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Abstract

We study two new cyclic reservation schemes for the efficient operation of systems

consisting of a single server and multiple queues. The schemes are the Globally Gated
regime and the Cyclic-Reservation Multiple-Access (CRMA). Both procedures possess

mechanisms for prioritizing the queues and lend themselves to a closed-form analysis.
The combination of these two properties allows for effective and efficient operation of
the systems, for which we provide a thorough delay analysis and derive simple rules
for optimal operation.

l. Introduction

Queueing systems consisting of N queues served by a single server who
incurs switchover periods when moving from one queue to another have been
widely studied in the literature and used as a central model for the analysis of a

large variety of applications in the areas of telecommunications, computer networks,
manufacturing, etc. Very often, such applications are modeled as a polling system
in which the server visits the queues in a cyclic or some other pre-determined order.
An issue that is crucial for all these applications is the need for a service scheme
which will allow designers to prioritize the different queues and thus affect and

optimize overall system performance.

In many of these applications, as well as in most polling models, it is common
to prioritize the queues by controlling the amount of service given to each queue

during the server's visit. A common service policy is the gated regime, in which
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all (and only) the customers present when the server starts visiting the queue are

served during that visit. A similar policy is the exhaustive procedure in which at

each visit the server attends the queue until it becomes completely empty. Another

policy is the limited service which uses a parameter k;> 1 for queue i so that at most

ft; customers are served at each visit to that queue. The disadvantage of the gated

and the exhaustive policies is that they cannot be used to prioritize the queues. The

limited service, in contrast, possesses very strong mechanisms for prioritizing the

queues but suffers considerably from the fact that it is not amenable to efficient
analysis (the numerical derivation of the mean delay in this system requires a

computational effort that is exponential in the number of queues and thus is feasible

only for systems consisting of only few queues (see e.g. Leung t181, Blanc [3]), and

thus it is very difficult to find an efficient operating strategy for it.
The analysis of polling systems with gatcd or exhaustive service has been

presentcd in numcrous papers in the literature, e.g.Cooper [11], Eisenberg [13],
Konheim and Meister [16] - to mention a few, summarized in a book by Takagi [22],
and further surveyed reccntly by Levy and Sidi [17] and Takagi 123).This paper

focuses on the study ofschemcs which (1) possess mechanisms for prioritizing the

queues, and (2) lcnd themsclves to effective analysis. The combination of these two

properties allows designers to affect the system performance as well as to predict

the outcome of thcir design. As a result, the operation of these systems can be

optimized at the design stage.

Specifically, we focus on two schemes: (1) the Cyclic-Reservation Multiple-
Acccss (CRMA), which has been proposed by Nassehi t20l for the operation of
high-speed local area networks, and (2) the Globally-Gated (GG) scheme, which is
a new procedure introduced in this paper and resembles the cyclically Gated service

policy. Thc two schemcs are represented by a single server who serves customers

arriving at N different queues. In both procedures, a cyclic reservation mechanism

is used to control the service of these queues.

In the CRMA, a collector is sent periodically for a cyclic tour among the

queues to collect their current reservations. After a completion of a tour by a

collector, its rescrvations are augmented to a "central" queue and served (once the

service of previous rescrvations has been completed) in the order collected. Typically,

a new collcctor is sent before the previous one completes its tour. The CRMA is
an access scheme for Gbit/s LANs and MANs which offers a high throughput
efficiency and can also be operated on a dual-bus configuration. Another application
is in the area of Flexible Manufacturing Systems, where the queues represent work
stations producing units or parts that should be completed in a "central" location.
The "collectors" move around and bring the jobs to the central location for final
processing.

The Globally-Gated (GG) schcme uses a time-stamp mechanism for its cyclic
reservation: the server moves cyclically among the queues, and uses the instant of
cycle-beginning as a reference point of time; when it reaches a queue, it there serves

all the customers who were present at the queue at the cycle-beginning. This strategy
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can be implemented by marking all customers with a time-stamp denoting their
arrival time. In its nature, the GG policy resembles the regular Gated policy. However,

the GG policy leads to a simpler mathematical model, which in turn allows for

derivation of closed-form expressions for the mean delay in the various queues. As

a result, the operation of the polling system by the GG policy is easy to control and

optimi ze.

The GG scheme may also serve as a modcl for estimating the performance

of more complicated real systems such as a bridge-queue between rings in interconnected

networks. One can try to analyze the interference between the rings by assuming

that there is a GG service at each individual ring, with the bridge-queue being at

the first position in every ring. The GG model is also used in the analysis of
Elevator-type polling mechanisms that represent the bi-directional moves of a head

addressing a hard disk for writing information on, or reading data from, different
tracks (see e.g. Altman et al. [1]).

For both systems, we provide delay analyses including the derivation of the

mean value and the Laplace-Stieltjes Transform (LST) of the waiting times incurred

in the different queues.

Relatively few studies have dealt with efficient operation of polling systems.

