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CYCLIC VECTORS IN THE DIRICHLET SPACE 
BY 

LEON BROWN AND ALLEN L. SHIELDS1 

ABSTRACT. We study the Hilbert space of analytic functions with finite Dinchlet 
integral in the open unit disc. We try to identify the functions whose polynomial 
multiples are dense in this space. Theorems 1 and 2 confirm a special case of the 
following conjecture: if IJ(z)I > Ig(z)l at all points and if g is cyclic, thenJis cyclic. 
Theorems 3-5 give a sufficient condition (t is an outer function with some 
smoothness and the boundary zero set is at most countable) and a necessary 
condition (the radial limit can vanish only for a set of loganthmic capacity zero) for 
a function J to be cyclic. 

Introduction. In this paper we shall study the (Hilbert) space of analytic functions 
in the open unit disc a in the complex plane that have a finite Dirichlet integral: 
JJ If t12 dx dy < so. Our goal is to identify, as far as possible, the "cyclic vectors" in 
this space, that is, those functions f such that the polynomial multiples of f are dense 
in the space. The corresponding problem for the Hardy space H2 was solved by 
Beurling [5] in 1949: the cyclic vectors are precisely the outer functions. The present 
paper is divided into four sections; it contains 20 propositions, 5 theorems and 19 
unsolved problems (stated as Questions in the text). 

The first section deals with cyclic vectors and multiplication operators in a general 
Banach space of analytic functions (in a bounded region of the complex plane). The 
theory is illustrated by considering a special family of Hilbert spaces, denoted { Dot }, 
- oo < (x < oo, in the unit disc. (The values (x = 0, 1 give, respectively, H2 and the 
Dirichlet space.) These spaces (for 0 < ot < 1) were considered by Carleson in his 
dissertation [7]. This section contains 10 propositions and raises 6 questions, mostly 
for a general Banach space of analytic functions. For example, Question 3 asks if f 
must be cyclic whenever we have If(z)I > [g(z)l for some cyclic g, and all z? 
Question 4 asks if f must be cyclic whenever f and l/f are both in the space. No 
examples are known where either of these questions has a negative answer. 

In §2 we begin the study of cyclic vectors in the Dirichlet space D. Theorems 1 
and 2 give a partial answer to Question 3 above, for this space. This section also 
contains 2 propositions (10, 11) and 4 questions (7-10). Proposition 11 says that if f 
and g are bounded functions in D whose product is cyclic, then bothf and g must be 
cyclic. Theorem 2 gives a partial converse (we require that [gl be Dini continuous on 
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270 CYCLIC VECTORS IN THE DIRICHLET SPACE 

the boundary of the disc). Question 9 asks if f must be cyclic whenever f, l/f E D 
and f is bounded. 

§3 we give examples of different classes of cyclic vectors in D. For example, if f is 

analytic on the closed unit disc and has no zeros in the open disc, then f a is cyclic 
for all (complex) ot having positive real part. Theorems 3 and 4 say that if an outer 
functionfhas some additional smoothness (specifically,f' E H2) and if the boundary 
zero set is at most countable, then f is cyclic in D. This answers a question raised by 
N. U. Arakelian. In contrast to this, Theorem 5 shows that if f is any function in D 
whose radial limit function vanishes on a boundary set of positive logarithmic 
capacity, then f is not cyclic. This section also contains 5 propositions (13-17) and 
raises 4 questions (11-14). For example, Question 12: is the converse to Theorem 5 
valid for outer functiions? An affirmative answer would yield the following char- 
acterization: f E D is cyclic if and only if f is an outer function whose radial limits 
are zero only for a set of capacity zero. This would imply affirmative answers to 
Questions 3 and 4 for the space D. Question 14: if f E D is a nonvanishing univalent 
function, must f be cyclic? An affirmative answer would provide examples of cyclic 
vectors that are continuous on the closed disc, whose boundary zero set is uncounta- 
ble. 

In §4 we present some remarks about the independence of Axiom 7 (for a general 
Banach space of analytic functions) from the remaining axioms; Axiom 7 deals with 
multiplication operators on the space. Also, we prove three propositions (18-20), 
dealing with multiplication operators on D. For example, Proposition 20: if + E D 
has a power series with Hadamard gaps, then + satisfies a Lipschitz condition of 
order 2 and + is a multiplier on D. In addition, 5 questions (15-19) are raised. For 
example, Question 16: is every f E D the quotient of two multipliers? (This is true 
for H2 but not for the Bergman space.) Question 17: if + E D satisfies a Lipschitz 
condition of some positive order, must + be a multiplier on D? 

1. Banach spaces of analytic functions. Although we shall mainly be interested in 
one particular space, we begin by describing a more general situation in which the 
main problems can be formulated. Let G be a bounded region in the complex plane. 
We shall say that E is a Banach space of analytic functions on G if the following 
axioms are satisfied. 

1. E is a vector subspace of the space of all holomorphic functions in G. 
2. E has a norm with respect to which it is complete. 
3. The linear functionals of evaluation at a point are continuous with respect to 

the norm of E, for each point in G. 
4. E contains the polynomials as a dense subset. 
5. If f E E, then zf E E. 
6. To each point w E aG (the boundary of G) there corresponds a function f in E 

that has a singularity at w. 
We never use this last axiom explicitly, but without it two of the questions that we 

pose would be trivial. 
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Before discussing some consequences of these axioms we turn to a class of 
examples. Let a denote the open unit disc. By Da (- x < (x < x) we denote the 
space of functionsf(z) = yt(n)zn, holomorphic in A, for which 

(1) 1lfll2 E (n + l)alf(n)l < x 
o 

For (x < O this norm is equivalent to 

(2) JJ | f ( reia ) | (1-r 2 ) 1 ar dr dA 

(see, for example, [38, Lemma 2]). It is easy to see that f E Da if and only if 
f' E Da_2. Also, it is not difficult to show that the spaces Da satisfy the six axioms 
above. (Axiom 3 is proved by applying the Cauchy inequality to the power series for 
f(z) (see Lemma 1 of [38])). Spaces closely related to the Da spaces (O < (x < 1) have 
been considered by Carleson in his dissertation [7, §9], and by Salem and Zygmund 
[3o]. 

We call attention to the three values of (x: -1, O, 1. The space D_1 is called the 
Bergman space and will be denoted by B. The space Do is the Hardy space H2. The 
space D1 is called the Dirichlet space and will be denoted by D. We have 

2 E It(n)l2 1 JJlft iO)02 d dO 

D = L(n + 1)lf(n)l = 1lfil2 + 1lt'112 

We shall be mainly concerned with the space D. This is the space of all those 
analytic functions that map the unit disk onto a Riemann surface of finite area, the 
area being equal to sr-lJJ If tl2. Also,f E D if and only iff' E B. 

We return now to our general situation. As before, E will denote a Banach space 
of analytic functions on a region G. Recall that a family of analytic functions in G is 
said to be a normal family if each sequence in the family contains a subsequence 
that converges uniformly on each compact subset of G. The necessary and sufficient 
condition for this is that the functions in the family be uniformly bounded on each 
compact subset of G. 

PROPOSITION 1. The unit ball in E is a normal family. 

PROOF. We must show that the unit ball is uniformly bounded on each compact 
subset of G. Let K c G be compact, and let Az denote the functional of evaluation at 
z: (f, Az) = f(z) forf E E, z E G-. By Axiom 3 these functionals are bounded. Also, 
supt I(f, Az)l: z E K } < x for eachf. Hence by the principle of uniform bounded- 
ness there is a constant CK such that llXzil < CK for all z E K. Thus If(z)l < CK for 
eachf E Ball(E), and all z E K. 

COROLLARY. If fn > f weakly in E, then fn(z) f(z) uniformly on each compact 

subset of G. 
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We omit the proof. When E is a reflexive Banach space we have a converse to this 
corollary. First we consider the more general case when E is a conjugate Banach 
space. We shall take this in the sense of topological isomorphism: there is at least 
one Banach space X such that E is isomorphic to X*. In what follows X will be fixed 

so that we have a particular weak* topology on E. 

PROPOSITION 2. Let E be isomorphic to a conjugate Banach space and assume that 

for each point z E G the functional of evaluation at z is weak* continuous. Let 
{ fn } c E be given. Then the following three statements are equivalent. 

(a) gn 'O(weak*). 

(b)(i)gn(z) O uniformly on each compact subset of G, and (ii) lltnll < const. (c)(i)tn(z) 0 (z E G), and (ii) lltnll < const. 

PROOF. Proposition 1 shows that (b) and (c) are equivalent. Also, (a) implies (c) 

trivially. Thus it only remains to show that (b) implies (a). To do this we invoke the 

theorem that a continuous, one-to-one map of a compact space onto a Hausdorff 
space is a homeomorphism. For the compact space we take the closed unit ball of E, 

denoted Ball E, with the weak* topology. For the Hausdorff space we use Ball E 

with the topology of uniform convergence on compact subsets of G. Our map is the 
identity. To see that this map is continuous we first note that it is sequentially 
continuous (since (a) implies (b)). Next note that since E is separable (by Axiom 4), 

so is any predual of E (see [16, Theorem 2.8.4, p. 34]). Thus Ball E is metrizable in 

the weak* topology [10, Theorem V.5.1, p. 426] and so it is sufficient to consider 
sequences. Thus the identity map is a homeomorphism, which completes the proof. 

COROLLARY. If E is a reflexive Banach space and if { fn } C E, then fn O weakly if and only if both of the following conditions are satisfied: (i) fn(z) O (z E G), and (ii) 

< const. 

We turn now to a special class of linear transformations on E. 
DEFINITION. A complex-valued function + in G is called a multiplier on E if 

f E c E. 
By M,, we denote the operator of multiplication by +: M,,f = ff ( f E E). The set 

of all multipliers will be denoted by M(E). An application of the dosed graph 
theorem shows that M,, is a bounded linear transformation on E. Hence it has a 

finite norm IIM<,||. Since 1 E E we have + E E and so + is analytic in G. The 

following result shows that multipliers are bounded functions; for a proof see 
Lemma 11 of [12]. 

PROPOSITION 3. If + E M(E) then |+(z)| < ||M+||, z E G. 

Notation. H°°(G) denotes the space of bounded analytic functions in G; when 

G = a we write simply H°°. 

COROLLARY. M(E) C E n H°°(G). 

Before proceeding we describe the multipliers on the Da spaces. These results are 

contained in [37 and 38] where, more generally, a complete description of the 
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multipliers from Da to D is given, for all (x, ,tR. As usual by the disc algebra A we 
mean the space of functions continuous on the closed unit disc A- and analytic in A, 
with the supremum norm. 

1. For (x > 1, Da is an algebra (see [19, Theorem 3, or 34, Example 1, §9, pp. 99]), 
and thus M(Da) = Da. Also, Da c A (in fact, the power series converge absolutely). 
It can be shown that the maximal ideal space is the closed unit disc (see [34, 
Corollary 1 to Proposition 31, p. 94]). 

2. For a < O, M(Da)= H°°. (For (x < O this follows from (2), and for (x = O it 
follows from the corresponding integral representation of the H2 norm.) 

3. The case O < (x < 1 is considerably more difficult (see [37, Theorem l.l(c) and 
2.3]). The result involves a comparison of the measure lftl2(1 - r)l-ardrdS (where 
+ E M(Da)) with certain Bessel capacities: when (x = 1 the capacity can be taken to 
be the ordinary logarithmic capacity. At the end of the present paper there are some 
further remarks on M(D). 

