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ABSTRACT 
 

 
Self-healing smart material systems have been introduced into the research arena and they have already 
been deployed into industrial applications. The Close-Then-Heal (CTH) healing mechanism for 
polymeric self-healing systems is addressed herein and then a new generation of Shape Memory 
Polymer (SMP) based self-healing system is proposed in this work. This system incorporates SMP fibers 
to close the cracks while the embedded Thermoplastic Particles (TPs) are diffused into the crack 
surfaces upon heating and provide a molecular level of healing. 
 
The SMP fiber manufacturing procedure is briefly addressed in this work in which the bobbin of SMP 
fibers are heat treated in a specific procedure and then they are wound to produce SMP fibers. The 
performance of the proposed healing system is highly dependent on mechanical responses of SMP fibers.  
 
The polyurethane SMP fibers are categorized as semicrystalline polymeric material systems. These 
semicrystalline SMP fibers are then constituted from two distinguishable phases, which are amorphous 
and crystalline polymers. Such a multiphase system can be evaluated through a multiscale analysis 
within the micromechanics framework in which the macroscopic mechanical responses are evolved 
through averaging the microscale mechanical fields. Then in this research the constitutive relation for 
each of the micro-constituents are utilized to compute the microscale mechanical fields and then these 
fields are correlated to the macroscopic field through the micromechanics framework.  
 
The cyclic viscoplastic and viscodamage of these fibers are of utmost importance for designing self-
healing systems in which repeatability of the healing process and the healing efficiency for subsequent 
healing cycles are highly dependent on cyclic responses of these fibers. A new approach in measurement 
of cyclic damage of SMP fibers is proposed in this work in which the reduction in recoverable stress 
after each cyclic stress recovery is correlated to the damage. In this approach the damage is interpreted 
as failure of the polymeric bonds to recover their original shape (SM effect).  
 
In general the proposed self-healing scheme establishes a new generation of self-healing systems while 
the developed theoretical multiscale analysis provides a well-structured method to investigate the cyclic 
viscoplastic and viscodamage of the SMP fibers.     
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CHAPTER 1 INTRODUCTION 

1.1 Self-Healing Materials  

The self-healing smart materials with the ability to heal micro- and macro-scale damages have been 

developed and deployed into the research and industrial applications recently. These smart materials 

may use a microencapsulated healing agent inside their matrix, in which micro- or macro-damages 

fracture the wall of the microcapsules and the released healing agent solidifies in presence of catalysts 

and heals the micro cracks and/or voids [1]. Toohey et al. extended this idea by designing a 

microvascular network, within the body of the system, to feed the healing agent continuously into the 

material [2]. However, this system suffers from clogging of vascular network after first round of healing 

which limit the repeatability of the healing process.  Particularly, the performance of these systems in 

healing macro-scale damages is still an obstacle that must be overcome. This kind of healing 

methodology is referred to as a coupled damage-healing system herein to indicate that both the damage 

and the healing processes are activated concurrently in the system. The healing systems utilizing 

external triggering to activate the healing mechanism are referred to as a decoupled damage healing 

systems herein. In these types of systems the damage and the healing processes occur separately, where 

just one of these processes are active. These systems may utilize thermoplastic particles [3], thermally 

reversible covalent bonds [4], confined shape recovery of shape memory polymers [5], or biomimic two-

step close-then-heal (CTH) mechanisms to molecularly heal structural-length scale damages [6-8].  

 

 

Figure 1-1 Self-healing system based on CTH mechanism [9] 
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Figure 1-1 shows the schematic of a typical CTH self-healing system which utilizes the confined shape 

recovery of SMP to close the crack and upon further heating the diffusion of the melted TPs into the 

crack surfaces provides a molecular length scale healing as shown in Fig. 1-2. 

 

 

Figure 1-2 SEM and TEM pictures of (a) cracked and (b) healed configurations [8, 9] 

 

1.2 New bio-mimic self-healing scheme 

The high cost of the SMP, as the matrix phase, may be considered as a drawback for the classical CTH 

mechanisms. A novel modification in design of SMP based self-healing systems are proposed in which 

the SMP fibers are utilized as closing agent which reduce the cost of self-healing systems considerably 

while the need for external confinement is eliminated through specific programming of SMP fibers. In 

this new healing scheme the local heating activates the SMP fibers and upon shrinking these fibers the 

crack is closed. This recovery strategy opens a wide structural application for SMP fibers in which the 

embedded programmed fibers provides the closing step for the healing process.  

1.3 Multiscale Analysis 

The tendency to the multiscale elasto-plastic-damage analysis of material systems has been increased 

significantly during past decade and the capability of these theories in accurately capturing the coupled 

viscoplastic-viscodamage phenomenon has been addressed in the literature [10, 11]. 

1.4 Research Objective 

It is found that with the proposed new CTH scheme the application of the self-healing materials in 

bioengineering and aerospace industries enters to a new arena in which upon detection of the damaged 
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zone a local heating process can fulfill all the healing steps. The detection procedure can be through 

visual inspections or Non-Destructive techniques. To accomplish the design and implementation of such 

a self-healing scheme a full understanding of thermomechanical responses of SMP fibers are required. 

In this work, a multiscale viscoplastic-viscodamage theory is developed to predict the cyclic responses 

of SMP fibers. In addition, the experimental tests are implemented to backup the proposed theory. 

 

1.5 Dissertation Outline 

This dissertation deals with three subtopics: Multiscale modeling through the micromechanics 

framework, proposing new CTH healing scheme and a viscoplastic model for SMP fibers and cyclic 

loading analysis of SMP fibers. The chapters are written in the form of a journal paper.  

In Chapter 2, the Transformation Field Analysis is presented with detailed discussion on proposed 

modification on this theory. In Chapter 3, a viscoplastic theory for SMP fibers is proposed and the new 

CTH system is elaborated. Chapter 4 covers the cyclic loading analysis of SMP fibers and a coupled 

viscoplastic-viscodamage theory is proposed. Chapter 5 is the summary of this dissertation. Some 

recommendations of future works are also given in this chapter. 
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CHAPTER 2 MANUFACTURING AND CHARACTERIZATION OF THE SMP FIBER 

 

In this work two types of single SMP fibers (filaments) are characterized in which their microstructure 

changes upon cold drawing process are evaluated. In the following the manufacturing process and the 

characterization techniques that have been incorporated in this work are briefly discussed. 

2.1 Manufacturing Process: 

The shape memory polyurethane based on polyester polyol and it is a PCL-4000-based shape memory 

polyurethane[1]. The polyurethane was synthesized from poly(butylene adipate)-600 (Mn) (PBA), 4‟4 -
diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). On average, the molar ratio of 

(MDI+BDO): PBA=3:1. The average formula weight ratio of (MDI+BDO): PBA=1021:650. The hard 

segment, soft segment, and their contents were selected to prepare polyurethane with amorphous soft 

segment phase and crystalline hard segment phase. The soft segment phase has a glass transition at 

about -50 oC and a melting transition at about 47 oC. Based on the manufacturing procedure, discussed 

in [1], the SMP fibers were spun using a spinning machine. The pure nitrogen gas was injected for 

protection and the temperature was kept about 210 oC with the winding up speed of 100 m/min. A 

schematic representation of the spinning process of SMP fiber is shown in Fig. 2-1. 

 

 

Figure 2-1 Rolling heat treatment and winding process of the SMP fiber filaments 

The SMP filaments at each roller is heat treated while the speed and temperature of the three rollers are 

controlled and the filaments are wound at winder without external stress [2, 3]. The effect of the heat 

treatment and the temperature range of rolling process on the degree of crystallinity and mechanical 

properties of the hard segment is investigated in the literature [1-3].  
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2.2 Characterization Techniques: 

A Material Testing System (MTS) Alliance RT/5 machine, which is specified for fiber tension tests, is 

utilized to cyclically stretch the SMP fibers. Dynamic mechanical analysis (DMA) tests were carried out 

on a Rheometric Scientific, RSA III Mechanical Analyzer, operated in a tensile mode. The heating rate 

was 5 oC/min, testing frequency 1 Hz, and the oscillation amplitude 5.0 μm. Tests were conducted over 

the temperature range from 25 to150 oC. The gauge length between the clamps was 30 mm and the fiber 
diameter was 0.04 mm, measure from Optical Microscopy images. Fourier Transform Infrared 

spectrometry test was carried out and the transmission spectra were determined using a TENSOR 27 

spectrometer at room temperature. Small Angle X-ray Scattering (SAXS) experiments were conducted 

at facilities in the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State 

University to investigate the microstructural change of SMP fibers upon cold drawing process. The 

results of these experiments are presented in Chapter 4 with detailed discussion.  
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CHAPTER 3 A MULTISCALE INELASTIC ANALYSIS OF SEMICRYSTALLINE GLASSY 

SHAPE MEMORY POLYMERS WITHIN THE MICROMECHANICS FRAMEWORK  

 

3.1 Nomenclature 𝐴𝑖𝑗 𝛼 
 skew-symmetry part of the Schmid tensor   𝐴𝑖𝑗𝑘𝑙 𝑟 
 strain concentration tensor   𝐵𝑖𝑗𝑘𝑙 𝑟 
 stress concentration tensor   𝑐𝑖  crystallographic axes vector  𝑑𝑖𝑗  Lagrangian strain tensor 𝑑𝑖𝑗𝑒  Lagrangian elastic strain tensor  𝑑𝑖𝑗𝑝  Lagrangian plastic strain tensor 𝐷𝑖𝑗  Eulerian strain tensor 𝐷𝑖𝑗𝑒  Eulerian elastic strain tensor 𝐷𝑖𝑗𝑝   Eulerian plastic strain tensor 𝐷 𝑖𝑗𝑐  inelastic crystalline stretch rate tensor   𝐷𝑖𝑗𝑘𝑙 𝑠𝑟 
 eigenstrain influence tensor    𝐹𝑖𝑗𝑘𝑙 𝑠𝑟 
 eigenstress influence tensor 

Fij total deformation gradient tensor 𝐹𝑖𝑗𝑒  elastic deformation gradient tensor 𝐹𝑖𝑗𝑝   plastic deformation gradient  tensor 𝐿𝑖𝑗𝑐   crystalline velocity gradient tenor 𝐿𝑖𝑗𝑘𝑙   stiffness tensor 𝑀𝑖𝑗𝑘𝑙   compliance tensor 

                                                 
 Paper submitted to ELSEVIER JOURNAL of INTERNATINAL JOURNAL OF PLASTICITY for peer review 
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ℵ𝑖𝑗  eigenstress tensor 𝜍𝑖𝑗  Cauchy stress tensor 𝜖𝑖𝑗  strain tensor 𝜏𝑖𝑗𝑝  first Piola-Kirchhoff tensor 𝜏 𝛼  crystalline phase Cauchy shear stress, associated with the 𝛼th slippage system  𝜏  amorphous phase shearing stress 𝜇 shear modulus 𝜇𝑖𝑗 𝑟 
 eigenstrain tensor 𝜈 Poisson‟s ratio 𝛼𝑖𝑗  amorphous phase back stress tensor  𝑋𝑖𝑗  amorphous phase deviatoric back stress tensor  𝑆𝑖𝑗𝑝  second Piola-Kirchhoff tensor 𝑆𝑖𝑗𝑐   deviatoric Cauchy stress tensor 𝑆𝑖𝑗𝑐∗  crystalline deviatoric Cauchy stress tensor, projected at the 𝑐𝑖  direction 𝑆𝑖𝑗𝑐𝑝   deviatoric Cauchy stress tensor, projected perpendicular to the 𝑐𝑖  direction 𝑠𝑖𝑗∗   driving stress tensor in the amorphous phase 𝑠  amorphous athermal shear strength  𝑅𝑖𝑗  rotation tenor 𝑈𝑖𝑗  stretch tensor 𝑅𝑖𝑗 𝛼 
 symmetric part of the Schmid tensor   𝛾  𝛼  crystalline shearing strain rate associated with 𝛼th slippage system  𝛾 𝑝   amorphous shearing strain rate  𝑊𝑖𝑗𝑐  spin tensor  
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𝑊𝑖𝑗𝑐∗ lattice spin tensor  

 

3.2 Introduction  

3.2.1 Semicrystalline polymers and polyurethane SMP: 

 In general polymers are constituted from long disordered molecular chains and entangled coils. 

Amorphous polymers can be produced when this disordered polymeric network is frozen during the 

cooling down process. Crystallization process occurs when the disordered structure is rearranged into an 

ordered structure. In some cases the crystallization may occur during the cooling down process, in which 

the crystalline lamellae are created in the direction of the largest temperature gradients, or under 

mechanical loading, i.e. stress induced crystallization, at temperatures well below the glass transition 

temperature. In many cases the crystallization process is not fully developed chemically and the 

resulting microstructure contains 10 wt% up to 80 wt% crystalline segment. This partially ordered 

polymeric microstructure is called semicrystalline polymer [4, 5]. The properties of semicrystalline 

polymers are determined not only by the degree of crystallinity, but also by the size and orientation of 

the molecular chains.  

Polyurethane SMP is classified as a polyurethane elastomer with crystalline hard phase and amorphous 

soft phase. Generally polyurethane elastomers are block copolymers of (AB)n molecular structure where 

A and B correspond respectively to the soft and hard phases. These phases serve to give the polymer its 

extensibility property and stiffness, respectively [6-8]. In the case of smart material systems, 

polyurethane SMP is one of the most prominent thermoplastic SMPs when solution, melting and 

diffusion processability, and repeatability of the Shape Memory (SM) cycle are required. In this SMP 

system, the soft segment produces a thermally activated SM effect when temperature exceed the 

transition temperature, 𝑇𝑠, while the hard segment is responsible for maintaining the overall shape of the 

structure above 𝑇𝑠 [9]. Soft segment may consist of the amorphous (i.g. polyester and polyether) or the 

semi-crystalline (i.g. poly(ε-caprolactone) (PCL)) structures while the hard segments (i.g. diisocyanate 

(TDI), aromatic urethane or aramid) may be dispersed over soft segment to produce thermally stable 

chemical or physical cross linkages. Due to difficulties for adjusting glass transition temperature, 𝑇𝑔 , in 

the amorphous phase, semi-crystalline soft segments are preferred [10, 11].  The hard segment made 

from urethane tends to degrade upon heating cycles and a thermally stable fast crystallizing hard 

segment made from aramid has replaced the urethane [12, 13]. As reported by Rabani et al. [11] long 

segments of PCL with high fraction of aramid hard segment (30-40 wt%) has resulted in a 98% strain 

recovery SM property.  

In polyurethane elastomers the hard segment can undergo phase separation and produced distinguishable 

domains [14, 15]. Appearance of these distinctive microphase segregations are dependent on degree of 

compatibility between the soft segment molecular chains and the hard segment blocks [6-8]. This 

segregated structure may motivate designers to incorporate a micromechanical approach for 

characterization of semicrystalline polymer-based material systems, such as polyurethane SMP, in 
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which the geometry of the microscale domains together with their individual mechanical properties are 

utilized to obtain the associated global mechanical responses.  