We mention Meilijson and Yechiali [19], in which the server is allowed to switch

from one queue to another after each service completion; Hofri and Ross [15], in
which dynamic rules for optimal operation of two-queue systems are studied; Browne

and Yechiali [8,9], in which semi-dynamic rules for minimizing the cycle time are

presented; and Boxma et al. 16,7), in which rules for selecting efficient static visit
orders are derived. In the present study, we also consider the control problem of
the systems and derive simple rules (static and dynamic) for their optimal operation

as a function of the parameters and the waiting costs at the different queues.

The structure of the paper is as follows: In section 2, we provide a delay

analysis of the cyclic polling system with globally gated service. The section consists

of a model description, cycle time analysis, pseudoconservation law derivation and

waiting time analysis. In section 3, we analyze the CRMA scheme. The section

consists of a description of the system and its prototype queueing model, for which

a delay analysis is provided. In section 4, we derive optimal operational rules for

both systems and compare them to each other and to other schemes as well. We also

discuss some "faimess" issues.

2. Performance analysis of cyclic polling with globally gated service

In this section, we study a cyclic polling system served under the Globally
Gated policy, and analyze its perforrnance. This policy resembles in nature the

gated service regime, but differs from it in the fact that the gating mechanism is

applied at the same time for cil queues. The advantage of this policy lies in its
simple structure which allows for derivation of closed-form mean-delay expressions

and for effective optimization of the system.

189
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2.T. MODEL DESCRIPTION

We consider a system consisting of N infinite-buffer queues Qr, . . . , Qr and

a single server. Customers arrive u1 Qi according to a Poisson process rate of ),1,.

The service time distribution at Q1 is b,( ) with first and second moments Fi, Fj",
and with LST.B,(.). The offered load to this queue is pi = Li Fi, and the total system

load is p - If= t p1. The server moves among the qu'eues'in a cyclic order; when

leaving Q1 and before moving to the next queue, the server incurs a switchover

period whbse duration is a random variable S; with first two moments sj and ,rtt',
and with LST o;(.). All arrival processes, service times and switchover periods are

independent. The total switchover time in a cycle is a random variable S = E|= 1 S;

whose first two moments are .r and s(2), and its LST is given by o(al) = ill= , o,{a)",

Real>0.
The service discipline used by the server is the Globally-Gated (GG) discipline,

which works as follows: At the cycle-beginning, namely, when the server reaches

Qr, all customers present at Qr, . . . , Qr are marked. During the coming cycle (i.e.

the visit of queues Qr, . . . , Qt), the server serves all (and only) the marked customers;

customers who meanwhile arrive at the queues will have to wait until being marked

at the next cycle-beginning, and will be served at the next cycle. Since at every

cycle the server serves all the work that arrived during the previous cycle, the

condition for ergodicity is p< 1. (Comparison with the case of zero switchover

times immediately shows that p < 1 is a necessary condition; in section 2.2 and the

appendix, it will become clear that p < 1 is also sufficient.) Similarly to the regular

gated or exhaustive schemes, the server keeps switching from one queue to the next

even when there are no customers present in the system.

It should be noted here that "global" versions of some other service policies
(e.g. globally exhaustive) can be easily imagined and analyzed.

2,2. CYCLE TIMES

Let X, , X, denote the queue lengths at the start of an arbitrary cycle.

Clearly, wih C the length of a cycle,

Ele-'clxt, ...,xNl = E[e-'s] ff'{*), Real>0.
N

n
j=l

(2.r)

In its tum, the length of a cycle determines the joint queue-length distribution at

the beginning of the next cycle:

strf' ...rf,* lC - tl - \(r - ,r)r),
(N

.*ol-F
H

\ j=l

Unconditioning we find, for lzrls 1,...,12,,s1< 1,

lzrl 31,...,lz1sl S 1. (2.2)
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Re al> 0.

(2.3)

(2.4)

(2.s)

4,1'...,frr1: r(L 
^,1 '-,rll,\l= I )

with

y(a) - Efe-'cf , Re al I 0.

From (2.1) and (2.3),

y(a) - E le-,tlu [d' (ar). .. Bf'trl]

= Efe-^'w( L 
^,0- 

Fi(r))),
\,1= I )

Let us denote, for Re at 2 0, d(al) = LII = t L1

5to)1co) = (t),

5ti)1ar) = d(6(i- t)(ar)), i = 1,2,3, .

Applying (2.5) iteratively we find, for every M = 1,2,

rle- d 
I E[s-6( o,)s 

) y(6Q) (a))

M

fl ft.-u(i)14;)s ly(S(M 
+1,(r)).

j=0

Now, it can. be shown that limy - - 6(t * t)(at) 
= 0 and that the infinite product

IILoE[s-5(t){')s1 converges if p< | (see theorems 1 and 2 of the appendix). Hence,

(2.6)

(2 .1)

0 - Fi(ar)) and recursively denote

@€

y(ot) - Efe-61 = fI Els-6(){a)tl = ll "t6(')(r)), 
Re o 2 0.

j=0 i=0

y(a) -

EC =ES + 
ti Li Fi)rr,

Similar to theorem 2.1 of Boxma and Cohen [5], one can now complete the proof
of the fact that the Markov chains formed by successive queue length vectors, and

by successive cycle times, are both positive recurrent if p< 1. Differentiating (2.5)
once and twice vields

and
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N

EC2 - s(2) + 2s pEC + p2 EC 
t * I 1"1 pjz) nc ,

j=l

from which we may derive closed form expressions for the first two moments of
the cycle time:

EC = + (2.8)
l-p'

,rN1
ECZ=.:lstzr+2spEC+f 1"1 pjz)ncl. e.s)l-PtL i=t -l

Introducing Cp and Co, the past and residual time, respectively, of a cycle, we can

write for Re ap, o)p > 0 the LST of the joint distribution of Cp and C^ (cf. Cohen

[10], p. 113):

Els-@eCp-,ncnl= T 
-1- 

o prIC <t\tl U 
"-r*e-r*(t-u)' J Ec"-'L- J t -

f-=O u=0

= # ,l ,e-ant 

dPr{c < tI 
,l=0"-"'-an)u 

du

11
= * d-r_ 

ly(an) - y(op)1. (2. 10)

It follows in particular that the LST and the mean value of C* and C, are:

Efe,-oc rl = E[e-"*] - 
l - Y(c't) 

.

aEC '

ECp - ECp - 
t# 

= +[,t- ,)*+sp .+P,L, pF'), (2 tt)

in which we used (2.8) and (2.9).

2.3. A PSEUDOCONSERVATION LAW FOR THE MEAN WAITING TIMES

LeL Wlbe the waiting time of an arbitrary customer u1 Qi. In Boxma [4], a

pseudoconservation law was derived for a large variety of polling system^s. This law

provides an expression for the weighted sum of the mean waiting times, I'r,= t fi EW,.

It is easy to see that the analysis provided there carries over to the globally gated

system and thus we can use (3.21) of Boxma [4]:
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Il= t Li Fj')

r93

P1 EW1 =P

EM1) - p,IEV1

j-r
PiI
' i= I

Substitution of (2.13)

N

ZPiE\=P
j=l

N

I
j=l

s(2)*P x2(r - p)

+s1*EV2

(s
[Pr l-p +

inro (2.12)

Ll=, Li Fj')
2(r - p)

(2. 12)

where EMg) (/ = 1, . . . , N) is the expected amount of work left in 0; when the

server leaves this queue.

Let Vlbe the visit time of the server u1 Qi. Noting that the mean cycle time
is EC = s/(l - p), we obtain the mean visit time as EV1- pi s/(l - p), from which
it follows that

*s2*...

\.,
t,)+ Pi

yields

+ EV1)

+, j-r,...,N. (2. 13)

s(2) , N i-r
* p *. fr p2 +P_r,,I,',, (2.r4)

which is the pseudoconservation law for cyclic polling with globally gated service

discipline.

Comparison of (2.12) and (2.13) with the corresponding expressions for
ordinary gated service (ct. (3.21) and (3.23) of Boxma t4l) shows that

N 
,,r, , " 

N j-l 
(^ s )

Zp,n[wilgrobauygared f -L PiEIwilgarcdt= I piLlp,* +s; 
I

j=r 
,D'-"-"r o'--- 

j=, ,=, i= l \ 
| - P )

^ l- - N ^l N i-l
= ',.|p'-Loi|.> p1Lr,, (2.1s)

2(l - p) I' F, ) i=2 i=l

which is also equal to the difference between the expected total amount of work

in the globally gated regime and the regular gated system.

2.4. WAITING TIMES

In section 2.3, we derived an exact expression for a weighted sum of the

mean waiting times at all queues, cf. (2.14). We now determine the individual

waiting time distributions (their LST) and their expected values. Consider an arbitrary
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customer K at Qt . His waiting time is composed of (i) a residual cycle time C|,
(ii) the service times of all customers who arrive at Qr, . . . , Qr,_, during the

cycle in which K arrives, (iii) the switchover times of the server between Q, and

Q.z, . . . , Q*- 1 and Qp, and (iv) the service times of all customers who arrive at Qt
during the past part Cp of the cycle in which K arrives. Let us first determine EWlr:

k-t k-l
EWt - ECn+ | Li Fi(ECp + ECp)+ I sj + pt,ECp.

,l= I j=l

It should be noted that the mean length of the cycle in which K arrives equals

ECr+ ECp instead of EC:the cycle is an atypical cycle since itcontains the arrival

of K. From (2.16) and (2.11),

(2. 16)

k-l

I ';,j=l

(2.17)

EW*

pi+ eo)

( k-l
=lr+zL

\ j--l

( k-l

-ll+2)lLt
\ j:l

Pi + o o)rc*

L,oolt.rE,o,+ p,J = o.[o'-i ,:). L,r,

-ar(Sr +... +Sr_ r)]

k-l
+Ir;

j=l

I I s(2)

p(t. p)l' u * lP' * o2l=, 
hi lj')l*

1-p ', 2(t-p) I

k-1,...,N.

It readily follows that EWr< EWz< < EWN.In particular,

EW** r - EWt - (pt+ I * p)ECn* sr.

One can easily check that the pseudoconservation law (2.14) is satisfied, observing

that

- p(t * p).