4. For (x > ,tZ we have M(Da)c M(DS) (see [38, p. 233]). 
5. For (x > 1 we have Da C M(D)c D n H°° (this follows from 1 and 4 above, 

and from Proposition 3; it can also be proved directly without using 4). In 
particular, if +' E H2 (that is, + E D2) then + E M(D). 

6. If + is analytic on the closed unit disc A- then it is a multiplier on all the Da 
spaces (this follows from 1 and 4). 

7. If + E HX, then + E M(D) if and only if +'D c B. Indeed, + E M(D) if and 
only if (ff )' E B, for all f E D. The result now follows since ff' E B. 

We now return to the general theory; as before, let E be a Banach space of 
analytic functions on a region G, that is, Axioms 1-6 are satisfied. A functionf E E 
is called a cyclievector (for the operator Mz acting on the space E) if the polynoal 
multiples of f are dense in E. This agrees with the usual terminology in operator 
theory: a vector x is cyclic for an operator T if the finite linear combinations of the 
vectors x, Tx, T2x,. .. are dense. Since we shall consider several different spaces of 
analytic functions we shall sometimes say "f is cyclic for the space E ". Note that the 
constant function 1 is a cyclic vector for every space E, by Axiom 4. 

PROPOSITION 4. Iffiseyclic,thenf(z)+Oforallze G. 

PROOF. Let zO E G. The set of all functions in E that vanish at zO is a proper 
closed subspace of E (Axioms 3 and 4) that is mapped into itself by Mz. 

Question1. Does there exist a Banach space E of analytic functions for which a 
functionf is cyclic if and only iff(z) + O for all z E G? 

In such a space the set of cyclic vectors would form a nonempty, relatively closed 
subset of E \ {O}. The only such example in general operator theory on Banach 
spaces is Enflo's apparent example of an operator on a (nonreflexive) Banach space 
with no invariant subspaces (i.e., every nonzero vector is cyclic). This question was 
first posed in [34] (see Questions 24, 24' in §11, and the related discussion of the 
problem). 

It is natural to impose additional conditions on f besides nonvanishing in G. In 
H2, for example, Beurling [5] showed that f is cyclic if and only if f has no inner 
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factor. The absence of the Blaschke factor is equivalent to the nonvanishing of f, and 
the additional condition is that f have no singular inner factor. 

In Da ((x > 1), f is cyclic if and only if f has no zeros in the closed unit disc, or 
equivalently, 

(4) If(z)l>c>0 (lzl<l). 

(This follows from the fact that the maximal ideal space is the dosed unit disc; one 
must also show that f is cyclic if and only if it lies in no proper closed ideal. Thus the 
cyclic vectors are precisely the invertible elements in the Banach algebra D.) For 
(x = 1 condition (4) is still sufficient for f to be cyclic (see [35]), but is no longer 
necessary (as we shall see later). Also when (x < 0, (4) is sufficient for cyclicity (this 
follows from Proposition 9). 

When (x < O some singular inner functions become cyclic. This happens if and 
only if the associated singular measure puts no mass on any set that is " thin" in the 
sense of Beurling [4, p. 13], Carleson [8, p. 326] and Hayman [15, Theorems II, IV, 
pp. 356, 363]. This result was discovered independently by B. Korenblum [22] and J. 
Roberts (unpublished, but available in an unpublished exposition by Joel Shapiro 
[33]). Previously, H. S. Shapiro had obtained a partial result [32, Theorem 2]. The 
thin sets in question are those closed subsets K of aa that have Lebesgue measure 
zero and satisfy EIInl(-loglInl) < x. Here {In} are the disjoint open arcs in the 
complement of K and | * | denotes normalized Lebesgue measure. 

For the Bergman space ((x =-1) various sufficient conditions for cyclicity are 
known, see [34, §§11, 12, especially pp. 11-114 and 120], for more details and 
references. 

We return to the case of a general Banach space E of analytic functions in G. If 
f E E we let [ f ] denote the closure in E of the polynomial multiples of f. Thus f is 
cyclic if and only if [ f ] = E. 

PROPOSITION 5. Let f, g E E and let p be a polynomial. Then: 
1.p[f]C [f]. 
2. If ge [f]then[g]C [f]. 
3.Ifg E [f]andgiseyclicthenf iseyclic. 

4. f is cyclic if and only if there exist polynomials { Pn } such that pn f 1 (in norm). 5. f is cyclic if and only if there exist polynomials { Pn } such that pn f 1 (weakly). 

6. If E is reflexive then f is cyclic if and only if there exist polynomials { Pn } such that 

(i) pn(z)f(z) 1 (z E G), and (ii) IIPnfil < const. PROOF. 1 and 2 are obvious and 2 implies 3. As to 4, if { Pn } exists with Pn f 1, 

then 1 E [f ] and so f is cyclic by 3; the converse is trivial. 
To prove 5 note first that if f is cyclic then by 4 there are polynomials { Pn } with 

Pnf 1 in norm, and hence weakly. Conversely, if Pnf 1 weakly then 1 is in the 

weak closure of the polynomial multiples of f . But a subspace is weakly closed if and 
only if norm closed, so 1 E [f ] as required. 

Finally, 6 follows from 5 by the Corollary to Proposition 2. 
Note that 4, 5 and 6 remain true if 1 is replaced by any other cyclic vector g. 
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PROPOSITION 6. If E1, E2 are two Banach spaces of analytic functions in the same 
region G, and if E1 c E2, then: 

(a)litil2 < cilfiliforsomec > Oandallf E E1; 
(b) if f is cyclic for E1, then it is cyclic for E2. 

PROOF. BY Axiom 3 the point evaluation functionals are continuous with respect 
to both norms. Using this one shows that the identity map of E1 into E2 has a closed 
graph and hence is bounded, which proves (a). Part (b) now follows from 4 of 
Proposition 5. 

COROLLARY 1. If O < oe < 1, and if f E Da is cyclic, then f is an outer function. 

PROOF. Let E1 = Da E2 = H2. 
The cons erse to this corollary is not valid. Indeed, Carleson has given an example 

of an outer function in Dn (for any positive integer n > 2 given in advance) that is 
not cyclic in D (see [8, Theorem 6]). 

Before stating the next corollary we recall that H1 is contained in the Bergman 
space. This was noted by H. S. Shapiro [32, p. 325], and we recall the proof. If 
f E H1 then 

llfll2 E If(n)l < (maxlf(k)l) It(+ )l < 7T(lIfllHl) 

by the Hardy-Littlewood-Fejer inequality (sometimes called "Hardy's inequality"). 
See [11, §3.6, p. 48], and for some historical remarks see [36]. 

COROLLARY 2. If f E H1 is czn outer function, then f is cyclic in B. 

Several of our results depend on an additional axiom. Recall that M(E) denotes 
the set of multipliers on E. 

AXIOM 7. M(E)[f ] c [f ], allf E E. 
This is equivalent to requiring M(E )f c [ f ]. 
Question 2. Is Axiom 7 a consequence of Axioms 1-6? 
This seems unlikely though at present we have no counterexample. See the end of 

the paper for further comments and a possible example. 

PROPOSITION 7. Each of the spaces Da (-x < (X < x) satisfies Axiom 7. 

PROOF. Fix a and let f E M(Da). By Theorem 12(iii) of [34] there is a sequence of 
polynomials (the Fejer means of the partial sums of the power series for +) such that 
Pn f ' ff in norm, for each f E Da (i.e., { Pn } converges to f in the strong operator 
topology). Hence ff E [ f ], as required. 

From now on we shall assume that our space E satisfies Axiom 7. 

PROPOSITION 8. If f E E and f E M(E) then ff is cyclic and if and only if both f 
and + are cyclic. 

PROOF. First assume that both f and f are cyclic, and choose polynomials { Pn } 

such that pn f > 1. Then pn(ff ) +, so + E [ff ]; since + is cyclic this proves that 

ff is cyclic. 
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Conversely, assume that ff is cyclic, and choose polynomials {Pn} such that 

Pnff 1. By Axiom 7 we have Pnff E [ f] hence 1 E [f], and so f is cyclic. Now choose polynomials { qn } such that qn f in E. Then qnf ff and so the cyclic 

vector ff is in [f], and thus + is cyclic. 
Note that Axiom 7 was only used to show that if ff is cyclic then so is f . For the 

next result we recall that H1 c B. 

COROLLARY. If f E H1 then f is cyclic for the Bergman space if and only if its inner 
factor is cyclic, that is, if and only if there is no Blaschke factor and the singular factor 
satisfies the Korenblum-Roberts condition. 

PROOF. The proposition is applicable since B admits all bounded functions as 
multipliers. The result now follows from what has gone before. 

We now pose two questions about cyclic vectors in a general Banach space E of 
analytic functions in a region G. 

Question 3. If f, g E E, if g is cyclic, and if If(z)l > Ig(z)l for all z E G, then 
must f be cyclic? 

Since the constant function 1 is always a cyclic vector, we have the following 
special case of this question. 

Question 3'. If f E E and If(z) | > c > O for allz E G, mustfbe cyclic? 
Question 4. If f, f- 1 E E, must f be cyclic? 
This question (for the Bergman space) was posed in [34] (see Question 25' on p. 

114). Harold S. Shapiro [31] used the term "weakly invertible" in place of cyclic. The 
above question could then be rephrased as follows: does invertibility imply weak 
invertibility? From Proposition 8 we see that the answer is affirmative if, in addition, 
we assume thatf is a multiplier. Indeed, 1 = ft-l is always cyclic. 

Thus far no examples are known where either of these two questions has a 
negative answer. There is one common situation where Question 3 has an affirmative 
answer. 

PROPOSITION 9. If M(E) = H°°(G), iff, g E E with If(z)l > Ig(z)lfor all z E G, 
and if g is cyclic, then f is cyclic. 

PROOF. Since + = g/f is bounded it is a multiplier on E. Hence g = ff E [ f ] by 
Axiom 7, and so f is cyclic. 

We now consider Questions 3 and 4 for the spaces Da. When (x > 1, then, as 
remarked earlier, f is cyclic if and only if it has no zeros in the closed unit disc (recall 
that the functions are continuous on the closed disc). It follows easily that both 
questions can be answered in the affirmative. 

Both questions are open when O < (x < 1; later we give a partial answer to 
Question 3 when (x = 1 (see Theorem 1 and Corollary 1, as well as Corollary 2 to 
Theorem 2). 

For (x < O Proposition 9 gives an affirmative answer to Question 3. For (x = O 
Question 4 can also be answered in the affirmative: if f and t-l are both in H2 then 
they are both outer functions (indeed, if either f or f- 1 had a nontrivial inner factor, 
then so would f-lf = 1). Question 4 is open for (x < O. This leads to another 



277 LEON BROWN AND A. L. SHIELDS 

interesting problem, where for simplicity we specialize to the Bergman space B 
(a =-l). If te B then forr = lzl < l 

It(z)l |t(n)(n + l)-l/2(n + l)l/2znl2 lifil2(l 2)-2 

Hence if t-l E B then If(z)I > Ilf-lgl-l(l-r2). This suggests the following ques- 
tion, which was first posed by H. S. Shapiro (see the Remark following Theorem 5 in 
[32]). 

Question 5. Iff E B and if If(z)I > c(l _ Izl)k for some c, k > O (and all z E /\), 
then must f be cyclic? 

