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CYCLIC VECTORS AND IRREDUCIBILITY FOR
PRINCIPAL SERIES REPRESENTATIONS

BY

NOLAN R. WALLACH

Abstract. Canonical sets of cyclic vectors for principal series representations of

semisimple Lie groups having faithful representations are found. These cyclic vectors

are used to obtain estimates for the number of irreducible subrepresentations of a

principal series representations. The results are used to prove irreducibility for the

full principal series of complex semisimple Lie groups and for SL(2n+l, R),n^l.

1. Introduction. Let G be a real semisimple Lie group which is connected and

has a faithful finite-dimensional representation. Let K be a maximal compact

subgroup of G and let S=AN he an Iwasawa subgroup of G. N is the nil-radical

of S and A is the split part of 5. Let g, f, a, n be respectively the Lie algebras of

G, K, A and N. Let a' be the real dual of a. Let pea' be defined by p(x)

= (1/2) tr (ad x\n) for x e a. Let M be the centralizer of A in K. Let (£, H() be an

irreducible unitary representation of M (f is the action, H¡ is the Hubert space),

and let v e a'. We now define a unitary representation (tt¡¡,v, 77?,v) of G. H!,v is the

space of all measurable functions /: G ->■ 77^ such that

(0 f(gman) = e-(>' + ivnloea)i(m)-1f(g) for g e G, m e M, aeA, neN (here

log: A -»• a is the inverse map to exp: a -^- A).

(ii) fK/M ||/(x)||2 dx<co. (Here || ■ • • || is the Hubert space norm on HK, dx is

TC-invariant measure on K/M and j|/(/cAf)|| = \\f(k)\\ is well defined for/satisfying

(i) and k e K.)

The action «ri>v of G on 77iv is given by (TT(,v(g0)f)(x)=f(gö1x) for g0, xeG.

In this paper we give a new proof, using a result of Kostant [7], of a result of

Bruhat [2] that says that H(V = H1 ©• • ■ © 77p, 77, irreducible, closed, G-invariant

subspaces of H(-v, with 77¡, Hj orthogonal for /Vy. Using Kostant's result, we

derive an upper bound (Theorem 3.3) for p which is in many cases better than that

of Bruhat [2]. It proves in particular that every element of the full principal series

{(7ri-v, 77i,v)} is irreducible for the following classes of groups:

(1) Complex semisimple Lie groups.

(2) SL(2n+l,7?),n^l.
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Zelobenko [10] seems to also have a proof of (1). We discovered our proof

before we were aware of Zelobenko's. Gel'fand and Graev [3] assert (2). However

their technique and their theorem indicate the irreducibility for SL(2n, R), n> 1.

This is not true (see §5 for details on SL(n, R)). There seems therefore to be a gap

in their proof of (2).

We thank Professor G. Schiffman for suggesting the use of the Stone-Weierstrass

theorem to prove Theorem 2.1. We also thank Professor Garth Warner for allow-

ing us access to the manuscript of his forthcoming book on representation theory.

2. Extendible representations. We retain the notation and assumptions of §1.

Let N be the unipotent subgroup of G corresponding to the negative restricted

root spaces of a assuming N corresponds to the positive restricted root spaces of o.

Let (f, Ht) be a unitary irreducible representation of M. We say that (f, 77{) is

extendible if there is an irreducible, finite-dimensional, complex G module, V, so

that the AT-module, VR={v e V | n-v = v for all n e N} is equivalent with (f, Hf).

We call V an extension of £.

Let M be the set of all equivalence classes of irreducible unitary representations

of M. We denote the class of (f, T7{) by [£]. Let AT* be the normalizer of A in K.

We set W(A) = M*jM. Then W(A) has canonical actions on M and a'. If [f] £ M,

ere W(A), define [£]" to be the class of the representation (£ ° Ad (m* ~1), TT{)

where m* e a. It is clear that the action is well defined. Let W(A) act in a' by

v" = v o Ad (m* "1) for m* e a.

We say that y e A? is extendible if there is (|, H() £ y that is extendible.

Let V be an irreducible finite-dimensional complex G-module. We analyze the

Af-module VN. The contragradient module, V*, to V is defined to be the complex

dual space V* of V with G-acting by

(gX)(v) = X(g~1v)   for A £ V*, v e V, g e G.

We define V*N = {Xe V* \ n-X = X for all n e N}.

Lemma 2.1. Let V and V* be as above.

(1) VÑ is irreducible as an M-module.

(2) As an MA-module, Vs is equivalent with (V*N)*.

Proof. Let i: vn^(V*N)* be defined by i(v)(X) = X(v) for all veVN, Xe V*N.

liveY*, Xe V*N, ge MA then i(gv)(X) = X(gv) = (g~1-X)(v) = (g-i(v))(X). Thus i

is an Mv4-module homomorphism. The proof proceeds from here in exactly the

same way as the proof of Proposition 3.3 of Wallach [9], to see that Ksis irreducible

as an M-module and i is an AL4-module isomorphism.

