
Cyclic scheduling of identical parts in a robotic cell

Yves Crama � �

Joris van de Klundert �

February ��� ����

�D�epartement de Gestion� Universit�e de Li�ege� ���� Li�ege� Belgium
�Department of Quantitative Economics� Faculty of Economics� University of Limburg� Maastricht�

The Netherlands



Abstract

We consider a robotic �owshop in which one type of product is to be repeatedly produced�
and where transportation of the parts between the machines is performed by the robot� The
identical parts cyclic scheduling problem is then to �nd a shortest cyclic schedule for the robot�
i�e� a sequence of robot moves that can be repeated in�nitely many times and has minimum
cycle time� This problem has been solved by Sethi et al� ����	
 when m � �� In this paper�
we considerably generalize their results by proving that the identical parts cyclic scheduling
problem can be solved in time polynomial in m� where m denotes the number of machines in
the shop� In particular� we present a dynamic programming approach that allows to solve the
problem in O�m�
 time� Our analysis heavily relies on the concept of pyramidal permutation� a
concept previously investigated in connection with the traveling salesman problem�

Keywords� Manufacturing� automated systems � materials handling in robotic cells� Pro�
duction�Scheduling� sequencing � �ow shop� cycle time minimization� Dynamic programming�
deterministic � traveling salesman� pyramidal permutations�



� Introduction

Recently� scheduling problems arising in �exible manufacturing cells� �exible �owlines and sim�
ilar automated production systems have received much attention in the literature� In such
environments� transportation of the parts between the machines is usually performed by an au�
tomated material handling system� be it a conveyor� or a pool of automatically guided vehicles
�AGVs
� or a robot� Much of the scheduling literature� however� has ignored the constraints
placed by material handling devices on the e�ciency of the productive system� either because
these devices were not regarded as bottlenecks� or� more pragmatically� for reasons of modeling
simplicity� Only recently has material handling been paid special attention and been incor�
porated explicitly in scheduling models �see e�g� Blazewicz et al� �����
� Hall et al� �����a�
����b
� Hall et al� �����
� Jeng et al� �����
� King et al� ����	
� Kise �����
� Kise et al� �����
�
Krishnamurthy et al� �����
� Sethi et al� ����	

�

In this paper� we investigate a cyclic scheduling problem for a robotic �owshop whose
throughput rate is highly dependent on the interaction between the material handling system
�namely� the robot
 and the machines� More precisely� we consider a robotic �owshop consisting
of m machines� an input device� an output device and a robot �see Figures � and 	
� There are
no bu�ers in the �owshop �a similar problem with bu�ers is considered in King et al� �����

�
Transportation of the parts between the machines is taken care of by the robot� which can only
handle one part at a time� In the most general setting of the problem� a so�called minimal part
set �MPS
 is to be repeatedly produced� where the MPS consists of parts of di�erent types in
proportion to a certain target production mix �see e�g� Stecke �����

� The objective of the
scheduling problem is then to determine the part input sequence �i�e�� the order in which the
parts in the MPS should be processed
 and the corresponding sequence of robot moves so as to
maximize the long run throughput rate or to minimize the long run cycle time of the system�

This problem �and closely related ones
 has been considered by several authors �Sethi et al�
����	
 and Hall et al� �����a
 provide references
� Sethi et al� ����	
 showed that� when there are
only two machines �and under some restrictions on the move sequences that the robot is allowed
to perform
� the problem can be solved in polynomial time� The same result was obtained by
Kise et al� �����
 for a makespan minimization objective� On the other hand� Hall et al� �����b

proved that the problem is already strongly NP�hard for a three�machine robotic �owshop� As
a matter of fact� these authors established that computing the optimal part input sequence in a
three�machine �owshop is strongly NP�hard when certain robot move sequences are treated as
given�

In our work� by contrast� we restrict ourselves to the special case of the problem where the
number of machines is arbitrary� but all parts are of the same type� In this framework� the part
input sequencing problem vanishes altogether and the term cyclical� that usually indicates in
the literature that the part input sequence repeats identically for each and every MPS �see e�g�
Agnetis et al� �����
� Karabati � Kouvelis �����
� McCormick et al� �����

� applies here only
to the sequence of moves performed by the robot�

The resulting identical parts cyclic scheduling problem has been investigated by Sethi et al�
����	
 and Hall et al� �����a
� More precisely� in the classi�cation scheme of Hall et al� �����a
�
we are interested in the problem RCCmjk � ����unitjCt� meaning that the robotic cell contains
m machines� that there is exactly one part type� and that the objective is to minimize the cycle
time Ct under the restriction that one unit be produced in each cycle� In particular� Sethi
et al� ����	
 described a simple decision rule that computes the optimal robot move sequence

�



M1I

Robot Track

0M2 M3

Figure �� A ��machine robotic cell �line layout


R
o

b
o

t
a

r
m

M2

M1 M
3

I O

Figure 	� A ��machine robotic cell �circle layout


when there are only three machines in the �owshop� In this paper� we considerably extend their
analysis by proving that the identical parts cyclic scheduling problem can be solved in time
polynomial in m� where m denotes the number of machines in the shop�

In Section 	� we give a more precise de�nition of the identical parts cyclic scheduling problem�
and we describe a one�to�one correspondence �discovered by Sethi et al� ����	

 between its
feasible solutions and the permutations of the set f�� � � � �mg� In Section �� we derive upper and
lower bounds on the optimal cycle time� We also present in this section the key result of our
paper� namely that the set of pyramidal permutations necessarily contains an optimal solution
of the problem �pyramidal permutations have been previously introduced in the framework of
the traveling salesman problem� see e�g� Gilmore et al� �����

� In Section �� we give an
e�cient algorithm to compute the cycle time of a schedule described by a pyramidal permutation�
Relying on this result� we present in Section � a dynamic programming approach that allows
to solve the recognition version of the identical parts cyclic scheduling problem in O�m�
 time�
and its optimization version in O�m�
 time� Finally� we discuss in Section � some directions for
further research�

	



� Cycles� Permutations � Schedules

In this section we discuss the input parameters of the problem and its objective� A solution for
the problem is de�ned as a sequence of robot moves that maximizes the long run throughput
rate� The problem is shown to be a permutation problem� Furthermore� the objective of the
problem is restated in terms of schedules and cycle times� rather than throughput rates�

Let us �rst de�ne the notation we use for the entities that play a role in the problem� The
m machines of the robotic cell are denoted by M� � � �Mm� The input device is denoted by I
or M�� The output device is denoted by O or Mm��� Each part is initially available at the
input device and must be processed succesively by M��M�� � � � �Mm� until it is unloaded at the
output device� Each machine can only process one part at a time and there are no bu�ers for
intermediary storage at the machines� We denote the processing time of the part on machine
Mi by pi� i � � � � � m� We call the segment of the robot track between two adjacent machines a
trajectory� and we denote by �i the time the robot needs to travel from machine Mi to Mi�� �
or from Mi�� to Mi� i � �� � � � �m� Loading a part onto Mi� i � �� � � � �m� � or unloading a part
from Mi� i � �� � � � �m takes time �i� Hence the input of the problem consists of�

� processing times p�� � � � � pm

� travel times ��� � � � � �m

� �un
loading times ��� � � � � �m��

For reasons of clarity we usually assume �i � �� i � �� � � � �m � �i � �� i � �� � � � �m � ��
However� all results presented go through for trajectory and machine dependent travel and
�un
loading times�

Let us now describe the type of robot moves that we want to consider� From a practical
viewpoint it is not desirable to specify all moves the robot has to perform until a complete batch
is processed� since the batch size may be fairly large �we assume it to be in�nite
� Hence we will
be interested in more compact sequences that the robot can execute a number of times� More
precisely� we will be interested in sequences with the property that exactly one part is taken
from the input device �and one part is dropped at the output device
 in each execution of the
sequence� Such sequences of robot moves are called ��unit cycles �

De�nition ���� A ��unit cycle is a sequence of robot moves in which each machine is loaded
and unloaded exactly once�

Observe that a ��unit cycle returns the cell in its original state and hence can be repeated
in�nitely many times� Sethi et al� ����	
 conjecture that the maximum throughput rate which
can be achieved executing a ��unit cycle equals the maximum throughput rate over all sequences
of robot moves� A weak form of this conjecture has been proved by Hall et al� ����	
 for the
identical parts ��machine cyclic scheduling problem� The conjecture provides further motivation
for restricting our attention to ��unit cycles�

Sethi et al� ����	
 have the following theorem on the number of possible ��unit cycles in a
robotic cell with m�machines�

�



Theorem ���� �Sethi et al�
 In a robotic cell with m machines� there are exactly m� ��unit
cycles�

The following de�nition is helpful to understand Theorem 	���

De�nition ���� For all i� i � � � � � �m� activity Ai consists of the following sequence of robot
moves �

�� unload Mi

	� travel from Mi to Mi��

�� load Mi��

Without loss of generality� it may be assumed that every ��unit cycle starts with the robot
moves as speci�ed by A�� The proof of Theorem 	�� establishes that every ��unit cycle de�nes
a permutation of the activities starting with A� and� conversely� that every permutation of the
activities starting with A� corresponds to a ��unit cycle� Thus� computing an optimal ��unit
cycle is equivalent to computing an optimal permutation of the activities� In the sequel� we will
use the names ���unit cycle� and �permutation of the activities� interchangeably�

Let us now concentrate on the objective function of our problem� Informally speaking� we
want to maximize the long run average throughput rate of the system� or equivalently� we want
to minimize its long run average cycle time� To make this concept more precise� consider the
following de�nitions�

De�nition ���� A schedule is a function S�Ai� t
 that assigns a starting time to the t�th
execution of activity Ai �i � �� � � � �m� t � lN
� The long run average cycle time of S is equal to

lim
t��

S�Am� t


t

assuming that the limit exists�

De�nition ���� A schedule S is called a steady state schedule if there exists a constant L �called
the cycle time of S
 such that for every Ai� i � �� � � � m� and for every t � lN� S�Ai� t � �
 �
S�Ai� t
 � L�

De�nition ��	� Given a permutation of the activities� say � � �Ai� � Ai� � � � � � Aim
� and a
schedule S�Ai� t
� we say that S is a schedule for � if the sequence of activities de�ned by S
is consistent with �� i�e� S�Aij � t
 � S�Aik � t
 for all j� k � f�� � � � �mg with j � k and for all t � lN�

Clearly� for a steady state schedule� the long run average cycle time coincides with the cycle
time� Van de Klundert �����
 proves that� for each ��unit cycle� there exists a steady state
schedule S that minimizes the long run average cycle time over all schedules� �This conclusion
could also be drawn from an analysis of the periodical behavior of the cell� viewed as a discrete

�



system� see e�g� Cohen et al �����
� Sethi et al� ����	
�

De�nition ��
� Let � be a permutation of the activities� The cycle time of �� denoted L��
�
is the minimum cycle time achievable by a steady state schedule for ��

With these de�nitions at hand� we can formulate as follows the identical parts cyclic schedul�

ing problem � given processing times p�� � � � � pm� travel times ��� � � � � �m and �un
loading times
��� � � � � �m��� �nd a permutation of the activities with minimum cycle time�

� Pyramidal Permutations�

In this section� we �rst give a lower bound on the cycle time of the optimal permutation� and we
describe a permutation whose cycle time never exceeds twice the lower bound� These results and
their derivation may help the reader gain some intuition for the problem� and will also play a
role in the analysis presented in Sections � and �� In the second part of the section� we introduce
pyramidal permutations and show that the set of pyramidal permutations necessarily contains
an optimal ��unit cycle�

Lemma ���� The cycle time L��
 of every permutation � satis�es�

L��
 � maxf	�m � �
�� � �
�max
i

pi � ��� � �
g

Proof� Consider a permutation � of the activities and assume without loss of generality that �
starts with A�� Since the next cycle starts again with A�� in any cycle the robot must at least
travel from I to O and back to I� which induces a travel time of at least 	��m� �
� Also� in any
cycle every machine must be loaded and unloaded� the input must be unloaded and the output
must be loaded� hence the total time the robot spends loading and unloading machines is at
least 	��m � �
� Thus we have that L��
 � 	�m � �
�� � �
�

To prove that L��
 � maxi pi � ��� � �
� �x i � f�� � � � �mg� and consider an optimal steady
state schedule for �� say S� Then� L��
 � S�Ai� t � �
 � S�Ai� t
� i�e� the cycle time equals the
time between two consecutive unloading operations of machine Mi� Now consider the point in
time � between S�Ai� t
 and S�Ai� t � �
 at which Mi starts processing� Between S�Ai� t
 and
� � the robot must at least have performed Ai and Ai��� Hence we have � � S�Ai� t
 � �� � ���
Furthermore� the unloading operation starting at S�Ai� t � �
 cannot be performed before ma�
chine Mi has �nished processing the part� i�e� S�Ai� t� �
 � � � pi� From these two inequalities
we deduce L��
 � pi � �� � ��� which concludes the proof�

If the robot is relatively slow� its travel time is likely to be the bottleneck of the system� In
this case� the permutation A�� A�� � � � � Am� to be called �U � might well be the optimal permu�
tation since it has minimum travel time� On the other hand� if the robot is relatively fast� the
permutation A�� Am� Am��� � � � � A�� to be called �D� appears to be a good alternative� since it
allows each machine as much time for processing as possible� We now derive an expression for
L��D
�

�



Lemma ����

L��D
 � maxf�m� � 	�m � �
��max
i

pi � ��� � �
g

Proof� The total travel time� and load�unload time for �D is equal to �m�� 	�m� �
� and is a
lowerbound for L��D
� By Lemma ��� we know that L��D
 � maxi pi � ��� ��� Thus the maxi�
mum over these two is a lowerbound for L��D
� Let C equal this maximum� We give a schedule
for �D with cycle time C and prove its feasibility by induction� Observe that a schedule is feasible
if the robot can indeed reach every machine in time� and never unloads a machine before it has
�nished processing� For notational convenience� we shift �D and write �D � �Am� Am��� � � � � A�
�

Let S�Ai� t
 � �t� �
C � �m� i
�	� � ��
� for i � �� � � � �m and t � lN�

We are now going to complete the proof of the Lemma by showing that S�Ai� t
 is a feasible
schedule� We proceed by forward induction on t and backward induction on i � m�m��� � � � � ��
Assume that at the start of the �rst cycle all machines are loaded and have �nished processing
their part �this is without loss of generality� since we are only interested in the long run behavior
of the system
� For t � � and i � m� S�Am� �
 � �� For t � � and i � m� S�Ai� �
 �
�m� i
�	�� ��
� which is precisely the time required for the robot to perform Am� � � � � Ai��� and
to reach Mi�

Fix t 	 � and i � m � by induction� the robot arrives at Mm at time

S�A�� t� �
 � � � � � � � �m� �
� � �t� 	
C � m�	� � ��
 � 	� � m�

� �t� 	
C � C

� �t� �
C

� S�Am� t
�

Thus the robot can reach Mm in time to perform Am in the t�th cycle� In the previous cycle�
the robot �nished loading machine Mm at time

l�m� t� �
 � S�Am��� t� �
 � � � � � ��

We have�

S�Am� t
� l�m� t� �
 � C � 	�� �� � �� � � �

� C � ��� ��

� pm�

Thus machine Mm has �nished processing the part at time S�Am� t
 and can be unloaded�
Now� for t 	 �� i � m � by induction� the robot starts unloading machine Mi�� at time

S�Ai��� t
� It then arrives at machine Mi at time S�Ai��� t
 � � � � � � � 	� � S�Ai� t
� In the

�



j

ij

Figure �� The pyramidal permutation A�� A�� A�� A�� A�� A	� A�� A�

previous cycle� it �nished loading machine Mi at time l�i� t��
 � S�Ai��� t��
 � �� �� �� This
yields that

S�Ai� t
� l�i� t� �
 � C � 	�� �� � �� � � �

� C � ��� ��

� pi�

Thus machine Mi has indeed �nished processing at time S�Ai� t
� and the robot may start un�
loading�

Theorem ���� The optimal permutation � is such that�

maxf	�m � �
�� � �
�max
i

pi � ��� � �
g � L��
 � maxf�m� � 	�m � �
��max
i

pi � ��� � �
g�

Proof� The bounds follow from Lemma ��� and Lemma ��	�

Incidentally� Theorem ��� implies that the cycle time of �D is always smaller than twice the
optimal cycle time� In other words� the algorithm that outputs �D� independently of the values
of the input parameters� is a 	�approximation algorithm for the identical parts cyclic scheduling
problem� �We will not make use of this observation� but we �nd it interesting in its own right�

Moreover� �D is optimal when L��D
 � maxi pi � ��� � �
� This provides an important proviso
for the �unmotivated
 claim made by Asfahl ������ p� 	��
 that the permutation �D �must be
held regardless of the relationship between the machine cycle times� the time required for the
robot to move from station to station� and the load�unload times � �the author calls �machine
cycle time what we call �processing time �


�



De�nition ���� A set of permutations ! is dominating if for every choice of the processing
times� there exists � � ! such that L��
 � L���
 for all �� 
� !�

We are now going to introduce a class of permutations� of which �U and �D are just two
special representatives� and we are going to show that this class is dominating�

Let � � �A�� Ai� � � � � � Aik � Aik�� � � � � � Aim
�

De�nition ���� � is pyramidal if � � i� � � � � � ik � m and m 	 ik�� 	 � � � 	 im � ��

In particular� the permutations �U and �D are pyramidal� The meaning of the adjective
pyramidal should become clear from Figure �� It is probably worth noticing that the concept
of pyramidal permutations is not new � it has been introduced earlier� and extensively studied�
in the literature on the traveling salesman problem� see Gilmore et al� �����
 for a thorough
account� as well as Section � below� For an arbitrary� not necessarily pyramidal� permutation
we also de�ne�

De�nition ���� Activity Aik is uphill pyramidal if there is an index l in fk� � � � �mg such that
ik � ij for all k � j � l� and ik 	 ij for all j � k and all j 	 l�

In words � all activities between Aik and Ail bear on machines located after Mik in the
�owshop� while all activities before Aik or after Ail bear on machines located before Mik �

De�nition ���� Activity Aik is downhill pyramidal if there is an index l in f�� � � � � kg such that
ij 	 ik for all l � j � k and ij � ik for all j � l and all j 	 k�

In words � all activities between Ail and Aik occur on machines located after Mik in the
�owshop� while all activities before Ail or after Aik occur on machines located before Mik �

Remarks�

�� A� and Am are uphill pyramidal and Am is downhill pyramidal in all permutations�

	� A permutation is pyramidal if and only if each activity is pyramidal � i�e� either uphill or
downhill pyramidal
 in this permutation�

�� The reader should convince himself that Aik is uphill pyramidal if and only if the trajectory
�Mik �Mik��
 is travelled exactly twice by the robot in each cycle � once when performing
Aik and once after performing Ail �

�� Similarly� except for ik � m� Aik is downhill pyramidal if and only if the trajectory
�Mik �Mik��
 is travelled exactly four times in each cycle � once just before Ail � once just
before Aik � once during Aik � and once just after Aik �

The following theorem justi�es our interest in pyramidal permutations� It will be the cor�
nerstone for all subsequent results� and can therefore be viewed as the main result in this paper�

Theorem ���� The set of pyramidal permutations is dominating�

�



Proof� For reasons of clarity� and to stress that the theorem holds under very general condi�
tions� we present the proof for the case where the machines are not necessarily equidistant� and
loading�unloading times are machine dependent� We �rst introduce the following notations �
for all i� j � �� � � � �m�

�ij �

���
��

Pj

k
i �k if i � j

Pi

k
j �k if j � i�

The time the robot takes to perform Ai is denoted by "i�

"i � �i � �i � �i���

Similarly to �ij � we de�ne "ij as�

"ij �

���
��

Pj

k
i "k if i � j

Pi

k
j "k if j � i�

Let � be a nonpyramidal permutation� Let Aq be a nonpyramidal activity� let Air � Ab be the
uphill pyramidal activity de�ned by b � maxfjjj � q and Aj is uphill pyramidalg� and let Ais �
Ae be the uphill pyramidal activity de�ned by e � minfjjj 	 q and Aj is uphill pyramidalg�

Since Ais and Air are uphill pyramidal� there exist indices il � associated with Ais as in
De�nition ��� 
 and ik�� � associated with Air as in De�nition ��� 
 such that � can be rewritten
in the form �

� � �A�� � � � � Air � Air�� � � � � � Ais�� � Ais � � � � � Ail � Ail�� � � � � � Aik�� � Aik � � � � � Aim


and

� all activities in �� � �A�� � � � � Air 
 bear on machines with index at most b � �� i�e� ij �
ir � b for all Aij in �� �since Air is uphill pyramidal
�

� for all Aij in �� � �Air�� � � � � � Ais��
� ir � b � ij � is � e � since Ais is uphill pyramidal
�

� for all Aij in �� � �Ais � � � � � Ail
� ij � is � e �by de�nition of il
�

� for all Aij in �	 � �Ail�� � � � � � Aik��
� ir � b � ij � is � e �by de�nition of il and ik
�

� for all Aij in �� � �Aik � � � � � Aim
� ij � b �by de�nition of ik
�

Notice that �� and �� can never be empty since A� and Am are uphill pyramidal by de�nition�
Since there exists a nonpyramidal activity Aq� �� � �	 cannot be empty� although one of �� or
�	 can� Finally notice that �� can be empty�

�



We claim that � is dominated by the new permutation

�� � ��� ��� Ae��� Ae��� � � � � Ab��� ���

i�e�

L���
 � L��
�

Before proving this claim� notice that the status �pyramidal or nonpyramidal
 of all activities
contained in ��� ��� �� is the same in �� as in �� and that all activities contained in �� � �	�
i�e� Ae��� � � � � Ab�� are downhill pyramidal in �� �Figure � gives a sketchy representation of
the permutation ��� where thick lines indicate the segments ��� pi�� �� that �� inherits from �
�
Thus the claim implies that� in at most m iterations� � can be transformed into a pyramidal
permutation whose cycle time is no larger than that of �� which establishes Theorem ��	�

Let a steady state schedule with minimum cycle time for � be given by S�Ai� t
� Denote by
l�i� t
 the time at which the robot ends loading Mi in the t�th execution of the ��unit cycle� for
all t � �� when it performs schedule S� We give now a steady state schedule T �Ai� t
 for �� such
that T �A�� t
 � S�A�� t
� thereby showing that the cycle time of �� is at most L��
� We denote
by ��i� t
 the time at which the robot ends loading Mi in the t�th execution of the ��unit cycle�
for all t � �� when it performs schedule T �

For all t � �� we let

T �Aj � t
 � S�Aj � t
 if � � j � b ��


Next� for all t � � we de�ne T �Ab��� t
 by

T �Ab��� t
 � T �Aik � t
�"b�� � ��b���ik if �� �� � �	


� T �A�� t � �
�"b�� � ��b���� otherwise� ��


and� recursively on j �

T �Aj � t
 � T �Aj��� t
�"j � �j�j��� if b � � � j � e� ��


Finally � we let

T �Ail � t
 � T �Ae��� t
�"il � �il�e��� ��


and

T �Aj � t
 � S�Aj � t
 � T �Ail � t
� S�Ail � t
 if e � j � m� ��


Notice that the de�nition is complete� i�e� T �Aj � t
 is de�ned for all t � � and for all j �
f�� � � � �mg� In particular� ��
 applies to �� and �� � �	
���
 apply to �� and �	 and ��
���
 apply
to ��� One also checks easily that schedule T is steady state� with cycle time L � L��
�

To prove that ��
���
 de�ne a feasible schedule for ��� we need to check that�

��



0 ik

π5

π1 π3

b e il m

Figure �� Graphical representation of the permutation ��

�� the robot can reach Mj before T �Aj � t
 in cycle t�

	� machine Mj has �nished processing a part at time T �Aj � t
 in cycle t�

We �rst prove that the robot can reach all machines in time in every cycle� Consider any
activity Aj � and let Al be the activity preceding Aj in ��� If the start�time of Al is de�ned
by one of �	
���
 �i�e� if j � fb � �� � � � � e � �g � fikg 
� then T �Aj � t
 � T �Al� t
 is exactly
the time required for the robot to perform Al �viz� "l
 and to subsequently move from Ml��

to Mj �viz� �lj
� Thus the robot can get to Mj at time T �Aj � t
 if it can get to Ml at time T �Al� t
�

The latter conclusion also applies if � � j � b� j �� ik� in view of �	
 and if e � j � m� in
view of ��
 �since the schedule S is feasible
�

This reasoning leaves only open the question whether the robot can reach Me at time T �Ae� t

given that it starts with Ab � the activity preceding Ae in ��
 at time T �Ab� t
� Thus we have to
check that

T �Ab� t
 � "b � ��b����e��� � T �Ae� t
�

From the fact that in a schedule for � every trajectory �Mj �Mj��
� b � j � e is travelled at least
four times we can derive that �see �g ��
�

S�Ab� t � �
� S�Ab� t
 � S�Ab� t � �
� S�Aik � t
 � S�Ail � t
� S�Ae� t


��bik � �ile � "il � ���b����e��� � "�b����e��� � "b�

Combining this with ��
 and ��
 gives

T �Ab� t � �
� T �Ab� t
 � T �Ab� t � �
� T �Aik � t
 � T �Ail � t
� T �Ae� t


��bik � �ile � "il � ���b����e��� � "�b����e��� � "b�

��



Rewriting this inequality� we get

T �Ae� t
 � T �Ab� t
� T �Aik � t
 � T �Ail � t


���b���ik � �ile � "il � ���b����e��� � "�b����e��� � "b�

Combining this with �	
 and ��
 leads to

T �Ae� t
 � T �Ab� t
� T �Ae��� t
 � T �Ail � t


��il�e��� � "il � ��b����e��� � "b�

and thus by ��


T �Ae� t
 � T �Ab� t
 � ��b����e��� � "b

as required�

Remark� Notice that we used Aik � which may not exist if �� is empty� In this case the result
can be obtained similarly using S�A�� t � �
 instead of S�Aik � t
�

Now we prove that machine Mj has indeed �nished processing at time T �Aj � t
� By ��
�
all machines Mj with Aj in �� or �� are ready at time T �Aj � t
� Consider now machine Mb���
Observe that the start of activity Ab�� in schedule T occurs as late as possible under the
constraint that S�Aik � t
 � T �Aik � t
 �see ��
���
 and Figure �
� Thus� one derives that

S�Ab��� t
 � T �Ab��� t


and

T �Ab��� t
� T �Ab� t
 � S�Ab��� t
� S�Ab� t
�

Since S�Ab��� t
 is feasible� we have that

T �Ab��� t
� T �Ab� t
 � S�Ab��� t
� S�Ab� t
 � pb�� � "b�

as required�
A straightforward extension of the argument used in Lemma ��� shows that

pj � "j � "j�� � �j � �j�� � L� for all j � f�� � � � �mg�

Thus� for all b � � � j � e�

��j� t
 � T �Aj��� t
 � "j��

� T �Aj � t
 � "j � �j � �j�� � "j�� �by ��



� T �Aj � t � �
 � "j � �j � �j�� � "j�� � L�

�	



and thus

T �Aj � t � �
� ��j� t
 � L� �"j � �j � �j�� � "j��
 � pj �

This is the required inequality � since Aj is a downhill activity� T �Aj � t � �
� ��j� t
 represents
the time elapsed between loading of a part in cycle t and its unloading in cycle t � ��

In view of ��
� the machines Aj with j 	 e create no problem� Finally� we have to check that
Me has �nished processing in time�

T �Ae� t
� ��e� t� �
 � T �Ae� t
� �T �Ae��� t� �
 � "e��


� T �Ae� t
� �T �Ail � t� �
 � "il � �il�e��� � "e��
 �by ��



� S�Ae� t
� �S�Ail � t� �
 � "il � �il�e��� � "e��
� �by ��



Now� there are two cases�

�� If Ae precedes Ae�� in � �and thus the part loaded onto Me in each execution of � is
unloaded in the next execution
�

S�Ae� t
� �S�Ail � t� �
 � "il � �il�e��� � "e��
 � S�Ae� t
� �S�Ae��� t� �
 � "e��


� S�Ae� t
� l�e� t� �
�

and hence the feasibility of T �Ae� t
 follows from the feasibility of S�Ae� t
�

	� If Ae�� precedes Ae in � �and thus the part loaded onto Me in each execution of � is
unloaded in the same execution
� it is not hard to see� by just checking the travel time
that

S�Ae��� t
 � S�Ail � t� �
 � "il � �il�e����

Hence

T �Ae� t
� ��e� t� �
 � S�Ae� t
� �S�Ae��� t
 � "e��


� S�Ae� t
� l�e� t
�

and again the feasibility of T �Ae� t
 follows from the feasibility of S�Ae� t
�

We remark that� when m � �� there are exactly � pyramidal permutations� which have been
proved by Sethi et al�����	
 to be dominating� Theorem ��	 generalizes this result for arbitrary
values of m�

��



� An Algorithm for Computing the Cycle Time

of a Pyramidal Permutation�

In this section we present an algorithm that computes a shortest steady state schedule for a
pyramidal permutation in O�m
 time� This time complexity improves on the time complexity
of the algorithm using the max�algebra approach �Cohen et al� ����� Karp ����
� and on a
related but faster algorithm based on the analysis in Van de Klundert �����
� and Karp �����

�of course� the scope of our algorithm is also narrower
�

While proving the correctness of the algorithm� we derive some structural properties of a
shortest steady state schedule for a pyramidal permutation that will turn out to be useful in the
next section�

Let � � �A�� Ai� � � � � � Aim
 be a pyramidal permutation of the activities� and let U resp� D
denote the index set of the uphill� resp� downhill activities in � �with m � U 	 D
� A formal
statement of our algorithm is given in Figure �� We now discuss it more informally�

The algorithm computes a start time S�Ai
 for each activity Ai as well as a cycle time LS�
The schedule S is then implicitely de�ned by the relation

S�Ai� t
 � S�Ai
 � t
 LS for i � �� � � � �m and t � lN� ��


The algorithm proceeds backwards by decreasing activity index� starting with Am� It sched�
ules all downhill activities without waiting time� giving the robot just enough time to travel from
machine to machine bewteen two activities� That is� if i � D and Aj is the downhill activity
preceding Ai in �� then

S�Ai
 � S�Aj
 � �j � �� i
� � � � 	�� ��


Next� suppose that we are about to schedule an uphill activity Ai such that Ai�� is also uphill�
Then� for every feasible schedule T � and for all t � lN�

T �Ai� t
 � T �Ai��� t
� � � 	�� pi��� ��


and the algorithm simply sets

S�Ai
 � S�Ai��
� � � 	�� pi��� ���


Next consider an uphill activity Ai such that Ai�� is downhill� Again� in every feasible schedule
T � and for all t � lN�

T �Ai� t
 � T �Ai��� t
� � � 	�� pi��� ���


On the other hand� if Aj denotes the uphill activity following Ai in �� then we have in every
feasible schedule T �

T �Ai� t
 � T �Aj � t
� �j � i
� � 	�� ��	


��



The algorithm takes ���
 and ��	
 into account� and sets

S�Ai
 � minfS�Aj
� �j � i
� � 	�� S�Ai��
� � � 	�� pi��g� ���


Observe that� if S�Ai
 is determined by the second term in the latter expression� then the
di�erence S�Aj
 � S�Ai
 is larger than the travel time required between Ai and Aj � in other
words the robot will have to incur some idle time before the execution of Aj �

In this way a starting time is determined for each activity� The cycle time LS of the schedule�
however� is still not determined� It can be seen that LS must satisfy

S�A�
 � LS � S�Aim
 � �im � 	
� � 	�� ���


since otherwise� the robot cannot reach M� in time to start the �next
 execution of A� after
executing Aim � Moreover� by Lemma ���� we know that

LS � max
i

pi � ��� � �
� ���


Finally� consider any uphill activity Ai such that Ai�� is downhill� The part loaded on Mi in
the t�th execution of Ai�� is unloaded from Mi in the �t � �
�st execution of Ai� Hence�

S�Ai
 � LS � S�Ai��
 � � � 	� � pi� ���


In the algorithm� LS is set to the minimum value that satis�es all three inequalities ���
����
�

��



input � � � �A�� Ai� � � � � � Aim


�� Set S�Am
 � �� Set i � m� ��

	� �Schedule Ai �


if i � D and Aj is the downhill activity preceding Ai in � then

S�Ai
 � S�Aj
 � �j � �� i
� � � � 	�

if i � U and i � � � U then

S�Ai
 � S�Ai��
� � � 	�� pi��

if i � U and i � � � D and Aj is the uphill activity following Ai in � then

S�Ai
 � minfS�Aj
� �j � i
� � 	�� S�Ai��
� � � 	�� pi��g

�� If i 	 � set i� i� � and goto 	� else goto ��

�� �Compute cycle time


L� � S�Aim
 � �im � 	
� � 	�� S�A�
�

L� � max
i

pi � ��� � �
�

L� � max
i�U�i���D

S�Ai��
 � � � 	� � pi � S�Ai


LS � maxfL�� L�� L�g�

output � fS�LSg

Figure �� Algorithm for computing the cycle time of a pyramidal permutation

��



The algorithm can easily be implemented in O�m
 time� We now establish its correctness�

Theorem ���� For every pyramidal permutation �� the schedule de�ned by the algorithm in
Figure � is feasible and has minimum cycle time among all schedules for ��

Proof� Feasibility of the schedule ��
 can be checked by induction on i and t� In particular� for
all t � lN� S�A�� t � �
 is feasible if S�Aim � t
 is feasible� because of ���
� Moreover� if Aij starts
at time S�Aij � t
� then the robot can reach machine Mij�� before S�Aij�� � t
 �in time to perform
Aij��
� because of ��
� ���
� ���
� Finally� at time S�Ai� t
� machine Mi has �nished processing
and can be unloaded� this is true because of ���
 if i � U and i� � � U � because of ���
 if i � U
and i � � � D� because of ���
 if i � D and i � � � U � because of ��
 and ���
 if i � D and
i� � � D� Thus the schedule de�ned by ��
 is feasible�

It remains to show that the schedule de�ned by the algorithm in Figure � has minimum
cycle time among all schedules for �� The following relation ���
 is crucial for an intuitive
understanding of the algorithm � it expresses that the time elapsed between the execution of
an uphill activity Au and a downhill activity Ad� is at least as short in S as in any other schedule�

We now claim the schedule S to have the following property � for every feasible schedule T �
for all t � lN � for all u � U and for all d � D such that either u � d or fu� u� �� � � � � d� �g � U �

T �Ad� t
� T �Au� t
 � S�Ad
� S�Au
� ���


We prove this by backward induction on u� for each �xed value of d� The claim holds for u � m�
as follows easily from ��
� Now suppose that it holds for u � j� and let Ai be the uphill activity
immediately preceding Aj in �� If j � i � �� then ���
 follows from ��
� ���
 and the induction
hypothesis� If j 	 i � �� then Ai�� is downhill and S�Ai
 is given by ���
� Now if�

S�Ai
 � S�Aj
� �j � i
� � 	��

then ���
 follows from ��	
 and the induction hypothesis� On the other hand if

S�Ai
 � S�Ai��
� � � 	�� pi���

then� in view of ���
�

T �Ai��� t
� T �Ai� t
 � S�Ai��
� S�Ai


for all t � lN� Furthermore� since i � � � D� equation ��
 implies

T �Ad� t
� T �Ai��� t
 � S�Ad
� S�Ai��
�

and ���
 follows from the latter two inequalities� This completes the proof of the claim�

��



Let now T be any feasible schedule for �� Letting u � � and d � im in the claim� we have in
particular

T �Aim � t
� T �A�� t
 � S�Aim
� S�A�


for all t � lN� Therefore�

T �A�� t � �
� T �A�� t
 � T �Aim � t
 � �im � 	
� � 	�� T �A�� t


� S�Aim
 � �im � 	
� � 	�� S�A�


� L�� ���


Next� consider an index i � U such that i� � � D and

L� � S�Ai��
 � � � 	� � pi � S�Ai
�

Letting u � i and d � i� � in the claim� we obtain for all t � lN �

T �Ai��� t
� T �Ai� t
 � S�Ai��
� S�Ai
�

Since T is feasible� the same reasoning that lead to ���
 also establishes

T �Ai� t � �
 � T �Ai��� t
 � � � 	� � pi�

The previous inequalities together imply �

T �Ai� t � �
� T �Ai� t
 � L�� ���


From ���
� ���
 and Lemma ���� we now conclude that the long run average cycle time of T is
at least LS � maxfL�� L�� L�g� This completes the proof of Theorem ����

� Polynomial Algorithms for the Identical Parts Cyclic

Scheduling Problem

Theorem ��	 and Theorem ��� together imply that� for �xed m� the identical parts cyclic schedul�
ing problem can be solved in constant time by enumerating all pyramidal permutations and
subsequently computing their cycle time� However� since there are 	m�� pyramidal permuta�
tions� the resulting algorithm has exponential complexity when m is considered to be part of the
input� In this section� we will present more e�cient algorithms� whose complexity grows only
polynomially with m�

In the framework of the traveling salesman problem� a pyramidal tour of minimum length
can be found by dynamic programming in O�n�
 time� where n denotes the number of cities �see

��



e�g� Gilmore et al������

� In terms of the identical parts cyclic scheduling problem� a shortest
Hamiltonion tour would correspond to a permutation with minimum cycle time� Similarly� a
shortest Hamiltonian path would correspond to a schedule in which S�d
 � S��
 is minimum�
where d is the downhill activity with minimum index� i�e� the last activity in the permutation�

The �rst di�culty here stems from the fact that� in the traveling salesman problem� the
distance between two cities is given explicitly in the distance matrix whereas in the identical parts
cyclic scheduling problem� the �distance S�Aij 
�S�Aij��
 between two consecutive activities is
not a priori known� since the waiting time of the robot depends on the permutation� For the
type of schedules constructed by the algorithm in the previous section� however� we will be able
to show that these distances can somehow be computed online�

In this section� we �rst give a dynamic programming algorithm for the identical parts cyclic
scheduling problem which computes� for every possible value of d� a pyramidal schedule S such
that S�d
 � S��
 is minimum over all pyramidal schedules in which Ad is the downhill activity
with minimum index� This dynamic programming algorithm is similar to the one computing a
shortest path for the traveling salesman problem� but it does not necessarily output an optimal
schedule �i�e� a tour
 for the identical parts cyclic scheduling problem� This is the second di��
culty encountered in our problem� in comparison with the traveling salesman problem� However�
we show that� based on the dynamic programming formulation� an optimal schedule can be ob�
tained in polynomial time�

De�ne now the following sets of permutations�

De�nition 	��� For all u � f�� � � � �mg and d � f�� � � � �mg with u �� d� !u�d is the set of
pyramidal permutations such that�

�� Au is uphill

	� Ad is downhill

�� if u � d� then Ai is uphill for all i � fu� u � �� � � � � d� �g

�� if d � u� then Ai is downhill for all i � fd� d � �� � � � � u� �g�

For the sake of simplicity� when S�Ai� t
 is a steady state schedule� we use the shorthand
S�Ai
 instead of S�Ai� �
 �i � �� � � � �m
�

Now we de�ne a function L�u� d
 by�

De�nition 	��� For all u � f�� � � � �mg and d � f�� � � � �mg with u �� d�

L�u� d
 � minfS��Ad
� S��Au
j� � !u�d and S� is a steady state schedule for �g

Theorem 	��� For all u � f�� � � � �mg and d � f�� � � � �mg with u �� d� the value of L�u� d
 can
be computed in O�m�
 time by the following dynamic programming formulation�

L�m� ��m
 � � � 	� � pm�

L�m�m� �
 � 	� � ��

��



and� for all fu� dg �� fm� ��mg�

L�u� d
 �

������������
�����������

L�u� d � �
 � �� � 	� if u 	 d � �

minj�ufL�u� j
 � �j � d � 	
� � 	�g if u � d � �

L�u � �� d
 � � � 	� � pu�� if u � d� �

minj�dfmaxfL�j� d
 � 	� � �j � u
�� � � 	� � pdgg if u � d� �

Proof� The expressions for L�m���m
 and L�m�m��
 are easily checked to be correct �see ��

and ���

� For all other values of �u� d
� the recursive equations are based on the algorithm given
in the previous section �Figure �
� Their validity can be checked by induction� For example�
assume that the value of L�u� j
 is correctly computed by these equations for all j 	 u� and
consider next L�u� u � �
 �i�e�� u � d � �
� We must �nd a pyramidal permutation � and a
corresponding schedule S which minimizes S�Au��
� S�Au
� For any given permutation �� let
Aj be the downhill activity immediately preceding Au�� in �� From equation ��
� we know that