As noted above, an affirmative answer to this question would imply an affirmative 
answer to Question 4 for the Bergman space. Partial results are given in [31, 32, 1] 
and also in [34] (see §§11, 12, Propositions 41, 43 and Questions 25, 25'). 

Along these lines one can pose similar questions for any Banach space of analytic 
functions on a bounded plane domain G. We consider continuous functions f on G- 
(the closure of G) such that f is positive on G and zero on dG. 

Question 6. Let E be a Banach space of analytic functions on G. Does there exist a 
function +, as above, such that if f E E satisfies If(z)I > +(z) for all z E G, thenf is 
cyclic? 

Such functions exist for the Da spaces when (x > 1. Indeed, by Proposition lO(b), 
if f E Da (1 < (x < 3) then f satisfies a Lipschitz condition of order b = ((x - 1)/2. 
Hence iff has a zero on the boundary, sayf(l) = O, then 

It( )l If(z) f(l)| < c|z - 1|, |Zl < 1 

Hence if +(z) = (1-Izl)a where O < a < b, and iff E Da satisfies If(z)I > f(z) in 
/, thenf has no zeros on the closed unit disk and thus is cyclic. Of course, if f works 
for Da then it also works for D for all ,B > (x, since D c Da. 

In contrast to this, such functions + do not exist for the space H2. Indeed, H. S. 
Shapiro has shown (see [31, p. 164]) that if S(z) is a singular inner function with 
associated singular measure , then 

Is( Z ) | > exp (-c (1-r ); ( r = lZl < 1), 

where X is the modulus of continuity of , and c is a positive constant. Also, one can 
construct singular measures y for which w(8)/d tends to infinity arbitrarily slowly 
(see [43, §5 and 44, p. 265]). Thus, given any function f as above, there exists a 
singular inner function S such that Is(z) | > f (z) for Iz | < 1. 

Question 6 is open for the spaces Da in the remaining intervals O < (x 41 and 
xx < O. 

We consider the function (1 - z)-a = Lan((x)zn. Here (x is complex, lZl < 1, and 
we use the branch with aO((x) = 1. By a formula of Euler for the gamma function 
(see the example in §12.11, p. 237 of [40]) we have 

( ) an((x) = ( 1) (<x + n-1) na- 
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PROPOSITION 10. (a) If g E D (,B < 1) then 

I ( )I 11 11 (1-l l)-(l-A)/2 (I I 1) 

wherecdependsonlyon,S, notong. 
(b) Iff E Da (1 < (x < 3), then 

If(z) -f(w)| < ClitlI lZ - Wl(a-1)/2 (l l l 

where c depends only on a, not on f. 
PROOF. (a) We have (with r = IZl) 

Ig(Z)l -I Eg(n )(n + 1)1s/2zn(n + 1) -A/212 < 11 ll2 E ( ) _ 

The result now follows from (5) above. 
(b) We havef' E Da_2 and llftlla-2 < llflla 

A theorem of Hardy and Littlewood (see [11, Theorem 5.1, p. 74]), says that f 

(analytic in /\) satisfies a Lipschitz condition of order b (O < b < 1) in /v if and only 
if It'(z)l < c(l-Izl)b-l. The result now follows from (a). 

2. The llirichlet space. In this section we shall give an affirmative answer to 
Question 3, under various additional hypotheses. We require some lemmas; the first 
two are proved in [35]. 

LEMMA1. Iff E D,r= lZl andO < t < 1,then 
(a) If (Z)-f(tZ)|2 < ||tll2 log((l-rt)/(1-r)) (r < 1), 
(b) If(Z) -z(tz)l2 < 1lfil2log2 (r < t). 

LEMMA 2. If o < t < 1 then 
41 1 1-rt 

Notation. ht(z)-h(tz), O < t < 1. 
The integrals below are with respect to area measure on /v. Let llhll2B = sr-lJIlhl2; 

this is the Bergman norm of h (see (3)). 

LEMMA3.Iff,g E Dthen: 
(a) 7T |||f-ttl l(gt) 12 < (Slog2)||f||2||g |I2B O < t < 1, 
(b) limttl ||lf - gtl2l(gt)tl2 = ° 

PROOF. (a) Since (gt)'(Z) = tg'(tz) we have l(gt)'(z)l < Ig'(tz)l. Let 

a(r) = 12qTtg'(rei@)l2 da 

This is an increasing function of r (this is obvious if one expresses the integral in 
terms of the Taylor coefficients of g). Hence Jll(gt)t}2 < Jligtl2, 0 < t 91. The 
integral on the right is finite since g' iS in the Bergman space. Thus by Lemma l(b), 

1J2ST Jtif _ AI2I(g )t| < (10g2)||t|| ||g IIB 
O O 
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Since a(r) is increasing we have 

2(1-r)a(r) 41 a(s)sds < ||g'llB 

Thus by Lemma l(a), 

12T41lt_ A 121(g),12 < lif 11241a( tr) log 1 rt dr 

< 2T11fil ||g'||Bt 1- t log 1 _ dr 

Inequality (a) now follows from Lemma 2. 
(b) First note that (b) is valid when f iS a polynomial (and g is arbitrary). Now let 

f, g both be arbitrary and let e > O be given. Choose a polynomial p such that 
lif-pll<eandleth=t-p.Then 

Ilit _ t 12l(g ),12 < IIIP-Ptl21(gt) I2 + |IIh-htl l(gt)fl 
Therefore from part (a) we have 

im |||f-fl |(gt)'| < (5log2)E ||g IIB 
tT1 

The result follows since e was arbitrary. 
In the next lemma we shall use the obvious fact that if f iS bounded and h is in the 

Bergman space, then 11 fn 11 B < 11 f 1100 11 h 11 B 
LEMMA 4. The space H°° n D is a Banach algebra with the norm lItil* = llf iloo + 

lit IIB 
PROOF. Letf, g E H°° n D. Then 

llfGll* =||fGlloo +||fg + g g||B < ||til||gilm +||filml|g IIB + llt lisilGllm < ||fil*||gil* 

Also, the identity element has norm one: 11111 = 1. 
In particular, this lemma tells us that if g E H°° n D then g2 E D. We now give a 

partial answer to Question 3. We require the following fact: 

(6) lIfIID < 2lif IIB + If(°)l (f E D). 

This may be seen by expressing the norm in terms of Taylor coefficients. 

THEOREM 1. Iff E D, g E H°° n D, If(Z) I > Ig(Z)l in A, and if g2 is cyclic, then f 

is cyclic. 

PROOF. It will be sufficient to show that g2 E [f ] (recall that [f ] denotes the 
closure of the polynomial multiples of f ). Since gt2/ft is analytic on the closed unit 
disc (for t < 1), it is a multiplier on all of our spaces, in particular on D. Hence by 
Axiom 7 (and Proposition 7), (gt2/ft) f E [ f ] We shall show that these functions 
converge in norm to g2 as t > 1. Since (gt2/ft)t_ g2 vanishes at the origin, it will 
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be sufficient, in view of (6), to consider the Bergman norm of the derivative. Also 
since gt2 converges in norm to g2, we may replace g by gt. Then we have 

dz ((tt )g' ) ( f, )gt + 2 t g,(g,) = f1 + ¢2, 

First, lf2/21 < If - gtl l(gt)'l; hence ll+2llB ° as t 1, by Lemma 3(b). 

Next, 

f1 = g2 g2 _ g2 g2 = ¢3 + +4, 

Then 1+41 < I(f-tt)(tt)'l and so ll¢4llB O by Lea 3(b). 

Finally, 1¢31 < I(f-gt)'gtl Hence 

11+311B < |I(t tt) IIBIlgtilm 

and so II¢IIB O, which completes the proof. 

Note that the boundedness of g was used only at the end of the proof (in 

estimating +3). It would not be needed at all if one could show that lI(f-gt)tgtilB ° as t 1, whenever f, g E D. However this is not true in general, as the following 

example shows. In this example we have g2 E D, g2 iS cyclic (as are E and g), 

(z)l > Clg(Z)l for z E A, and the above norm tends to infinity as t 1. 

EXAMPLE 1. Let h(z) =-z- l log(l-z), let f = ha and g = h; here O < ,8 < a 
are to be determined. It can be shown that ha E D (equivalently, (ha)' E B) if and 
only if a < 2. Thusf, g, g2 E D if cz < 2 and ,B < 4. Since [h(z)l > c > O in lS we 
see (as noted earlier) thatJ, g, g2 are all cyclic, and that If | > clgl in A. 

Note. Here, and in what follows, c will denote a general constant, not necessarily 
the same at each occurrence. 

Let St denote the region exterior to the disc lZl < t but inside the triangle with 
vertices at 1 (1 + i)/2. We shall only be interested in this for t near 1. Then 

( )1/2 ( )1/2 ( )l/2 

We shall show that the first term on the right side tends to infinity while the second 

term tends to zero, as t 1. 

It can be shown that for z E St (and t near 1) we have 

Itt'(z)gt(z)l < c(l - t) l[_ log(l - t)] +A-l. 
Since area(St) < c(l - t)2, we see that the second term on the right side of (7) tends 
to zero, as asserted. 
Also, it can be shown that for z E St and r = lZl we have 

|t'(z)gt(z)| > c(l - r) 1[ _ log(l-r)] a-lE _ log(l-t)] . 
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We express the area integral in polar coordinates and integrate first with respect to 
d@. This contributes at least c(l - r). Thus we have 

|l If'g 12 > c[-log(l-t)]2A1l(1-r)-l[ log(l-r)]2a 2 dr 
S, t 

> c[-log(l - t)] A 

This tends to infinity if (x + ,B > 2. To complete our example we may choose 
(x = 2/5,,B = 1/5. 

Note that in this example f 'g ¢ B. Perhaps in case f 'g E B the norm in (7) does 
tend to zero; if so this would mean that the conclusion of Theorem 1 would be valid 
when we replace the assumption that g E H°° n D by the (weaker) assumptions: g, 
g2 E D, gf' E B. (The remaining hypotheses of the theorem are carried over 
unchanged.) 

We now give two corollaries to Theorem 1. 

COROLLARY 1. Iff E D, g E M(D), If(z)l > Ig(z)l in 1\, and if g is cyclic, then f is 
cyclic. 

PROOF. It follows from Propositions 3 and 8 that g E H°° and that g2 iS cyclic. 

COROLLARY 2. If g E H°° n D and if g2 is cyclic, then g is cyclic. 

PROOF. Take f-g in Theorem 1. Note that this corollary also follows from 
Proposition 11. 

One might ask whether Corollary 1 is not equivalent to the theorem. That is, if 
g E H°° n D is cyclic, then must g be a multiplier? The following example shows 
that this is not the case. 

EXAMPLE 2. There exists a function g E D that is cyclic and has an absolutely 
convergent power series but is not a multiplier. Indeed, in [38] G. D. Taylor gave an 
example of a function f in D, having an absolutely convergent power series that is 
not a multiplier. (In [37] D. Stegenga gave an example of a function in D that is also 
in the disc algebra but is not a multiplier.) If c is a large constant, then the function 
g = f + C will, in addition, be bounded away from 0 in 1 and hence will be cyclic. 
(Taylor's example has the further property that f (n) 10\) 

It seems unnatural in Theorem 1 to assume that g iS bounded; indeed, the 
hypothesis says that f does not approach zero too rapidly, and this will be true all the 
more if g iS unbounded. Also, it seems unpleasant to assume that g2 (rather than g) 
is cyclic. These remarks suggest the following questions. 