Theorem 2.1. Let y e M. Then there is a e W(A) such that y" is extendible.

Proof. Let E0 be the set of all extendible elements of M. Let

E = {y | y e E0, o e W(A)}.
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We first show that if y e E0 and if y* is the class of contragradient representation

to y then y* e E. Indeed let V be an extension of y e E0. Let a e W(A) be such that

if m* e a then Ad (m*)N=N. Let y be the class of V*N. We assert that y"'1 = y*.

Indeed the action off7-1 on V*Ñ is U(m)v = m*mm*~1-v = m*(mm*~1v). Now

m*-iy*s= y*N Thug the action of y"~l on K*sis equivalent to the action of M

on V*N. But V*N is equivalent with (Vs)* by Lemma 2.1.

Now let P be the algebra generated over C by the matrix elements of the elements

of E. By the above, iffie P then the complex conjugate/of/is in P. Thus to prove

the theorem we need only show that P separates the points of M. If P did not

separate the points of M there would be g e M, gj^e so that if V is any irreducible,

complex, finite-dimensional, G-module and if m* e M* then Ad (m*)g\v« is the

identity.

Let gc be the complexification of g, the Lie algebra of G. Since G has a finite-

dimensional faithful representation we may assume that G^Gc, Gc a complex

connected Lie group with Lie algebra gc, and that G is the connected subgroup

of Gc with Lie algebra g. Let g = i © p be a Cartan decomposition of g. Let u =

ï © (—1)1,2£ in gc. Then u is a compact form of gc. Let U be the corresponding

connected subgroup of Gc. We note that u<=p. It is not hard to prove (see

Matsumoto [8]) that if Z=exp ((— l)1,2ct) n K and if Me is the identity component

of M then MeZ=M. Let i)£ be an abelian subalgebra of f, maximal subject to

the constraint i)£+a is abelian. Let T0 = exp(i)%) and let 7\ =exp ((—l)x'so).

Then T= T0T± is a maximal torus of U and T0 is a maximal torus of Me. Now up to

conjugacy by an element of M* we may assume that the element ge M above is in

T0Z<=T. The theorem of the highest weight applied to irreducible finite-dimensional

holomorphic Gc modules now implies such ag e T0Z<=T, gj^e cannot exist.

Now let V be an irreducible, finite-dimensional nonzero complex G-module. We

identify Vs with (V*N)*. For each v e V, we define a C°°-map, a(v): G ^ VN

= (V*N)*, as follows: if ge G, Ae V*N we set a(v)(g)(X) = (g-X)(v) = X(g-1v).

Lemma 2.2. (1) Ifv eV,g0,geG then a(g0v)(g) = a(v)(gö1g).

(2) If v e V, g e G, m e MA then a(v)(gm) = m~1-(a(v)(g)).

(3) IfñeÑ,neN,geG,veVN then a(v)(ñgrí) = a(v)(g).

Proof. (1) Let A e V*N, then

<gov)(g)(X) = (gX)(g0v) = (go-'gWv) = «(!;)(g0-1g)(A).

This proves (1).

(2) Let A e V*N, veV,geG,me MA. Then

a(v)(gm)(X) = (gmX)(v) = (g(mX))(v) = a(v)(g)(mX) = (m^-a(v)(g))(X).

This proves (2).

(3) Let ñ e Ñ, n e N, g e G, v e VÑ, X e V*N. Then

a(v)(ñgn)(X) = (ñgn)X(v) = (ñgX)(v) = (gA)(ñ"1t;) = (gA)(i>) = a(v)(g)(X).

This proves (3).
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Now let V, VN be as above. Put an M-invariant unitary structure on VN. Let the

corresponding unitary representation of M be denoted (£, T7{) (H( = VN). Let A be

the action of A on VR. That is if a e A, v e VN then a-v = eMloga)v. Let * £ a'. Let

h : G —3- a be defined by h(kan) = log a for k e K, a e A, n e N. We define a map

Evy. V^H^

by setting

Ev.Áv)(g) = ea-<p + imh(9))a(v)(g),   forveV,ge G.

Lemma 2.3. Ev,v: V-> H(v is a K-module injection.

Proof. We first show that if v e V then Ev,v(v) e 77?,v. Indeed let g e G, m e M,

ae A, ne N, then

Ev,,(v)(gman) = ew-(" + iv»(1<«0>e-A<loeo>f(/M)-17i:v,v(g)

= e-(-B + imoga^(m)-1EVtV(g).

Since EVyV(v)\K is continuous we see that Ev,v(v) e Htv.

