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Abstract

Weakly supervised learning has attracted growing re-

search attention due to the significant saving in annotation

cost for tasks that require intra-image annotations, such as

object detection and semantic segmentation. To this end, ex-

isting weakly supervised object detection and semantic seg-

mentation approaches follow an iterative label mining and

model training pipeline. However, such a self-enforcement

pipeline makes both tasks easy to be trapped in local min-

imums. In this paper, we join weakly supervised object de-

tection and segmentation tasks with a multi-task learning

scheme for the first time, which uses their respective failure

patterns to complement each other’s learning. Such cross-

task enforcement helps both tasks to leap out of their re-

spective local minimums. In particular, we present an ef-

ficient and effective framework termed Weakly Supervised

Joint Detection and Segmentation (WS-JDS). WS-JDS has

two branches for the above two tasks, which share the same

backbone network. In the learning stage, it uses the same

cyclic training paradigm but with a specific loss function

such that the two branches benefit each other. Extensive

experiments have been conducted on the widely-used Pas-

cal VOC and COCO benchmarks, which demonstrate that

our model has achieved competitive performance with the

state-of-the-art algorithms.

1. Introduction

In recent years, Deep Convolutional Neural Networks

(DCNNs) have demonstrated outstanding capability in var-

ious computer vision tasks, such as image classification [2,

63, 37, 33], object detection [26, 54, 53, 45] and semantic

segmentation [46, 13, 12, 81]. The core of the success lies

in the decade-long effort to construct large-scale annotated

datasets, such as ImageNet [17], PASCAL VOC [20], and

∗Corresponding author.

Figure 1. The core idea of the proposd cyclic guidance learning

framework. Individually trained object detectors and semantic

segmenters often fail on challenging cases, like the bottom-left

figure shows. However, we found the failure patterns of object

detection and semantic segmentation are complementary, and thus

propose to train a multi-task model to allow them to benefit each

other in a cyclic way. This figure is best viewed in color.

COCO [43]. However, along with the great potential and

flexibility in tasks like classification, the heavy dependency

on the large-scale annotations had two drawbacks. First, hu-

man labeling can be expensive even with crowd sourcing. It

is especially true for tasks that require pixel-level labeling

such as instance segmentation. Although the community

are aware that an ImageNet-like dataset for those tasks will

be of great benefit, it is still absent, and may be prohibitively

expensive even in the near future. Second, compared with

fully annotated datasets, weakly annotated datasets (i.e.,

only image-level labels are annotated) may be much more

widely available and have much larger scale. And recent ex-

periments show that models trained on these datasets with

noisy and incomplete annotations may perform comparable

or even better than models trained on fully annotated but

smaller datasets [47]. Therefore, weakly supervised learn-
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ing has attracted growing attention [21, 67, 70, 77, 58], es-

pecially for expensive tasks in terms of annotation such as

semantic segmentation and object detection, which aim at

utilizing the widely available datasets in the literatures (such

as PASCAL VOC and COCO) with only image-level label.

Traditional Weakly Supervised Semantic Segmentation

(WSSS) and Weakly Supervised Object Detection (WSOD)

are considered two separate tasks. Both tasks employ a

framework of two-step iterative learning, with one step min-

ing the labels, and the other training the model using the

mined labels. An obvious problem for the framework is

that the model is easy to get trapped in a local minima

[15, 75, 40, 69]. Therefore, the research of WSSS and

WSOD focuses on the introduction of prior and/or regular-

ization [8, 65, 38, 60, 41, 72, 67, 66, 76, 39]. In this paper,

we conquer this challenge from another aspect. Indeed, by

visualizing the final as well as intermediate results of the

trained models, we have some interesting observations and

inspirations in the process of exploring the failure patterns

of popular approaches.

As shown in Fig. 2, a WSSS neural network is often

not able to obtain a label map that is consistent with ob-

ject boundaries. Note how the red regions in the second

column differ from the actual object of interest. This is

exactly the reason why popular WSSS approaches have a

graphical model such as Conditional Random Field (CRF)

following the network to refine the result using additional

signals [49, 50, 76, 52, 42, 34, 66, 1, 78, 1]. While CRFs

demonstrate improvement on the pixel map, the quality of

the final result heavily relies on the intermediate pixel map

from the network. And thus aforementioned research is still

mainly on the semantic labeling network.

On the other hand, to effectively take advantage of

image-level annotations, WSOD approaches usually adopt a

two-stage framework with traditional region proposals fol-

lowed by a classification network. Different from WSSS,

the presence of region proposal avoids the case that a

bounding box crossing the boundary of an object most of

the time. However, WSOD also has its own problems. As

shown in the bottom-left subfigure of Fig. 1, a typical fail-

ure pattern for WSOD is to mis-recognize multiple objects

in the same class as one single object. In some other cases,

WSOD detectors would output an over-tight bounding box

that only cover part of an object.