Question 7. If f, g E D with g cyclic, and if If (Z)l > Ig(Z)l in 1v, then does there 
exist gl E H°° n D, with gl cyclic and I f (z)l > Igl(z)l in l\? 

Question 8. If g E HX n D is cyclic, must g2 be cyclic? More generally, if f, 
g E HX n D are both cyclic, must fg be cyclic? 

We indicate a method to attack this problem, but first we establish the converse. 

PROPOSITION 1l. If f, g E HX n D, and if fg is cyclic, then both f and g are cyclic. 
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PROOF. Since f and g occur symmetrically it will be sufficient to show that g is 
cyclic; we do this by showing that fg E [g]. Let { an } denote the Fejer means of the 
partial sums of the power series for f . Since the partial sums converge to f in D the 

same will be true for { an } . We claim that an g fg in D. Indeed, first note that ang fg pointwise in 1\. Then by (6), it will be sufficient to prove that llang -tg)'llB O. Wehave 

11 ( an g fg ) 11 B < 11 ( an -f ) g 11 B + 11 ( an -f ) 11 B 11 gil 00 . 
The first term on the right tends to zero by the dominated convergence theorem 
since llan - f 1100 < 2llf 1100 As to the second term, 

||(an -f) IIB llan f IID 0, 
which completes the proof. 

This proposition allows us to answer Question 4 (for the space D) in the speical 
case when bothf and l/f are bounded. 

COROLLARY. If f, 1/f E HX n D, then both are cyclic. 
Is this conclusion valid if we drop the hypothesis that f be bounded (1/f is still 

required to be bounded)? We restate this as follows. 
Question 9. Iff E D and if If(z)l > c > O in 1v, then must l/fbe cyclic? 
These hypotheses imply that l/f E HX n D (the fact that (1/f )' E B follows 

from the inequality l(l/f )'I < If tl/c2). Also, f must be cyclic (this is the main result 
of [35], and it is also an immediate consequence of Theorem 1). 

LEMMA S. If f, g E HX n D, if f is cyclic, and if there exist polynomials { Pn } such 
that: 

(a)pn(Z)g(z) > 1 (z E A), 

(b) 11 Pn gl l oo < const, 
(c) llpngllD 4 const, 

then fg is cyclic. 

PROOF. It is sufficient to show that f E [ fg]. Since pn fg f pointwise in 1V, it 

suffices to show that llpnfgllD < const (see Proposition S and the remark following 
the proof). By (6) it is sufficient to show that 11(pnfg)'llB < const. We have 

11 ( ( Pn g ) f ) 11 B < IIPn gil 00 lif 11 B + lif 11 X 11 ( Pn g ) 11 B 
which is bounded since 1l(png)'llB < llpngllD. This completes the proof. 
We do not know whether such polynomials always exist (that is, for every cyclic g 

in H°° n D). Perhaps this would be true if g E A n D (where A is the disc algebra). 
However, we are only able to prove this under the stronger hypothesis that Igl is Dini 
continuous on al\. 
In what follows we shall modify an unbounded function f by multiplying it by the 

"cut-offs' function ff defined below. We assume that f E H2. We define ff to be the 
outer function 

(8) ¢ ( z) = f> ( z ) = exp( 2v | ,, log|f> ( ei')|dt ), [zl < l, 
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where lf>(eit)l = 1 whenever It(eit)l < 1, and lffl = lfl-l otherwise. Then + E HX 
and llfiloo < 1. If we have a sequence of functions { fn }, then we shall write { fn } for 
the corresponding sequence of functions defined by (8). 

LEMMA 6. If {fn} C H2, and iffn > 1 in norm, then fn(Z) 1 in A, uniformly on 

compact sets. 

PROOF. Since llfnilCxD < 1 for all n, it is sufficient to show that fn(°) 1. This is 

equivalent to showing that 

lim | log|+n (eit)|dt = O 
noc O 

that is, {loglfnl} converges to O in Ll(8lv). Let E > O be given and let 

En = {w E al\ itn(W)| > 1 + E} 

Fn = {w E al\ 1 < Ifn(w)l < 1 + E} 
Then lfnl = | fnl-l on En U Fn n and lfnl = 1 otherwise. Then 

|-l°gl¢>nl = | loglAnl + | log|fn| = In + IIn, 
En F;l 

IIn < |Fn|log(l + E) < 27rE, In < | Itnl < IEnl / lltnllH2 
En 

Since tn 1 in t2 we havegn 1 in measure. Since 

{ltnl > 1 + E} C {Ifn - 1l > E} 

we see that IEnl O as n > oo (for each fixed e). The result follows. 

Before proceeding we recall a formula of Carleson [9] for the Dirichlet integral of 
a functionf (that is, for llftll2B). This formula is the sum of three nonnegative terms, 
involving respectively the Blaschke factor of f, the singular inner factor, and the 
outer factor. We reproduce only the third of these, as inequality (10) below. We shall 
write f(t) instead of f(eit) for the boundary values of f. To simplify subsequent 
formulae we introduce the following notation: 

(9) I(B) = I(B; x, t) = (loglf(x + t)l - loglf(x)l)(lf(x + t)l2 - lf(x)l2). 

Then from Carleson's formula we have 

(10) (8rr) 11 (sin2t) dt)3I(f;x,t)dxPllftlls (fED), 

with equality when f is an outer function. Note that I(f; x, t) is nonnegative for all 
x, t since the two terms on the right side of (9) have the same sign. Hence I(f ) is 
unchanged if we replace each of these terms by its absolute value. 

A continuous function g on al\ has a modulus of continuity 

@(8) = Xg(8) = sup{lf(z) -f(w)l: Iz - wl < 8,z,w E al\}. 
If g E A (the disc algebra), then there is a corresponding modulus of continuity 
where z, w s 1\-. This modulus can be strictly larger than the boundary modulus 
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defined above, but is less than 3 times the boundary modulus (see [28]). A continuous function g is said to be Dini continuous if 
(11) | ( ) d8<oo. O 8 
In particular this is true when g satisfies a Lipschitz condition (i.e., (8) < cda for some a > O). We only need the case where g = If l and f c A. Trivially one has x|fl < x>; thus | f | is Dini continuous wheneverf is. 
LEMMA 7. Let {fn} C D with fn 1 in norm, and let {¢n} be the associated functions defined by (8). Then: 
(a) {¢9n} C D n H°°. 

(b) (¢)ngn)(z) 1 for z E A (uniformly on compact subsets). 

(c) gl ¢)ngn il oo < 1 for all n. 
(d) gl¢)ngnil D < ll fnil D < constfor all n. (e) If | fn | is Dini continuous on al\ then fn is in the disc algebra. 
PROOF. We prove the assertions in this order: (b), (c), (a), (d), (e). 

(b) We havegn(z) > 1 and ¢)n(Z) 1 uniformly on compact sets by the Corollary 

to Proposition 1 and by Lemma 6, and the result follows. For the remainder of the proofs we shall omit the subscript n. (c) Since + E HX and f E D c H2 we see that ff E H2. In addition, lff l < 1 almost everywhere on al\, and so ¢)f is in the unit ball of H°°, as was to be proved. (a) We already know that llf il oo < 1 so we only need to show that + E D. We shall show that Il+'llB < llftllB which, by (6), will complete the proof. Since + is an outer function we may compute ll+'llB from (10). Thus it will be sufficient to prove that I(¢)) < I(f ) for all x, t. 
First we show that 

(12) 1 1 ( )12 - lzi>(x)l21 < ] If(x + t)l2 - If(x)l21. We consider the following four cases. (i) lf(x + t)l < 1 and lf(x) < 1. In this case l+(x + t)l = l+(x)l = 1 and (12) follows. 
(ii) lf(x + t)l > 1 and lf(x)l > 1. Then 1+1 = If l-l and so 
11 ( tel2_l<,(X)I2l= If(x)l2-lf(X+t)l Sllf(X)|2-lf(X+t)ll. 
(iii) lf(x + t)l < 1 and lf(x)l > 1. Then 

12 1 ( )121 1 - If(x,l-2 < If(x)l2 _ 1 < If(x)l - If(x + t)l 
(iv) lf(x + t)l > 1 and lf(x)l < 1. This is the same as (iii). Next we show that 
(13) llogl+(x + t)l - logl¢(x)l | < lloglf(x + t)l - loglf(x)l 1. We consider the same four cases as above. 
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(i) In this case (13) is trivially satisfied. 
(ii) In this case we have equality in (13). 
(iii) llogl+(x + t)l - logl+(x)l I = loglf(x)l < loglf(x)l - loglf(x + t)l. 
(iv) This case is the same as (iii). 
Thus we have shown that I(+) < I(f ), which completes the proof of (a). 
(d) Since llfiloo < 1 we have llffllH2 < llfllH2. Thus it will be sufficient to show 

that ll(++)'llB < llftllB (recall the definition of the D-norm given in (3)). Since + is an 
outer function the functions ff and f have the same inner factor. Hence in 
computing their Dirichlet integrals by Carleson's formula the contribution from the 
inner factor is the same, and so if there is to be an inequality it most come from the 
outer factors. Thus we must show that I(ff ) < I(f ) for all x, t. To do this we shall 
show that 

(14) 1l( )( tl2_l(¢f)(X)|2llif(X+t)l2-lf(X)|21, 

(15) llog(ff)(x + t)l - logl(ff)(x)l < 110glf(x + t)l - loglf(x)l 1 

We consider the same four cases as in the proof of (a) above. 
(i) We have 1+1 = 1 and so equality holds in (14) and (15). 
(ii) We have lff l = 1 both at x + t and at x, and so the left side is zero in both 

(14) and (15), 
(iii) Here l(ff)(x + t)l = lf(x + t)l and l(ff)(x)l = 1. 

Then 

| l(¢f )(x + t)l - |(++)(X)l2l = 1 - lf(X + t)l2 lf(x)l2 - If f )12 

which establishes (14). Also 

logl(++)(x + t)l- logl(ff)(x)l I=lloglf(x + t)l l= -loglf(x + t) 

< loglf(x)l- loglf(x + t) 
which establishes (15). 

(iv) This case is similar to (iii). 
(e) We claim that for all x, t we have 

I l+(x + t)l - l+(x)l I < I If(x + t)l - If(x)l 1 
The proof is similar to the proof of (12) above. Hence 

'(|+l 8)<@(lfl;8) (°<84T), 

and so lf l is Dini continuous. We now show that this forces + to be continuous. This 
result is known but we do not have a suitable reference so we include a proof. 

Let u(eit)= logl+(eit)l, O < t< 2vT, so that u eLl(8l). Let E= {u=-oo}, 

i.e., E is the zero set of 1+1@ Thus E is a closed subset of al\. Let v denote the function 
conjugate to u; we wish to show that v is continuous on al\E. If wO is in the 
complement of E, let J be a closed arc centered at wO and disjoint from E. Then u is 
Dini continuous on J, and therefore v is continuous at all interior points of J (see 
[13, Corollary 1.4, Chapter III, p. 107]). Thus eiV is continuous and bounded on 
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alv \ E. Also, lfl = eu is continuous on aa and vanishes on E. Therefore eU+iV is 
continuous on a^. Now take the harmonic extension of u and v into / (we denote 
the extended functions by u and v). Since 

u(z) + iv(z) = 2 | e + Zu(eit)dt, z E 1v, 
we see that f = exp(u + iv) in /\. Since f E H°° and the boundary values coincide, 
almost everywhere, with a continuous function on a^, + E A. This completes the 
proof of Lemma 7. 