We now tum to the distribution of Wo, using the four-tenn composition observed

in the beginning of this section. Noting that, cf . (2.2), the generating function of
the number of arrivals u1 Qiin an interval of length r equals 

"-)'1Q 

- z)t, ws can write:

Ele-'w*] = u[.

dpr[Cp < tp,Cn < tn ] e-'t* e-tf=-i 
Li(r-F1Go))(tr+t*) 

"-)'r0-Fr(a))tr,

r(xl 
I

JJ
lp=0IR-0

Using (2.10), it follows that

Re ar > 0. (2.18)
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\(r - F1@D+

rQ.:=, Li(t - Fi(ar))) - rZf :l ti\ llrD+ al)

We can rewrite (2.19) into

k-l

Efs-@w*l = Ele-'wrlu 
rcr, 1 ' ll oi(a)

j=l

195

Efe-@w*1 -
r!,",(a)E[.* 

t-,{ 
)"i(t - F1@))cr 

{ Fj ')-)]

k-l

=lf
j=l a- LrQ - Ft @))

Reco>0.

a(l-pt)

\((r-Fi(a'))+

r- p
.t

(2.te)

(2.20),.[' tt )"1e-Fi(,,,) 
'[_t,

,)l

where Efe-awtlurctJ denotes the LST of the waiting time distribution in Qrif that

queue were an arbitrary Mlcll queue in isolation. Equation (2.20), therefore,

demonstrates that the delay in the &th queue at the GG system decomposes into two

parts, one of them being the delay incurred in the corresponding (isolated) M/G/l

system. Note that similar decompositions have been observed for other systems like

an M/G/ 1 with vacation periods and an Mlcll with set-up times (see, for example,

Doshi [12] for a survey). Note also that the globally gated system with only

one queue coincides with the regular gated system with one queue, for which a

similar decomposition property is known to hold (see Fuhrmann and Cooper [14],

pp. 1119 -1L20 for further references).

2.5. COMPARISON TO GATED SERVICE

As stated above, the globally gated service policy can be used as a substitute

for the regular gated service. An interesting question, therefore, is how the perforrnance

of the two policies compares.

One comparison of the system has been provided in eq. (2.15), in which it

was shown that the mean amount of work in the globally gated system is higher

than that in the regular gated system. The remaining question is, therefore, how the

individual waiting times compare.

To discuss this question, let us consider a fully symmetric system in which

the parameters of all queues are identical (nameiry, L;= Lj, F;= Fi, P:" = B;",ri = s/

and s,(2)= t|'r, for all i andT). Under these conditions, when the system is operated

under the regular gated policy, the mean waiting times in all queues are identical

(and can be derived easily from the pseudoconservation law):
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(2.2r)

In contrast, the mean delay in the symmetric globally gated system is not

identical for all queues since this policy discriminates among the queues and gives

higher priority to lower index queues. Of interest, therefore, is to compare the mean

delay of Qr and Qr in the globally gated system to the mean delay (same for all

qucues) in the regular (symmetric) gated system. The mean delay in Qt is given by

(cf . (2.17)):

gl w,l,r.'.:nl = 
N A't Fl') * ttt' * tP + tp,

L 'l sated J 2(1 -p) 2s 2(1 -p) 2(1 -p)

nl w,l svmmetric 
-l 
_ 1* p, 

I1(,] * rp * \ L, F?,)1.
"L"rlerobauygaredl- l+p Ltr 

'l-p 2(t-p)J

Subtracting (2.22) from (2.21), replacing each occurrence of s(2) by

s(2) - s2 + s2, and noting that p = N pr, we obtain:

nl w,l "T:.1'l - E [', ;,;#ff;1:J =lffir. # ] [' 
- Hl . ;L 'l gate

,(N+l)sp; 1+p;Ir sp I- xt-p) - l.plr- t-p)

(2.22)

(2.23)

Algebraic manipulation of (2.23) yields that the last three terms sum up to zero, and

thus we have:

nl w,lsvmmerril _ e I w,l symme,ric I = [ 
L: 

!,' 
p?,) 

* rttl- rt 1 ry, (2.24)-1",1 gared ) " 
L",lglobalrygatedl lZ(l-p) 2s -l 1+p ' \

which implies that the mean delay in the symmetric regular gated system is significantly

higher than that in Qr of the symmetric globally gated system.

The comparison between Qn, in the globally gated system and an arbitrary

queue in the symmetric regular gated system is obvious: the mean delay of the

former is significantly higher than that of the latter; this is directly implied by the

dominance result below eq.(2.17) and by the fact that the pseudoconseryation law

of the globally gated system has a larger value than that of the regular gated system.

Another comparison may be made when we assume that S = 0 (implying that

s - 0 und r(2)/s = 0). In such a case, eq.(2.17) reduces to

Elwklglobally gut"dl =
Q + lLf =| pi + pi Zl=, Li Fj')

l+ p

tjrJ pi -Ll:r*t

2(r - p)

Pi
= 
[t* lil+ p

prE["-lTi]jirp e zs)
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It follows that ElW|GGl . If= {prlilEtry,lcl if and only ff 2f :} pi
< If= t+r pi. In particular, any Qt for which >j=-tt pi <Lf=r+r pi has a smaller

mean waiting time than the mean waiting time in a symmetric ordinary gated

system. If all queues have the same traffic characteristics, this condition reduces to

k- | <N- k,i.e. k < (N + l)/2.In other words, stations positioned at the "first half
circle" prefer the GG regime, while the others prefer the regular gated scheme.