Very interestingly, the failure patterns of WSSS and

WSOD are actually complementary. We argue that when

tackling the problem of weakly supervised learning from

image-level label, especially WSSS and WSOD, a multi-

task learning framework is a necessity. On one hand, the im-

perfect pixel map from semantic segmentation can help the

object detector leap from the local minima of over-merged

or over-tight bounding boxes. On the other hand, the bound-

ing boxes from the object detector do not have the problem

Figure 2. Comparison of different failure pattens for weakly super-

vised semantic segmentor and object detector. The four columns

show the original images, semantation maps from CAM [85], ob-

ject localization maps from our detection branch, and refined ob-

ject detection maps, respectively. It is worth noting that localiza-

tion map provides higher quality background cue than the classi-

fication maps. The right three columns are drawn with jet color

scale, where red color corresponds to high value and blue color

corresponds to low value. This figure is best viewed in color.

of crossing object boundaries, and thus can provide a rea-

sonably good seed for the semantic segmentation network.

Actually, there are similar ideas emerging in the field of

WSOD in the recent two years. For example, Wei et al. [77]

and Diba et al. [19] both introduced three-stage CNNs, in

which the segmentation stage leverages object localization

cues from the classification stage. But the approaches did

not explicitly model the mutual benefit of the object detec-

tion task and the semantic segmentation task, and thus are

essentially different from the proposed approach.

In this paper, we present a Weakly Supervised Joint De-

tection and Segmentation (WS-JDS) framework. The core

is a backbone deep network supporting two branches for ob-

ject detection and semantic segmentation, respectively. Re-

garding to model training, we propose a Cyclic Guidance

Learning (CGL) approach, as illustrated in Fig. 1. Similar

with traditional WSSS and WSOD approaches, CGL iter-

atively does label mining and model training. But when

training the object detection branch, we use the bounding

boxes derived from both the filtered region proposal and the

segmentation pixel map as training data. And the localiza-

tion cues from the object detection branch are also used to

supervise the training of the semantic segmentation branch.

To demonstrate the effectiveness of the proposed net-

work as well as the training scheme, we present detailed
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Figure 3. Overview of CGL for WS-JDS framework. Typical CNN layers are leveraged to extract the intermediate features of an input

image as the backbone. In detection branch, features for each object proposal are generated by Spatial Pyramid Pooling (SPP) layer

followed by two fully connected layers. A two stream detector [10] is utilized to discovery object instances under image-level supervision.

The object localization map is extracted through gradient-based saliency method via Back-Propagation (BP). In segmentation branch, the

entire feature map are firstly fed into a fully convolutional sub-network to predict segmentation mask via Atrous Spatial Pyramid Pooling

(ASPP), and then supervised (Sup.) by the rough segmentation masks produced by object localization map. Meanwhile, based on the

segmentation mask, we evaluate the proposals confidence of contained object instance properly.

evaluations on both tasks of object detection and seman-

tic segmentation. The evaluation of object detection is per-

formed on PASCAL VOC 2007, 2010 and 2012 [20], with

comparison with several state-of-the-art methods [23, 70,

68, 77, 72, 82, 24, 58]. We also evaluate our method on

COCO dataset [43] for object detection and the instance

segmentation tasks. On both tasks, we demonstrate com-

petitive performance with the state-of-the-art methods.

2. Related Work

Weakly Supervised Object Detection. WSOD refers

to learning an object detector with only image-level annota-

tions that indicate the presence of an category. Based on the

optimization objective, WSOD methods can be divided into

two groups, i.e., object discovery and instance refinement.

The object discovery approaches optimize the image-

level classification loss based on traditional object proposal

directly, i.e., formulate the WSOD problem with a Multi-

Instance Classification (MIC) paradigm. The learning step

of MIC alternates between selecting positive samples and

training an appearance model. A number of different strate-

gies to train the MIC model had been proposed in the litera-

ture [15, 73, 9, 75, 60, 23, 57]. Recent approaches combined

Convolutional Neural Networks (CNNs) and MIC into a

unified framework [10, 19]. Contextual information was

introduced to achieve promising improvement [38]. Re-

cently, Tang at al. [70] proposed to replace traditional ob-

ject proposal extraction stage by generating and refining ob-

ject proposals in an end-to-end framework. There are some

methods focused on proposal-free paradigms by taking ad-

vantage of deep feature map [7, 5, 87] and class activation

maps [85, 28, 83]. However, this paradigm seriously de-

pends on the quality of feature maps and is hard to dis-

tinguish different instances in challenging scenes. Some

work also used additional annotations and data to improve

the performance, e.g., object size estimation [60], instance

count annotation [22], video motion cue [64] and human

verification [48]. Some of the additional data may be from

a different domain. Therefore, knowledge transfer for pro-

gressive cross-domain adaptation was also exploited, e.g.,

data domain adaption [59] and task domain adaption [35].