Note. V. P. Havin [14, Theorem 1] has shown how to estimate the modulus of 
continuity of an f E A from a knowledge of the modulus of continuity of If l on a^. 
In particular, if If l E Lip a then f E Lip(a/2), and this is sharp. His work really 
contains (e) above, but his proof is much more complicated since he obtains a very 
precise result. 

We wish to thank B. A. Taylor for suggesting the simple proof of (e); our original 
proof was more complicated. 

Since f is obtained from f by a simple change it may even be true that f E A 
implies f E A. This would follow if one could answer the following question in the 
affirmative. 

Question 10. If f E A and if + is the outer function determined by 1+1 = maxt If 1, 
on al\, then must + be in A? 

Since f = 1/+ we see that f and + must both be in A if either one of them is in A. 
It is not true, however, that if + E H°° is an outer function and if lfl is equal to a 

continuous function almost everywhere on a^, then + E A. See, for example, [17, 
Chapter 6, Problem 13, p. 97]. Actually, the Dini condition is sharp in some sense. 
This follows by taking the exponential of the examples in [13, Chapter III, Problem 
4, p. 127]. It follows from this second reference that the Dini condition cannot be 
improved. Indeed, if w(t) is any increasing continuous function on [O, 2vr], vanishing 
at 0, with (tl + t2) < w(tl) + w(t2), and if 10 (t)t-l dt = x, then there is a real 
continuous function u on a^, with w(u; 8) < w(8), such that the conjugate function 
u is not continuous. Then the function + = exptu + iu) is an outer function in H°° 
that is not in A, for which lfl is continuous on a^, with @(1+1; 8) < cw(u; 1\) (we 
omit the proof). 
We are now ready to give a partial answer to Question 8. 
THEOREM 2. If f E HX n D and g E A n D are both cyclic, and if Igl is Dini 

continuous on aa, thenfg is cyclic. 

PROOF. By Lemma S it is sufficient to obtain polynomials {hn} satisfying the 

three conditions: (a) (hng)(z) 1 in 1v, (b) llhngllo) < const and (c) llhngllD < const. 

To produce these polynomials we proceed as follows. First, since g is cyclic there 

are polynomials {Pn} such that png 1 in D. We apply Lemma 7, with { png} 

playing the role °f {f"}. Thus there are functions {¢)n} with (a)' ¢)n(Z) > 1 and 

(¢)n Pn g)(Z ) 1 in A, (b) | l ¢)n Pn gil X < const, and (c)' l l fn Pn gil D < const. Also, 

{¢>n } C A since lpngl is Dini continuous. Our goal now is to replace {¢>n } by a 
sequence of polynomials { qn } so that (a)', (b)' and (c)' are still satisfied. 
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Let {CIk(¢n; Z)} (k = 0,1,...) denote the Fejer means of the partial sums of the 

power series Of fn (n = 1,2,..-)- Then ||(J>IIX < llfnilr (k > O) and llak - fnilX ° (k oo). Also, since the partial sums converge to fn in D, the same will be true for 

the sequence { ak }. Let k(n) be a positive integer-valued function to be determined 
below and let qn(Z) = ak(n)(¢n; z)* We require k(n) to satisfy two conditions: 

liqn zPnil<, < min(n 1, IIP gil-1) 
2+ liqn - fnilD < IIPngllcz) X 

Since ¢>n(Z) 1 in A, it follows from 1 that the same is true for qn. Since ( png)(z) 1 in A we have (qnpng)(z) 1 in lS, which establishes (a)' for { qn } 

Next we have 

ll Qn Pn gll oo < ll fn Pn gll oo + ll qn - fn ll oo llPn gll oo < const 
by (b)' and 1. This establishes (b)' for { qn } 

FinallyS llqnPngllD < Il<>nPngllD + ll(qn - fn)pngllD and we must show that the 
second term on the right remains bounded. For the H2 norm we have 

lI(qn fn)PngllH2 < llQn fnlloollPngllH2 S llQn d)nlloollPngllD ° 

For the Bergman norm of the derivative we have 

lI[(qn Fn)Png] ||B liQn FnIIOOII(Png) IIB +{lPngilooll(qn ¢)n) IIB 
The first term on the right tends to zero by condition 1 since llpngllD is bounded, 
and the second term is bounded because of condition 2. 

If we let hn =Pnqn then the {hn} are polynomials satisfying our original three 
conditions. This completes the proof. 

COROLLARY 1. If g E A n D is cyclic and if Igl is Dini continuous, then g2 is cyclic. 

PROOF. Let f = g in the theorem. 

COROLLARY 2. If g E A n D is cyclic, if Igl is Dini continuous, if f E D, and if 
If(z)l > Ig(z)l in A, then f is cyclic. 

PROOF. This follows from Theorem 1 and the previous corollary. 
Is this last corollary contained in Corollary 1 to Theorem 1 (where it was assumed 

that g E M(D))? In other words, if g E A n D and if lgl is Dini continuous, must it 
be a multiplier? We think not, but have no example. Since a function satisfying a 
Lipschitz condition is Dini continuous, one can also consider this problem for 
Lipschitz functions. Proposition 12 gives some information. For more on this point 
see Propositions 18-20 and Question 17 in §4. 

By Aa we denote the set of those functions in A that satisfy a Lipschitz condition 
of order ot on aa. Hardy and Littlewood showed that this is equivalent to satisfying a 
Lipschitz condition of order ot in lS (see [28] for another proof and a generalization). 

By A2a we denote the subset of H2 consisting of those functions for which the 
boundary values satisfy a Lipschitz condition of order (x in the L2-metric. Thus 
Aa c A2a. By a theorem of Hardy and Littlewood (see [11, Theorem 5.4]) if f is 
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holomorphic in 1 thenf c A2a if and only if 

(16) M2(f X r) = ( 27 1 |f'(rei@)| dO) < c(1-r)-(1-a) o < r < 1 
for O < a < 1. Note that when a = 1 we have A21 = D2. A famous theorem of S. Bernstein states that if a > 2 then the functions in A2a have absolutely convergent power series (his result applies to L2 as well as to H2). We now show that such functions lie in D1 +e for suitable e > O and thus are multipliers. Part (a) of this result is related to Proposition lO(b) (see the remarks following the proof). 

PROPOSITION 12. (a) D2a C A2a C D2js for 0 < B < a < 1. (b) A2a C Mf D) for ol > 2 . 
(c) For each ol, O < ol < 1, there existsf E Aa withf ¢ D2a. 
PROOF. (a) Let f ( z ) = E an Z n C D2a be given. Then 

{ M2(f, r)} = En21anl r2n-2 = E (n2-2ar2n-2)n2ala 12 

< ( SUpk2-2ar2k-2 }lif 112 
k 

By formula (S) (preceding Proposition lO(a)) for each fixed k we have 
oo 2k 

(1-r) > cLml-2arm > cr2k E ml-2a > cr2kk2-2a O k+l 
In the last inequality we have replaced the sum by k times the smallest term (the case °l < 2 and a > 2 are considered separately). Combining this with the previous inequality and using (16) we see thatf E A2a. 
To finish the proof of (a), let f E A2a and let ,B < a be given. Then f E D2, if and only if f' c D2,_2. We have, by (16), 

Jll | |o [ 
< Cll(l r)-1+2(a-,8)rdr < 0o 

o 

Hence by (2) we havef E D2, 
(b) This follows from (a) since D1 +e C M(D) for e > O. 
(c) We construct f as a gap series. Let a E (O, 1) be given, and let 

00 

f(z) = 2 z , g(z) = (1-z) f (z) = EAnz n 1 

Thenf 0 D2a. Also, we have Mo(ft r) = f'(r) since the Taylor coefficients off' are nonnegative. Since An is the sum of the first (n + 1) Taylor coefficients of f', a calculation shows that An < cnl-a. Hence by (5), g(r) < c(1 - r)a-2. Thenf'(r) < c(l - r)a-l and so f E Aa (by the Hardy-Littlewood theorem referred to in the proof of Proposition lO(b)). This completes the proof. 
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Hardy and Littlewood gave an example that would work for part (c) above. They 
showed that for c > O the power series 

f(z) = ,n-(l+2a)/2exp(icn log n )zn 

represents a function in Aa; clearly f ¢ D2a (see [41, Volume I, Chapter V, Theorem 
4.2]). 

Proposition lO(b) said that Da C A(a-l,X2 for 1 < a < 3, whereas, by Proposition 
12(a), Da C A2aX2 for O < a < 2. The latter result implies the former when 1 < a < 2. 
This follows from three theorems of Hardy and Littlewood (see [11, Theorems 5.1, 
5.4, 5.9]); we omit the details. 

3. Classes of cyclic and noncyclic vectors. Up to now we have not actually 
identified many cyclic vectors for D. We know that if If I > c > O, then f is cyclic. 
But we cannot even decide, on the basis of the results obtained thus far, whether or 
not the function 1 - z is cyclic. In what follows we shall use duality. Of course, since 
D is a Hilbert space it can be regarded as being dual to itself. But it seems more 
fruitful to define the dual space in a different manner. We shall use the following 

. . 

palrmg: 

(17) ( f ( g) = ,f ( n ) g( n ) = liml 27 1 f ( rei' ) g( re- i' ) dt, 

forf E Da g E D_a a > O. With this pairing, Da and D_a are dual to one another 
and, in particular, the Bergman space B is dual to D. 

LEMMA 8. The function z - a is cyclic in D if and only if lal > 1. 

PROOF. The only new case is lal = 1. Suppose that we have g E B and g l [(z - 
a)]; thus (g, zn(z - a)) = O (n > O). From this we have lg(n)l = lg(O)l for all n. 
Since E Ig(n)l2(n + 1)-1 < oo we must have g = O. This completes the proof. 

COROLLARY. If p is a polynomial with no zeros in A, then p is cyclic. 

PROOF. We havep(z) = c(z - al) * * * (z - an), where each factor is cyclic, and is 
a multiplier. The result now follows from Proposition 8. 

PROPOSITION 13. Let f be analytic on A- with no zeros in A. Then 
(a) f is cyclic in D, and 
(b) if Re a > O thenfa E Dl+efor e < 2 Re a, andf a is cyclic in D. 

PROOF. (a) We have f = pg where p is a polynomial with no zeros in 1V, and 
gl > c > O in 1\. Then p and g are both cyclic and p is a multiplier. The result now 
follows from Proposition 8. 

(b) Let (1 - z)a = Lan(a)zn. From (5) (with -a replaced by a) we see that 
lan(a)l < c(n + l)-l-Rea. Thus (1 - z)a E Dl+e for e < 2Rea. Since Dl+e is an 
algebra we havepa E Dl+e, wherep is the polynomial from (a) above: f = pg. Also, 
g has no zeros in some disk lzl < R (with R > 1), and therefore ga iS analytic in this 
disc. Hence ga E Dl+e and SOfa E Dl+e as required. In particular,fa E M(D). (In 
the above argument we have ignored the fact that there are different possible 
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determinations Of fa ga, pa, and (1 - z)a in A. This is permissable since any two such determinations differ by a multiplicative constant.) Finally, choose an integer n > Re a. Note that f n is cyclic by Proposition 8, since J is both cyclic and a multiplier. But f n = faf n-a and so fa is cyclic, by another application of Proposition 8. 
PROPOSITION 14. Let f E H°° n D have no zeros in 1\. Assume that f a E D for some al > O. If f 2/3 is cyclic for some ,B > ol, f a is cyclic. 
PROOF. We may assume If l < 1. Hence If al > If Al in A. Also, f: E D since, with Y = A/R, 

(f:)t = ((fa)7), = 7( t a)7-1( 7 a)t E B 
The result now follows from Theorem 1. 
COROLLARY 1. Let f E M(D) be cyclic and let xx > O be given. If f a E D then f a is cyclic. 