We now show that Evy. V —> 77i,v is a A'-module homomorphism. Let k, k0 e K,

ae A, ne N, ve V. Then

Ev,v(k0-v)(kan) = e^-^ + i^loga)cc(k0v)(kan)

= ¿*-il,+MWo"aa(v)(k¿1kan)

= Ev,v(v)(kô1kan).

Thus Ev,y is indeed a A^-module homomorphism.

To complete the proof of the lemma we need only show that EVyV is injective.

But this is obvious since if Ev>v(v) = 0 then el*-'-p + iv»Vl(g»a(v)(g) = 0 for all g eG.

Hence a(v)(g) = 0 for all veV. But a(v) = 0 implies v = 0, since, by Lemma 2.2,

Ker a is G-invariant and a^O.

3. Implications of a theorem of Kostant. We need some notation to state the

result of Kostant that we will need. Let G = KAN be as in §§1 and 2. Let A7 be, as

usual, the centralizer of A in K. Let h:G —> a be defined by h(kan) = log a for

k £ K, ae A, ne N. Let n be the lie algebra of TV, then a acts on n via the adjoint

action, relative to this action n=2 na, «e a', na={x£n | [h, x] = a(h)x for all

h e a}. Let A+ ={a e a' \ na#{0}}. We extend the killing form < , >, of a to a' in

the canonical fashion. Let a'c be the space of all complex valued (real) linear forms

on a. We define the function 1A: G—^C by lA(g) = e~x<Ä(9>). 1A is in particular a

C" function on G. Let for x e Q,fe C'X(G) (the C" complex valued functions on

G), (xf)(g) = (d/dt)f(exp (-tx)g)\t=0. The action of g on C°°(G) extends to U($)

the complexified universal enveloping algebra of g. Let Xx= t/(g)- 1A|K. A function

fe CX(K) is said to be TC-finite if the space spanned by all the functions (k0f)(k)

=f(kô 1k), k0 e K, is finite dimensional.
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Theorem 3.1 (Kostant [7, Theorem 8]). Let Xea'c be so that X — p = px

+ (—l)ll2p2, Pi e a', i=l, 2, and (pu a}^0for each a e A + . Then Xh is the space

of all K-finite functions on K,fi such that f(km)=f(k) for ke K,me M.

Using this deep result of Kostant's we prove

Theorem 3.2. Let (tj, 77ç) be an irreducible unitary representation of M. Let V be

an extension of Ç. Let vea'. 7//e£Vv(77í),//0, then fi is a cyclic vector for

(»t.„ #{>v)-

Proof. Let A ® f be the action of A x M on VN. By the theorem of the highest

weight, <A, a>áO for a a positive restricted root. Sety= — A + p + iv. Then Kostant's

theorem implies U(q)- lr\K is the space of all Tv-finite functions on K constant on

the left cosets of M.

Now if/e £7jV(/fj),/#0, then/=£■„», v e VN, »#0. Thus/= 1 „• a(v). Now if

k e K, k ■ 1 y = 1 y. Thus since G = ÑAK we see that G • 1 y = NAI y. On the other hand

ÑAa(v)^R*(a(v)) (R* = R-{0}). Thus if Heiv is the smallest closed G-invariant

subspace of H(-v containing / then (G- ly)a(v)'^H¡,v. Thus by taking derivatives

(U(a)-ly)a(v)^Hl'v. Taking the uniform closure of (U(a)ly)a(v)\K we have

C*(K¡M)-a(v)\K<= Hl-V\K by the Peter-Weyl theorem (here we have identified

CX(KIM) with the space of all complex valued C°° functions on K which are

constant on the left cosets of M). Let C°(K; £) = {/: K-+Ht \f(km) = Ç(m)-1f(h)

for ke K, me M and such that /is a CM map of 7í-> 77J. A partition of unity

argument shows that the linear span of CX(K/M)■ Ka(v)\K = Cœ(K, f). Thus

H§-v is dense in H*>\ Hence H¡-y = Hi-\    Q.E.D.

Theorem 3.3. Let (¿j, H() be an irreducible unitary representation of M. Let V be

an extension of i. Let m be the multiplicity of $ in V as an M-module. If vea! then

77?,v is a direct sum H1 ©• • •© Hr of irreducible unitary subrepresentations of

Hiv andrem.