The instance refinement approaches also follow the

bounding box mining and model training framework. But

instead of optimizing a MIC loss, they optimize the objec-

tive function of instance-level localization. Therefore, from

another prospect, they have an additional instance refine-

ment stage after object discovery by introducing a fully su-

pervised detector. For example, the work in [40, 36, 22, 69]

mined the high-confidence proposals and treated them as

positive samples to train a fully supervised model. Many ef-

forts [84, 24] had been made to mining high-quality bound-

ing boxes. To further improve the robustness, there are

some works that combined the weakly supervised MIC

model and fully supervised detectors. For example, Tang

et al. [69] introduced multiple supervised branches to refine

the result from weakly supervised model. Work in [41, 72]

proposed min-entropy prior to alleviate the ambiguity of re-

sult and used the pseudo ground-truth object to optimize

the objective function of localization. Zhang et al. [82] pro-

posed to estimate sample-wise training difficulty to learn a

fully supervised detector in an easy-to-difficult order.

Weakly Supervised Semantic Segmentation. WSSS

methods can also been divided into two groups. The first

group [50, 61, 55, 86] leverages CNN built-in pixel-level

cues and constraint priors to learn segmentation masks,

while a common practice for the second group [39, 78, 1,

34] is to treat initial object localization cues, (which is often

produced by classification networks,) as pseudo supervision

and train a fully supervised segmentation network.

In the first group, Pathak et al. [50] proposed a con-

strained CNN, which applied linear constraints on the struc-

tured output space of pixel labels. Saleh et al. [55] extracted

the built-in masks directly from the hidden layer activation,
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and incorporated the resulting masks via a weakly super-

vised loss. There are also works that derive category-wise

saliency maps from intermediate feature maps of CNNs to

estimate the segmentation masks [61, 86].

In the second group, popular methods [51, 11, 21] lever-

aged object saliency map or feature activation map to pro-

vide complimentary information. Many priors or regular-

ization [39, 66, 67] were proposed to improve the segmenta-

tion result. Different kinds of supervisions were exploited:

web data [32, 56], bounding boxes [79], scribbles [42],

points [6], etc. There are also work [76, 52] that focused

on improving feature learning in iterative frameworks. Re-

cently, various approaches based on iteratively mining com-

mon feature [74], seeded region growing [34], random-walk

label propagation [71], dilated convolution [78] and pixel-

level semantic affinity [1] were proposed.

Multi-task Learning. Learning detection and segmen-

tation jointly was first employed by Hariharan et al. [29] in

fully supervised learning. Although the framework in [29]

was multi-stages, it still showed improvement of perfor-

mance on individual task. He et al. [30] also demonstrated

that box detection can benefit from multi-task learning. Re-

cent works provided more complex mechanism to com-

bine the two tasks with the assistance of direction predic-

tion [12], and information flow boosting [44]. In weakly

supervised learning, some related work used segmentation

masks to boost the performance of detection task [19, 77].

However, different to those works, our method also exploits

to improve segmentation branch with detection result via

CGL. And in weakly supervised setting, ours is the first to

join object detection and semantic segmentation tasks.

3. The Proposed Method

Overview: The overall architecture of the proposed ap-

proach is illustrated in Fig. 3. Sharing the same back-

bone, which is VGG16 [63], the proposed model has two

branches, i.e., object detection and semantic segmentation.

In particular, the object detection branch, built on top of

spatial pyramid pooling layer, produces box prediction and

object localization map. Following the previous weakly su-

pervised semantic segmentation approaches [78, 39, 55], we

leverage the inferred localization maps to produce pseudo-

ground-truth of segmentation masks from training images,

which are then used as supervision to train the segmenta-

tion branch. The predicted confidence masks from the seg-

mentation branch are then employed to evaluate object pro-

posals on the likelihood of containing the object instance,

which in turn benefits the object detection branch.

Object Detection Branch: We employ WSDDN [10]

for the object detection branch and further improve the per-

formance using the CGL scheme. In particular, let I ∈
ℜH×W×3 be an input image, t ∈ {0, 1}C be the corre-

sponding image-level labels, and C be the total number

of categories. H and W are the image height and width,

respectively. As illustrated by the gray region in Fig. 3,

we first extract feature of R object proposals {p1 . . . pR}
from the VGG backbone, and then the feature from the

Spatial Pyramid Pooling (SPP) layer [31] is forked into

two streams, i.e., classification stream and detection stream,

producing two score matrices Xc, Xd ∈ R
R×C by two

fully-connected layers, respectively. Both score matrices

are normalized by softmax functions σ(·) over categories

and proposals, respectively. Then the element-wise prod-

uct of the output of the two streams is again a score matrix:

Xs = σ(Xc) ⊙ σ(Xd). To acquire image-level classifi-

cation scores, a sum pooling is applied: yk =
∑R

r=1
Xs

rk.

Then we obtain a cross-entropy loss function Ldet:

Ldet =

C
∑

k=1

{

tk logyk + (1− tk) log(1− yk)
}

, (1)

where tk is the ground truth labels of whether an object of

category k is presented in the image I .