PROOF. First note that f has no zeros in 1 and so fa can be defined. Also, f n is cyclic for all positive integers n, by Proposition 8. The result now follows from the previous proposition by choosing n > ol and letting ,8 = n. 
COROLLARY 2. Let f E A n D be cyclic, let I f I be Dini continuous, and let xx > O be given. If f a E D then f a is cyclic. 
PROOF. We first show, by induction, that f n is cyclic for all positive integers n (recall that f n is in D, by Lemma 4). The case n = 1 is given. If f n-l is cyclic for some n > 1 then f n = f n-lf is cyclic by Theorem 2. Now apply Proposition 14 with /9= n > ol. 
Since the proposition and its corollaries all involve the hypothesis fa E D (or Mf D)) it is of interest to see when this is satisfied. 
PROPOSITION 15. Let f E H°° have no zeros in 1\, and let ol > 1 be given. If f E D then f a E D; iff E M(D) then f a E M(D). 
PROOF. (ta)t = Olta-ltt E B sinceta-l is bounded; thusta E D. For the second part, let g E D be given. Then (tag)' = tag' + xxfa-lttg. Also, f 'g E B since f is a multiplier. Thus (tag)' E B, as required. 
We now present an example to show that, in general, if xx < 1 then f a need not be in D, even whenf E M(D). 

PROPOSITION 16. Let 

t(z) =tA a(z) = (1-z)expXaz _ 1 ), a > O, ,8 > O. 
If /S > 2 then f E M(D) for all a > O. If /S < 2 then f % D for any a > O. 
PROOF. Let 

g(Z) =-(1 _ z)l3 2 exp! a _ 1 ) . 
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Thenf'(z) = [:(1 - z) + 2a]g(z). We have 
(18) 2a < |,B(1-z) + 2a| < 2a + 2/9, lZl < 1. 

First suppose that S < 2 * To show that f Z D we must show that g Z B. To simplify 
the calculations we map to the right half-plane. Let 

z+l w-1 w= -z-1, z=f(w) w+1* 

If z = x + iy, w = u + iv then 

|| Igt z ) l dx dy = |l |g( + ( w )) | |+'( w ) | du dv 

= C| e-2au(| |W + 1| pdv) du. 

But this is infinite since for each u > O we have 

| Iw + 11 Adv >| [(u + 1) + V2] dv >| (2v ) dv = x, 

because ,B < 2. Thus f Z D, as was to be shown. 
One could use similar calculations to show that f E D when ,B ' 2 . However, we 

wish to show that f E M(D). Since f is bounded this is equivalent to showing that 
fth E B for all h E D. By (18) this is equivalent to showing that gh E B. Without 
loss of generality we may assume that h(O) = O. Hence Ih(z)l2 < - c log(l - lzl2) 
(this follows from the Cauchy inequality). Recall that we use c to denote a general 
constant, not necessarily the same at each occurrence. We have 

|| Ighl dx dy < cilig(z)l log 1 2 dx dy 

=cl e-2aU(l [(u+1)2+v2] Alog( + 4) +v dv)du 

= C| e- 2auIe U ) du . 
o 

Thus 

I(u) = 21 = 2(1 + | ) = 2(I1 + I2). 
O O u+l 

We have 

Il(u) < I (u + 1) 2Alog2(u + 1) dv < (u + 1)l-2Al ( U + 1)2 

4210g(u+1)-logu. 
Choose e > O so that 2,B - e > 1. Then log v2 < cre for v > 1, and so 

I2(U) < | V-2<10g 4 dv < | (CVe-2-v-2A1og2u) dv 

< c+ cllog2ul. 

Therefore JOX e-2a"I(a) du < x, which completes the proof. 
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In this example f has an inner factor. Question: if f E D is outer, must fl/2 E D? 
Note that, by Proposition 15, an affirmative answer to this question would imply 
thatfa E D for 0 < a < 1. However, this is probably not correct. An example could 
perhaps be built up using Proposition 16. Namely, let 

gn exp { an ( rnZ + 1)/( rnZ - 1) }, 

where an 0 and rn T1 rapidly. Then h = glg2 * * * is an outer function, and 
f = (1 - z)h should be the desired example. However, we have not verified the 
details. 

Next we state some results and introduce some notation that will be needed for 
our next two theorems. 

1. A closed subset J of a separable metric space is uniquely expressible as the 
disjoint union of a countable set and a perfect set (which we shall call the "perfect 
core" of J). By a perfect set we mean a set that is closed and has no isolated points. 
Note that, with this definition, the empty set is perfect. 

2. We recall the "thin sets" in the sense of Beurling, Carleson and Hayman that 
were introduced in the discussion following equation (4). We need the following 
facts about these sets. First, every closed subset of a thin set is thin. Second, if 
f E D2 then the boundary zero set of f is a thin set. (Actually this is true whenever 
f E Lip E for E > O, and by Proposition lO(b) this applies to Dot for (x > 1.) Finally, if 
K is a thin set then there exists an outer function f E A°° (that is, f and all its 
derivatives are in the disc algebra), such that ¢> and all its derivatives vanish on K, 
but f has no other zeros in /\- (see [8, §I; 20]). 

3. Notation. (a) If f E D, then 

Z(f) = {eit: limf(reit) = 0, r T1}. 

(b) If S c D is any subset, then [S] denotes the smallest closed subspace of D that 
contains S and is invariant under multiplication by z. This is consistent with our 
earlier notation [f ] forf E D. Also, note that [[S]] = [S]. 

(c) If K c aa is compact, let I( K ) = { f E D2: f = 0 on K }. This is a closed ideal 
in D2; it contains just the zero function if and only if K is not a thin set (see 2 
above). 

4. If S c D is a closed invariant subspace (for multiplication by z), then S rA D2 is 
a closed ideal in D2. 

LEMMA 9. If K c aa is closed, Ko = K U { aO } where aO E aa \ K, if Io = I(Ko) 
and I = I(K), then [Io] = [I ]. 

PROOF. Since Io C I we have [Io] c [I]. To prove the reverse containment it is 
enough to show that I c [Io] If this were false, then there would be an f E I \ [Io] 
We may assume thatf(aO) = 1. Then there is a continuous linear functional X on D 
such that A = 0 on [Io] but ( f, A) = 1. We claim that if g is any element in I with 
g(aO) = 1, then (g, A) = 1. Indeed,f - g E Io and so (f - g, A) = 0. 

Since point evaluation at aO is not a bounded linear functional on D, there exist 

polynomials { Pn} such that pn(aO)= 1 for all n but llPnll 0. Then Pnf E I and 
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( pn f )(ao) = 1; therefore ( pn f A) = 1. But this is a contradiction since pn f O in 

D (recall that the elements of D2 are multipliers on D). 

THEOREM 3. If f E D2 is an outer function and if f has at most countably many zeros 
on aS, then f is cyclic in D. 

This theorem is a special case of the following (take g = 1) 

THEOREM 4. If f, g c D2 are outer functions, and if Z( f ) and Z(g) have the same 
perfect core, then [ f ] = [g]. 

PROOF. We work first with f. Let If = [ f ] n D2. By 4 above this is a closed ideal 
in D2 that contains f. It follows from the Main Theorem in B. I. Korenblum's paper 
[21, Introduction] that a closed ideal in D2 that contains an outer function must have 
the form I(K) for some closed K C aS; K is necessarily a thin set. Thus there is a 
thin set Kf such that If = I(Kf ); also, Kf c Z(f ). 

We claim that Kf is a perfect set. Indeed, assume that Kf contained an isolated 
pointaO.LetK= Kf\{aO} andI= I(K).ByLemma9,[I] = [If].Also,sinceKis 
thin there is an h E D2 such that h = O on K and h(aO) = 1. Thus h c I c [I] = [If]. 
Note that sincef c If = [f] n D2 c [f ] we have 

[f] c [If] c [[f]] = [f], 

and therefore [If ] = [ f ]. Hence h c [f ] n D2 = If. But this is a contradiction since 
h(a0)= 1. Thus, Kf is a perfect set, and so Kf is contained in the perfect core of 
Z(t) 

If we repeat the above argument for g we see that Kg is contained in the perfect 
core of Z(g). Since these two perfect cores are equal we see that f = O on Kg and 
thus f c Ig = [g] n D2. Thus f c [g] and, similarly, g c [f], which completes the 
proof. 

Thus we see that for an outer function f in D2, cyclicity depends only on the zero 
set Z(f ), and in fact, only on the perfect core of this set. We now show that if f has 
too large a zero set then f is not cyclic. The facts about logarithmic capacity that we 
need may all be found, for example, in Chapter III of [39]. We shall use "hats" to 
denote the Fourier coefficients of functions and of measures: 

h(n) = |wnh(w) dm(w), ,i(n) = |Wn d,u(w) (n = O, +1, +2,. . .), 

where h C Ll(aS) dm denotes normalized Lebesgue measure on aS, y is a complex- 
valued Borel measure on aS, and Iwl = 1. 

THEOREM 5. If f c D and if Z( f ) has positive logarithmic capacity, then f is not 
cyclic. 

PROOF. Let Jn = {eia c Z( f ) If(rei@)l < n, O < r < 1}, n = 1,2,.... These are 
Borel sets and Z( f ) = U Jn. Since a countable union of Borel sets of capacity zero 
must have capacity zero (see [39, Theorem III 8, p. 57]), there exists an integer N 
such that JX has positive capacity. Hence there is a compact set F C JN and a Borel 
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probability measure y supported in F with finite energy integral. This means that 

(19) I(y) = || log lz-wl d(Z) d(w) < x y 

Let kw = kw(z) = (1 - wz)-l. Then k2 E D_2 for Iwl = 1, and the map w kw 

is a norm continuous map of aa into D_2. Hence the vector-valued integral, 
g= IkWdy(w), exists and defines an element of D_2. Our goal is to show that 
g E B, g + O, and ( pf, g) = 0 for all polynomials p. This will prove the theorem 
since B may be identified with the dual space of D by means of the pairing (17). 

We first find a formula for the value of g at a given point z E 1v, and then we find 
the power series for g. Thus let z denote a fixed point in 1v, and let Az denote the 
linear functional on D_2 of evaluation at z. Then we have 

(20) g(Z) = Az(lkwdll(w)) = lAz(kw) dll(w) = |(l - wz) ldK(w) 

= | ( wnz n ) dlJW ( w ) = (|wn dEb ( w) ) zn = !ue (-n ) z , 

since the series converges uniformly in w (lwl = 1). Also, g $ O, otherwise ,i(n) = O 
(n < 0). But then ,i(n) = 0 for all n (,i f - n) = {b (n ) since y is a real measure) which 
is impossible. 