3.2.2 Micromechanical based approach: 

The micromechanisms associated with the permanent inelastic deformation and recoverable elastic 

strains of solids cannot be examined within classical continuum elastoplastic framework. On the other 

hand, the molecular dynamic calculations based on the interatomic forces have shown unrealistic results 

for an inelastic deformation analysis of solids [16-18]. Hence, the experimental procedures in material 

characterizations remain the most promising way to explore their mechanical responses [19, 20].   

The microstructural configuration of heterogeneous materials could be correlated to the macroscopic 

constitutive relations through micromechanics framework. The Representative Volume Element (RVE) 

concept is utilized in establishment of this correlation. The RVE represents a specific arrangement of 

sub-phases, each of them with specific geometry and/or mechanical properties [21]. Accordingly the 

RVE should be large enough to represent the microstructural morphology and sufficiently small for 

neglecting the macroscopic mechanical gradients over that.   

Micromechanical based theories may provide certain bounds for the macroscale properties according to 

the microstructural properties and the exact elasticity solutions, e.g. Reuss, Viogt and Hashin-Shtrikman 

bounds [21], or inelastic analysis [22, 23]. Balendran and Nemat Nasser evaluated the bound of stored 

elastic energy in a heterogeneous media [24]. Another micromechanical approach is referred as average 

field theory which takes into account the average micro-stress and micro-strain fields to estimate the 

macroscale mechanical response of the heterogeneous media. This approach was proposed formerly by 

Eshelby [25] and later it has been developed to the Mori-Tanaka and self-consistent methods [21]. 

Homogenization micromechanical theory is applied to heterogeneous materials with periodic 

microstructure, in which a multi-scale perturbation analysis is implemented to estimate the effective 

properties [26, 27]. This method build up the macroscopic RVE through periodic unit cells and periodic 

boundary conditions and Finite Element (FE) or fast Fourier transforms are required to solve the 

problem.  

Localization relations within the micromechanical framework bridge the microscopic and macroscopic 

fields. When the media behaves elastically, these relations are exact [21]. The main difficulty arises 

when the non-linearity is introduced in mechanical behavior of the sub-phases such as inelastic 

deformation or damage [28]. In general three approaches, within the micromechanical based multi-scale 

analysis, are available to establish the localization relations while the non-linearity is taking into the 

account: 

 Analytical approaches: Following Eshelby‟s elastic solution for an ellipsoidal inclusion 
embedded in an infinite media [25], non-linear matrices with linearization of Eshelby‟s solution 
have been investigated. Secant linearization approach was developed by Berveiller and Zaoui [29] 

which is applicable only to monotonic loading condition. Elastoplastic analysis within 

micromechanics framework for an ellipsoidal crystal, which is embedded in a finite 
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homogeneous media, was discussed by Hill [30]. The self-consistent approach together with the 

tangent linearization was utilized by Hill to establish the constitutive relations. This tangent 

linearization is capable of modeling cyclic loading condition [30, 31]. An isotropic and non-

isotropic splitting algorithm for the tangent modulus compensates for the difficulty in computing 

the tangent operator of the Eshelby‟s tensor [32-34]. The main deficiency of these methods is 

their failure in simulation of the complex structures. Moreover, when these semi-analytical 

approaches are applied to the elasto-plasticity analysis, too stiff mechanical responses are 

resulted [28, 32] and precise stress redistributions in an inelastic process cannot be captured by 

them [35]. Several attempts have been made to resolve this issue and to soften the mechanical 

responses, such as the mentioned “tangent” [30], “secant”[29, 36] and “affine” [35, 37] models.  

 Numerical solutions: A direct approach in a multi-scale analysis is to model the real 

microstructural morphologies and apply their respective material constitutive equations to each 

of them. Computational cost and lack of the knowledge of the micro-scale constituent properties 

remain the main difficulties facing these methods. Using finite element approach in 

homogenization techniques for the periodic media [38] and Voronoi finite element method [39] 

compensate for the huge computational difficulties in simulation of such a fine microstructures. 

These methods are restricted by computational cost in large scale structural analysis.   

  Sequential approaches: These methods lie between the two presented micromechanical based 

multi-scale approaches. The macroscopic constitutive equations are established from a multi-

scale analysis performed on a discretized RVE. The mentioned overestimation of mechanical 

properties in analytical solutions has been addressed in the sequential approaches while the 

computational difficulties are resolved by proposing the macroscopic constitutive equations. The 

pioneering works done by Dvorak et al. resulted in Transformation Field Analysis (TFA) 

approach, which discretizes the exact solution of Lippman-Schwinger equation [1-3]. The TFA 

divides the local RVE into several sub-phases and, similar to the mean field micromechanical 

approach, uniform mechanical fields are assumed for each of sub-phases. Division of the RVE 

into several sub-phases forces the periodic media solution methodology in which the 

homogenization techniques with periodic boundary conditions are incorporated in order to obtain 

the required tensors. The advantage of this method is the possibility to incorporate Eshelby‟s 
analytical solutions for each sub-phase when their shapes follow the standard Eshelby‟s inclusion 
solutions such as ellipsoids, fibrous and penny shape sub-phases [1-3, 21]. Although the TFA 

approach takes into account the effect of the inelastic local fields and results in more accurate 

simulations, it still overestimates the mechanical responses. This issue has been addressed by 

Chaboche et al. who proposed a modification on the TFA model in which an isotopic hardening 

rule is incorporated to update the local tangent stiffness based on a hardening law [17, 28].     
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3.2.3 Contributions of the present work: 

The TFA method is adopted here to link the crystalline and amorphous microstructural properties of a 

polyurethane based SMP to the macroscopic constitutive equations. Due to the large inelastic 

deformation of the polymeric based material systems, this approach is generalized here to take into 

account the finite strain deformations. It is worthwhile to indicate that classical continuum mechanics 

analysis does not count for the microstructural evolution and as a results it responds properly only for a 

specific type of loading while it fails to predict the material response subjected to different loading 

conditions [40-44]. On the other hand, once the macroscopic behavior is captured within a microscale 

based evolution, a generalized constitutive equation is obtained in which the material constants are 

independent of loading condition. Furthermore, such a multiscale analysis provides the material 

designers with the capability to predict the macroscale mechanical responses with knowledge of the 

micro-constituent properties.  

The TFA method incorporates a number of ideal assumptions which may result in deviation of its 

simulation results from the experiments. For example its RVE consists of a matrix with limited number 

of the predefined inclusion shapes which are perfectly bounded together. Then this method cannot 

capture the real microstructures in which random inclusions with non-perfect bonding exist.  These 

deficiencies may undermine the accuracy of such a micromechanical approach and it could be the source 

of stiffened macroscale mechanical responses [28]. To compensate for such deficiencies, the TFA 

method is modified in this work in which the experimental observations are incorporated in the TFA 

model and a series of softening empirical laws are derived. These laws provide enough flexibility for the 

designers to capture the irregular inelastic responses of glassy semicrystalline polymers.   

In this work a generalized trivial two-phase TFA solution is then established for application to localized 

RVEs. In other words, a dilute heterogeneous media is assumed for constituting the macroscopic 

multiphase RVE. This multiphase RVE is then sub-divided into the local two-phase RVEs. Based on 

this methodology a novel computation scheme is introduced which is called atomic computation herein. 

While the classical two-phase TFA solution homogenizes the RVE into an equivalent media through 

averaging techniques [1], the proposed atomic computation provides a localized evaluation for non-

linear phenomenon such as inelastic and damage processes. This computation approach consists of a 

hypothetical computational layer with specific arrangement of computational seeds. This hypothetical 

layer is assembled on the RVE where the generalized two-phase TFA solution identifies the local 

mechanical responses over that multi-phase RVE. In other words, atomic computation utilizes the 

generalized two-phase TFA solution to feed each of the computational seeds with necessary data. With 

this computational strategy, the micromechanics solution ensures that the basic solid mechanics 

equations, which are equilibrium, compatibility, strain-displacement and stress-strain relations, hold in 

the RVE. These permissible microscale strain and stress fields from the generalized two-phase TFA 

solution are then passed to the computational layer and subsequently to each of the computational seeds. 

Consequently, each of the computational seeds receives a localized loading condition and then they 

compute the localized inelastic strain or residual stress based on their respective governing constitutive 

equation. Such a localized analysis is crucial during a multiscale analysis where the designer needs to 
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investigate different damaging mechanisms. For example excessive damage or inelastic deformation in 

one of the sub-phases may results in local failures which can be in advance of the macroscopic failure. 

While these localized evaluations provide worthy information about local accumulated inelastic 

deformations or damages, they are hidden in the classical two-phase TFA solution in which 

homogenization or averaging approaches eliminate such localizations [1].  

In section 2 of this work the finite deformation formulation approach is briefly presented. In section 3 

the constitutive phases of a semicrystalline polymer are discussed, which are crystalline and amorphous 

phases. In section 4 the TFA method is elaborated and in section 5 the modified TFA is presented. In 

section 6 the computational aspect of the presented multi-scale finite deformation problem is discussed 

in detail. In section 7 the experimental and numerical results are presented with a detailed discussion on 

the performance of the presented micromechanical theory and the numerical algorithms. Here, indicial 

notations are utilized to denote tensorial quantities and lightface letters show the scalars.  

 

3.3 Finite Deformation Kinematics 

The formulation of an inelastic analysis within the finite deformation framework encounters with a 

considerable conjecture. A brief review is given here on available formulation approaches and finally 

the finite deformation kinematic of the interest is introduced. In general, during a finite strain 

deformation process the material configuration is deformed to spatial configuration as shown in Fig. 3-

1. A basic kinematic assumption in the finite deformation context is to decompose the gradient of 

deformation multiplicatively. This is called multiplicative decomposition and proposed formerly by Lee 

[45-47]:  𝐹𝑖𝑗 = 𝐹𝑖𝑘𝑒 𝐹𝑘𝑗𝑝  (3-1)  

where 𝐹𝑖𝑗𝑒  is obtained through unloading the deformed body elastically in which an intermediate 

configuration is used to show this state as shown in Fig. 3-1(a) and 𝐹𝑖𝑗𝑝  is the plastic deformation 

gradient.  More detailed description of this multiplicative decomposition concept can be found in [48]. 

This approach is amenable in the physical description of the polycrystalline large deformation. Additive 

decomposition of the total strain into the elastic and plastic components is another essential kinematic 

assumption in a large deformation elasto-plastic analysis. Additive decomposition of Lagrangian strain 

tensor 𝑑𝑖𝑗 , which is measured in the material configuration, has been adopted by Green and Naghdi [49] 

to describe the large deformation processes:   𝑑𝑖𝑗 = 𝑑𝑖𝑗𝑒 + 𝑑𝑖𝑗𝑝  (3-2)  

where 𝑑𝑖𝑗𝑒  and 𝑑𝑖𝑗𝑝  are Lagrangian elastic and plastic strain tensors, respectively. Naghdi and Trapp [50] 

have shown that this additive decomposition follows the basic solid mechanics thermodynamic 
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framework. Another well-known approach is based on additive decomposition of Eulerian strain tensors 𝐷𝑖𝑗 , which is measured in the spatial configuration [51, 52]: 𝐷𝑖𝑗 = 𝐷𝑖𝑗𝑒 + 𝐷𝑖𝑗𝑝  (3-3)  

where 𝐷𝑖𝑗𝑒  and 𝐷𝑖𝑗𝑝  are respectively Eulerian elastic and plastic strain tensors. Nemat-Nasser [53-55] and 

Green and Naghdi [56] have discussed these topics in details. The conjugate stresses to each 

configuration are described based on the strain measurements. The Cauchy stress tensor, 𝜍𝑖𝑗 , which is 

defined as force per unit deformed area, is related to the spatial configuration (deformed body). 

Expressing stresses with respect to the material configuration is more convenient in continuum 

mechanics where the Cauchy stress tensor is transformed to obtain the first Piola-Kirchhoff stress 

tensor, 𝜏𝑖𝑗𝑝 , which is defined as force per unit undeformed area. First Piola-Kirchhoff stress tensor is still 

allocated in spatial configuration (deformed body). If the first Piola-Kirchhoff stress is transferred to the 

material configuration then second Piola-Kirchhoff stress tensor, 𝑆𝑖𝑗𝑝 , is resulted. For a complete review 

on conjugate stresses see [57, 58]. Cauchy and first Piola-Kirchhoff stresses are conjugated with the 

Eulerian strain and second Piola-Kirchhoff stress is conjugated with the Lagrangian strain. Cauchy, first 

and second Piola-Kirchhoff stresses are obtainable from each other through application of pull-

back/push forward method as discussed by Simo and Ortiz [59] .  

An alternative description of the finite deformation kinematic is to decompose the deformation into the 

material, stretched and spatial configurations. In this context the polar decomposition of the deformation 

gradient tensor, 𝐹𝑖𝑗 , is utilize to decompose it into the rotational, 𝑅𝑖𝑗 , and stretching, 𝑈𝑖𝑗 , tensors as 

shown in Fig. 3-1(b)  [57]: 𝐹𝑖𝑗 = 𝑅𝑖𝑘𝑈𝑘𝑗  (3-4)  

The pull-back/push-forward approach is applicable for this decomposition to interchange the associated 

values with each configuration [52].  

In this work, the polar decomposition is applied to each of the deformation gradients of the intermediate 

configuration in Fig. 3-1(a). In other words, the intermediate relaxed configuration can be represented 

by the polar decomposition of inelastic right stretch tensor, 𝑈𝑖𝑗𝑝 =  𝐹𝑖𝑘𝑝 𝑇𝐹𝑘𝑗𝑝  1/2

, and proper orthogonal 

rotation tensor, 𝑅𝑖𝑗𝑝 , as follows: 𝐹𝑖𝑗𝑝 = 𝑅𝑖𝑘𝑝 𝑈𝑘𝑗𝑝  (3-1)  

The eigenvalues of the symmetry and positive definite tensor 𝑈𝑖𝑗𝑝  are denoted by 𝛬𝑖𝑝  which are called 

principal inelastic stretches. The deviation of 𝛬𝑖𝑝  from unity measures the amount of inelastic strain. 
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Figure 3-1 Schematic representation (a) intermediate and (b) polar decompositions in the finite 

deformation context 

 

Furthermore, the polar representation of the transformation between the intermediate configuration and 

the spatial configuration is shown by: 𝐹𝑖𝑗𝑒 = 𝑅𝑖𝑘𝑒 𝑈𝑘𝑗𝑒  (3-2)  

It is assumed that the elastic gradient, 𝐹𝑖𝑗𝑒 , is only affected by the stretching process in this work and one 

may substitute 𝐹𝑖𝑗𝑒 = 𝑈𝑖𝑗𝑒  in which 𝑈𝑖𝑗𝑒 =  𝐹𝑖𝑘𝑒 𝑇𝐹𝑘𝑗𝑒   is the elastic right stretch tensor. 