Prior Guidance: However, such object discovery opti-

mization lacks prior guidance. Note Xs is calculated based

on local information of each individual proposal [58]. The

correlation among instances is typically ignored and the op-

timization might converge to an undesirable local minimum

during MIC learning [3]. Recent work in [38, 77] proposed

to use contextual information as a supervisory guidance,

which enforces the predicted object region to be compati-

ble with its surrounding context. We propose to leverage

knowledge of the learned masks from segmentation branch

to refine the detection via objectness prior [77, 58].

Semantic Segmentation Branch: In order to obtain the

segmentation masks, we first collect the intermediate fea-

tures before the last pooling layer of the backbone network.

Then we feed it to the convolutional blocks with multiple

dilated rates to localize object-related regions perceived by

different receptive fields, similar to DeepLab-ASPP [14],

as illustrated by the blue region in Fig. 3. With the pro-

duced object localization cues, we train the segmentation

branch with pixel-wise loss Lseg, which is widely adopted

by fully supervised schemes. Different from previous lit-

erature [39, 55, 14, 78] of fully/weakly supervised seman-

tic segmentation, when applying Fully Convolutional Net-

works (FCNs) to semantic segmentation, which typically

uses a per-pixel softmax and a multinomial cross-entropy

loss, we use a per-pixel Sigmoid and a binary cross-entropy

loss. Then Lseg is similar to Ldet, but with additional spatial

dimensions:

Lseg =

C,Ĥ,Ŵ
∑

k,h,w

{

Mk
hw logSk

hw + (1−Mk
hw) log(1− Sk

hw)
}

,

(2)

where M and S denote the rough segmentation masks pro-

duced by detection branch and the predicted masks with C
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Figure 4. Visualization of the intermediate steps of the proposed CGL. The rows show input image, object localization map from object

detection branch, rough segmentation map derived from the localization map, and output of segmentation branch without CRF post-

processing, respectively. Red, blue, and green pixels in the third row indicate foreground, background and uncertain, respectively.

channels, respectively. And Ĥ, Ŵ denote the image height

and width of the predicted masks, which is usually 1/16 of

H,W . Besides, we also use a constrain-to-boundary loss

from [39] to encourage segmentation masks to match up

with object boundaries.

Our definition of Lseg allows the segmentation network

to generate masks for every category without competition

among categories. We rely on the dedicated detection

branch to predict the category label used to select the out-

put masks. As demonstrated in [30], by using this decou-

pled mask and category prediction, once the instance has

been classified as a whole (by the detection branch), it is

sufficient to predict binary masks without concern for the

categories, which makes the model easier to train.

Cyclic Guidance Learning: Theoretically, the loss

functions of WSOD and WSSS lead to complementary

failure patterns. On one hand, most works formulate the

WSOD problem with an MIC paradigm. Its explicit penalty

on false positives from negative bags gives WSOD low false

positive rate. However, to prevent self-reinforcing into a lo-

cal minimum, popular loss only penalizes confident false

negatives (which gives limited pseudo-ground-truth) with

an IoU less than a threshold (which compromises sensitiv-

ity). Consequently, WSOD usually suffers from ambiguous

feature maps around non-discriminative parts of objects. On

the other hand, for WSSS, the loss is defined on pixel-level.

The lack of explicit penalty on false positives often results

in noisy background. But the fine granularity gives better it

precision on ambiguous regions to guide object localizer.

We propose a CGL scheme to exploit complementary

knowledge learned by individual tasks, as illustrated by

the blue dashed line in Fig. 3. For the detection-to-

segmentation guidance, we leverage the inferred localiza-

tion maps to produce rough segmentation masks M in Eq. 2,

which are then used as supervision to train the segmenta-

tion branch. Different from [19, 77] that introduced extra

saliency detection and classification branches to generate

localization maps [85, 50], we produce built-in background

and foreground cues from the detection branch through

gradient-based saliency detection following [62, 39], which

has the benefit of parameter free. In particular, the gradi-

ent of classification score flows from detection branch to

the first layer of backbone by back-propagation, which is

illustrated in the second row of Fig. 4. On the object local-

ization maps, we assign the pixels with values larger than

a pre-defined normalized threshold (i.e., 0.1) with the cor-

responding category label as the foreground regions. We

also choose pixels with low normalized value (i.e., 0.005)

as background sample. The remaining pixels are marked

as uncertain and ignored during training. The result fore-

ground, background and uncertain pixels from sample im-

ages are illustrated in the third row of Fig. 4.

The last row of Fig. 4 illustrates that the output of seg-

mentation branch is able to generalize object localization

seed to predict uncertain pixels, which in turn provides

guidance to the detector training. For example, a false pos-

itive detection occurs in the fifth column, when the detec-

tion branch fails to discover multiple instance of category

horse existed in the image. And therefore object localiza-

tion map is half-baked (second row). In this case, the image-

level annotation cannot correct this problem, which ends

up with a pseudo ground truth of segmentation with most
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Table 1. Object detection on PASCAL VOC 2007 in terms of AP (%) on test set.

Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

WSDDN [10] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

WSDDN∗ 45.9 48.1 32.4 13.3 23.0 61.7 51.1 40.7 16.8 37.9 23.8 28.4 43.1 53.0 6.5 21.1 41.2 44.0 60.6 45.9 36.9

WSOD ||WSSS 50.1 56.3 32.4 22.7 19.0 51.8 41.1 62.6 2.7 45.3 45.6 24.4 43.7 56.0 12.4 20.5 38.1 34.8 53.2 33.4 37.3

WSOD→WSSS 52.4 63.5 28.8 16.1 27.3 58.0 55.8 41.6 22.5 47.3 14.0 25.9 8.5 55.2 18.9 22.1 46.9 45.0 54.8 49.9 37.7

WSOD←WSSS 39.8 61.4 34.6 18.1 27.3 66.1 52.9 50.8 15.6 43.0 42.4 46.1 19.4 57.9 30.5 24.2 44.0 48.2 64.8 52.9 42.0

WSOD ⇋ WSSS 52.0 64.5 45.5 26.7 27.9 60.5 47.8 59.7 13.0 50.4 46.4 56.3 49.6 60.7 25.4 28.2 50.0 51.4 66.5 29.7 45.6

pixels marked as background for the second instance (third

row). However, the segmentation branch is able to predict

a coarse mask properly to overturn the mistake (last row).

Thus the segmentation map provides supervisor guidance

to refine the detector. Another example of object detection

branch benefits segmentation branch is illustrated in the last

column of Fig. 4, when the segmentation branch fails to

predict coarse mask properly of dog existed in the image,

the detection branch provides conservative seed of dog and

clear supervision of background.

For the segmentation-to-detection guidance, we treat the

learned masks as localization prior to refine the proposal

classification following [58]. In particular, the masks pro-

vide contextual information for each proposal. Given the

r-th proposal and the k-th category, the confident weight is

estimated from the masks S:

Wrk =
1

√

|pr|

∑

i,j∈pr

T (Sk
ij)−

1
√

|pcr|

∑

i,j∈pc

r

T (Sk
ij), (3)

where T (Sk
ij) = 1[Sk

ij ≥ 10−1 ·maxSk], pr and pcr is the

r-th proposal and the corresponding contextual region. The

contextual region pr is defined as the surrounding regions

of pr by scaling the box by a factor of 1.8 [25]. Therefore,

before computing image-level score with sum pooling, we

refine the predicted proposal score Xs with W by element-

wise (Hadamard) product. And we get the refined cross-

entropy loss function as:

Lr
det =

C
∑

k=1

{

tk logy
r
k + (1− tk) log(1− yr

k)
}

, (4)

where yr
k =

∑R

r=1
WrkX

s
rk. However, mask S is unstable

in early training iterations. Therefore, we also use object

localization map to refine the proposal classification.

During the testing stage, we run the box prediction

branch on these proposals, followed by a non-maximum

suppression. At the same time, the mask prediction branch

outputs the segmentation masks for the entire image. Then

we extract the masks of detection boxes.

4. Experimental Evaluation

4.1. Datasets and Evaluation Protocol

Dataset. We evaluate the proposed approach on PAS-

CAL VOC 2007, 2010, 2012 [20] and COCO [43], which

are widely-used benchmark datasets. PASCAL VOC 2007

consists of 2, 501 training images, 2, 510 validation images,

and 4, 092 test images over 20 categories. PASCAL VOC

2010 consists of 4, 998 training images, 5, 105 validation

images, and 9, 637 test images over 20 categories. PASCAL

VOC 2012 consists of 5, 717 training images, 5, 823 vali-

dation images, and 10, 991 test images over 20 categories.

Following the standard settings of weakly supervised object

detection, we use both training and validation sets with only

image-level labels for training. The performance of the lo-

calization task, defined as predicting boxes when categories

are known, is evaluated on the training and validation sets,

and the performance of the detection task, defined as pre-

dicting categories and boxes simultaneously, is evaluated on

the testing set, following common practice [18, 10]. Note

our evaluation settings are more challenging than some pop-

ular approaches, such as [15, 8, 9], which removed the hard

images containing only truncated and difficult objects. We

also evaluate our approach on the MS COCO dataset [43],

which is among the most challenging datasets for instance

segmentation and object detection. It consists of 80 object

categories with pixel-wise instance mask annotations. Our

experiments involve the 115k training set, 5k validation set.

Only image-level annotations are used in training.