3. Performance analvsis of CRMA

3.1. SYSTEM DESCRIIT|ION

Cyclic-Reservation Multiple-Access (CRMA) is a scheme which has been

proposed by Nassehi t20l for controlling the access to high-speed local area and

metropolitan area networks and is based on slotted unidirectional folded bus architecture.

The system consists of N stations and is a headend which is responsible for controlling

the access to the bus. The bus begins at the headend, traverses stations I through

N, folds back, retums via stations N through I and ends at the headend. The bus

segment preceding the fold is called outbound and the segment following the fold
is called inbound. The architecture is built to provide efficient communication

among the N stations. Data packets are transmitted by a sending station on the

outbound and received by the appropriate receiving station on the inbound.

The transmission in CRMA is slotted, and is based on a reservation scheme.

Periodically, the headend sends a collector (a reserve command in Nassehi's

nomenclature). When a collector passes via a station on the outbound, the station

marks on a collector the number of slots it requires for sending the packets it
currently has in its buffer (packets for which earlier reservation was not made).

Thus, after passing station N, a collector completes collecting the reservations and

now makes its way back on the inbound. When reaching the headend, it joins a

queue in which all the collectors are served in a first-come-first-served (FCFS)

order. When its turn to be served arrives, the headend generates a stream of slots

(a "train") whose length is equal to the total number of slots reserved on this

collector. This train is now used by the stations to transmit their data: when the train
passes through a station (on the outbound), the station transmits the data units for

which reservations were made on this train. The data is then received by the destination

on the inbound.

3.2. A QUEUEING MODEL FOR THE PERFORMANCE ANALYSIS OF CRMA

We present a prototype queueing model which seems to reflect most of the

essential characteristics of the CRMA. A single seryer serves N queues Qt, . . . , Qu.
Each queue is of the MIGl 1 type with the same traffic characteristics as described

in section 2.7. However, in distinction with the globally gated scheme, the server
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controls the system by periodically sending out "collectors" at random intervals {
which are i.i.d. variables with distribution F(.), first momentl, second momentl(2)
and LST q(.). The collectors move from the service facility via Qt, Qz, . . . , QN
and return from queue N directly to the service facility. The total travel time of each

collector is the constant

st'

with s; the time to move from Qi to Qi * r and s6, s1y the times to reach Q, from the

service facility, or to return from Q", respectively. A collector collects all customers

that are present at each queue that it passes, and retums with a batch of customers

to be served at the service facility. The batches join a queue in their order of arrival.
When taken into service, the customers of a batch are served in the order in which
they were collected; customers of each specific queue are served in the order of
their arrival at that queue. It should be noted that collectors cannot overtake one

another, since their travel times are all deterministic and the same.

3.3. WAITING TIMES

N

r=2
t =0

Our aim is to derive the waiting
K who arrives at, say, Qo. Generally, the

of five terrns:

time distribution of an arbitrary customer

waiting time W2 of customer K is composed

where

W*= Mr+ Rr + D*+ Bp+ Ep,

M t = time between the instant of arrival of K and

collector at Q6

= time for this collector to return to the service

= waiting time for the batch containing K to be

Bk = time required to serve

same batch as K;

Ek = time required to serve

as K but have arrived

the customers of Qt,

Rr

Dk

the arrival of the next

facility;

taken into service;

. , Q*_ I that are in the

the customers of Qt, that are in the same batch

before him.

In order to derive the distribution function of Wo, we consider all five terms in turn:

Mr,: Mk= M is the residual (future) lifetime of the renewal process having

underlying distribution function F(.), common for all queues. Hence,
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(3.t;

(3. 3)

Pr{M < t}

and

sQ)
EM_J-

2f

Rt: Clearly, the time
depends on the location of

e-L;t 
(Lit)"'

n;1.

(3.21

for a collector to travel from Qr,to the service facility
queue t, and is given by:

=(
J
0

N

R1,-It;
j=k

D*: To determine the distribution of Do, we may represent the headend

service facility by a GIlGll queue in which a customer represents a batch of
messages brought in by a collector in the CRMA system; in this GI|GII queue, the

interarrival distribution is F(.) and the service time of an arriving customer depends

on the length of the interval between his arrival and the previous one. Also note

that the service time of a customer may be zero. Finally, note that Do corresponds

to the batch containing the tagged customer K. This implies that the arrival interval

of Dp at the GIlG/l queue is not a typical interval, and neither is the batch size. At
this point, without any further assumptions, we write down the service time LST

of an arbitrary customer (batch) in this GI/G/l queue arriving t time units after the

previous customer (collector); it equals

N€

NI
i=l ni=0

(N

Fi'@)-expt-I\ Er

\
Li( - FiGo))t l, Re ar 2 0. (3.4)

)

Similar to the calculation in (3.4), we can write for Re al20:

E[e-aBlcollector's interval = y] = \(t -

Again, it should be noted that the collector's interyal containing K is not
collector's interval; it has density (ylf)dF(y).