3.4 Semicrystalline characterization and constitutive equations  

3.4.1 Semicrystalline characterization and constitutive equations: 

As discussed in the introduction section, two distinctive micro-phases in the semicrystalline polymer-

based systems, e.g. polyurethane SMP system, are distinguishable, i.e. amorphous and crystalline 

segments. The crystal phase is created during cooling down process of the melted polymer to the room 

temperature. This process results in the isotropic spherulite crystallographic morphology where the 

crystalline phase forms radial dark lamellae and the amorphous phase fills the space between these 
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layers [60, 61]. Upon inelastic deformation this spherulite morphology disappears and preferential 

crystalline orientation in the polymeric network is established within a layered microstructure [62]. In 

the produced crystalline networks, the chain segments are inextensible which implies that the inelastic 

deformation mechanisms cannot extend the crystalline chain [60].  Accordingly, the inelastic 

deformation of semicrystalline polymers involves three microstructural mechanisms: (a) change in 

crystallographic axis which is resulted from changes in crystalline texture, (b) change in orientation and 

arrangement of crystalline network which is referred as morphologic changes herein and (c) 

macromolecular alignment in amorphous phase. While many modeling efforts for simulating large 

inelastic deformation of semicrystalline polymers rely on ignoring amorphous phase and letting the 

crystalline phase represents the mechanical response including texture effects, experimental facts 

confirm the role of amorphous phase in the deformation process [63, 64]. In the case of semi-crystalline 

polyurethane elastomers once the yielding initiates the macromolecules in amorphous phase tend to 

align with their preferential orientations and crystallographic axes rotates with respect to the loading 

direction [65-67]. Composite formulations, to take into account the amorphous phase evolution beside 

crystallographic texture evolution have been proposed in the literature [65, 68-70]. A highly oriented 

layered semicrystalline microstructure was modeled by Takayanagi [71] who used a rheological 

description in which series element was utilized to account for the amorphous and crystalline phases and 

a parallel element is incorporated to account for crystalline links and tying the amorphous 

macromolecules between the layers. While the averaging schemes do not account for morphology, in the 

case of crystalline fibers, averaging approach for an oriented short fiber composite is adopted by Barham 

and Arridge [72] and the effective elastic modulus is introduced.  In the following subsections, the 

constitutive equations for the amorphous and the crystalline phases are introduced. The 

micromechanical framework will correlate these individuals with the macroscale constitutive behaviors 

as shown in the next section. The texture and morphological updates are taken into account during an 

inelastic deformation analysis in this work.  

 

  

3.4.2 Crystalline Phase: 

The crystalline phase follows a few independent slip systems in which classical crystal plasticity 

theories (Taylor type ones) cannot be utilized to model them [60, 65, 69]. Similar to the metal like 

crystalline phases, inelastic deformation in polymeric systems follows three different mechanisms: (a) 

crystallographic slip, (b) twining and (c) Martensite transformations, in which two latest phenomenon 

are common in highly oriented polymeric networks [73].  All these mechanisms leave the 

crystallographic axis inextensible and provide less than five independent deformation modes to 

accommodate an inelastic deformation [65]. Here only slip mechanism is considered based on works 

done by Parks and coworkers [60, 65, 68]. Basically, a crystalline structure consists of a periodic unit 

cells where the same surrounding is maintained for all unit cells. The elastic deformation of a crystalline 

solid is associated with distortion of unit cells where the applied stress does not exceed the resistance of 
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interatomic bonds in a crystallographic network. Once the loading breaks these interatomic bonds, the 

permanent deformation is produced. In metals this permanent deformation is associated with the relative 

movement of atoms without change in unit cells conformations [57]. In a crystalline polymeric network 

this permanent deformation changes the crystallographic texture. A reference vector, 𝑐𝑖 , coincides with 

crystalline chains and show the crystallographic texture. A schematic representation of an orthorhombic 

crystal system together with the lattice dimension for a high-density polyethylene (HDPE) crystalline 

system are shown by [60]. Two slip mechanisms can be active in a polymeric network slippage system: 

(a) chain slip where the burgers vector is aligned with 𝑐𝑖  and (b) transverse slip where the burgers vector 

is perpendicular to 𝑐𝑖  [60]. There are only four linearly independent crystalline slip systems indicated by 

unit vectors in the direction of slip and normal to the slip planes: (i) chain slip: (100)[001] and 

(010)[001], and (ii) transverse slip: (100)[010] and (010)[100] [60]. Minimum normalized resistance, 

between these four slips, shows the required stress to initiate the inelastic flow and this value is inserted 

to the computations. Let 𝑠𝑖 𝛼 
 denotes slip direction and 𝑛𝑖 𝛼 

 shows unit normal vector to the slip plane, 

where 𝛼 = 1 to 4 is the number of slip systems, the inelastic crystalline stretch rate tensor, 𝐷 𝑖𝑗𝑐 , is given 

by [60]: 

𝐷 𝑖𝑗𝑐 =  𝛾  𝛼 𝑅𝑖𝑗(𝛼)

𝐾
𝛼=1

 (3-3)  

where 𝛾 (𝛼)  is shear rate scalar variable, to be defined in the following, and 𝑅𝑖𝑗 𝛼 
=

1

2
 𝑠𝑖 𝛼 𝑛𝑗 𝛼 

+𝑛𝑖 𝛼 𝑠𝑗 𝛼   is called symmetric part of Schmid tensor and represents the 𝛼 th crystalline system. The 

inextensibility of the crystalline chain together with the incompressibility assumption results in the 

following constraint relation: 

𝐷 𝑖𝑗𝑐 . 𝐶𝑖𝑗′ = 0 (3-4)  

where 𝐶𝑖𝑗′ = 𝑐𝑖𝑐𝑗 − 1

3
𝐼𝑖𝑗  is the deviatoric part of dyadic 𝑐𝑖𝑐𝑗 . The shear rate, 𝛾 (𝛼), is defined as follows 

[31, 60, 74, 75]: 

𝛾  𝛼 = 𝛾 0 𝜏 𝛼 𝑔 𝛼  𝜏 𝛼 𝑔 𝛼  𝑛𝑐−1

 (3-5)  

 

where 𝑔 𝛼  is the shear strength for the 𝛼𝑡  slip system, 𝜏 𝛼  represents the shear stress at the slippage 

system, 𝛾 0 is a reference shear rate and 𝑛𝑐  is the rate sensitivity factor. One may utilize the following 

alternative for the shear stress: 
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𝜏 𝛼 = 𝑆𝑖𝑗𝑐 𝑅𝑖𝑗 𝛼 
 (3-6)  

where 𝑆𝑖𝑗𝑐 = 𝜍𝑖𝑗𝑐 − 1

3
𝜍𝑘𝑘𝑐 𝛿𝑖𝑗  is the deviatoric Cauchy stress in the crystalline phase. The deviatoric stress 

tensor, 𝑆𝑖𝑗𝑐 , can be decomposed into orthogonal tensor, 𝑆𝑖𝑗𝑐𝑃 , and aligned tensor, 𝑆𝑖𝑗𝑐∗ , projected with 

respect to the 𝐶𝑖𝑗′ . In such a way the deviatoric stress tensor, 𝑆𝑖𝑗𝑐 , can be categorized based on the 

constraint Eq. (3-8). The resultant deviatoric stresses, 𝑆𝑖𝑗𝑐𝑃 , aligned with the 𝐶𝑖𝑗′  cannot produce any 

inelastic deformation (due to constraint Eq. (3-8)) and only the remained part of deviatoric stress tensor, 𝑆𝑖𝑗𝑐∗, is in charge of producing the inelastic stretching. This fact is stated in the following [60]: 

𝑆𝑖𝑗𝑐 = 𝑆𝑖𝑗𝑐∗ + 𝑆𝑖𝑘𝑐𝑃𝐶𝑘𝑗′  (3-7)  

Then instead of Eq. (3-10), one may conclude that the active shear stress in a inelastic deformation of 

the crystalline polymers is obtained as [60]: 

𝜏 𝛼 = 𝑆𝑖𝑗𝑐∗𝑅𝑖𝑗 𝛼 
 (3-8)  

The undetermined deviatoric stress component 𝑺𝑐𝑃  should be identified from equilibrium. The skew 

symmetry spin tensor, 𝑊𝑖𝑗𝑐 , is decomposed into inelastic spin, 𝑊𝑖𝑗𝐼𝑛𝑒 , and lattice spin, 𝑊𝑖𝑗∗ , additively [76]. 

The lattice spin which controls the rate of changes in direction of the crystallographic axes is introduced 

by [60, 76]: 

𝑊 𝑖𝑗∗ = 𝑊 𝑖𝑗𝑐 −  𝛾  𝛼 𝐴𝑖𝑗 𝛼 𝐾
𝛼=1

 (3-9)  

where 𝐴𝑖𝑗 𝛼 
=

1

2
 𝑠𝑖 𝛼 𝑛𝑗 𝛼 − 𝑛𝑖 𝛼 𝑠𝑗 𝛼   is skew part of Schmid tensor and 𝑊𝑖𝑗𝑐  is the skew part of the 

velocity gradient 𝐿𝑖𝑗𝑐  in which 𝐿𝑖𝑗𝑐 = 𝐷𝑖𝑗𝑐 + 𝑊𝑖𝑗𝑐 . 

3.4.3 Amorphous Phase:   

The amorphous microstructure is constituted from random array of long molecular chains, called 

macromolecules hereinafter, which intersect to produce physical entanglements [77]. Both elastic and 

inelastic response of amorphous phase is affected by texture updates of macromolecules; however, 

inelastic process is much more sensitive to these texture changes [62].  The inelastic deformation of 

glassy polymers (𝑇 < 𝑇𝑔) initiates when applied stress overcomes the intermolecular resistance which 

restricts rotation of a chain segment individually or in a cluster [77, 78]. After initiation of inelastic flow 

chain segments aligns in the direction of principal inelastic deformations in which conformational 

entropic changes occur and result in a second source of resistance which is termed network resistance. 

Amorphous inelastic deformation is affected by the strain rate, pressure and temperature effects and they 
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often show a strain softening and subsequent strain hardening after initiation of the inelastic flow [40-

44].  Argon proposed a rate dependent micro-mechanical inelastic theory based on a double kink 

formation and the intermolecular resistant, which is the free energy barrier to chain segment rotation 

[77]. Boyce and coworkers extended the Argon‟s viscoplastic element to a pressure, rate and 
temperature dependent theory which is based on modeling the intermolecular energy barriers [62, 78-81]. 

This theory is outlined in the following and it is utilized to model the inelastic deformation of the 

amorphous phase of a semicrystalline polymer-based material system. The plastic multiplier is 

introduced as follows [62]: 

 𝛾 𝑝 = 𝛾 0 exp  −𝐴 
𝑠 + 𝑎 𝑝𝛩   1 −   𝜏 𝑠 + 𝑎 𝑝 5/6   (3-10)  

with 

𝐴 =
39𝜋𝜔2𝑎 3

16𝑘  (3-11)  

where 𝜔 is the net angle of rotation between active and initial molecular segment configurations and 𝑎  is 

the mean molecular radius and 𝑘 is the Boltzmann‟s constant [77]. The material constant 𝛾 0 is called 

pre-exponential inelastic strain rate, and  𝛾 𝑝   is the effective equivalent inelastic deformation rate of a 

glassy polymer subjected to effective equivalent shear stress,  𝜏 , to be defined at absolute temperature, 𝛩 , in the following. Linear dependency of peak shear yield strength on pressure is introduced by 

pressure coefficient 𝑎 and 𝑝 = − 1

3
𝑡𝑟 𝜍𝑖𝑗   is the hydrostatic pressure in Eq. (3-14). Phenomenological 

relation for athermal shear strength, 𝑠, which takes into account the pressure, rate and temperature 

dependency and the strain softening effect, has been proposed by Boyce et al. [62, 78] as follows: 𝑠 =   1 − 𝑠𝑠𝑠𝑠 𝛩,  𝛾 𝑝     𝛾 𝑝   (3-12)  

where   is the rate of drop with respect to the inelastic deformation rate to incorporate the strain 

softening and 𝑠𝑠𝑠  represents the asymptotic preferred structure. The initial value of 𝑠 for the annealed 

material is: 𝑠0 =
0.077𝜇

1−𝜈  where 𝜇 is the elastic shear modulus and 𝜈 is the Poisson‟s ratio.   

Back stress tensor, 𝛼𝑖𝑗 , has been defined by Boyce and coworkers [82-84] and is defined here as: 

𝛼𝑖𝑗 = 𝑛𝑘𝛩 𝜆𝐿
3

 𝜆𝑖𝑝ℒ−1  𝜁 𝜆𝑗𝑝𝜆𝐿 − 1

3
𝜆𝑘𝑝ℒ−1  𝜁 𝜆𝑘𝑝𝜆𝐿 𝛿𝑖𝑗   (3-13)  

where 𝑛 is the number of chains per unit volume, 𝑘 is the Boltzmann‟s constant, and 𝜆𝐿 is the limit of 

chain extensibility which shows the inelastic deformation cannot exceed this limiting value (𝜆𝑖𝑝 ≤ 𝜆𝐿) 

where further macroscopic inelastic deformation may monitor the chain breakage and 𝜁 is a viscoplastic 

related material constant which controls the magnitude of hardening with regard to the inelastic stretches. 
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In limit analysis Langevin function,  𝐿 𝛽 = coth 𝛽 − 1/𝛽 , is used extensively and it imposes a 

limiting case in evolution of back stress tensor in which  𝜆𝑖𝑝  ≪ 0 results in α𝑖𝑗 ≅ Ø𝑖𝑗  where Ø𝑖𝑗 is the 

second rank zero tensor. Furthermore,  𝜆𝑖𝑝 = 𝜆𝐿  yields α𝑖𝑗 ≫ 𝐼𝑖𝑗 , where 𝐼𝑖𝑗  is the second rank unity 

tensor, and produces an extreme network resistance to the inelastic deformation and models the 

hardening. The driving stress state for producing inelastic deformation is given by: 𝑠𝑖𝑗∗ = 𝑠𝑖𝑗 − 𝑋𝑖𝑗  in 

which 𝑋𝑖𝑗 = 𝛼𝑖𝑗 − 1

3
𝛼𝑚𝑚 𝛿𝑖𝑗  is the back stress tensor, resulted from entropic resistance and 𝑠𝑖𝑗 = 𝜍𝑖𝑗 −

1

3
𝜍𝑘𝑘𝛿𝑖𝑗  is the deviatoric Cauchy stress. The effective shear stress is obtained as the norm of driving 

stress as follows:  

 𝜏 =  1

2
𝑠𝑖𝑗∗ 𝑠𝑖𝑗∗  (3-14)  

The viscous element in Eq. (3-14) represents the magnitude of the amorphous inelastic shear strain rate; 

while the direction of the inelastic flow is governed by the deviatoric driving stress as stated in the 

following flow rule [77]: 

  

𝐷𝑖𝑗𝑝 =  𝛾 𝑝 𝑠𝑖𝑗∗ 2 𝜏  (3-15)  

 

3.4.4 Morphological texture updates:  

In this work the effect of changes in the texture for the amorphous and crystalline phases and changes in 

the morphological texture for the whole semicrystalline structure are taken into account as discussed in 

the following.  