Evaluation Protocols. Two protocols are used for evalu-

ation: CorLoc and mean Average Precision (mAP). CorLoc

is a commonly used measurement that quantifies localiza-

tion performance by the percentage of images that contain

at least one object instance with at least 50% overlapped

to the ground-truth. CorLoc indicates the ratio of images

in which a method correctly localizes an object of the tar-

get category according to the PASCAL-criterion. The mAP

follows standard PASCAL VOC protocol to report the mAP

at 50% Intersection-over-Union (IoU) of the detected boxes

with the ground-truth. We evaluate the CorLoc and mAP on

the training/validation and testing splits, respectively. For

MS COCO data, we also report the standard COCO metrics

including AP (averaged over IoU thresholds), AP50, AP75,

APS , APM , and APL (AP at different scales). We use the

superscripts r and b for object detection AP and instance

segmentation AP, respectively.

4.2. Implementation Details

The proposed approach is implemented using Caffe2.

Both Python and C++ interfaces are used. For the backbone

network, we use VGG16 [63] that is initialized with the

weights pretrained on ImageNet [17]. We use WSDDN [10]

as our baseline model for the WSOD branch.
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Table 2. Object detection on PASCAL VOC 2007 in terms of AP (%) on test set.

Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

WSDDN VGG16 [10] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

WCCN [19] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

Jie et al. [36] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

OICR-VGG16 [69] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

SPAM-CAM [28] - - - - - - - - - - - - - - - - - - - - 27.5

TST [59] - - - - - - - - - - - - - - - - - - - - 33.8

TS2C [77] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

Ge et al. [23] 49.1 53.6 43.5 21.3 18.5 66.9 64.0 55.6 11.9 53.7 26.6 45.6 48.7 64.6 20.4 23.3 50.0 44.7 55.9 60.6 43.9

Tang et al. [70] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

WS-JDS 52.0 64.5 45.5 26.7 27.9 60.5 47.8 59.7 13.0 50.4 46.4 56.3 49.6 60.7 25.4 28.2 50.0 51.4 66.5 29.7 45.6

OICR FRCNN [69] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

MELM [72] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

ZLDN [82] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

Ge et al. [24] 64.3 68.0 56.2 36.4 23.1 68.5 67.2 64.9 7.1 54.1 47.0 57.0 69.3 65.4 20.8 23.2 50.7 59.6 65.2 57.0 51.2

W2F [84] 63.5 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4

TS2C FRCNN [77] - - - - - - - - - - - - - - - - - - - - 48.0

Tang et al. FRCNN [70] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

WS-JDS FRCNN 64.8 70.7 51.5 25.1 29.0 74.1 69.7 69.6 12.7 69.5 43.9 54.9 39.3 71.3 32.6 29.8 57.0 61.0 66.6 57.4 52.5

Table 3. Object localization on PASCAL VOC 2007 in terms of CorLoc (%) on trainval set.

Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

WSDDN VGG16 [10] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

WCCN VGG16 [19] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

Jie et al. [36] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1

OICR-VGG16 [69] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

SP-VGGNet [87] 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6

TST [59] – – – – – – – – – – – – – – – – – – – – 59.5

TS2C [77] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

Ge et al. [23] 75.9 67.6 62.2 37.3 36.6 71.5 80.2 63.8 19.7 70.6 32.4 56.1 67.8 81.7 35.9 50.9 73.4 50.4 66.0 66.8 58.3

Tang et al. [70] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

WS-JDS 82.9 74.0 73.4 47.1 60.9 80.4 77.5 78.8 18.6 70.0 56.7 67.0 64.5 84.0 47.0 50.1 71.9 57.6 83.3 43.5 64.5

OICR FRCNN [69] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

ZLDN [82] 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2

W2F [84] – – – – – – – – – – – – – – – – – – – – 70.3

Tang et al. FRCNN [70] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4

WS-JDS FRCNN 79.8 84.0 68.3 40.2 61.5 80.5 85.8 75.8 29.7 77.7 49.5 67.4 58.6 87.4 66.2 46.6 78.5 73.7 84.5 72.8 68.6

Table 4. Object detection and localization on PASCAL VOC 2010
and 2012 in terms of mAP (%) and CorLoc (%).

Method
2010 2012

mAP (%) CorLoc (%) mAP (%) CorLoc (%)

Multi-Fold MIL [16] 27.4 55.2 – –

OICR-VGG16 [69] – – 37.9 62.1

Jie et al. [36] – – 38.3 58.8

TS2C [77] – – 40.0 64.4

Tang et al. [70] – – 40.8 64.9

WS-JDS 39.9 63.1 39.1 63.5

OICR FRCNN [69] – – 42.5 65.6

MELM [72] – – 42.4 –

ZLDN [82] – – 42.9 61.5

W2F [84] – – 47.8 69.4

TS2C FRCNN [77] – – 44.4 –

Tang et al. FRCNN [70] – – 45.7 69.3

WS-JDS FRCNN 45.7 68.1 46.1 69.5

Training. We use a mini-batch size of 128, learning rate

of 0.001, momentum of 0.9, and dropout rate of 0.5. We use

a step learning rate decay schema with decay weight γ =
0.1 and step size of 20 epochs. In the multi-scale setting, we

use five scales {480, 576, 688, 864, 1200}. To improve the

robustness, we randomly adjust the exposure and saturation

of the images by up to a factor of 1.5 in the HSV space.