Er,: Noting that customers of Q* that are in the same batch as K
arrived before him must have arrived in the past part of the interval

collectors arrivals at Qk, we can write:

( k-r
e*pl - I

\ j=l
Fir,nt) (3.s )

a typical

but have

between
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Ete-@E*1

E[e-'w *1

1 - F(r)

f B'r@)dt
(L*t)i

i!i
i=0

m

(
I

I

l=0

e-L*t

= f .
I

I=0

-),*(r - fu(a))t | - F(t) 
O,

f

f h(r - Ft(,t)) Ir- v(to(- Re ar > 0. (3.6)0r rarr))],

Note that M and Eo are dependent, relating to the residual and past part of a

collector's interval.

From a queueing theoretic point of view, the dependence between interarrival
times and service times in aGIIGll queue is interesting; assuming negative exponential
interarrival times (i.e. intervals between departures of collectors from the service
facility) may give rise to explicit expressions for the distribution of Do (this is the

subject of a separate study in preparation by one of the authors), and the dependence

of Bo and Eo on M can be easily handled.

From a practical (CRMA) point of view, it is more natural to assume that the

collector's intervals are fixed, equal to /. We restrict ourselves in the remainder of
this section to that case, and remark that Dohas the same distribution for all queues

Qr, Qz,. . . , Qry, with generic random variable D. Conditioning on the arrival time
of K in a collector interval, we obtain

t

(dt
I

Jf
l=0

e-@U-t) e-LrQ - 
Br@))t

X e-@(sr+...+s")E[ 
"-rDle->j=i 

Li\-Fi@Df , G.7)

where the integrand in eq. (3.7) is the product of five terms, each related to M, E2,

Rt ,D and 81, respectively, as expressed in eqs. (3.1), (3.6), (3.3) and (3.5). Thus,

Efe,-'w*) - e-'f
ff,Lr(t- Fr,(a))-rl

I t - e-ft 
L*(r - F/a))- @ll

X e-@(Sr+...+sr)E[ 
"-rofe-Ij=-i 

],j(r*g;@))f 
, Re ar > 0. ( 3.8)

Here, E[e-'Dl has to be determined from the analysis of the Dlcll queue. Observe

that for this case (of deterministic collector intervals), the above-mentioned dependence

between interarrival times and service times of the GIlcll (now Dlcll) queue does

not occur.



O.J. Boxma et al., Cyclic reservation schemes

Regarding the delay analysis and the D/Gll queue, we are not aware of any

exact explicit formulas for E[e-'D] and ED. Servi l2ll presents expressions for

these quantities in the discrete-time case; these expressions can be evaluated by

solving for the zeros of a certain equation. In the continuous-time case, when the

service time distribution has an LST which is a rational function, then formula

(II.5.192) of Cohen [10, p. 324] yields an expression for E[e-ffi]. For most practical

purposes, taking a distribution consisting of two exponential phases will give an

accurate approximation of ED (cf. Tijms 124, pp. 301-3021).

Taking means in eq. (3.8), or adding the means of the five terms that compose

Wo, it follows that

EWk - EM* + ERo + ED + EBk+ EEo

20r

N

= L t* I';
j=k

k-l
+ED*, Zrp +lf oo (3.e)

In section 4, we will investigate the problem of optimally ordering the queues

and discuss some "faimess" issues.

4. Optimal visit orders and fairness

A common denominator for the two systems presented in this paper is that

they provide simple expressions for the mean values of the delays incurred in the

different queues. Moreover, these values differ from each other and depend on the

relative location of the queues in the system. These properties can be used for
prioritizing the queues and optimizing the system performance. The objective of
this section is to derive rules for the optimal operation of these systems and to

discuss some issues of "fairness". To this end, let us assume that Qr is associated

with a parameter c1, representing the cost of a customer being delayed a time unit
in that queue. The mean waiting cost of a customer at Q*is obviously c2EWo, and

we are interested in minimizing the waiting cost of an arbitrary customer in the
.-Al

systcm: I?= 1(L2/A,)cpEW*, where L=Zl=,,tr,. This is equivalent to the minimization

of Ii = rLt cl,EWo. Such a minimization will determine the (static) order in which

the server visits the various queues. However, a policy in which the order of visits

may change from one cycle to the next - following the dynamic evolution of the

system - is also of interest and we discuss it in the sequel.

4.1. THE GLOBALLY GATED SYSTEM

4.1 .I . Fairness

The GG scheme is a much "fairer" procedure than the regular gated service

discipline in the sense of serving customers according to their order of arrival. Note
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that in regular gated, it is quite likely that customers arriving u1 eiare seryed prior
to customers who arrived earlier at Qi (i * j ). This happensbecause when the gare
of Qi is closed, the gates of the following queues still remain open ro accept new
arrivals.