(i) Amorphous phase: In the case of the amorphous phase the tensile tests of oriented amorphous 

polymers reveal that the yield stress is strongly affected by the initial texture. Effect of initial texture and 

preorientation has been considered on the two intermolecular and molecular alignment resistance 

mechanisms by Boyce et al. [78]. It is common to neglect the texture effect in a elastic deformation and 

consider it only during an inelastic deformation by incorporating initial values for the back stress tensor, 𝛼𝑖𝑗 , athermal shear resistance, 𝑠, network stretch vector, Λ𝑖 , and residual stress tensor, 𝜍𝑖𝑗  [62]. The 

preorientation effect may not be induced only by inelastic deformations, for example spinning or other 

manufacturing processes may produce preferential texture. Here the texture effect is modeled by 

introducing an initial inelastic deformation into the back stress evolution law and the initial value of the 

back stress is obtained.  
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(ii) Crystalline phase: In the case of crystalline phase, the crystallographic texture is updated by taking 

into account the changes in the crystallographic axes which is given by the following rate equation [76]: 

𝑐 𝑖 = 𝑊𝑖𝑗∗𝑐𝑗  (3-16)  

Eq. (3-20) captures the change in the crystallographic axis regarding lattice spins. The incremental form 

of Eq. (3-20) is given by [60]: 

𝑐𝑖 𝑡 + Δ𝑡 = exp 𝑊𝑖𝑗∗𝛥𝑡 𝑐𝑗  𝑡  (3-17)  

Based on the Cayley-Hamilton expression for exponential term, one may find [60]: 

  

exp 𝑊𝑖𝑗∗𝛥𝑡 = 𝐼𝑖𝑗 +
sin 𝑤𝑤 𝑊𝑖𝑗∗𝛥𝑡 +  1 − 𝑐𝑜𝑠𝑤𝑤2

 𝑊𝑖𝑘∗ 𝑊𝑘𝑗∗ 𝛥𝑡2 (3-18)  

with 𝑤2 = −𝑡𝑟 𝑊𝑖𝑘∗ 𝑊𝑘𝑗∗ Δ𝑡2 /2. 

(iii) Morphological texture: The morphological texture in the semicrystalline polymeric system is 

updated based on changes in the directions of the unit outer normal vectors to the interfaces, 𝑛𝑖𝐼, which is 

computed according to the changes in the material coordinate system at interface. Let the material 

coordinate system at the interface plane be indicated by two infinitesimal independent vectors,  𝛿𝑥𝑖  and 𝛿𝑥𝑗  at time 𝑡 = 0. At generic time 𝑡, these vectors are transformed respectively to the 𝐹𝑖𝑗 (𝑡)𝛿𝑥𝑖  and 𝐹𝑖𝑗 (𝑡)𝛿𝑥𝑗  where 𝐹𝑖𝑗  𝑡  is the deformation gradient. Then the following expression for the normal vector 𝑛𝑖𝐼 is trivial: 

𝑛𝑘𝐼  0 =
𝛿𝑥𝑖 1 

× 𝛿𝑥𝑗 2  𝛿𝑥𝑖 1 
× 𝛿𝑥𝑗 2   (3-19)  

𝑛𝑘𝐼  𝑡 =
𝐹𝑖𝑗  𝑡 𝛿𝑥𝑗(1)

× 𝐹𝑖𝑗  𝑡 𝛿𝑥𝑖 2  𝐹𝑖𝑗  𝑡 𝛿𝑥𝑖(1)
× 𝐹𝑖𝑗  𝑡 𝛿𝑥𝑗 2   (3-20)  

The deformation gradient is updated based on the rate equation, 𝐹 𝑖𝑗 = 𝐿𝑖𝑘𝐹𝑘𝑗 , which is converted into 

the following incremental form: 

𝐹𝑖𝑗  𝑡 + Δ𝑡  = exp 𝐿𝑖𝑘𝛥𝑡 𝐹𝑘𝑗  𝑡  (3-21)  
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The deformation compatibility at the interface implies that the gradient deformation tensors of each 

phase can be used in Eq. (3-25). To take into the account the molecular alignment in the amorphous 

phase, the deformation gradient of the amorphous phase is incorporated as follows: 

𝐹𝑖𝑗𝑎 𝑡 + Δ𝑡  = exp 𝐿𝑖𝑘𝑎 𝛥𝑡 𝐹𝑘𝑗𝑎  𝑡  (3-22)  

Basically the updated interfacial vector, 𝑛𝑖𝐼, renders the movement and rotation of the inclusion inside 

the RVE. This allows designers to update the morphology of the RVE based on the deformation gradient 

during a finite strain deformation process. Eqs. (25) and (26) will be utilized in coupling with the 

micromechanical formulations to investigate the effect of loading on the RVE configuration where 𝑛𝑖𝐼 is 

updated based on deformation gradients and enforcing compatibility in the deformation field. Of course 

the bonding between inclusion and matrix is assumed to be perfect. 

Up to now, the constitutive equations for the individual constituents are introduced and the texture 

update procedures for the amorphous, crystalline and the semicrystalline structure are established. Next 

step is to establish the interaction laws between these micro-constituents and develop the macroscopic 

constitutive equation based on the knowledge of the microscale deformation mechanisms. This is 

accomplished within the micromechanical framework and the process is discussed in the next section.  

 

3.5 Micromechanics 

In the micromechanic framework two approaches are widely incorporated to relate the overall 

macroscale properties of a heterogeneous media to the local microscale properties. The Representative 

Volume Element (RVE) concept bridges the local and overall properties within introduction of a 

volumetric element which contains a certain number of microscale phases. In this concept the 

heterogeneity characterization depends on the length scales, and the length scale of an RVE is selected 

in such a way that contains enough micro-phases to represent the overall macrostructure of the 

heterogeneous media. The second approach is the periodic unit cell method which utilizes periodic 

boundary conditions to tessellate a macroscale problem with the unit cells. In either methods the overall 

macroscopic properties are obtained through assumption of macroscopically uniform overall Cauchy 

stress field, 𝜍𝑖𝑗  𝑡 , and uniform overall macroscopic strain field, 𝜖𝑖𝑗 (𝑡); where 𝑡 represents time. When 

the RVE approach is adopted, these uniform macroscopic fields are obtained through imposing 

compatible boundary conditions on the phase interfaces. In the case of the unit cell method, certain 

periodic boundary conditions are required to reproduce such uniform macroscopic fields. The 

mechanical responses of the microscale phases and macroscale RVE are then correlated with specific 

transformation tensors, i.g. concentration tensors. The main difficulty arose when non-linearity, such as 

inelastic deformation, is introduced in one or some of the microscale phases.  

Inelastic strains and relaxed stresses during an inelastic process are termed respectively as eigenstrains 

and eigenstresses herein, which implicates that these residual fields cannot be recovered after elastic 
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unloading. The transformation tensors between the local uniform eigenvalues and the macroscale 

responses are obtained through transformation influence functions or concentration factors; in which, 

self-consistent, Mori-Tanaka or unit-cell approaches are utilized to approximate them. Since all of the 

micromechanical approximation schemes for the local-overall relations rely on the local and overall 

thermo-elastic moduli, once the elasticity solution is obtained the solution to this part of problem is 

trivial [21].  

Due to the nature of the inelastic deformation, a history dependent solution algorithm is required in 

order to take into account the load history effect. TFA method provides an incremental solution of 

uniform thermomechanical loading condition for inelastic analysis of such a heterogeneous media. This 

approach evaluates the elasto-plastic responses of a material system based on the geometry and 

mechanical properties of its microscale constituents and it is applicable to any plasticity or 

viscoplasticity constitutive equation which has been formulated in the additive decomposition of the 

inelastic and elastic strains [2, 3]. While each of the microscale phases may undergo non-homogeneous 

inelastic deformation, the TFA method assumes explicit piecewise uniform residual fields over these 

phases.  

In this work the RVE representation is adopted where the microscale phases are defined through 

dividing the macroscopic RVE into sub-volumes, 𝑉 𝑟  with 𝑟 = 1,2, … , 𝑁  where 𝑁 is the number of 

phases in the RVE. The macroscopic properties are indicated by: fourth order elastic stiffness tensor, 𝐿𝑖𝑗𝑘𝑙 , fourth order compliance tensor, 𝑀𝑖𝑗𝑘𝑙 , second order eigenstrain tensor, 𝜇𝑖𝑗  𝑡 , and second order 

eigenstress tensor, ℵ𝑖𝑗  𝑡 . The microscopic properties associated with the 𝑟 th sub-volume, 𝑉 𝑟 , are 

indicated by: stiffness tensor, 𝐿𝑖𝑗𝑘𝑙 𝑟 
, compliance tensor, 𝑀𝑖𝑗𝑘𝑙 𝑟 

, eigenstrain tensor, 𝜇𝑖𝑗 𝑟  𝑥, 𝑡 , and 

eigenstress tensor, ℵ𝑖𝑗 𝑟  𝑥, 𝑡 , where 𝑥 represents dependency on the coordinate system and 𝑡 shows the 

time dependency. The macroscopic eigenstress tensor, 𝜆𝑖𝑗 (𝑡), and macroscopic eigenstrain tensor, 𝜇𝑖𝑗 (𝑡), 

should be uniform to result in a uniform overall stress, 𝜍𝑖𝑗 (𝑡), and strain, 𝜖𝑖𝑗  𝑡 , which is one of the 

primary assumption in the TFA theory. Then the local eigenstress ℵ𝑖𝑗 𝑟  𝑥, 𝑡  and eigenstrain 𝜇𝑖𝑗 𝑟  𝑥, 𝑡  

over the 𝑟 th sub-phase are constrained to produce such a macroscopic uniform field. The additive 

decomposition of the elastic and inelastic strains identifies the macroscopic constitutive relation for an 

RVE as follows [2, 3]: 𝜍𝑖𝑗 (𝑡) = 𝐿𝑖𝑗𝑘𝑙 𝜖𝑘𝑙 (𝑡) + ℵ𝑖𝑗 (𝑡), 𝜖𝑖𝑗 (𝑡) = 𝑀𝑖𝑗𝑘𝑙 𝜍𝑘𝑙 (𝑡) + 𝜇𝑖𝑗 (𝑡) (3-23)  

where ℵ𝑖𝑗 (𝑡) = −𝐿𝑖𝑗𝑘𝑙 𝜇𝑘𝑙 (𝑡). Additive decomposition of the elastic and inelastic strains holds during 

developing the microscale constitutive equations in the 𝑟th sub-phase as follows [2]: 𝜍𝑖𝑗 𝑟  𝑥, 𝑡 = 𝐿𝑖𝑗𝑘𝑙 𝑟 𝜖𝑘𝑙 𝑟  𝑥, 𝑡 + ℵ𝑖𝑗 𝑟  𝑥, 𝑡 , 

  𝜖𝑖𝑗 𝑟  𝑥, 𝑡 = 𝑀𝑖𝑗𝑘𝑙 𝑟 𝜍𝑘𝑙 𝑟  𝑥, 𝑡 + 𝜇𝑖𝑗 𝑟  𝑥, 𝑡  

(3-24)  
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where 𝜍𝑖𝑗 𝑟 
(𝑥, 𝑡) and 𝜖𝑖𝑗 𝑟  𝑥, 𝑡  are local distribution of stress and strain tensors over the 𝑟th sub-phase. 

Eqs. (3-27) and (3-28) represent an additive conformation of eigenvalues with their respective elastic 

values regardless of the origin of the eigenvalues (eigenvalues may be originated from the inelastic 

deformation, damaging mechanisms or other source of non-linearity). Each sub-phase may follow a 

certain constitutive equation which provides 𝜍𝑖𝑗 𝑟 
(𝑥, 𝑡) and  𝜖𝑖𝑗 𝑟  𝑥, 𝑡  at any time. It is worthy of noting 

that during the assembling of these local fields, they should conform to the overall compatibility 

condition and global equilibrium. Here eigenfields are considered to be originated only in the inelastic 

and thermal processes: ℵ𝑖𝑗 𝑟  𝑥, 𝑡 = 𝜍𝑖𝑗 𝑟 𝑅𝑒𝑠  𝑥, 𝑡 + 𝜍𝑖𝑗 𝑟 𝑇𝑟 𝑥, 𝑡  

  𝜇𝑖𝑗 𝑟  𝑥, 𝑡 = 𝜖𝑖𝑗 𝑟 𝐼𝑛𝑒  𝑥, 𝑡 + 𝜖𝑖𝑗 𝑟 𝑇𝑟 𝑥, 𝑡  

(3-25)  

Local inelastic strain, 𝜖𝑖𝑗 𝑟 𝐼𝑛𝑒  𝑥, 𝑡 , or local residual stress, 𝜍𝑖𝑗 𝑟 𝑅𝑒𝑠  𝑥, 𝑡  in the 𝑟th sub-phase are given by 

the inelastic constitutive equations of the 𝑟th phase. The local thermal strain, 𝜖𝑖𝑗 𝑟 𝑇𝑟  𝑥, 𝑡 , and thermal 

stress, 𝜍𝑖𝑗 𝑟 𝑇𝑟 𝑥, 𝑡 , in the 𝑟 th sub-phase are obtained through linear thermal expansion coefficient 

tensors. Substituting Eq. (3-29) into Eq. (3-28) results in the following stress and strain decompositions 

which are recasts of the additive strain decomposition into the elastic, inelastic and thermal 

stresses/strains:  

 𝜍𝑖𝑗 𝑟  𝑥, 𝑡 = 𝐿𝑖𝑗𝑘𝑙 𝑟 𝜖𝑘𝑙 𝑟  𝑥, 𝑡 + 𝜍𝑖𝑗 𝑟 𝑅𝑒𝑠  𝑥, 𝑡 + 𝜍𝑖𝑗 𝑟 𝑇𝑟  𝑥, 𝑡 , 

  𝜖𝑖𝑗 𝑟  𝑥, 𝑡 = 𝑀𝑖𝑗𝑘𝑙 𝑟 𝜍𝑘𝑙 𝑟  𝑥, 𝑡 + 𝜖𝑖𝑗 𝑟 𝐼𝑛𝑒  𝑥, 𝑡 + 𝜖𝑖𝑗 𝑟 𝑇𝑟 𝑥, 𝑡  

(3-26)  

 

     In the context of micromechanics the fields containing eigenvalues are transformed into an equivalent 

elastic media and then trivial elastic solutions are obtained for local-overall transformation tensors [21]. 