S�Au��
 � S�Aj
 � �j � u � �
� � 	��

Moreover� relying on the dynamic programming principle of optimality� we can assume that
S�Aj
�S�Au
 is as small as possible under the previous restrictions� i�e� S�Aj
�S�Au
 � L�u� j
�
It follows now that

S�Au��
� S�Au
 � L�u� j
 � �j � u � �
� � 	�

� L�u� j
 � �j � d � 	
� � 	��

Thus� L�u� u � �
 is attained by a permutation � which minimizes the previous expression�
as is asserted in the statement of the theorem� The other cases are left to the reader�

As for the complexity of the formulation� notice that the value of each L�u� d
 with ju�dj � 	
can be computed in constant time� The computation of each L�u� d
 wiht ju � dj � � requires
O�m
 time� but there are only 	m pairs �u� d
 such that ju� dj � �� Thus all values L�u� d
 can
be obtained in O�m�
 time�

The dynamic programming formulation in Theorem ��� allows to compute in O�m�
 time�
for every possible last activity Ad� d � �� � � � �m�

� the value of L��� d


� a permutation �d � !��d�

� a schedule S�d for �d such that S�d�Ad
� S�d�A�
 � L��� d
�

	�



The schedule S�d is the same schedule that would have been output by the algorithm in
Figure �� had it taken �d as input� It follows then that the cycle time of the permutation �d
produced by the dynamic programming algorithm can be computed as in step � of the algorithm
in Figure �� But again we emphasize here that the permutation �d output by the dynamic pro�
gramming algorithm does not necessarily have minimum cycle time� In the remainder of this
section� we explain how the dynamic programming formulation can be used to solve the identical
parts cyclic scheduling problem to optimality�

Let us �rst focus on the recognition version of the problem� which may be stated as �

Input � pi� i � �� � � � �m� �� �� C

Question � Is there a steady state schedule with cycle time at most C �

This problem can be solved by a slight adaption of the dynamic programming algorithm�
Informally� the dynamic programming algorithm will be modi�ed so that� when it �nds a per�
mutation� then the cycle time of the permutation is less than or equal to C� and when it does
not �nd a permutation� then such a permutation does not exist�

To start with� let us assume from now on that maxi pi � ��� � �
 � C� since otherwise The�
orem ��� provides a negative answer to the recognition problem� Consider next the following
de�nition� motivated by the computation of the bound L� in Figure � �

De�nition 	��� For all u � f�� � � � �mg and d � f�� � � � �mg with u �� d�

LC�u� d
 � minS��Ad
� S��Au


s�t� � � !u�d

S� is a steady state schedule for �

max
i�U�i�u�i���D�i���d

fS��Ai��
 � � � 	� � pi � S��Ai
g � C�

We let LC�u� d
 � �
 if there is no feasible solution to the optimization problem in
De�nition ���� Notice that LC��� d
 � �
 for all d � f�� � � � �mg� since the permutation
�A�� A�� � � � � Ad��� Am� Am��� � � � � Ad
 admits a schedule which satis�es all constraints in the de��
nition of LC��� d
� It can be checked as in Theorem ��� that the values LC�u� d
 can be computed
in O�m�
 time by the following recursion � where� for the sake of compactness� we denote by
K�u� d
 the quantity minj�ufLC�u� j
 � �j � d � 	
� � 	�g
 �

LC�m� ��m
 � � � 	� � pm�

LC�m�m� �
 � 	� � ��

	�



and� for all fu� dg �� fm� ��mg�

LC�u� d
 �

����������������
���������������

LC�u� d � �
 � �� � 	� if u 	 d � �

K�u� d
 if u � d � � and K�u� d
 � � � 	� � pu � C

�
 if u � d � � and K�u� d
 � � � 	� � pu 	 C

LC�u � �� d
 � � � 	� � pu�� if u � d� �

minj�dfmaxfLC�j� d
 � 	� � �j � u
�� � � 	� � pdgg if u � d� �

Theorem 	��� The recognition version of the identical parts cyclic scheduling problem can be
solved in O�m�
 time�

Proof� We can compute in O�m�
� for each d � f�� � � � �mg �

� the value of LC��� d


� a permutation �d � !��d�

� a schedule S�d for �d such that S�d�Ad
 � S�d�A�
 � L��� d
 and S�d satis�es the third
constraint in De�nition ����

We claim that the answer to the recognition problem is a�rmative if and only if there exists
d � f�� � � � �mg such that

LC��� d
 � �d � 	
� � 	� � C� �	�


Indeed� if �	�
 holds for some d� then the cycle time of �d is at most C �see Step � in Figure �
�
and we are done� Conversely� assume that there exists a pyramidal permutation� say �� whose
cycle time is at most C� Let Ad be the last downhill activity in �� and let S� be the schedule
computed for � by the algorithm in Figure �� By De�nition ���� LC��� d
 � S��Ad
 � S��A�
�
Moreover� in view of step � in Figure �� S��Ad
�S��A�
 � �d� 	
� � 	� � C� Thus we conclude
that �	�
 holds� which concludes the proof�

Of course� the optimization version of the problem can be solved by repeatedly solving the
recognition version� while applying binary search between the lowerbound and the upperbound
given in Theorem ��	 �

Corollary 	��� For integral values of pi� i � �� � � � �m� �� � the optimization version of the iden�
tical parts m�machine cyclic scheduling problem can be solved in O�m� log�m�

 time�

In the last part of this section� we now describe a strongly polynomial algorithm to solve the
optimization version of the identical parts m�machine cyclic scheduling problem� We �rst need
yet another modi�cation of De�nition ��	� in which some activities are �forced to be downhill

		



�the motivation for this de�nition should become clear very shortly
�

De�nition 	��� For all F � f�� � � � �mg� u � f�� � � � �mg n F and d � f�� � � � �mg with u �� d�

LF �u� d
 � minS��Ad
� S��Au


s�t� � � !u�d

S� is a steady state schedule for �

Ai is downhill in �� for all i � F�

For any F � f�� � � � �mg� a straightforward adaption of our previous dynamic programming
algorithm� which simply �skips all pairs �u� d
 such that u � F� allows to compute in O�m�

time� for each d � f�� � � � �mg �

� the value of LF ��� d


� a permutation �F�d such that Ai is downhill in �F�d for all i � F

� a schedule SF�d for �F�d such that SF�d�Ad
� SF�d�A�
 � LF ��� d
�

The cycle time of �F�d �as computed by the algorithm in Figure �
 is denoted by L��F�d
�
Suppose now that L��F�d
 � L�� We call activity Ai an obstruction of �F�d if Ai is uphill in �F�d�
Ai�� is downhill in �F�d and L��F�d
 � SF�d�Ai��
 � � � 	� � pi � SF�d�Ai
� Roughly speaking�
the intuition behind the algorithm that we are about to present is that� if a current schedule is
not optimal� then it must contain an obstruction Ai� and Ai should be downhill in any optimal
schedule� This property is stated more precisely in the following two lemmas�

Lemma 	��� For all F � f�� � � � �mg and d � f�� � � � �mg� if there is no obstruction in �F�d� then
there is no pyramidal permutation with cycle time less than L��F�d
 in which all activities in F
are downhill and Ad is the last downhill activity�

Proof� If L��F�d
 � max��i�m pi � ��� � �
� then �F�d is optimal by Theorem ���� If this is not
the case� and there is no obstruction in �F�d� then by de�nition of the bound L� in Figure �

T �A�� t � �
� T �Ad� t
 � SF�d�A�� t � �
� SF�d�Ad� t


for every feasible schedule T � Combined with the de�nition of LF ��� d
� this proves the lemma�

Lemma 	��� For all F � f�� � � � �mg and d � f�� � � � �mg� if Ai is any obstruction in �F�d� then
there is no pyramidal permutation with cycle time less than L��F�d
 in which all activities in F
are downhill and Ai is uphill�

Proof� Let � be any pyramidal permutation in which all activities in F are downhill and Ai is
uphill� and let T be a shortest steady state schedule for �� Suppose �rst that Ai�� is downhill
in �� Notice that� by de�nition�

LF �i� i � �
 � SF�d�Ai��
� SF�d�Ai
 � T �Ai��� t
� T �Ai� t
�

	�



On the other hand� � � 	� � pi is a lowerbound on T �Ai� t � �
� T �Ai� t
� Thus

L��F�d
 � SF�d�Ai��
 � � � 	� � pi � SF�d�Ai


� T �Ai� t � �
� T �Ai� t


as required�
Next� suppose that both Ai and Ai�� are uphill in �� Then�

T �Ai� t � �
� T �Ai��� t � �
 � � � 	� � pi

� SF�d�Ai� t � �
� SF�d�Ai��� t
�

Now consider the �rst point after T �Ai� t
� say � � at which the robot reaches Mi�� after travelling
trajectory �Mi�Mi��
� By de�nition of LF �i� i � �
�

� � T �Ai� t
 � SF�d�Ai��� t
� SF�d�Ai� t


because the permutation �
�

� obtained by switching the status of Ai�� from uphill to downhill in
�� admits a shortest schedule T

�

such that T
�

�Ai� t
 � T �Ai� t
 and T
�

�Ai��� t
 � �� as implied
by the algorithm in Figure �� Combining the latter inequalities one derives that

L��
 � T �Ai� t � �
� T �Ai� t


� T �Ai� t � �
� T �Ai��� t � �
 � � � T �Ai� t


� SF�d�Ai� t � �
� SF�d�Ai��� t
 � SF�d�Ai��� t
� SF�d�Ai� t


� L��F�d


as required�

Combining Lemma ���� and Lemma ��	� we obtain the following result �

Theorem 	��� The optimization version of the identical parts m�machine cyclic scheduling
problem can be solved in O�m�
 time�

Proof� We claim that the following algorithm correctly solves the problem�

�� F � � � opt� �


	� Call the dynamic programming algorithm and compute L��F�d
� �F�d� SF�d for d � �� � � � �m�

�� Select d such that

SF�d�Ad
� SF�d�A�
 � �d � 	
� � 	� � min
j
fSF�j�Aj
� SF�j�A�
 � �j � 	
� � 	�g

opt� min�opt� L��F�d

�

	�



�� If opt � maxi pi � ��� � �
� return �F�d and stop�

�� �Lemma ����
 If there are no obstructions in �F�d� return a permutation with cycle time
equal to opt� and stop�

�� �Lemma ��	�
 Let I be the set of obstructions in �F�d� Set F � F � I and goto 	�

Observe that the complexity of this algorithm is indeed O�m�
 since jF j � m� and hence the
dynamic programming algorithm cannot be called more than m times�

To see that the algorithm is correct� assume �rst that the following property �P 
 holds before
some iteration of Step 	 � �P 
 if there is a permutation� say �� with cycle time smaller than
opt� then all activities in F are downhill in � �notice that property �P 
 certainly holds before
the �rst iteration of Step 	�
 Under this assumption� we are going to prove that property �P 

is an invariant of the algorithm� i�e� � if property �P 
 holds before some iteration of Step 	�
then either the algorithm returns an optimal value in the subsequent execution of Steps ���� or
property �P 
 holds again before the next iteration of Step 	�

Indeed� if the algorithm stops in Step �� then �F�d is optimal by Lemma ���� Suppose now
that it stops in Step �� and �by contradiction
 that there exists a permutation � with cycle time
L��
 � opt� Let S� be any schedule for �� and let Aj be the last downhill activity in �� By the
property �P 
� all activities in F are downhill in �� Hence by De�nition ��� and by de�nition of
SF�j�

S��Aj
� S��A�
 � SF�j�Aj
� SF�j�A�
�

Moreover�

L��
 � S��Aj
� S��A�
 � �j � 	
� � 	��

and thus

L��
 � SF�j�Aj
� SF�j�A�
 � �j � 	
� � 	��

Step � of the algorithm implies now�

L��
 � SF�d�Aj
� SF�d�A�
 � �d � 	
� � 	��

Since �F�d has no obstruction� the previous inequality boils down to

L��
 � L��F�d
�

which contradicts L��
 � opt�
Finally if the algorithm does not stop in either Step � or �� then �F�d must contain a set of

obstructions� denoted by I� Setting F � F � I� property �P 
 is now directly implied by Lemma
��	�

Thus property �P 
 is indeed an invariant of the algorithm� and we conclude that the algo�
rithm is correct �since it is �nite
�

	�



	 Summary and Directions for Future Research

Planning and scheduling in modern production environments� such as robotic cells� gives rise
to a variety of challenging decision problems that do not �t well into classical models� In this
paper� we have studied a throughput rate maximization problem in a �owshop�like robotic cell
in which the material handling system consists of a single robot or robot arm� The throughput
rate of the cell is highly dependent on the interaction between the material handling system and
the machines processing the parts� We have shown that� when there is only one type of parts
to be produced� the problem can be solved in �strongly
 polynomial time even if the number
of machines is viewed as an input parameter of the problem� This generalizes previous results
established by Sethi et al� ����	
 for the three�machine case� Interestingly� our analysis makes
heavy use of seemingly unrelated concepts and techniques investigated by various authors in
connection with the traveling salesman problem �although� it should be observed� we never
actually obtain a TSP�formulation of our problem
�

Many interesting related problems are still open� The �rst open problem we mention is the
conjecture of Sethi et al� ����	
 that ��unit cycles are optimal among all possible robot move
sequences� in the case where there is only one part�type to be produced� Other interesting
open problems concern the case where there is more than one part�type� The applicability of
the concept of pyramidal permutations to such situations seems to be limited for a number of
reasons� First of all� there exist problem instances with multiple part types in which ��unit
cycles can be shown to be dominated �see Hall et al� �����a

� Second� even if we restrict the
analysis to ��unit cycles� it is not clear whether there always exists an optimal permutation
that is pyramidal� Finally� an NP�hardness result of Hall et al� �����b
 �mentioned in the
introduction
 establishes that computing the optimal part input sequence in a three machine
robotic cell is NP�hard for the downhill permutation� and thus for pyramidal permutations in
general� We also notice that the complexity of the multiple parts problem remains open if either
the number of parts or the number of part�types is �xed� As a matter of fact� to the best
of our knowledge� this question appears to be open even for ordinary three machine �owshops
�without robot
� Related issues have been recently investigated by Agnetis �����
� Hochbaum
� Shamir�����
� Granot et al������
� etc�


 Acknowledgements

The authors have bene�ted from helpful discussions with Jaap Geerdink and Olaf Flippo� We
are grateful to the Associate Editor and the reviewers of this paper for their helpful comments�
The �rst author was partially supported in the course of this research by AFOSR �grant F���	��
���������
 and ONR �grants N�������	�J���� and N�������	�����
�

� References

Agnetis� A� ����� No�wait �ow shop scheduling with large lot size� Rap� ������ Universita degli
studi di Roma �La Sapienza �

Agnetis� A�� Lucertini� M� � Nicolo� F� ����� Flow management in �exible manufacturing cells

	�



with pipeline operations� Management Science Vol� ��� No� �� 	�������

Asfahl� C�R� ����� Robots and Manufacturing Automation� John Wiley � Sons� New York� NY�

Blazewicz� J�� Eiselt� H�A�� Finke� G�� Laporte� G� � Weglarz� J� ����� Scheduling tasks and
vehicles in a �exible maufacturing system� International Journal of Flexible Manufacturing Sys�
tems �� �����

Cohen� G�� Dubois� D�� Quadrat� J�P� � Viot� M� ����� A linear�system�theoretic review of
discrete�event processes and its use for performance evaluation in manufacturing� IEEE Trans�
actions on Automatic Control� Vol AC ��� No �� 	���		��

Gilmore� P�C�� Lawler� E�L� � Shmoys D�B� ����� Well solved special cases in Lawler� E�L��
Lenstra� J�K�� Rinnooy Kan� A�H�G�� Shmoys� D�B� �eds�
 The Traveling Salesman Problem� A
Guided Tour of Combinatorial Optimization� Wiley�Interscience Series in Discrete Mathemat�
ics� John Wiley � Sons� Chichester New York Brisbane Toronto Singapore�

Granot� F�� Skorin�Kapov� J� � Tamir� A� ����� Using quadratic programming to solve high
multiplicity scheduling problems on parallel machines� Working Paper�

Hall� N�G�� Kamoun� H� � Sriskandarajah� C� ����a� Scheduling in robotic cells� Two machine
cells and identical parts� Working Paper� College of Business� The Ohio State University� To
appear in Operations Research�

Hall� N�G�� Kamoun� H� � Sriskandarajah� C� ����b� Scheduling in robotic cells� Large cells�
Working Paper� College of Business� The Ohio State University�

Hall� N�G�� Potts� C�N� � Sriskandarajah� C� ����� Parallel machine scheduling with a common
server� Working Paper� College of Business� The Ohio State University�

Hochbaum� D�S� � Shamir� R� ����� Strongly polynomial algorithms for the high multiplicity
scheduling problem� Operations Research Vol� ��� No� �� ��������

Jeng� W�D�� Lin� J�T� � Wen� U�P� ����� Algorithms for sequencing robot activities in a robot�
centered parallel�processor workcell� Computers � Operations Research Vol� 	�� No� 	� ��������

Karabati� S� � Kouvelis� P� ����� Cyclic scheduling in �ow lines� modeling observations� e�ec�
tive heuristics and optimal cycle time minimization procedure� Working paper�

Karp� R�M� ����� A characterization of the minimum cycle mean in a digraph� Discrete Math�
ematics 	�� ��������

King� R�E�� Hodgson� T�J� � Chafee� F�W� ����� Robot task scheduling in a �exible manufac�
turing cell� IIE Transactions Vol� 	�� No� 	� ������

Kise� H� ����� On an automated two�machine �owshop scheduling problem with in�nite bu�er�

	�



Journal of the Operations Research Society of Japan Vol� ��� No� �� ��������

Kise� H�� Shioyama� T� � Ibaraki� T� ����� Automated two machine �owshop scheduling� a
solvable case� IIE Transactions Vol� 	�� No �� ������

Krishnamurthy� N�N�� Batta� R� � Karwan� M�H� ����� Developping con�ict�free routes for
automated guided vehicles� Operations Research Vol� ��� No� �� ����������

McCormick� S�T�� Pinedo� M�L�� Shenker� S� � Wolf� B� ����� Sequencing in an assembly line
with blocking to minimize cycle time� Operations Research Vol ��� No �� �	������

Sethi� S�P�� Sriskandarajah� C�� Sorger� G�� Blazewicz� J� � Kubiak� W� ���	� Sequencing of
parts and robot moves in a robotic cell� International Journal of Flexible Manufacturing Sys�
tems �� ��������

Stecke� K�E� ����� Formulation and solution of nonlinear integer production planning problems
for �exible manufacturing systems� Management Science Vol� 	�� No� �� 	���	���

Van de Klundert� J�J� ����� Ph�D� Thesis in preparation�

	�



Appendix

We show here that� among all schedules with maximum long run throughput rate for the
identical parts cyclic scheduling problem� there always exists one which is steady state�

Let � be permutation of the activities� We construct a directed graph D�V�A
 as follows�
Associate a vertex vi with each activity Ai� for all i � �� � � � �m� There is an arc from vertex vi
to vertex vj if i � ��s
� j � ��s � �
� for some s � �� � � � m or if i � ��m
 and j � ���
� This
arc represents the fact that the robot executes activity Aj right after activity Ai� The length
of this arc is the time the robot takes to perform Ai and subsequently travel to machine Mj to
perform Aj � Furthermore there is an arc with length � � 	�� pi�� from vertex vi to vertex vi���
i � �� � � � �m� ��

Observe that there are two arcs from vi to vj if j � i � � and i � ��s
� j � ��s �
�
� for some s � �� � � � m� In such a case the shortest of these two arcs �i�e� the robot travel
time arc
 is deleted�

	�



After this modi�cation D is a directed cyclic graph� Loosely speaking� the length of a path
from vi to vj in D is a lowerbound on the time that the execution of Ai and Aj must be apart�
More precisely� denote by L�v� u� t
 the length of the longest path from v to u� u� v � V that
goes around D t times� t � lN� It is not hard to see that �

Lemma A��� Let T be any real�valued function on f�Ai� t
ji � �� � � � �m� t � lNg� Then T is a
schedule for � if and only if�

L�vi� vj � t
 � T �Aj � t
� T �Ai� �


if Ai precedes Aj in �� i� j � f�� � � � �mg� t � lN� and

L�vi� vj � t� �
 � T �Aj � t
� T �Ai� �
�

if Aj precedes Ai in �� i� j � f�� � � � �mg� t � lN�

Proof� Trivial�

In particular� the length of a path from vi to vi that goes around D once is a lowerbound on
the cycle time of �� More generally� denote by C the shortest possible cycle time of the ��unit
cycle under consideration�

C � max
t�lN

max
��i�m

L�vi� vi� t


t
� L�� �	�


Notice that any cycle that goes around D more than m times must contain twice the same
vertex� by the pigeonhole principle� and hence can be split into several simple cycles� Therefore
we have�

L� � max
��t�m��

max
��i�m

L�vi� vi� t


t
�		


For the moment� let us not concentrate on how to �nd the maximum in �		
� but rather on
how to construct a feasible steady state schedule when this maximum is known� Suppose that
v� and t� realize the maximum in �		
� i�e�

L� �
L�v�� v�� t�


t�
�

For i � �� � � � �m� we de�ne

S�Ai� �
 � max
��t�m

fL�v�� vi� t
� t
 L�g� �	�


S�Ai� s
 � S�Ai� �
 � s
 L�� for all s � lN� �	�


��



Lemma A��� S is a steady state schedule for � with cycle time L��

Proof� Shift � such that the activity corresponding to v� is the �rst activity in �� Let Ai and Aj

be arbitrary activities in �� We deal here with the case that Ai precedes Aj in � �the other case
being left to the reader
� According to Lemma A��� we must show in this case that S satis�es

L�vi� vj � t
 � S�Aj � �
 � t
 L� � S�Ai� �
� �	�


t � lN� In fact� we only have to establish �	�
 for t � f�� � � � �mg� Indeed� if t 	 m there is at
least one vertex w that appears twice on the longest path from vi to vj � Let t� be the number
of times the path goes around D between these two occurrences of w� By de�nition of L��
L�w�w� t�
 � t� 
 L�� Hence it su�ces to show that

L�vi� vj � t� t�
 � �t� t�

 L� � S�Aj � �
 � S�Ai� �
�

Using induction� we deduce that only values of t in f�� � � � �mg need be considered�
Now� choose s� � � s � m� such that

S�Ai� �
 � L�v�� vi� s
� s
 L�� �	�


and observe that

L�v�� vi� s
 � L�vi� vj � t
 � L�v�� vj � t � s
� �	�


Now� we claim that

L�v�� vj � t � s
 � S�Aj � �
 � �t � s

 L�� �	�


Indeed� in case s � t � m� this is true by de�nition of S� In case s � t 	 m we have again
that there exists a vertex w that appears twice on the longest path from v� to vj � Let t� be the
number of times the path goes around between these two occurrences of w� By de�nition of L��
L�w�w� t�
 � t� 
 L�� Hence� �	�
 follows by induction from

L�v�� vj � t� t�
 � S�Aj � �
 � �t � s� t�

 L��

Combining �	�
 and �	�
� we derive

L�v�� vi� s
 � L�vi� vj � t
 � L�v�� vj � t � s
 � S�Aj � �
 � �t � s

 L�� �	�


Hence� from �	�
 and �	�
�

L�vi� vj � t
 � S�Aj � �
 � t
 L� � S�Ai� �
�

��



as required�

Theorem A��� For each permutation of the activities� there exists a steady state schedule that
maximizes the long run throughput rate�

Proof� This follows from Lemma A�	 and �	�
�

As a �nal remark� we observe that� for each permutation � of the activities� there exists a
natural �active schedule� in which the robot performs each activity as early as possible� in the
order dictated by �� It is not very di�cult to see that the long run average throughput rate of
an active schedule is always optimal for the corresponding permutation �see also Cohen et al�
�����

�

�	