4.1 .2. Static optimization

From (2.11),

in which the only factor that depends on the order of the queues is

N k-l

.L,Lrtr Z {zEcR pi + sj}.
k=l j=l J

Using a standard interchange argument (interchanging the order betwee n e, and
pi *-r),_9ne can easily show that an index rule for optimal ordering of the [u.u.,
holds. Namely, the minimal value for I?= , )4c2EWo is obtained by arranging the
queues in an increasing order of

ffr/(k_r\Nk_l

.Z locpEWp -ECnZ lorolr+pt+zZ pi l. t A*c* I'r; , (4.1)
k=7 /<=l \ H ') Et j=l

2ECn p1 + siuj:_ L7__

Several special cases

above are of intcrest:

pi E[cz]/EC + si

Ljti (4.2)

of this result and variations of the problem anaryzed

(i) Special costs. Consider the special case in which , j = Fj, namely the
waiting cost is proportional to the mean service time. In this .ur'., th6 optimization
objective becomes II= , fuEWt, which is the term for the pseudoconservation law
(see also (3.14)). Optimization nrrw is equivalent to the minimization of the mean
amount of work in the system. Here, we have

u j = 2ECp'1 -!- ,
pj

and thus the queues should be arranged in an increasing order of s1lp1.

Remark 4.1

Consider the objective function

N k-l

ZprI
t=l j=\

mrn S; .
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which arises in a scheduling problem of N products on a single machine, with s;

the processing time of the ith product and p, its costs per time unit of delay. The

optimal processing order in this problem is also determined by arranging the products

in increasing values of silpi.

(ii) Negligible switching times. Consider the case where sj << ZECR p; for all

queues. Then, the queues should be arranged in an increasing order of B1lc1, which

resembles the well-known (and so-called) "clL" rule.

(iii) Switch-in and switch-out times. The model considered above includes

switch-out times (namely, the server incurs a switching time S; when switching

out of Qi). Many systems are characterized by switch-in times instead, or by

switch-in times as well as switch-out times. It is easy to see that in these

models a similar form to (4.1) is obtained and the structure of the index rule (4.2)

remains the same, where si in (4.2) has to be replaced by the mean switching

time associated with Q1 (switch-in time only, or the sum of switch-in and

switch-out times).

(iv) Fixed topology. In some applications, the cyclic order of the queues is

predetermined and is not left for a free choice. In this case, the optimal design of
the system is achieved by selecting the gating point (namely, choosing which queue

will be the first on the cycle). For these cases there is no simple index rule, but the

optimization problem can be easily solved by comparing the expression achieved

for the N possible cases.

4.1 .3. Dynamic optimization

In applications in which the queue lengths can be evaluated at the cycle

beginning, the GG policy can be used to dynamically control and optimize the

system (see Browne and Yechiali [8,9]).At the beginning of each cycle the current

queue lengths Xt, .. . , XN are evaluated and the visit order for the next cycle is

determined. Note that by the very nature of the globally gated scheme, the visit

order taken in one cycle does not affect the future stochastic behavior of the system.

Moreover, the cycle-time duration C(X1 ,XN) is the same for any Hamiltonian

tour of the queues. Thus, if we consider the costs incurred during a cycle by the

customers present in its initiation together with the costs incurred by the new

arrivals between two cycle beginnings, the long-run minimal cost can be achieved

by optimizing each cycle individually.

The mean total waiting cost incurred during the coming cycle is:

x r-l
(XiFi+s;) + Fr I

i= I

203

N

Lrr
k=l l.

N

Z rrLrE[c(xt,...,xN)'] lz, (4.3)
k=l

k*l

tuIj=l
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where the first term is the contribution to total cost of the customers present at the

cycle beginning, and the second term is due to the customers arrivin g during the

cycle starting with X1, X2, . . . , X, (see Yechiali t26)).The only tenn that depends

on the order of visits is

k-l

trx} Gi 0i + s;).
j=l

It readily follows that the optimal order for the next cycle is determined by increasing

values of the indices

N

I
k=l

Lri =xiFi+si -cjxi '

which is, again , a " c Ir" -type rule.

(4.4)

4.2. THE CRMA SYSTEM

4.2.1 . Fairness

It may be questioned whether, under this mechanism, a heavy load on a given

station, say Qi, causes the waiting times in other queues to be significantly higher

than that in Q,. This is not necessarily the case, as can be seen by calculating the

difference in mean waiting times between a pair of queues, say Q; and Q*, with
i < k. Using (3.9), it follows that

EWr - EWi =

It is clear that the above difference increases linearly with the total load offered to

the intermediate queues, Qt * r to Q*_ 1, &rd with the loads offered to queues Qo and

Qt.On the other hand, it decreases linearly with the total intermediate switchover
times between the two stations. In particular, for two adjacent queues Q* _ r and Q1,,

EW*> EWr,- r if and only if /( pt _r + pr) > 2tr_ 1, i.e. iff the total load flowing into

these two queues during an interarrival time between successive collectors is larger

than twice the switchover time between the queues.

In addition, for p < 7 and small time intervals between collectors, as well as

small values of s, each collector will carry a small number of jobs and by virtue

of the service discipline, this situation will be close to the "fair" policy of first-
come-first-served. Thus, shorter lengths of f and s (i.e. many and quick collectors)

increase the degree of "fairness" among customers.

k-1

-I',
j=i

k-l
+f I pi+tf(pi+pt).