In the case of zero eigenstrains and eigenstresses, the stress, 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥 , and strain, 𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥 , concentration 

tensors are utilized to relate the macro- and micro-scale stress-strain fields as follows [2]: 𝜍𝑖𝑗 𝑟  𝑥, 𝑡 = 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥 𝜍𝑘𝑙  𝑡 + 𝑏𝑖𝑗(𝑟) 𝑥 𝜃 𝑡 ,  

 𝜖𝑖𝑗 𝑟  𝑥, 𝑡 = 𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥 𝜖𝑘𝑙  𝑡 + 𝑎𝑖𝑗(𝑟) 𝑥 𝜃 𝑡  

(3-27)  

where 𝑏𝑖𝑗 𝑟 
=  𝐹𝑖𝑗𝑘𝑙 𝑟𝑠 𝑙𝑘𝑙 𝑠 𝑁𝑆=1  and 𝑎𝑖𝑗 𝑟 

=  𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 𝑚𝑘𝑙 𝑠 𝑁𝑆=1  are respectively thermal stress and strain 

transformation tensors and 𝜃 represents the uniform temperature changes. Besides, 𝐹𝑖𝑗𝑘𝑙 𝑟𝑠 
 and 𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 

 are 
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eigenstress and eigenstrain influence function tensors, respectively. And 𝑙𝑖𝑗 𝑠  and 𝑚𝑖𝑗 𝑠  denote 

respectively the thermal stress and strain tensors. Dvorak et al. extended Eq. (3-31) for the case of 

nonzero eigenvalues as follows [1]: 

𝜍𝑖𝑗 𝑟  𝑥, 𝑡 = 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥 𝜍𝑘𝑙  𝑡 +  𝐹𝑖𝑗𝑘𝑙 𝑠𝑟  𝑥  ℵ𝑘𝑙 𝑠  𝑡 + 𝑙𝑘𝑙 𝑠 𝜃 𝑡  𝑁
𝑠=1

   

𝜖𝑖𝑗 𝑟  𝑥, 𝑡 = 𝐴𝑖𝑗𝑘 𝑙 𝑟  𝑥 𝜖𝑘𝑙  𝑡 +  𝐷𝑖𝑗𝑘𝑙 𝑠𝑟  𝑥  𝜇𝑘𝑙 𝑠  𝑡 + 𝑚𝑘𝑙 𝑠 𝜃 𝑡  𝑁
𝑠=1

 

(3-28)  

Eq. (3-32) takes into account the contribution of three sources of effect on the local behavior including, 

(𝑖) elastic field effect: this effect is induced by the elastic changes in the 𝑟th sub-phase. The strain, 𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥 , and stress concentration, 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥 , tensors are responsible to capture this effect. (𝑖𝑖) adjacent 

non-linear field effect: the residual fields in the neighboring sub-phases (𝑟 ≠ 𝑠) may affect the local 

mechanical response of the 𝑟th sub-phase. It is captured by eigenfields influence tensors, 𝐹𝑖𝑗𝑘𝑙 𝑠𝑟  𝑥  and 𝐷𝑖𝑗𝑘𝑙 𝑠𝑟  𝑥 , (𝑖𝑖𝑖) self-residual field effect: the influence of self-residual fields (𝑟 = 𝑠) are captured by 

eigenfields influence tensors, 𝐹𝑖𝑗𝑘𝑙 𝑠𝑠  𝑥  and 𝐷𝑖𝑗𝑘𝑙 𝑠𝑠  𝑥 . Local strain, 𝜖𝑖𝑗 𝑟  𝑥, 𝑡 , and stress, 𝜍𝑖𝑗 𝑟  𝑥, 𝑡 , fields 

in Eq. (3-32) are connected to the overall strain, 𝜖𝑖𝑗  𝑡 , and stress, 𝜍𝑖𝑗  𝑡 ,  fields through averaging 

techniques as indicated in the following: 

𝜖𝑖𝑗  𝑡 =
1𝑉  𝜖𝑖𝑗(𝑟) 𝑥, 𝑡 𝑑𝑉𝑉 , 

𝜍𝑖𝑗  𝑡 =
1𝑉  𝜍𝑖𝑗(𝑟) 𝑥, 𝑡 𝑑𝑉𝑉  

(3-29)  

As discussed by Dvorak et al., the local eigenvalues tensors ℵ𝑖𝑗 𝑟  𝑥, 𝑡  and  𝜇𝑖𝑗 𝑟  𝑥, 𝑡  are respectively 

related to the overall piecewise uniform macroscopic eigenvalues tensors of ℵ𝑖𝑗 𝑟 
(𝑡) and 𝜇𝑖𝑗 𝑟 

(𝑡) by the 

generalized Levin formula [2]: 

ℵ𝑖𝑗  𝑡 =
1𝑉   𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥  𝑇 𝜆𝑘𝑙 𝑟  𝑥, 𝑡 𝑑𝑉𝑉 , 

𝜇𝑖𝑗  𝑡 =
1𝑉   𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥  𝑇 𝜇𝑘𝑙 𝑟  𝑥, 𝑡 𝑑𝑉𝑉  

(3-30)  
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where superscript 𝑇 indicates the transpose of the corresponding tensors. In practice specific geometries 

are assumed for each of sub-phases in order to imply  homogeneous deformation regimes on each of the 

sub-phases and then all of the continuous strain-stress fields in Eq. (3-33) and (3-34) can be substituted 

by piecewise uniform approximations. Moreover, 𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥  and 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥  are averaged over the 𝑟th sub-

phase to result in 𝐴𝑖𝑗𝑘𝑙 𝑟 
 and 𝐵𝑖𝑗𝑘𝑙 𝑟 

. Eqs. (3-33) and (3-34) are reproduced by applying these modifications 

to obtain the following expressions [1-3]: 

   

𝜖𝑖𝑗  𝑡 =  𝑐 𝑟 𝜖𝑖𝑗(𝑟) 𝑡 𝑁
𝑟=1

, 𝜍𝑖𝑗  𝑡 =  𝑐 𝑟 𝜍𝑖𝑗(𝑟) 𝑡 𝑁
𝑟=1

 

ℵ𝑖𝑗  𝑡 =  𝑐 𝑟  𝐴𝑖𝑗𝑘𝑙 𝑟  𝑇ℵ𝑘𝑙 𝑟  𝑡 𝑁
𝑟=1

, 𝜇𝑖𝑗  𝑡 =  𝑐 𝑟  𝐵𝑖𝑗𝑘𝑙 𝑟  𝑇𝜇𝑘𝑙 𝑟 𝑁
𝑟=1

 𝑡  

(3-31)  

where 𝑐(𝑟) = 𝑉 𝑟 /𝑉  is the volume fraction. By replacing the continuous influence functions 𝐷𝑖𝑗𝑘𝑙 𝑟𝑠  𝑥  

and  𝐹𝑖𝑗𝑘𝑙 𝑟𝑠  𝑥  by their respective volumetric averaged values, 𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 
 and 𝐹𝑖𝑗𝑘𝑙 𝑟𝑠 

, over the 𝑟th sub-phase, Eq. 

(3-32) reduces to: 

𝜍𝑖𝑗 𝑟  𝑡 = 𝐵𝑖𝑗𝑘𝑙 𝑟 𝜍𝑘𝑙  𝑡 +  𝐹𝑖𝑗𝑘𝑙 𝑠𝑟  ℵ𝑖𝑗 𝑟  𝑡 + 𝑙𝑘𝑙 𝑟 𝜃 𝑡  𝑁
𝑠=1

   

𝜖𝑖𝑗 𝑟  𝑡 = 𝐴𝑖𝑗𝑘𝑙 𝑟 𝜖𝑘𝑙  𝑡 +  𝐷𝑖𝑗𝑘𝑙 𝑠𝑟  𝜇𝑖𝑗 𝑟  𝑡 + 𝑚𝑘𝑙 𝑟 𝜃 𝑡  𝑁
𝑠=1

 

(3-32)  

  

where inelastic constitutive laws relates the local inelastic strains to the history of loading, i.g. 𝜇𝑖𝑗 𝑟  𝑡 =𝑓  𝜍𝑖𝑗 𝑟  𝑡  . The residual fields are always related by elastic modulus through, ℵ𝑖𝑗 𝑟 
= −𝐿𝑖𝑗𝑘𝑙 𝑟 𝜇𝑘𝑙 𝑟 

. 

Finally, the inelastic solution for a multiphase material system is reduced to evaluation of mechanical 

concentration tensors, 𝐴𝑖𝑗𝑘𝑙  and 𝐵𝑖𝑗𝑘𝑙 , and eigenfields influence tensors, 𝐷𝑖𝑗𝑘𝑙  and 𝐹𝑖𝑗𝑘𝑙 . All of these 

tensors are functions of local and overall thermo-elastic moduli and also history of loading, which is 

enforced by integration of the local inelastic constitutive equations. The mechanical concentration 

tensors are obtained through micromechanical models for elastic media and eigenfields influence tensors 

are computed as illustrated by Dvorak et al. [2, 3]. In general the eigenstrain influence function, 𝐹𝑖𝑗𝑘𝑙 𝑟𝑠 
, 

and eigenstress influence function, 𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 
, are computed from the following properties as shown by 

Dvorak et al. [1, 3]: 
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 𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 𝑁𝑟=1 = 𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 𝑠 
,  𝐹𝑖𝑗𝑘𝑙 𝑟𝑠 𝑁𝑟=1 = 𝐼𝑖𝑗𝑘𝑙 − 𝐵𝑖𝑗𝑘𝑙 𝑠 
,  𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 𝑀𝑘𝑙𝑖𝑗 𝑟 𝑁𝑟=1 = 0,  𝐹𝑖𝑗𝑘𝑙 𝑟𝑠 𝐿𝑘𝑙𝑖𝑗 𝑟 𝑁𝑟=1 = 0. 

(3-33)  

 

The set of equations (371) and (373) (or (372) and (374)) provides 2 × 𝑁 independent equations while 

there are 𝑁 × 𝑁 unknown. It is clear that for a multiphase system with 𝑁 > 2 exact relation between 

influence functions and related material properties cannot be derived analytically. Then the solution of a 

multiphase media with 𝑁 > 2 includes the interaction evaluation for each sub-phases under eigenstrain 

loading. In other words, each specific microstructure is taken into consideration while their geometry 

and eigenstrain are involved into the calculations. However, in the case of a two phase material system 

the analytical solution results in the following relations, which relate the 𝐷𝑖𝑗𝑘𝑙 𝑟𝑠 
 to the material properties 

[3, 28]: 𝐷𝑖𝑗𝑘𝑙 11 
=  𝐼𝑖𝑗𝑚𝑛 − 𝐴𝑖𝑗𝑚𝑛 1   𝐿𝑚𝑛𝑧𝑥 1 − 𝐿𝑚𝑛𝑧𝑥 0  −1𝐿𝑧𝑥𝑘𝑙 1 

 

𝐷𝑖𝑗𝑘𝑙 10 
=  𝐼𝑖𝑗𝑚𝑛 − 𝐴𝑖𝑗𝑚𝑛 1   𝐿𝑚𝑛𝑧𝑥 0 − 𝐿𝑚𝑛𝑧𝑥 1  −1𝐿𝑧𝑥𝑘𝑙 0 

 

(3-34)  

where superscript 0 indicates matrix and 1 indicates the inclusion phase. Then in a two phase material 

system the analysis can be reduced to a mechanical loading problem. For a three phase material system 

following relations between transmitted and self-induced influence functions are derived by solving the 

system of equations (371) and (373): 𝐷𝑖𝑗𝑘𝑙 12  𝑀𝑘𝑙𝑝𝑞 2 − 𝑀𝑘𝑙𝑝𝑞 3  = 𝐷𝑖𝑗𝑘𝑙 11  𝑀𝑘𝑙𝑝𝑞 3 − 𝑀𝑘𝑙𝑝𝑞 1  −  𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 1  𝑀𝑘𝑙𝑝𝑞 3 
 

𝐷𝑖𝑗𝑘𝑙 13  𝑀𝑘𝑙𝑝𝑞 3 − 𝑀𝑘𝑙𝑝𝑞 2  = 𝐷𝑖𝑗𝑘𝑙 11  𝑀𝑘𝑙𝑝𝑞 2 − 𝑀𝑘𝑙𝑝𝑞 1  −  𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 1  𝑀𝑘𝑙𝑝𝑞 2 
 

𝐷𝑖𝑗𝑘𝑙 21  𝑀𝑘𝑙𝑝𝑞 1 − 𝑀𝑘𝑙𝑝𝑞 3  = 𝐷𝑖𝑗𝑘𝑙 22  𝑀𝑘𝑙𝑝𝑞 3 − 𝑀𝑘𝑙𝑝𝑞 2  −  𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 2  𝑀𝑘𝑙𝑝𝑞 3 
 

𝐷𝑖𝑗𝑘𝑙 23  𝑀𝑘𝑙𝑝𝑞 3 − 𝑀𝑘𝑙𝑝𝑞 1  = 𝐷𝑖𝑗𝑘𝑙 22  𝑀𝑘𝑙𝑝𝑞 1 − 𝑀𝑘𝑙𝑝𝑞 2  −  𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 2  𝑀𝑘𝑙𝑝𝑞 1 
 

𝐷𝑖𝑗𝑘𝑙 31  𝑀𝑘𝑙𝑝𝑞 1 − 𝑀𝑘𝑙𝑝𝑞 2  = 𝐷𝑖𝑗𝑘𝑙 33  𝑀𝑘𝑙𝑝𝑞 2 − 𝑀𝑘𝑙𝑝𝑞 3  −  𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 3  𝑀𝑘𝑙𝑝𝑞 2 
 

𝐷𝑖𝑗𝑘𝑙 32  𝑀𝑘𝑙𝑝𝑞 2 − 𝑀𝑘𝑙𝑝𝑞 1  = 𝐷𝑖𝑗𝑘𝑙 33  𝑀𝑘𝑙𝑝𝑞 1 − 𝑀𝑘𝑙𝑝𝑞 3  −  𝐼𝑖𝑗𝑘𝑙 − 𝐴𝑖𝑗𝑘𝑙 3  𝑀𝑘𝑙𝑝𝑞 1 
 

(3-35)  
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where the knowledge of self-induced inelastic influence for each inclusion is required to reduce the 

problem to a mechanical loading case. Now the self-consistent or Mori-Tanaka estimations may be 

utilized to derive the stress and strain concentration factors. The overall stiffness and compliance for a 

multiphase media are obtained as [2, 3, 21]: 

 

𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑖𝑗𝑘𝑙 0 
+  𝑐 𝑟  𝐿𝑖𝑗𝑚𝑛 𝑟 − 𝐿𝑖𝑗𝑚𝑛 0  𝐴𝑚𝑛𝑘𝑙 𝑟 𝑁

𝑟=2

 

𝑀𝑖𝑗𝑘𝑙 = 𝑀𝑖𝑗𝑘𝑙 0 
+  𝑐 𝑟  𝑀𝑖𝑗𝑚𝑛 𝑟 − 𝑀𝑖𝑗𝑚𝑛 0  𝐵𝑚𝑛𝑘𝑙 𝑟 𝑁

𝑟=2

 

(3-36)  