And a random crop with 0.9 of the original images size is

applied. We use MCG [4] to generate object proposals for

all experiments, including our implementation of baseline

methods. We set the max number of region proposals in an

image to be 2, 048. All models are trained for 30 epochs.

We apply Xavier [27] and Gaussian initialization to the new

convolutional and fully-connected layers, respectively.

Testing. The learned detectors are evaluated in two

paradigms, following [40, 19, 69, 24, 77, 58, 70]: The

first paradigm directly applies the learned detectors on the

testing images and outputs the scores for each region pro-

posal as the detection results. The second paradigm labels

bounding boxes in training/validation images using WSOD,

and then uses these bounding boxes as pseudo ground-

truth to train the fully supervised detector, which is Fast-

RCNN [26] in our case, for testing. In this scenario, for

each category, we treat the proposal with maximum detec-

tion score as the pseudo ground-truth bounding box. The

test scores are the average of all scales and flips. Detec-

tion results are post-processed by non-maximum suppres-

sion using a threshold of 0.5 IoU. The predicted masks are

upsampled to match the size of the input image, and then

apply a fully-connected CRF to refine the result.

4.3. Comparison to Baselines

To demonstrate the necessity and benefit of learning

WSSS and WSOD models simultaneously, we compare our

full framework with baseline models with different designs

removed in Tab. 1. The first variation (WSOD || WSSS)

trains two tasks independently with the shared backbone

network. The second (WSOD → WSSS) and third (WSOD

← WSSS) variations employ only one direction guidance,

i.e., the detection-to-segmentation or the segmentation-to-

detection guidance, respectively. The fourth (WSOD ⇋
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Table 5. Instance segmentation and object detection on minival set of COCO.

Method APr APr
50

APr
75

APr

S
APr

M
APr

L
APb APb

50
APb

75
APb

S
APb

M
APb

L

WSDDN∗

BB 3.4 9.5 2.9 1.0 3.7 9.2

9.5 19.2 8.2 2.1 10.4 17.2ELL 4.5 10.3 4.3 1.3 4.3 9.1

MCG 5.2 10.7 5.1 1.8 6.3 12.0

ContextLocNet∗
BB 4.2 10.3 4.1 2.1 5.3 10.1

9.9 19.4 8.7 2.1 10.8 17.9ELL 4.7 10.6 4.4 1.3 5.4 10.0

MCG 5.5 10.9 5.3 2.0 6.7 11.9

WS-JDS 6.1 11.7 5.5 1.5 7.1 12.2 10.5 20.3 9.2 2.2 10.9 18.3

WSSS) one is our full CGL scheme. The performance

of WSOD is only slightly improved in WSOD || WSSS

and WSOD → WSSS compared with WSDDN, which is

mainly because that the WSOD model is trained indepen-

dently without guidance from WSSS in these two base-

lines. The performance boost mainly benefits from sharing

the backbone network of multi-task learning. In WSOD←
WSSS, the performance of WSOD is significantly improved

by exploiting segmentation pixel maps to refine the mined

supervision. Finally, the proposed CGL scheme (WSOD

⇋ WSSS) further improves the performance by combin-

ing guidance from both directions. As comparing to WS-

DDN [10], Tab. 1 shows that our model reaches 45.6% mAP

for weakly supervised object detection. Although our re-

production of WSDDN on VGG16 backbone (WSDDN∗)

is superior to the original WSDDN, our method still out-

performs this baseline with a large margin. Experimental

results demonstrate that the complementary knowledge of

detection and segmentation can benefit individual training.

4.4. Comparison to the State of the Arts

PASCAL VOC. We divide the compared WSOD meth-

ods into two categories: object discovery and instance re-

finement based methods, as mentioned in Sec. 2 and in the

first and second parts in Tab. 2 3. For fair comparison, we

do not include methods that use additional data [60, 64, 22].

For object discovery, we compare our method with the state

of the arts, including ZLDN [82], MELM [72], TS2C [77],

OICR [69] among others. The proposed model reaches

45.6% mAP, and achieves state-of-the-art performance. It

is worth noting that the improvement from our framework

is orthogonal to those works, so the proposed CGL frame-

work can also benefit from all the techniques proposed in

the aforementioned literatures. For instance refinement, we

also train a Fast-RCNN [26] with the pseudo ground-truth

localization extracted from our weakly supervised detec-

tors. We achieve a performance of 52.5% mAP, which is su-

perior to previous work in [40, 80, 69, 72, 82, 58, 77, 70, 84]

with gain of about 0.1 ∼ 5.5% in Tab. 2. We further con-

duct experiments on PASCAL VOC 2010 and 2012. Tab. 4

shows our method consistently achieves competitive perfor-

mance to the state-of-the-art approaches on all metrics.

