has been described
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for models of sessile marine organisms, e.g. corals
(Roughgarden et al. 1985; Roughgarden & Iwasa 1986).

Our theoretical findings suggest that monopolization of
space by established plants may be a destabilizing mech-
anism of plant-population dynamics. This could also have
implications for community dynamics, e.g. for the coexist-
ence of similar species in diverse communities such as
tropical forests. One reason for the high diversity of both
coral reefs and tropical forests might be that in both eco-
logical systems the monopolization of space is important.
Further empirical studies and meta-analyses could poss-
ibly detect patterns in the relationships between the estab-
lishment and the temporal and spatial patterns of the
plants populations and communities. Further understand-
ing could be gained by a theoretical analysis of a model
of annual plants based on the FON approach. Moreover,
in the model presented here the strict threshold for estab-
lishment could be released by assuming seedling banks,
i.e. cohorts of seedlings that are able to survive, without
growing, for longer periods of time within the zone of
influence of established plants.

The authors thank C. Wissel and two anonymous referees for
their helpful comments on an earlier version of this manuscript.
Dr D. J. Fowler gave linguistic advice.
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Untersuchung ökologischer Interferenzen—Vom Anfang
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