The self-consistent or Mori-Tanaka estimations result in following form of strain, 𝐴𝑖𝑗𝑘𝑙 𝑟 
, and stress, 𝐵𝑖𝑗𝑘𝑙 𝑟 

, 

concentration tensors [2, 3]:  𝐴𝑖𝑗𝑘𝑙 𝑟 
=  𝐿𝑖𝑗𝑚𝑛∗ + 𝐿𝑖𝑗𝑚𝑛 𝑟  −1 𝐿𝑚𝑛𝑘𝑙∗ + 𝐿𝑚𝑛𝑘𝑙   

𝐵𝑖𝑗𝑘𝑙 𝑟 
=  𝑀𝑖𝑗𝑚𝑛∗ + 𝑀𝑖𝑗𝑚𝑛 𝑟  −1 𝑀𝑚𝑛𝑘𝑙∗ + 𝑀𝑚𝑛𝑘𝑙   

(3-37)  

Here 𝐿𝑖𝑗𝑘𝑙∗ =  𝑀𝑖𝑗𝑘𝑙∗  −1
 denotes Hill‟s ellipsoidal inclusion transformation constraint tensor [30]. The 

difference between self-consistent and Mori-Tanaka approximations arise from their approach to 

compute constraint tensor 𝐿𝑖𝑗𝑘𝑙∗  . Self-Consistent (SC) method incorporates the effective overall stiffness 

tensor 𝐿𝑖𝑗𝑘𝑙 , while Mori-Tanaka (MT) utilizes the matrix stiffness tensor 𝐿𝑖𝑗𝑘𝑙 0 
 in the evolution equation 

of 𝐿𝑖𝑗𝑘𝑙∗  as shown below [2, 3]:  𝑆𝐶 →  𝐿𝑖𝑗𝑘𝑙∗ = 𝐿𝑖𝑗𝑚𝑛  𝐼𝑚𝑛𝑧𝑥 − 𝑆𝑚𝑛𝑧𝑥  𝑆𝑧𝑥𝑘𝑙−1  

 𝑀𝑇 →  𝐿𝑖𝑗𝑘𝑙∗ = 𝐿𝑖𝑗𝑚𝑛 0  𝐼𝑚𝑛𝑧𝑥 − 𝑆𝑚𝑛𝑧𝑥  𝑆𝑧𝑥𝑘𝑙−1  

(3-38)  

 

where 𝑆𝑖𝑗𝑘𝑙  is the Eshelby tensor for different inclusion types as given in Appendix A. 

 

3.6 Modified Two-phase TFA approach 

The TFA solution for a two-phase media is trivial which leads to derivation of constitutive equation for 

the two-phase RVE with uniform microscale strain and stress distribution. This two-phase RVE cannot 

be utilized for evaluating complex microstructures and the resultant uniform microscale stress and strain 
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fields cannot identifies the localized effects of non-linear processes.  Furthermore, the performance of 

the two-phase TFA method is undermined with too simplified assumptions during the composition of its 

RVE where the actual microstructure of the material systems cannot be predicted accurately with this 

simple RVE composition. For example, chemical induced crystallization process in polymers results in 

spherulite crystalline structures surrounded with amorphous phases as shown by [61]. The magnitude 

and size of crystalline domains are functions of temperature and many other physical and chemical 

conditions while the crystalline morphology and size may vary under applied stress. Then in the reality 

the microstructural texture of crystalline and amorphous phases in a semicrystalline polymeric material 

system is too complicated to be estimated with a simplified two-phase RVE. To render the nature of the 

material systems, some additional data from the experimental results has been incorporated into the TFA 

formulation while the trivial two-phase solution is generalized for a dilute heterogeneous material 

system. In the following the steps for upgrading the two-phase TFA solution are elaborated: 

- Softening the TFA responses: 

Accordingly the TFA micromechanical formulation underestimates the overall eigenstrain, 𝜇𝑖𝑗 , during a 

strain-controlled loading condition or eigenstress, ℵ𝑖𝑗 , during a stress-controlled loading condition and 

consequently it results in too stiff stress-strain responses during an elasto-inelastic analysis. Chaboche et 

al. [17, 28] addressed this overestimation of mechanical responses during analysis of a metal matrix 

composite and he proposed a modification on the TFA model where the inelastic tangent stiffness is 

used to soften the mechanical responses. In this work two material parameters functions, 𝜒 𝑟  𝑐 𝑟   and 𝜒′  𝑟  𝑐 𝑟  , are introduced  in order to soften TFA.  These parameters are captured from experimental 

results and they show an effective role on adjustment of the micromechanical simulations with the 

experimental results. The original TFA formulation is then modified in the following way: 

ℵ𝑖𝑗  𝑡 =  𝑐 𝑟  𝐴𝑖𝑗𝑘𝑙 𝑟  𝑇𝜒′  𝑟 ℵ𝑘𝑙 𝑟  𝑡 𝑁
𝑟=1

, 

 𝜇𝑖𝑗  𝑡 =  𝑐 𝑟  𝐵𝑖𝑗𝑘𝑙 𝑟  𝑇𝜒 𝑟 𝜇𝑘𝑙 𝑟 𝑁
𝑟=1

 𝑡  

(3-39)  

where 𝜒′  𝑟 
 and 𝜒 𝑟  are functions of volume fractions 𝑐 𝑟 . These empirical functions are formulated 

based on experimental results and curve fitting techniques, as shown in section 7. 

 - Adding interfacial layer: 

The active damaging processes in the interfacial layers between inclusions and matrix in the composite 

materials has been experimentally and theoretically investigated in the literature [85]. In order to include 

this debonding process during the multiscale analysis, an interfacial layer is considered between the 

matrix and inclusion. Fig. 3-2(a) represents a hypothetical RVE with embedded single elliptical 

inclusion and 2-2(b) shows the interfacial layer. The elastic properties in the interfacial layer are 
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assumed to vary linearly in this region. In the case of a spherical inclusion the following variable elastic 

stiffness tensor is enforced: 

𝐿𝑖𝑗𝑘𝑙(𝐼𝐿) − 𝐿𝑖𝑗𝑘𝑙 1 
=

𝐿𝑖𝑗𝑘𝑙 0 − 𝐿𝑖𝑗𝑘𝑙 1 𝑟0 − 𝑟𝐼𝐿  𝑟 − 𝑟 𝐼𝐿   (3-40)  

where 𝑟 shows the distance from the origin of the inclusion and 𝐿𝑖𝑗𝑘𝑙 𝐼𝐿 
 is the variable interfacial layer 

stiffness tensor and 𝐿𝑖𝑗𝑘𝑙 0 
 and 𝐿𝑖𝑗𝑘𝑙 1 

 are respectively the matrix and inclusion stiffness tensors and 𝑟𝑜  is the 

outer boundary of the inclusion and 𝑟𝐼𝐿 is the outer radius for the interfacial layer. This interfacial layer 

may contain material inherent or mechanical induced damages. The damage effect is added to the 

description of the 𝐿𝑖𝑗𝑘𝑙𝐼𝐿  by the following expression [41]:  

𝐿𝑖𝑗𝑘𝑙(𝐼𝐿)
=  𝐼𝑖𝑗𝑚𝑛 − 𝜅𝑖𝑗𝑚𝑛  𝐿𝑚𝑛𝑘𝑙 𝐼𝐿 

 (3-41)  

where 𝜅𝑖𝑗𝑘𝑙  is a fourth order anisotropic damage variable tensor proposed by Voyiadjis et al. [41] and 𝐿𝑖𝑗𝑘𝑙 𝐼𝐿 
 is the undamaged elasticity tensors. Debonding between the inclusion and the matrix may be 

captured by utilizing this concept in which the elastic modulus of this interfacial layer wanes with 

damage propagation. Thermodynamic consistent damage theories may be incorporated to evaluate the 𝜅𝑖𝑗𝑘𝑙  in an incremental history dependent solution approach as discussed by Voyiadjis et al. [40-42].  

 - Atomic computation scheme: 

The atomic computational approach, which is introduced within the micromechanics framework, 

provides computational competency to capture localized microscale mechanical responses over an RVE. 

This computational strategy can be considered as an alternative approach for FEA approaches in which a 

certain microstructural configuration is analyzed by tessellating unit cells [33, 47, 85-88]. Although 

Voronoi finite element method [89, 90] compensate for the huge computational difficulties in simulation 

of such a fine microstructures, these methods are still restricted by computational cost for large scale 

structural analysis.  

The proposed atomic computation utilizes the generalized two-phase TFA solution, to solve a dilute 

multiphase system.  In this approach a number of computational seeds are dispersed over a hypothetical 

computational layer and then this hypothetical layer is assembled over the RVE, as shown in Fig. 3-2(c). 

Then the underlying generalized two-phase TFA in the RVE is utilized to feed the required data to the 

computational layer in which inelastic analyses are implemented in each of the computational seeds. In 

other words in each computational seed the magnitude of the local strain, 𝜖𝑖𝑗 𝑟  𝑥𝑖 , 𝑡 , or local stress, 𝜍𝑖𝑗 𝑟  𝑥𝑖 , 𝑡 , is given by the micromechanics solution. These values are then utilized in each of the 

computational seeds to compute the magnitude of the local inelastic strain and/or the damage parameter. 

Due to the fact that the micromechanics solution takes into account the compatibility in the deformation 

field and the equilibrium in the stress field, adding the computational layers over an RVE will not affect 
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these conditions. This atomic scheme provides the computational competency for localized evaluation of 

the inelastic and damage processes. Fig. 3-3 shows the outlines for the proposed atomic operation. 

 

Figure 3-2(a) Two-phase RVE, (b) added interfacial layer between inclusion and matrix and (c) 

dispersing computational seeds over the RVE 

 

 

Figure 3-3 Flowchart for the multiscale analysis with proposed atomic computational strategy 
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-  Generalized two-phase TFA solution: 

 The trivial two-phase TFA solution is generalized in this section in order to obtain the theoretical 

competency for a localized analysis within the RVE.  In the micromechanics framework the microscale 

strain and stress fields are correlated to the macroscale strain and stress fields by concentration tensors, 

Aijk l

 r  xi  and Bijkl

 r  xi . The classical two-phase TFA solution removes the coordinate dependency in 

concentration tensors with averaging techniques [1-3]: 

 𝐴𝑖𝑗𝑘𝑙 𝑟 
=

1𝑉 ∫ 𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥𝑖 𝑑𝑉          and     𝐵𝑖𝑗𝑘𝑙 𝑟 
=

1𝑉 ∫ 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥𝑖 𝑑𝑉 (3-42)  

 

In this work, coordinate dependent descriptions for these concentration tensors are proposed which 

follow the basic micromechanics principals. Then the following expressions for the microscale stress, 𝜍𝑖𝑗 𝑟 
(𝑥𝑖 , 𝑡), and strain, 𝜖𝑖𝑗 𝑟 

(𝑥𝑖 , 𝑡), fields are obtained: 

 𝜍𝑖𝑗 𝑟  𝑥𝑖 , 𝑡 = 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥𝑖 𝛴𝑘𝑙  𝑡        and        𝜖𝑖𝑗 𝑟 
(𝑥𝑖 , 𝑡) = 𝐴𝑖𝑗𝑘𝑙 𝑟 

(𝑥𝑖)Ekl (𝑡). (3-43)  

 

Accordingly, the solution for concentration tensors, 𝐴𝑖𝑗𝑘𝑙 𝑟 
 and 𝐵𝑖𝑗𝑘𝑙 𝑟 

, are trivial in elastic region, as shown 

in Eq. (3-41). Once the non-linear effects appears in sub-phases, such as the inelastic strain and residual 

stresses, these concentration tensors are affected by those effects [1-3].  

Consequently, when the material behaves elastically, the state of microscale stress or strain in the RVE 

can be described by a primary curve fit on boundary values and trivial elastic solutions of these fields. 

Then the boundary of the macroscopic RVE, 𝛤, is decomposed into stress, 𝛤𝜍  , and displacement, 𝛤𝑢 , 

defined boundaries in which 𝛤𝜍 ∪ 𝛤𝑢 = 𝛤 and 𝛤𝜍 ∩ 𝛤𝑢 = ∅ . These concentration tensors should be equal 

to the fourth order identity tensor, 𝐼𝑖𝑗𝑘𝑙 , on their respective boundaries, i.g. 𝐴𝑖𝑗𝑘𝑙 𝑟  𝑥𝑖 = 𝐼𝑖𝑗𝑘𝑙  when 𝑥𝑖 ∈ Γ𝑢  and 𝐵𝑖𝑗𝑘𝑙 𝑟  𝑥𝑖 = 𝐼𝑖𝑗𝑘𝑙  when 𝑥𝑖 ∈ Γσ .  In other words, the microscale stress and strain fields are 

equal to the loading conditions on boundaries of the macroscopic RVE to ensure that the microscale 

stress and strain fields conform to the macroscale loading conditions. On the other hand the trivial 

elastic solutions yield: 𝜖𝑖𝑗 𝑟  𝑡 = 𝐴𝑖𝑗𝑘𝑙 𝑟 𝜖𝑘𝑙  𝑡  and 𝜍𝑖𝑗 𝑟  𝑡 = 𝐵𝑖𝑗𝑘𝑙 𝑟 𝜍𝑘𝑙  𝑡 . These values are assigned to the 

center of each of sub-phases (𝑟 = 1 𝑡𝑜 𝑁) in the RVE and then a curve is fitted on these data points in 

such a way that the resultant microscale stress, 𝜍𝑖𝑗(𝑟) 𝑥𝑖 , 𝑡 , and strain, 𝜖𝑖𝑗(𝑟) 𝑥𝑖 , 𝑡 , fields follow the 

following micromechanics constrains:  
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Σ𝑖𝑗  𝑡 =
1𝑉 ∫ 𝜍𝑖𝑗(𝑟) 𝑥𝑖 , 𝑡 𝑑𝑉𝑉 ,           𝐸𝑖𝑗  𝑡 =

1𝑉 ∫ 𝜖𝑖𝑗(𝑟) 𝑥𝑖 , 𝑡 𝑑𝑉𝑉 . (3-44)  

 

Once the non-linear process initiates, the microscale stress, 𝜍𝑖𝑗 𝑟  𝑥𝑖 , 𝑡 , and strain, 𝜖𝑖𝑗 𝑟  𝑥𝑖 , 𝑡 , fields are 

then dependent on the microscale inelastic strains, 𝜖𝑖𝑗𝑝  𝑟  𝑡 , and residual stresses, 𝜍𝑖𝑗𝑅𝑒𝑠  𝑟   𝑡 , as shown 

by Eq. (3-36). Then the assigned elastic values of microscale stress and strain fields to the center of sub-

phases are now are incrementally updated through Eq. (3-36) while constrain Eq. (3-48) are concurrently 

enforced. In such a way the curve fits always represents the latest microscale stress and strains in the 

RVE and these distributions can be a representation of local loading conditions on different portions of 

the RVE. 