COCO. With the proposed technique, we perform in-

stance segmentation on the COCO, which is more chal-

lenging than the PASCAL VOC. To the best of our knowl-

edge, this is the first work reporting results for image-

level supervised instance segmentation on COCO. We con-

struct several baselines based on object bounding boxes ob-

tained from weakly supervised localization methods follow-

ing [86]. We use three mask extraction strategies: The

first strategy uses the entire bounding boxes as the instance

masks (BB). The second strategy fits a maximum ellipse

on the bounding boxes (ELL). The third strategy retrieves a

max overlap segmentation mask in MCG with the bounding

boxes (MCG). As illustrated in Tab. 5, our method achieves

better performance in termed of APr compared with all

other methods in the instance segmentation task. We also

report performance of the object detection task on COCO.

The proposed approach outperforms the baselines methods

by 1.0% and 0.6% in APb, respectively.

5. Conclusion

In this paper, we propose a multi-task learning frame-

work for the problems of weakly supervised object detec-

tion and semantic segmentation. We found that the differ-

ent failure patterns of the two tasks can actually benefit each

other and alleviate the problem of the optimization getting

stuck in local minimum. To leverage the complementary

knowledge learned by the two tasks, we further propose

a Cyclic Guidance Learning scheme. In this scheme, the

detection branch provides a reasonably good seed for seg-

mentation branch, while the learned masks help the detector

to leap from local minimum. On the widely-used bench-

marks of Pascal VOC and COCO, the proposed method

achieves competitive or superior performance to state-of-

the-art methods in both weakly supervised object detection

and instance segmentation tasks.
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[4] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale Combinatorial Grouping. In CVPR, 2014.

[5] L. Bazzani, A. Bergamo, D. Anguelov, and L. Torresani.

Self-Taught Object Localization with Deep Networks. In

WACV, 2016.

[6] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei.

What’s the Point: Semantic Segmentation with Point Super-

vision. In ECCV, 2016.

[7] A. J. Bency, H. Kwon, H. Lee, S. Karthikeyan, and B. S.

Manjunath. Weakly Supervised Localization using Deep

Feature Maps. In ECCV, 2016.

[8] H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly Super-

vised Object Detection with Posterior Regularization. In

BMVC, 2014.

[9] H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly supervised

object detection with convex clustering. In CVPR, 2015.

[10] H. Bilen and A. Vedaldi. Weakly Supervised Deep Detection

Networks. In CVPR, 2016.

[11] A. Chaudhry, P. K. Dokania, and P. H. S. Torr. Discovering

Class-Specific Pixels for Weakly-Supervised Semantic Seg-

mentation. In BMVC, 2017.

[12] L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff,

P. Wang, and H. Adam. MaskLab: Instance Segmentation

by Refining Object Detection with Semantic and Direction

Features. In CVPR, 2018.

[13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic Image Segmentation with Deep Con-

volutional Nets and Fully Connected CRFs. In ICLR, 2015.

[14] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. DeepLab: Semantic Image Segmentation with

Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs. TPAMI, 2017.

[15] R. G. Cinbis, J. Verbeek, and C. Schmid. Multi-fold MIL

Training for Weakly Supervised Object Localization. In

CVPR, 2014.

[16] R. G. Cinbis, J. Verbeek, and C. Schmid. Weakly Super-

vised Object Localization with Multi-fold Multiple Instance

Learning. TPAMI, 2015.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009.

[18] T. Deselaers, B. Alexe, and V. Ferrari. Weakly supervised lo-

calization and learning with generic knowledge. IJCV, 2012.

[19] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van

Gool. Weakly Supervised Cascaded Convolutional Net-

works. In CVPR, 2017.

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The Pascal Visual Object Classes (VOC)

Challenge. IJCV, 2010.

[21] R. Fan, Q. Hou, M.-M. Cheng, G. Yu, R. R. Martin, and S.-

M. Hu. Associating Inter-Image Salient Instances for Weakly

Supervised Semantic Segmentation. In ECCV, 2018.

[22] M. Gao, A. Li, R. Yu, V. I. Morariu, and L. S. Davis. C-WSL:

Count-guided Weakly Supervised Localization. In ECCV,

2018.

[23] C. Ge and J. Wang. Fewer is More : Image Segmentation

Based Weakly Supervised Object Detection with Partial Ag-

gregation. In BMVC, 2018.

[24] W. Ge, S. Yang, and Y. Yu. Multi-Evidence Filtering and

Fusion for Multi-Label Classification, Object Detection and

Semantic Segmentation Based on Weakly Supervised Learn-

ing. In CVPR, 2018.

[25] S. Gidaris and N. Komodakis. Object detection via a multi-

region & semantic segmentation-aware CNN model. In

ICCV, 2015.

[26] R. Girshick. Fast R-CNN. In ICCV, 2015.

[27] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

2010.

[28] A. Gudi, N. van Rosmalen, M. Loog, and J. van Gemert.

Object-Extent Pooling for Weakly Supervised Single-Shot

Localization. In BMVC, 2017.
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