Next we show that g E B. Let h(t) = -logil - eitl. Then one sees that, in (19), 
I(,u) = Jl h(@ - t) dy(eit) dy(ei@). Since h is an even periodic function, and is 
convex for 0 < t < 2qr, we have 

00 

I(,u) = E h(n)|y(n)|, 
-00 

by Proposition 3 of [18] (see p. 35). (Strictly speaking they require, in addition, that 
h > 0. However, this is only used to obtain h(0) > 0, and in the present case, as we 
shall see, h(0) = 0. Alternatively, if c is a large positive number then h + c > 0 and 
their result can be applied.) To find the Fourier series of h we proceed as follows: 

h(t) 1 {-log(l-ei') - log(l - e )} = 2 ( n E n ) 

Thus h(0) = 0, and h(n) = 1/21nl for n + 0. Also, gii(-n)l = Iii(n)l since y is a real 
measure, and so 

(y) E n 1y( )l 

Using this result together with the power series for g from (20), we see that g E B. 
It remains to show that ( pf, g) = O for all polynomials p. Let dm denote 

normalized Lebesgue measure on the circle; the limits below are taken as r T 1. From 
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(17) and (20) we have 

( pf, g) = limJ( pf )(reit)g(re-it) dm(t) 

= limJ( pf )(reit) j(l-wre-it) -l d,u(w) dm(t) 

= limJJ( pf )(reit)(l - wre-it)-l dm(t) d,(w) 

- limt(pf)(r2w) d,u(w) = O, 
F 

by the bounded convergence theorem. This completes the proof. 
Beurling [4] has shown that if f E D, then the set of eia for which a finite radial 

limit does not exist is a set of logarithmic capacity zero. From this we see that if 
Z( f ) has positive capacity then l/f is not in D, and therefore one cannot hope to 
find a negative example for Question 4 from Theorem 5. Carleson has shown that 
for bounded functions in D a stronger result is true: the set where a finite radial limit 
does not exist has logarithmic length zero (see [7, Chapter III, §3]). - 

If E is a Borel subset of aa of positive capacity, then we define 

DE = tf E D: limf (rei@) = O, a.e.-cap, inE), 

where "a.e.-cap" means "except for a set of capacity zero". 
Carleson [8, pp. 332-335] has introduced a class of thin sets E having positive 

capacity, with the property that { f E DE: f(o) = 1} is a closed subset of D (see 
Theorem 6, p. 335 in his paper). From this it follows easily that DE itself is a closed 
set (and therefore any function in DE is noncyclic). 

Joel Shapiro has pointed out to us that DE is always a closed subspace of D, for 
any E c a^. This follows from results in [24]. More specifically, we use their 
Theorem 3.12, inequality (2), with p = 2 and K(ei°)= ll - eial-l/2. Then their 
space K*L2 coincides with D, and, what is more difficult, their capacity is 
equivalent to logarithmic capacity. We obtain the following inequality ("cap" 
denotes "logarithmic capacity"): 

capt ei@: |f(ei@)| > A } < c(llfll/X), f E D 

To show that DE is closed we assume that { gn } c DE and gn f in D. Then for each 

n we have 

capt ei@eE If l> A} =captei@E: Ifn-f |> A} 

< cap{ei E a5: Ifn-f l > A } < (llAn f ll/X) 
Letting n > oo we have cap{eia E E: If l > A} = 0, for all A > 0. If we take 
A = l/k (k = 1, 2, . . . ) and use the fact that a countable union of sets of capacity 0 
has capacity 0, then we see that cap{eis E E: ItI > O} = 0 that is, f E DE. °f 
course our Theorem S is an immediate corollary of this (our proof is entirely 
different and is a good deal simpler). 
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Question 11. If f c D is an outer function, then does [ f ] = DE for some E c dl? 
A comparison of Theorems 3, 4 and 5 suggests that, for outer functions f in D, the 

set Z( f ) determines whether or not f is cyclic. In particular, Theorem 4 says that this 
is indeed the case when, in addition, f c D2. We conjecture that the converse to 
Theorem 5 is valid, that is, that an outer function f c D is cyclic if and only if Z( f ) 
has logarithmic capacity O. 

Question 12. If f c D is outer and if Z( f ) has logarithmic capacity O, then must f 
be cyclic? 

If our conjecture is correct, then this would immediately imply an affirmative 
answer to Question 3, and would also yield an affirmative answer to Question 4. 
Indeed, if f and 1/f are both in D then, since the radial limit exists and is finite 
except perhaps on a set of capacity O (see [4]), we see that Z( f ) and Z(1/f ) must 
both have capacity O. 

At present, however, we have no example of cyclic f for which Z( f ) is uncounta- 
ble, although univalent functions may provide such examples. 

A univalent function f is in D if and only if it maps the unit disc onto a plane 
region G of finite area. We distinguish three cases. 

1. If O c G then f is not cyclic. 
2. If O % G-thenlfl > c > Oinlv and sofiscyclic. 
3. The case O c dG is open. 
We first show that cyclicity depends only on the region G and not on the 

particular mapping f of 1 onto G. 

LEMMA 10. Let f c D and let f be a bilinear map of 1 onto itself. Then (1) 
f o + c D, and (2) f o + is cyclic if and only if f is cyclic. 

PROOF. We have 11( f ° +)/IIB = lIfTllB (this may be seen by changing variables in 
the double integral). Also, composition with f (or with any inner function) is a 
bounded operator on H2, with bound (1 + lxxl)/(l - l(Xi), where xx = f(O) (see [29]). 
Thus by formula (3) for the norm in D we see that composition with f is a bounded 

linear transformation on D. Hence if there are polynomials { Pn } such that Pn f 1 in D, then (Pn ° ¢t)( f ° f) = (Pnt) o f 1 also. But for each n, pn o f C M(D) since 

it is analytic on 1\-. Thus f o + is also cyclic. The converse follows since the bilinear 
maps form a group under composition. 

We pause to record another problem. If + is analytic in 1 with f (1\ ) c A then we 
let C,,, f = f o +, for all f analytic in 1v . 

Question 13. For which + is CX, a bounded operator (a compact operator) on D? 
In the proof of the lemma we showed that CX, is bounded (and invertible) when f 

is a bilinear map. It is easy to see that CX, is compact if +(I)-c A; it can be shown 
that CX, is a Hilbert-Schmidt operator if and only if IJ(1 _ if l)-21+'12 < x. For a 
survey of results in the H2 case see Nordgren [25]. For some results on the problem 
for D2 (and related spaces) see [27]. 

To return to univalent functions we recall two results. First, a nonvanishing 
univalent function in the unit disc must be an outer function (see [11, Theorem 
3.17]). Second, Beurling [4] showed that if f is univalent and has a finite Dirichlet 
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integral (i.e.,f E D), then its boundary zero set (i.e., Z(f)) has logarithmic capacity 
zero. In view of Question 12 this suggests the following problem. 

Question 14. If f E D is a nonvanishing univalent function, must it be cyclic? 
We give an affirmative answer for the special case when g is the slit disc (that is, G 

is formed from the open unit disc by deleting the unit interval). 

PROPOSITION 17. If f is any conformal map of 1 onto the slit disc, then f is cyclic. 

PROOF. Let g(z) = 1 ar z ar i(1 - z), h(z) = 2{ i(l _ Z2)}1/2. Then it can be 
shown thatf = (g - h)/(g + h) is one such map, withf(i) = 0. (First, map to the 
upper half-plane with 0 going to i; then use the square root map to go to the first 
quadrant; next use the inverse of the first map to go to the upper half-disc; then 
square. We use the principal branch of the square root function defined in the plane 
slit along the negative real axis.) We note in passing that by considering the Taylor 
coefficients one can show that f E Dof for all (x < 2, but f % D2. 

The functions g - h and g + h are both in H°° n D and their product is cyclic 
since it is a polynomial with no zeros in 1 (see the Corollary to Lemma 8); therefore 
both g - h and g ar h are cyclic (Proposition 11). Therefore (g + h)f is cyclic and 
so, again by Proposition 11, f is cyclic. 

We do not know whether the conclusion remains valid when the standard slit disc 
is replaced by the disc with a "fat" slit (that is, from 1 remove a Jordan arc of 
positive two-dimensional measure going from 0 to 1 in 1v ). 

4. Miscellaneous results. We now return to Question 2: is Axiom 7 independent of 
the six original axioms? Here we are dealing with a general Banach space of analytic 
functions in a bounded region G. Recall that an equivalent statement to Axiom 7 is 
the following: M(E) f c [ f ], for all f E E. We rewrite this as follows (P denotes the 
set of all polynomials): 

(21) tf E M(E), tf E E, te > 0, 3p E P such that ||Pf - ftllE < E 

A sufficient condition for this is that P be dense in M(E) in the strong operator 
topology (this was how Proposition 7 was proved). This means the following: 

(22) tf E M(E), tF c E (finite subset), te > 0, 
3p E P such that ||Pf - ft||E < E for allf E F. 

We write SOT to denote the strong operator topology. 
We now present a class of examples where the first six axioms hold. It seems likely 

that Axiom 7 will not always hold. 
We begin with the open unit disc li. Let K be a compact convex set with 

nonempty in\terior, such that 1 E K and K c A U {1}. Let G = A\K, and let 
E = L2(G), that is, the space of area square-integrable analytic functions in G (the 
"Bergman space" of G). It is known that for a suitable choice of K (but not for all 
choices), P will be dense in E. (See the 1953 survey article [23] by Mergelyan; for 
more recent results see, for example, [6].) Thus E satisfies the first six axioms. Also, 
M(E) = H°°(G) (and the operator norm coincides with the supremum norm). 
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If one could show that P were not SOT dense in H°°(G), then this would be 
evidence suggesting that Axiom 7 might not hold. In this direction we can only prove 
the following: P is not sequentially SOT dense in H°°(G). Indeed, let xx be an interior 
point of K and let f(z) = (z _ a)-1. Then f E H°°(G). We will show that there is 
no sequence {Pn} °f polynomials such that Pn > f SOT. Suppose that such a 
sequence did exist. Then by the principle of uniform boundedness, { Pn } would be 
uniformly bounded in G. But then by the maximum principle, {Pn} would be 
uniformly bounded in lS and thus would form a normal family. Hence a subsequence 
converges, uniformly on compact subsets of lS, to a function g E H°°(/\). But 

pn(Z) f (Z) for z E G. Therefore, g is an analytic continuation of +, which is 

impossible. 
To show that P is not SOT dense it would suffice to show that the weak operator 

topology (WOT), restricted to H°°(G), coincides with the weak* topology (which 

H°°(G) inherits from L°°(G)). Indeed, the restriction map f f IG is an isometric 

mapping of H°°(A) into H°°(G). It follows that H°°(A)lG is weak* sequentially 
closed in H°°(G). Now by a theorem of Banach [3, Chapitre VII, Theoreme 5]) it 
follows that H°°(lS)lG is weak* closed. Thus (if these topologies coincide) it is WOT 
closed, and hence is SOT closed (see [10, V1.1.5, p. 447]). Thus the SOT closure of P 
would be equal to H°°(lS)lG. To state the topological problem more explicitly we 
note that if { fa } C H°° is a net, then fa > O (WOT) means 

|| fa fg dx dy O ( f E La( G), g E L2 ( G)) 

(g need not be analytic), whereas fa ' 0 (weak*) means 

|| fah dx dy o (h E L (G)). 

G 

Next we pose two more questions about the space D. The first is related to 
Question 11; an affirmative answer would simplify the problem of classifying the 
invariant subspaces of the operator Mz on the space D. 

Question 15. If F c D is a closed subspace invariant under the operator Mz (i.e., 
zF c F), then must there exist f E D with F = [ f ]? 