A three dimensional two-phase RVE under biaxial macroscale strain-controlled loading (𝐸𝑥𝑥 = 𝐸𝑦𝑦 = 𝐸) 

is shown in 2- 4(a). The inclusion is shown by a purple ellipsoid and the assembled hypothetical 

computational seeds are depicted by yellow cubes. 2- 4(b) shows the local distribution of dimensionless 

microscale strain, 𝜖𝑖𝑗 𝑟  𝑥, 𝑦 /𝐸 . This distribution results in 𝜖𝑖𝑗 𝑟  𝑥, 𝑦 = 𝐸  on displacement defined 

boundaries of 𝑥 =
𝐵
2
 and 𝑦 =

𝐴
2
 and yields 𝜖 1 = 𝐴(1)𝐸  and 𝜖 0 = 𝐴(1)𝐸, which are the trivial elastic 

solutions for a two-phase RVE, at the center of inclusion and matrix phase which are 𝑥 = 𝑦 = 0 for 

inclusion (𝑟 = (0)) and 𝑥2 + 𝑦2 = 0.625 for matrix (𝑟 = (1)) in 3-4(b). Once the Eigen fields are 

introduced in the inclusion or matrix, Eq. (3-36) is the governing relation for obtaining 𝜖 1  and 𝜖 0 . 
Then once in a load increment the non-linearity is introduced in one of the sub-phases, a new curve is 

fitted based on the following data points: (a) 𝜖𝑖𝑗 𝑟  𝑥, 𝑦 = 𝐸  at boundaries 𝑥 =
𝐵
2

 and 𝑦 =
𝐴
2

 and (b) 𝜖𝑖𝑗 𝑟 
(𝑥, 𝑦, 𝑡) = 𝐴 𝑟 𝐸 +  𝐷𝑖𝑗𝑘𝑙 𝑠𝑟  𝑥, 𝑦 𝜖𝑖𝑗𝑝  𝑟  𝑥, 𝑦, 𝑡 2𝑠=1  at middle of each of the sub-phases. Consequently 

the microscale strain or stress distributions at each time increment monitor the latest non-linear effects in 

sub-phases while it satisfies the governing solid mechanics and micromechanics relations. In Section 7 a 

uniaxial loading problem for the two-phase and three-phase RVEs is evaluated to obtain the localized 

inelastic deformations.  

- Generalized Eigen functions: 

Dvorak et al. proposed the Eigen strain, 𝐷𝑖𝑗𝑘𝑙 𝑠𝑟 
, and stress, 𝐹𝑖𝑗𝑘𝑙 𝑠𝑟 

, influence functions in Eq. (3-36) to take 

into account the influence of adjacent and self-induced non-linear processes in the RVE domain [1-3]. 

Self-induced influences are captured when 𝑟 = 𝑠 and non-linear effects from adjacent sub-phases are 

introduced by setting 𝑟 ≠ 𝑠. As shown in Eq. (3-39), the solution for a multi-phase material systems 

(𝑁 > 2) requires the knowledge of the self-induced tensors, i.e. 𝐷𝑖𝑗(𝑟𝑟 )
 for 𝑟 = 1 𝑡𝑜 𝑁. These self-induced 

effects are experimentally difficult to capture or requires specific numerical approaches to be identified. 

For example for a multiphase system, 𝐷𝑖𝑗(𝑟𝑟 )
 may be obtained by FEA where a unit inelastic strain is 

introduced in each of the sub-phase and its effect on the neighboring domains is evaluated. 
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Figure 3-4 (a) two-phase RVE with embedded inclusion at center and assembled computational 

seeds in 3D configuration, (b) primary micro-strain distribution around the inclusion from the 

trivial elastic solution under the biaxial macroscale strain E (This distribution is updated after 

each load increment once the inelastic strain or damage is initiated in either of sub-phases.) 

 

This processes needs to be implemented for 𝑟 = 1 to 𝑁. Such a numerical approach encounters by some 

difficulties such as high volume computations and they are highly dependent on the microstructure of 

the RVE. In the case of a two-phase RVE, the solutions for these Eigen functions are trivial, as shown in 

Eq. (3-38).  

One may assume a dilute distribution of inclusions in the RVE in which the two-phase localized RVEs 

are assembled to generate the multiphase RVE as shown in Fig. 3-5. In such a dilute regime the 

influence functions can still follow their analytical two-phase solution of Eq. (3-38). Then an alternative 

approach for dilute heterogeneous media is to utilize the trivial two-phase solution for local two-phase 

RVEs. In other words, for a statistically evenly dispersed inclusions in the RVE with a dilute distribution, 

one may assume a local two-phase media in which the analytical solution of Eq. (3-38) still holds in that 

localized region.  

The Eigen functions, as shown in Eq. (3-38), are independent of coordinate system and consequently 

results in constant effect all over the two-phase RVE domain. This uniform distribution cannot monitor 

the reality where the Eigen influences should vanish for far sub-phases and has the maximum effect on 

the nearest sub-phases. In other words, once a non-linearity is introduced in one of the sub-phases its 

neighboring sub-phases should cease the major non-linearity influences while farther sub-phases receive 

less effects. The expressions for the Eigen influence function are then modified here to take into account 

such distance evanescent non-linearity effect. The distant evanescent Eigen influence functions for a 

two-phase RVE are then proposed as follows: 
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 self-induced:  𝐷𝑖𝑗𝑘𝑙 11  𝑥𝑖 = 𝐷𝑖𝑗𝑘𝑙 11 
,                           0 < 𝑟 < 𝑟𝑜   

adjacent-induced:  𝐷𝑖𝑗𝑘𝑙 10  𝑥𝑖 = 𝐷𝑖𝑗𝑘𝑙 10 𝑙𝑜𝑔 𝑟𝑎 + 𝑏 ,   𝑟𝑜 < 𝑟 < 𝑟𝑙   (3-45)  

 

where 𝐷𝑖𝑗𝑘𝑙 11 
 and 𝐷𝑖𝑗𝑘𝑙 10 

 are given by Eq. (3-38) and, as depicted in Fig. 3-5, 𝑟 shows the distant from the 

local origin on the center of inclusion and 𝑟𝑜  and 𝑟𝑙  correspond respectively to the outer boundary of 

inclusion  and the furthest distant which influence function is assumed to be effective. Constant 𝑎 and 𝑏 

are material dependent constants to represent the slop of changes and final limiting value of the 

influence function. The magnified view in Fig. 3-5 represents the influence region which is enclosed by 

a blue circular region. For computation efficiency one may assume that Eq. (3-49) is only effective on 

the computational seeds within a specified region and its effect is neglected for neighboring local two-

phase RVEs.  

Fig. 3-6 shows the normalized values for 𝐷1111
 11  𝑥, 𝑦  and 𝐷1111

 10  𝑥, 𝑦  in a local two-phase RVE with 𝑎 = −0.2  and 𝑏 = 0.2  when the inclusion contains the non-linearity effects. The inclusion size is 

assumed to be small compared to the RVE dimensions. The self-induced influences are assumed to be 

uniform over this small inclusion region ( 𝐷1111
 11  𝑥, 𝑦 = 𝐷1111

 11 
) while the adjacent influences are 

exponentially waned in the matrix region. 

 

Figure 3-5 Dilute RVE with magnified view of influence region for Eigen influence functions 
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Figure 3-6 Distribution of the Eigen influence functions in 3D 

 

-  Regularization of a spare non-dilute heterogeneous media: 

If the inclusions in an RVE are not dispersed statistically evenly, in certain cases the regularization 

techniques may be applicable to recast the dilute conformation. In such a case, the local dense 

distribution of inclusions in a certain region of the RVE is transformed into an equivalent inclusion. 

Then the local condense multiphase system is reduced to an equivalent local two-phase media and the 

dilute assumption for the macroscopic RVE is regained. For example in Fig. 3-7 the blue circle encloses 

a local dense distribution of inclusions. An equivalent inclusion is replaced in this local RVE in the 

magnified view. When these inclusions have different elastic properties, the equivalent inclusion may 

have averaged elastic properties as follows: 

𝐿𝑖𝑗𝑘𝑙𝐸𝑄−𝐼𝑛𝑐
=  𝑐 𝑟 𝐿𝑖𝑗𝑘𝑙 𝑟 𝑁

𝑟=2

 

𝑀𝑖𝑗𝑘𝑙𝐸𝑄−𝐼𝑛𝑐
=  𝑐 𝑟 𝑀𝑖𝑗𝑘𝑙 𝑟 𝑁

𝑟=2

 

(3-46)  

 

where 𝐿𝑖𝑗𝑘𝑙𝐸𝑄−𝐼𝑛𝑐
 and 𝑀𝑖𝑗𝑘𝑙𝐸𝑄−𝐼𝑛𝑐

 are equivalent elastic stiffness and compliance fourth order tensors.   The 

dimension for this equivalent inclusion is obtained based on the distribution of dimensions in the local 

coordinate system. For example in the case of spherical or ellipsoidal inclusions, the projection of their 
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radii on local coordinate axes results in three components which are assembled in 𝑅 𝑖(𝑟)
. The summation 

of these individual radii results in an equivalent ellipsoidal inclusion with the following radius: 

𝑅 𝑖 =  𝑅 𝑖(𝑟)

𝑁
𝑟=1

 (3-47)  

And the position of such an equivalent inclusion is obtained with respect to the local coordinate system 

as follows: 

𝑥𝑖 =
  𝑅 𝑖 𝑟 𝑥𝑖 𝑟  𝑁𝑟=1 𝑅 𝑖  (3-48)  

where 𝑥𝑖  and 𝑥𝑖 𝑟 
are respectively the origins for the equivalent and rth inclusions. 

 

 

Figure 3-7 Regularization technique to reduce a spare RVE to an equivalent dilute media 

 

3.7 Computational Aspect 

The elasto-plastic multiscale analysis requires several computational modules including, (i) microscale 

computation module: which consists of a set of numerical solutions for the local constitutive equation of 

each sub-phases, (ii) micromechanical computation module: provides numerical tools to link the 

mechanical properties of each of the local sub-phases to the macroscopic responses, and (iii) macroscale 
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computation module: continuum mechanics governing equations are enforced in this module to simulate 

the overall mechanical response of the material and identifying the local loading conditions over the 

RVE. Each of these computational modules is discussed in the following.   

3.7.1 Microscale Computation Module: 

A schematic representation of an RVE for the semicrystalline polymeric system is depicted in Fig. 3-

8(c). As discussed before, this material system is constituted from two phases including, amorphous and 

crystalline phases. At first step, regardless of the shape of each of these sub-phases, elasto-viscoplastic 

solutions should be enforced for each of them. In the microscale computation module, corresponding 

constitutive equations for each of these sub-phases are incorporated to obtain the local mechanical 

response of each of them. Inelastic constitutive equations for the crystalline and amorphous phases have 

been introduced in Section 3 and will be utilized here. In general, the RVE illustrates two length scales: 

(i) macro length scale: representing length for an RVE, see Fig. 3-8(c), and (ii) micro length scale: 

corresponding length to the smallest micro constituents which has a direct impact on the RVE behavior, 

see Fig. 3-8(a) and 3-8(b).  Based on the polycrystalline multiscale analysis, in a semicrystalline SMP 

the crystals are treated as inclusions embedded in the amorphous phase [91]. 

 

 

Figure 3-8 Schematic representations of (a) fibrous inclusion, (b) Penny-shape inclusion, and (c) 

Assembled RVE in a macro length scale. 

 

The well-established elastic-predictor/plastic-corrector return mapping algorithm is utilized in this work 

to obtain the inelastic responses of the microscale amorphous and crystalline phases. This method is 
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outlined herein while a detailed description of this solution algorithm can be found in [52, 92, 93]. The 

return mapping technique is capable of handling associative and non-associative flow rules with variant 

tangent stiffness and results in a consistent solution approach [52, 59]. Based on the formulation of the 

objective finite deformation problem, this algorithm is applicable to the material, intermediate or spatial 

formulations. A detailed description of other finite deformation solution approaches may be found in [52, 

57, 59, 94].  

The return mapping techniques in inelastic solutions are natural consequence of splitting the total strain 

into elastic and inelastic strains. Let tensor, 𝑢𝑖𝑗 , be an incremental field to describe the deformation and 

its gradient, ∇𝑢𝑖𝑗 , shows the deformation rate. Then the solution is carried out by (i) introducing a 

loading condition such as, 𝐹𝑖𝑗 𝑛+1 
=  𝐼𝑖𝑘 + ∇𝑢𝑖𝑘 𝐹𝑘𝑗 𝑛 

 where 𝐼𝑖𝑗  is the unity second rank tensor and 

superscripts 𝑛 and 𝑛 + 1 indicates respectively to the previous and current load steps, (ii) elastically 

stretching the material by a “Trial Elastic” deformation gradient given by: 𝐹𝑖𝑗𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙
= 𝐹𝑖𝑘 𝑛+1 𝐹𝑘𝑗𝑝  𝑛 −1

where superscripts “𝑒” and “𝑝” are referred to as “elastic” and “plastic” 

components, respectively; and 𝐹𝑖𝑗𝑝  𝑛 
 shows frozen inelastic deformation gradient, (iii) relaxing the 

elastically stretched configuration until the state of stress satisfies the yield condition (𝜓 = 0).  The 

return mapping relaxes the stresses along the steepest descent path which is defined based on yield 

function (associated flow rules) or potential functions (non-associated flow rules) [40].  The proposed 

microscale formulations are based on incompressibility assumption [60, 83] which is stated by:  λ1λ2λ3 = 1  where λi  indicates the principal stretches. Simo et al. [95] introduced the isochoric 

assumption into the kinematic of large deformation by splitting the deformation gradient into the volume 

preserving and non-preserving parts as shown in the following:  𝐹 𝑖𝑗 = 𝐽−1
3𝐹𝑖𝑗  (3-49)  

where hat symbol,    , shows the isochoric components. Then 𝐹 𝑖𝑗  is the volume-preserving deformation 

gradient and 𝐽 = det 𝐹𝑖𝑗  . This decomposition holds for the elastic deformation too, 𝐹 𝑖𝑗𝑒 = 𝐽−1/3𝐹𝑖𝑗𝑒 . The 

proposed kinematic decomposition by Simo et al. [95] ensures that the computed inelastic deformation 

is isochoric, i.e. det 𝐹𝑖𝑗𝑝 ≡ 1 . The volume preservative right, 𝐶𝑖𝑗 = 𝐹𝑖𝑘𝑇 𝐹𝑘𝑗 , and left, 𝑏𝑖𝑗 = 𝐹𝑖𝑘𝑇 𝐹𝑘𝑗 , 

Cauchy-Green tensors are then evolved as follows: 𝐶 𝑖𝑗 = 𝐽−2

3𝐶𝑖𝑗 ; 𝑏 𝑖𝑗 = 𝐽−2

3𝑏𝑖𝑗  (3-50)  

To pertain the incompressibility assumption the volume-preserving part of the applied deformation 

gradient needs to be utilized in the trial elastic part. Then the trial elastic volume-preserving left and 

right Cauchy-Green tensors are given by: 
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𝑏 𝑖𝑗𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙
= 𝐹 𝑖𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙  𝐹 𝑗𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙  𝑇

= 𝐽 𝑛+1 −2
3𝑏𝑖𝑗𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙

 

𝐶 𝑖𝑗𝑒 𝑇𝑟𝑖𝑎𝑙
= 𝐽 𝑛+1 −2

3𝐶𝑖𝑗𝑒  

(3-51)  

 

where 𝐽 𝑛+1 = det 𝐹𝑖𝑗 𝑛+1  . To relate the stress and strain states in a finite deformation problem there 

are a number of proposed stress-strain relations; see [57] for a list of these relations. Anand [96] 

proposed a relation between the Cauchy stress and Hencky strain which is used here to obtain the trial 

elastic stress as follows: 

 𝜍𝑖𝑗 𝑛+1 𝑇𝑟𝑖𝑎𝑙
=

1𝐽 𝑛+1 𝐿𝑖𝑗𝑘𝑙𝑒 ln  𝑈𝑘𝑙𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙   (3-52)  

 

where 𝑈𝑖𝑗𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙
=  𝐶 𝑖𝑗𝑒 𝑇𝑟𝑖𝑎𝑙

 . The computed trial elastic stress is relaxed by the plastic-corrector 

method as described in Table 3-1. In Table 3-1, 𝑄𝑖𝑗  is the hardening tensor and  𝜆   is the inelastic 

multiplier and shows the magnitude of inelastic deformation and 𝜇 is the shear modulus. The second 

order tensor 𝑛 𝑖𝑗  defines the direction of the inelastic flow, for example in the case of associated 

formulation it is: 𝑛 𝑖𝑗  = 𝜕𝜓/𝜕𝜍𝑖𝑗 , where the yield surface is 𝜓 = 0. The deviatoric stress and back stress 

tensors are respectively identified by, 𝑠𝑖𝑗 = 𝜍𝑖𝑗 − 1

3
𝜍𝑚𝑚 𝐼𝑖𝑗  and 𝛼𝑖𝑗 = 𝑋𝑖𝑗 − 1

3
𝑋𝑚𝑚 𝐼𝑖𝑗 . 