-/=i+ I 
'
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4.2.2. Optimization

Suppose that the positions of the queues Qr, . . . , Qp can be rearranged, and

that we wish to order the queues in such a way that

L*c*EW*

is minimized.lt should be noted beforehand that, for each Qlr,there are two counteracting

effects. Being at the beginning of a collector's route has the advantage that a

customer of Q* is served relatively early in a batch, but it has the disadvantage that

a relatively long travel time of the collector back to the service facility will be

experienced.

Let us assume for the moment that Sp remains the travel time from Qoto the

next queue. This assumption is applicable if the switching time consists of a switch-

out time, or in cases where s1 &ro all equal , k= 1,2,.. . , N- I (to, say, L/(ZN)).

Let us also assume again that the collector's intervals are fixed, equal to /.
It fotlows from (3.9) that minimizing I1=, )"pc1,EW2 with respect to the

positions of the queues amounts to

mln L*ct Ifpj-t;l.

N

k=l

k-1

I
j:1

//

I
k=7

(4.s)

(4.6)

According to the cp rule, the queues should be placed in increasing order of

,,.-fPj-tjvl 
- ^ 

'' Ljcj

It is interesting to compare this rule with the rule obtained for ordering the queues

in a cyclic polling system with a globally gated service regime.

Comparing (a.6) with (4.2), it is seen that the term s1l(4.1c;) has a variable

effect on the optimal position o1 Qi. In the globally gated case, a high value of
s1l(\ c;) will move Q1 Lo a far position in the visit list, while in the CRMA, the

position o1 Qiis improved with a high value of s1/(\ c;). This becomes even more

evident in the case where s - L|(ZN), where the ratio between f and L plays a

crucial role. For large /, the ratio fil(\ c j) = F1lc,dominates and the same ordering

as for globally gated with zero or small switchover times is found; for relatively

large L, when L/(zN)rf pi, for all7, the station with the largest factor l,;c; should

be put in (the last) position N.

The above observations reveal both the similarity and the difference between

the two systems: in GG, the server moves towards the customers, whereas in

CRMA, the customers are brou g,ht to the server.
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Conclusions and future work

In this paper, we have studied the perforrnance characteristics of both the
globally gated and the CRMA polling schemes. We provided delay analysis and
derived rules for optimal operation of these systems.

The introduction of cyclic reservation schemes opens up a variety of possibilities
for new service mechanisms. One such mechanism is the globally exhaustive policy
which is similar to the GG procedure. In this policy, given the state vector (Xr, . . . ,X,v)
at the beginning of a cycle, the scrver renders service to queue i for a duration of
X; regular MlGlt-type busy periods. The analysis of this system may follow similar
lines as the derivations provided in this paper, but leads to considerably more
involved formulas.

Another variation - within the framework of static polling policies - is the
Fair GG, which uses the GG approach but tries to achieve a higher degree of
fairness among the queues. Such faimess is obtained by changing the visit order of
the servers, e.g. systematically first following the order Qr,ez,...er, then the
order Qz, Qt Qu, Qr, etc. (as suggested by D. Zukerman).

An interesting policy is one which combines globally gated and regular gated
mechanisms in one system. Such strategy can benefit from the advantages of both
policies: prioritization of queues achieved by GG, and higher efficiency achieved
by regular gated. In such a policy, one scts up on the cycle several gating points;
each controls a gate for a subgroup of the queues. The number of customers to be
served in the queues belonging to a subgroup is controlled by their "private" gate.

The order of service within a subgroup can be determined by methods presented in
this paper. Analysis of such hybrid schemes is presented in Altman et al. l2l.

Appendix

In this appendix, we prove the two theorems that are being used in section 2.2
to show that p < 1 is a sufficient condition for ergodicity of the globally gated
service discipline. The proofs follow rather similar lines to those in Boxma and

cohen [5]. For simplicity, we restrict ourselves to rear ar 2 0.

THEOREM 1

For p< 1,

lim 6(M)(co) = 0.
M -+*

Proof

By definition, 5tn)(ar) = 6(d("-1)(ar)) = If= tLj(t - F1(6@ 
- t)(r))). Hence,

6 
(')( 

ot) < Li Fi 6@- 
t)(r) 

- p6(n-l)( ot) < p"6to'(r) = pn(t).

N

I
j=l

(A. 1)

(^.2)

tr(A.1) now follows immediatelv.



The infinite product is said to dtverge to zero if
M

.lir fl rt.-u(')(cd)sl = o.
M __+* i_O

The theory of infinite products (cf. Titchmarch [25, ch. 1]) shows that the infinite
product in (A.3) converges iff

€

I tr -E1s-ot'r(')sl] (A.4)
j=0

converges. Now, for p< 1, using (A.2),

@

i t t - E1s-atir(')sll < Es 
[,i* 

r"'rrl] < Es 
Ir,io'] 

. "-.
i=0

So, the series in (A.4), and hence also the infinite product in (A.3), converges if
p<7. tr
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THEOREM 2

€

fl rt.-d(i)1co)sl converges if p < 1.

i=0

Proof

(A.3)
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