QuestlXon 16. If t E D, must there exist +1, +2 E M(D) such thatt = f1/f2? 
This would be an analogue of the result for H2, where each function is the 

quotient of two bounded functions. Such a result is not valid in Da for xx < O since 
M(Da)= H°°, whereas Da contains functions not in the Nevanlinna class. On the 
other hand for of > 1 the result is trivially true since M(Da) = Da indeed, f = t/l. 
However it seems likely that the answer to Question 16 is negative. Indeed, an 
affirmative answer would imply, in particular, that every function in D is the 
quotient of two bounded functions in D. And Carleson has indicated that this is 
probably not correct (see [7, Chapter III, §3; especially p. 39]); see the remarks on 
radial limits following the proof of Theorem 5. 
An affirmative answer to Question 16 would be interesting in operator theory. An 

algebra of operators on a Banach space is said to be transitive if there is no proper 
closed subspace mapped into itself by all operators in the algebra. In [2] Arveson 
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showed that if a transitive algebra of operators on H2 contains the operator of 
multiplication by z (the unilateral shift operator), then the algebra is SOT dense in 
the algebra of all operators. It has been an open question if the conclusion remains 
valid when the unilateral shift is replaced by a weighted shift. Arveson's proof 
depended on the fact that H2 functions are quotients of bounded functions and so, 
if Question 16 could be answered in the affirmative, then the unilateral shift could 
be replaced by the operator of multiplication by z on the space D in his theorem. 

We now prove three propositions about multipliers on D. 

PROPOSITION 1 8. (a) If f E Mf D ) then 
(1-r) log(l/(l-r)) 

(b) If f E H°° and E(n log n)l+(n)l2 < x, then f E M(D). 

PROOF. (a) This is contained in Theorem 1 of [38]. 
(b) As observed earlier, if f E H°° then f E M(D) if and only if +tt E B for all 

f E D (see remark 7 following Proposition 3). 
We first show that if f E H°° and if 

(23) M2(ft r)(log1 _ ) E L2(0,1), 
then f E M(D). Indeed, let f E D. From the Cauchy(-Buniakovsky-Schwarz) in- 
equality we have 

If(z)l < ( r logl _ r )llfil (r = IZl) 
Therefore 

||1+ f l rdrdS < cl (M2(+, r)) log 1-rdr < x f 

and so + t E B as required. 
We now show that (23) is equivalent to the convergence of the series in (b). Indeed 

iff=Lanznthen 

(24) | M2 ( +' r )2 10g l _ dr = E n 2|an| | r 2n- 2 log l _ dr . 

If rn = 1 - l/n, then r2n-2 > c in [rn, 1) . Thus 

10 1 r Irn 1 r n 
On the other hand, 

2n-2 logl_ dr =| +| =In+IIn, 

In < (log n )| 'r2n-2 dr < c log n 

IIn < 1 logl _ dr = g 

This completes the proof of (b). 
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(b) above may be compared with a result of G. D. Taylor: if wn T x, L(nwn)-l < x, Enwnlanl2 < x, then f = E anZn E M(D). (This follows from Theorem 5 of [38] if one takes nk = k.) 
Of course the convergence of the series in (b) above does not imply f E H°°. However, if one puts in random + 1 in the power series then almost surely the series will converge uniformly and therefore will be in the disc algebra. This follows from a result of Paley and Zygmund [26] (see Theorem VII, p. 347 and Theorem XVIII, p. 461): if Elanl2(10g n)l+e < x, then E + anzn converges uniformly, almost surely. Thus there are functions that are in the disc algebra, and in M(D), that do not have absolutely convergent power series. This contrasts with the example mentioned earlier where an J,O, Lan < x, f E D, but f is not a multiplier (see Example 2 following Theorem 1). 
In the next proposition we require the function classes lip xx, O < xx < 1. These are the analytic functions (necessarily continuous on the closed disc) for which liml+(z) 

- f(w)l/lz - wlt = O, as Iz - wl O. For a discussion of related material see, for 

example, Duren [11, Chapter 5] or Zygmund [41, Chapter VII, §5]. In particular, + is in lip xx if and only if M£(+', r) = o((l - r)t-l). (The proof is the same as the corresponding result, due to Hardy and Littlewood, for Lipxx; see Duren [11, Theorem 5.1].) 

PROPOSITION 19. If + is holomorphic in lS and if 

(25) Mp ( +, r ) = ( 2 zz j l+'( reia ) l d @ ) E L2 ( dr ) 
for some p > 2, then: 
(a) f E lip(l/2 - l/p), 
(b) ft . H2P/ (P - 2) C B 
(c) Da c H2p/(P-2) for xx > 2/p, 
(d) f E M(D). 
REMARK. If p = 2 then (25) is equivalent to f E D. If p = x we use the supremum norm in (25); this requires minor changes in the proof below. PROOF. (a) We require the following result: if h E Ll(O,l) is an increasing function, then h(r) = o((l - r) l). Indeed, if E > O is given then there exists rO such that for r > rO we have 

E > l h(t) dt > h(r)(1 - r) 

and the result follows. Applying this to the function Mp(+', r)2 we have Mp(+', r) = o((l - r)-l/2). By a theorem of Hardy and Littlewood (see Theorem 5.9, p. 84 in [11]) this implies that 

M£(+' r) = o((1-r) -1/2-1/p) 

By the Hardy-Littlewood theorem referred to earlier this establishes (a). 
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(b) We apply Holder's inequality with indices p/2 and ,8 = p/( p - 2) to obtain 

| [(+'f )(reia ) l dA < (|lzi (reio ) l ) (|If(rei° ) l /9 ) 
If f E H2A, then by (25) the nght side is in L1(dr). Thus +'f c B, as required. 

(c) Let f = E anzn c Da for xx > 2/p. Let q = 2 p/( p + 2); thus 1 < q < 2. Thus 
for the conjugate index we have q' = 2p/(p - 2). Then by Holder's inequality 
(with exponents 2/q and 2/(2 - q)) we have 

Elanl = (n + l)q /21a [q(n + l)-qa/2 

< llfilq (E(n + 1)-qa/(2-q))( q)/ 

This is finite since qot > 2 - q. Hence by the Hausdorff-Young theorem (Zygmund 
[41, Theorem XII.2.3(ii)]) we see thatf c Hq, as required. 

(d) From (a) we have f E A c H°°, and from (c) we have +'D c B; the result 
follows from this. 

LEMMA 11. Let {dj} be positive real numbers with dj+l/dj > s > 1 for allj. Then 
(a)Ejk=1dj < sdk/(s - 1) (k = 1,2,...), 
(b) EJ=k+l dy-l < dk-l/(s - 1) (k = 1, 2,. . .). 
PROOF. (a) We have dk-i < 5-idk Thus 

k k-1 oo 

E dj < , 5 - i dk < 5 - i dk = 5 - 1 dk d 

(b) We have (dki)-l < 5-idk-l Thus 
00 00 

E (dk+i) < L5-i dk 1 = 1 dk 1. 

PROPOSITION 20. If f c D and if ff j) = O forj ¢ {nk}1, where nk+1/nk > q > 1 
for all k, then: 

(a) MOO(+', r) E L2(dr), 
(b) + c lip2, 
(c) +'H2 c B, 
(d) + E M(D). 
PROOF. BY Proposition 19, (b), (c) and (d) all follow from (a). To prove (a), let 

¢}(z) = 1 akz k. If bk = nk/ |ak| then {bk} c 12, since f c D. We have 
00 

|+'(rei@)| < Enklaklrnk- 
1 

00 

MOO(+tEr)2 < E njnklajaklrnJ+nk-2 
j,k=l 

lo Mx(+ r) dr < >kbjbk Ajk n + nk- 1 ' 
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(We assume nl > 1.) The proof will be completed if we show that the matrix (13>k) 

(j, k = 1,2,...) represents a bounded operator on 12. To do this we apply the 

"Schur test" in the original form due to Schur: if 13jk > O and if 

(26) E lXyk < cl, 5£ 13yk < C2 C 
i k 

then (13>k) is bounded by (clc2)1/2. For a proof and generalization see [42]; for the 

history of this inequality see [45]. 
Since our matrix is symmetric: 6tij = 6tji, we need only verify the first condition in 

(26). Since n j > 1 we have 

(27) 13>k < ( njnk )1/2/nk = nl/2n k l/2; 

the inequality obtained by interchanging j and k is also valid. By (27) and Lemma 

ll(a), 
k k 

E Aij < nk / EnJ/ < s-1 (5 = ql/2) 

j=l 1 

Also, by (27) withj, k reversed, and by Lemma ll(b), 

00 oo 1 

E l3ij < nl/2 , n. l/2 < (s = ql/2) 

j = k + 1 k + 1 

Inequality (26) now follows, with cl = c2 = (s + l)/(s - 1). This completes the 

proof. 
In conclusion we mention three more problems. 

Question 17. If f E D n (Lip e) for some E > O, must f E M(D)? Suppose f is 

merely Dini continuous? 
Question 18. If fi fne H°° n D and if Llti(z)l > c > O in lS, then do there 

exist gl,. . . gn E H°° n D such that E tigl = 1? 

The same question could be posed with H°° n D replaced by M(D), or even by 

M(E) where E is a general Banach space of analytic functions. In this generality 

even the case n = 1 is unknown. 
Question 19. If Eis a Banach space of analytic functions, if + E M(E), and if 

+(z)l > c > O in G, then is 1/+ in M(E)? 
This is correct for M(D) (this follows easily since we need only check that (1/+') 

multiplies D into B ). 

Added in proof. 1. The result of J. Roberts referred to after Proposition 4 will 

appear in the Illinois Journal of Mathematics. 
2. The theorem of Korenblum that was used in the proof of Theorem 4 has been 

extended to some other Banach algebras of analytic functions. See, for example, A. 

Matheson, Approximation of analytic functions satisfying a Lipschitz condition, 

Michigan Math. J. 25 (1978), 289-298; and F. A. Shamoyan, Closed ideals in 

algebras of analytic functions that are smooth on the boundary, Izv. Akad. Nauk 

Armyan SSR Ser. Mat. 16 (1981), 173-191. 
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3. The condition L(nlogn)l+(n)l2 > x (Proposition 18(b)), is equivalent to 
saying that multiplication by +' is a Hilbert-Schmidt operator from D to B. 

4. Proposition l9(c) implies that D c Hr for all r < x. This can also be obtained 
by showing that D c VMOA (equivalently: if f E D then there is a continuous 
function qi on aa such that ¢(n) = f (n) n > O). 

5. Korenblum has characterized the cyclic vectors in the space A - x, that is, the 
space of analytic functions in A, for which 

If(z)l < a/(l -izl)b, lzl < 1, 
for some a, b > O (depending on f ). This space is conjugate to the space At. See his 
paper: A Beurling-type theorem, Acta Math. 138 (1976), 265-293. For further results 
in this direction see also the papers of N. K. Nikolskii: A criterion for weak 
invertibility in spaces of analytic functions that are defined by growth conditions, 
Investigations on Linear Operators and the Theory of Functions. III, Zap. Naucn. 
Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 106-129; Selected 
problems in weighted approximation and in spectral analysis, Trudy Mat. Inst. Steklov. 
120 (1974), 4-271. We mention one further paper in this direction: S. A. Apresjan, 
Uniqueness theorems and the localization of ideals in algebras of analytic functions with 
restrictions on the growth, Dokl. Akad. Nauk SSSR 229 (1976), 1033-1036. 
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