Proof. Let EViV: V-+Hi,v be defined as in §2. Suppose that 77?v is not irre-

ducible. Let U^Ht,v be a proper nonzero invariant, closed subspace of 77i,v. Let

P:H(V-+ U be the corresponding projection. If P(EVtV(VN)) = 0 then EV¡V(VÑ)

<= Ul (the orthogonal complement of U in 77{,v). Theorem 3.2 implies that UL

= Hl-v; this would imply t/=(0). Thus P(Ev.v(VN))^0. Similarly (I-P)(EV,,(VN))

=¿0. Furthermore iffeP(Ev¡v(VN)),f^0 (resp. fe(I-P)(EVtV(VN)),f¿0), then/

is a cyclic vector for U (resp./is a cyclic vector for U1). Continuing this process

we find, after (say) k steps, 77{'v= i/i ©• • • © Up, {/, invariant, closed, proper and

now zero and Ut, Uj orthogonal for i^j. Furthermore 75¡(7¿'FjV(Kw))#0

(P,: 77i,v ->■ [/, the corresponding projection) and if/e Pi(EViV(VN)),f=£0, then/is

a cyclic vector for Í/,. Now Frobenius reciprocity implies that the dimension of the

space of all AMiomomorphisms of V\K -> H(,V\K is equal to m. Since

Al = PioEry.V^H*"\K
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is a 7^-homomorphism and Au ..., Ap are linearly independent we see that p^m.

This proves the result.

We indicate that Theorem 3.3 is generally applicable to connected semisimple

Lie groups with finite-dimensional faithful representations. This follows from

Theorem 2.1 and the following result of Bruhat [2].

Theorem 3.4. Let (f, H() be an irreducible unitary representation of M. Let

v e a'. Then (t^.v, 77?,v) is unitarily equivalent with (-rr^y, H(,,'v°)for a e W(A).

4. Complex semisimple Lie groups. We assume in this section that G is a

connected complex semisimple Lie group. Then K is a compact form of G, M is a

maximal torus of K, MA is a Cartan subgroup of G. W(A) acts on MA as the Weyl

group of G relative to MA. The irreducible unitary representations of M are just

the characters of M.

Theorem 4.1. Let G be a connected complex semisimple Lie group. Then every

member of the full principal series of G is irreducible.

Proof. Let £ be a character of M and let v e a'. Then if a e W(A), (tt(v, 77{,v) is

equivalent with (rr^y, 77i°,v°). We will therefore have proved the theorem if we

prove that (tt?>v, T7i,v) is irreducible for i in the negative Weyl chamber of A. Let

V be the holomorphic, finite-dimensional, irreducible representation of G with

lowest weight f. Then Kis an extension of £. Furthermore the theorem of the highest

weight implies that the multiplicity of £ in V as an M-module is 1. Theorem 3.3

now implies that (tt(,v, H(,v) is irreducible.

5. SL(n, R). Let G = SL(n, R) and K=SO(n). We take A to be the set of all

diagonal matrices of G with positive entries. M is the group of all diagonal elements

of G with entries ± 1 on the diagonal. TV is the group of all upper triangular

matrices with ones on the diagonal. W(A) acts on M by permuting the entries along

the diagonal. If m = diag (mu ..., mn) is in M. Then set e0(m) = 1, e.(m) = m¡,

í=l,...,»— 1. Then every nontrivial unitary character of M is of the form

eh,..., Eir, 1 èh< • • • <ir^n-\. Set e„ = ei- • •£„-!• Then W(A) acts by permuting

eu ..., e„. We consider the representations V, i=0,..., n—l, where Vo is the

trivial representation of G. V1 is the standard (matrix) action of SL(n, R) on C\

AiV1= V1 is the rth Grassman product of the representation V1. Let eu ..., en be

the standard basis of Cn. Then if meM,m-e, = ei(m)ei. Thus in general as an

M-module Vk splits into a direct sum

Vo = 1,

(*)     v«=     2     ^•••£'=

+ V £,-••£,   .    for«— 1 ^ fc > 0.
/  • -*1 Jn— k

iáj'i<--<y„-fcSn-i

We note that every representation of M appears exactly once except in the case

n = 2k, V= Vk. In this case every representation of M appears exactly twice.
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Theorem 5.1. (1) If n is odd, every element ofthe full principal seriesfor SL(n, R)

is irreducible.

(2) Ifn is even then if £ = eh- ■ -etj, 1^/1< • • • <ij£n — 1 andj+n\2 and ifv e a!

then (tt(<v, 77i,v) is irreducible. Ifj=n/2, and if (tt{v, 77i,v) is reducible then 77i,v

= 77i ® H2, unitary direct sum, H, irreducible unitary representations of G.

Proof. Up to the action of the Weyl group W(A) we may assume (using Theorem

3.4) that f=fr = £0£i- • ■%•> '' = 0,..., n— 1. If r = 0 then |0 is the action of M on

(V°f if r#0 then fr is the action of M on (Vn-'f. (1), (2) now follow from (*)

above and Theorem 3.3.

Stein and Knapp [6] have shown that if n = 2k, $ = £ie3- ■ -en-i an(i

CT=(12)(34)- • •(«-1, n) £ W(A) then if vea' and va = v then (ttí>v, 77í>v) is reducible.
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