Although the general outlines of this iterative solution algorithm hold for the inelastic analysis of the 

amorphous and crystalline phases, special cares should be given to implement this iterative solution 

algorithm precisely for both of these phases. A more detailed description of the implemented numerical 

method to obtain the inelastic response in these phases is respectively summarized in Table 3-2 and 3-3. 

The proposed crystalline solution algorithm is stable even in the case of activation of several slippage 

systems. 

Fig. 3-9 shows the implementation of the proposed inelastic analysis approach for an SMP based 

particulate system [42]. The matrix is made from a polystyrene SMP (Veriflex, CRG Industries) with 

embedded thermoplastic particles (Abifor 501; ABIFOR Company).  Table 3-3 shows the material 

constants for this SMP system. 

3.7.2 Micromechanical Computation Module: 

One of the most vital decisions in a micromechanical based analysis is the configuration of the RVE. An 

RVE should contain the most dominant phases with direct impact on overall mechanical responses, 

while it should result in a simple model. This configuration is obtained through examination of physical 
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facts and experimental results. Since during a large deformation the microstructure of an RVE may 

change an incremental formulation is required to capture these changes [21]. Dividing the local RVE 

into the several sub-phases requires specific numerical approach to develop the micromechanical related 

tensors. Due to the fact that inversing fourth order tensors encounter with some numerical difficulties, an 

alternative notation is adopted here to resolve this issue. In the context of the solid mechanics 

transferring the fourth order material tensors to a sixth order matrix is widely used [97]. In appendix A 

this conversion is elaborated in detail. In this computational module the micromechanics governing 

relations are enforced to obtain the local-overall relations. 

Table 3-1 Iterative algorithm for an elastic-predictor/return mapping solution 

1- Geometric update for a deformation controlled loading: 

 𝑢𝑖𝑗 ; 𝐹𝑖𝑗𝑢 = 𝐼𝑖𝑗 + 𝛻𝑢𝑖𝑗 ; 𝐹𝑖𝑗 𝑛+1 
= 𝐹𝑖𝑘𝑢 𝐹𝑘𝑗(𝑛)

;  

2- Elastic predictor: 𝐹𝑝 𝑖𝑗 𝑛+1 
= 𝐹𝑝 𝑖𝑗 𝑛 

; 𝐹𝑒 𝑖𝑗 𝑛+1 
= 𝐹𝑖𝑗 𝑛+1 𝐹𝑝 𝑖𝑗 𝑛 −1

; 𝜓 = 𝜓  𝐸𝑖𝑗𝑒  𝑛+1 
, 𝐸𝑖𝑗𝑝  𝑛 

, 𝑄𝑖𝑗   𝜍𝑖𝑗  𝑛+1 𝑇𝑟𝑖𝑎𝑙
; 

3- Yield condition: 𝛹 σij
 n+1 , Qij

 n+1  ≤ 0? 

Yes: GO TO 1 

No: continue to step 4, 

4- Plastic-corrector: 𝜍𝑖𝑗(𝑛+1)
= 𝜍𝑖𝑗  𝑛+1 𝑇𝑟𝑖𝑎𝑙 − 2𝜇 𝜆  𝑛+1,𝛯  𝑛 𝑖 𝑛+1 

 and Q ij = λ  𝑛+1,𝛯 Hij
 n+1 

; 𝑛 𝑖𝑗 𝑛+1 
=

𝜁𝑖𝑗(𝑛+1) 𝜁𝑖𝑗(𝑛+1) ; 𝜁𝑖𝑗(𝑛+1)
= 𝑠𝑖𝑗(𝑛+1) − 𝛼𝑖𝑗(𝑛+1)

, 

where 𝛯  shows the iteration number and λ  𝑛+1,𝛯 is a primary value for the plastic 

multiplier and λ  𝑛+1,𝛯+1  is its updated value. The updated value is obtained by enforcing 

the consistency condition (inviscid flow) or viscoplastic potential (viscid flow) [40]; 

 𝜖 ijp n+1,𝛯+1 
=  2

3
 λ   n+1,𝛯+1  𝑛 ij

 n+1 
, 

5- Convergence check: 𝑒𝑟𝑟𝑜𝑟 =
 𝜆   𝑛+1,𝛯 +1 −𝜆   𝑛+1,𝛯  𝜆   𝑛+1,𝛯 < 𝑇𝑂𝐿 ? ? ? 

YES:  

(a) store σij
 n+1 

, (b) compute Fij
e  n+1 

 from updated stress state σij
 n+1 

, (c) Fij
p n+1 

=

Fij
 n+1 

Fij
e  n+1 −1

, (d) store Qij
 n+1 

, (e) 𝜖𝑖𝑗𝑝 (𝑛+1)
= 𝜖𝑖𝑗𝑝 (𝑛)

+ 𝜖 𝑖𝑗𝑝  𝑛+1 
, (f) 𝛼𝑖𝑗(𝑛+1)

= 𝛼𝑖𝑗(𝑛)
+𝛼 𝑖𝑗(𝑛+1)

, (g) 𝜆  𝑛+1,𝛯 = 𝜆  𝑛+1,𝛯+1  and GO TO NEXT LOAD STEP 

NO: 

 GO TO STEP 4 WITH  𝜆  𝑛+1,𝛯 = 𝜆  𝑛+1,𝛯+1  
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Table 3-2 Outlines for a finite strain elasto-viscoplastic strain controlled elastic-predictor/plastic-

correctorsolutionfortheamorphousphase.(Superscripts“(n)”and“(n+1)”indicaterespectively
the previous and current load steps.) 

Elastic Predictor: 

1-The stretch is given through the loading condition: 

 𝜆1
 𝑛+1 

= 1 +  𝛥𝜖1
𝑁𝑡=0  

2- Incompressibility assumption, 𝜆1
(𝑛+1)𝜆2

(𝑛+1)𝜆3
(𝑛+1)

= 1, together with isotropy or anisotropy 

conditions are enforced to obtain 𝜆2
(𝑛+1)

 and 𝜆3
(𝑛+1)

. Then the resultant stretches due to uniaxial 

tension and isotropy assumption together with the right Cauchy-Green tensors are given by: 𝜆2
(𝑛+1)

= 𝜆3
(𝑛+1)

=  1/𝜆1

(𝑛)
 and 𝐶𝑖𝑗 𝑛+1 

= 𝐹𝑖𝑘 𝑛+1 𝑇𝐹𝑘𝑗 𝑛+1 
 

3-Updated deformation gradient and right Cauchy-Green tensor are computed as: 𝐹𝑖𝑗(𝑛+1)
=  𝐼𝑖𝑘 + 𝛥𝜖𝑖𝑘  𝐹𝑘𝑗 𝑛 

, and 𝐶𝑖𝑗 𝑛+1 
= 𝐹𝑖𝑘 𝑛+1 𝑇𝐹𝑘𝑗 𝑛+1 

 

4- The previous, 𝜍𝑖𝑗 𝑛 𝑇𝑟𝑖𝑎𝑙
, and current, 𝜍𝑖𝑗 𝑛+1 𝑇𝑟𝑖𝑎𝑙  

, trial elastic stress tensor are captured by 

incorporating the Anand relation [96]: 𝜍𝑖𝑗 𝑛 𝑇𝑟𝑖𝑎𝑙
=

1 𝐹𝑖𝑗 𝑛  𝐸𝑖𝑗𝑘𝑙 ∗ 𝑙𝑜𝑔   𝐶𝑘𝑙(𝑛) , 𝜍𝑖𝑗 𝑛+1 𝑇𝑟𝑖𝑎𝑙  
=

1 𝐹𝑖𝑗 𝑛+1  𝐸𝑖𝑗𝑘𝑙 ∗ 𝑙𝑜𝑔   𝐶𝑘𝑙(𝑛+1)  , 

5- The stress increment tensor, 𝛥𝜍𝑖𝑗 , and the updated deviatoric stress tensor, 𝑠𝑖𝑗(𝑛+1)
, are 

respectively given by:  Δ𝜍𝑖𝑗 = 𝜍𝑖𝑗(𝑛+1) − 𝜍𝑖𝑗(𝑛)
, 𝑠𝑖𝑗(𝑛+1)

= 𝜍𝑖𝑗(𝑛+1) − 1

3
𝜍𝑘𝑘(𝑛+1)𝛿𝑖𝑗 , 

Plastic Corrector:  

6- Plastic gradient, 𝐹𝑖𝑗𝑝  𝑛+1 
, plastic right Cauchy-Green tensors, 𝐶𝑖𝑗𝑝  𝑛+1 

, and 𝜍𝑖𝑗(𝑛+1)
 and 𝑠𝑖𝑗(𝑛+1)

are updated by a primary plastic strain 𝜖𝑖𝑗𝑝 (𝑛+1,𝛯)
 where 𝛯 shows the number of iteration: 𝐹𝑖𝑗𝑝  𝑛+1 

=  𝐼𝑖𝑗 + 𝜖𝑖𝑗𝑝 (𝑛+1,𝛯) , 𝐶𝑖𝑗𝑝  𝑛+1 
= 𝐹𝑖𝑘𝑝  𝑛+1 𝑇𝐹𝑘𝑗 𝑛+1 

,  𝜍𝑖𝑗(𝑛+1)
= 𝜍𝑖𝑗 𝑛+1 𝑇𝑟𝑖𝑎𝑙  − 1 𝐹𝑖𝑗𝑝  𝑛+1  𝐸𝑖𝑗𝑘𝑙 log   𝐶𝑘𝑙𝑝  𝑛+1  , 𝑠𝑖𝑗𝑝  𝑛+1 

= 𝜍𝑖𝑗𝑝 (𝑛+1) − 1

3
𝜍𝑘𝑘𝑝 (𝑛+1)𝛿𝑖𝑗 , 

7- Plastic strain is updated from primary value 𝜖𝑖𝑗𝑝  𝑛+1,𝛯 
 to a more updated value 𝜖𝑖𝑗𝑝  𝑛+1,𝛯+1 

. 

This is accomplished by incorporating the corrected stress, 𝜍𝑖𝑗(𝑛+1)
, in the associated inelastic 

constitutive equations. The convergence error is checked by two inelastic strains resulted from 

two subsequent iteration numbers 𝛯th and  𝛯 + 1 th as stated in the following: 𝑒 =
 𝜖𝑖𝑗𝑝  𝑛+1,𝛯 +1 −𝜖𝑖𝑗𝑝  𝑛+1,𝛯  𝜖𝑖𝑗𝑝 (𝑛 +1,𝛯 ) < 𝑇𝑂𝐿 ? ? ?, 

8- YES:  

GO TO THE NEXT LOAD STEP.  

NO:  

GO TO STEP 6 with: 𝜖𝑖𝑗𝑝  𝑛 ,𝛯 
= 𝜖𝑖𝑗𝑝  𝑛 ,𝛯+1 

and repeat the iteration with this updated plastic strain. 
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Figure 3-9 Simulation and experimental results for a SMP system with embedded thermoplastic 

particles [42] 

 

Table 3-3 Material constants for the SMP system presented in Fig. 3-9 𝑛𝑘𝑇 𝛾 0(sec-1) 𝐴  𝜆𝐿 𝑘 𝑇 (K) 𝜍𝑦 (MPa) 

3.5 1 3.31e-27 50 1.73 1.38e-23 298 40 

 

 

3.7.3 Macroscale Computation Module: 

The micromechanical based analysis may be utilized to find the overall behavior of the macroscale RVE 

as a function of the predefined incremental surface boundary conditions on the microscale sub-phases. 

Or vice-versa it can be used to establish the local mechanical behaviors based on predefined macroscale 

loading condition on the RVE surface. The microscale surface tractions should result in a self-

equilibrating traction field on the boundary of macroscopic RVE or microscale surface deformations 

should yield a self-compatible displacement field in the macroscopic RVE. The macroscale stress and 

strain state in a continuum media are respectively denoted with tensors Σ𝑖𝑗  and E𝑖𝑗  herein. In 

micromechanics it is assumed that averaged uniform stress, 𝜍 𝑖𝑗 , and strain, 𝜖 𝑖𝑗 , tensors in an RVE are 

equal to those applied on the continuum media, Σ𝑖𝑗 = 𝜍 𝑖𝑗  and 𝐸𝑖𝑗 = 𝜖 𝑖𝑗 . Then 𝜍 𝑖𝑗  and  𝜖 𝑖𝑗  should satisfy 

the continuum equilibrium equations and strain-displacement relations. Then the computed microscale 
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mechanical responses are enforced to (i) build the macroscale constitutive behavior and (ii) ensure the 

compatibility between all sub-phases. 

 

Table 3-4 Inelastic solution algorithm based on elastic-predictor/plastic-corrector for the 

crystallinephase(Superscripts“(n)”and“(n+1)”indicaterespectivelythepreviousandcurrent
load steps.). 

1- Chain slip systems are introduced to the computation module, 

Elastic Predictor: 

2- Same loading condition as outlined in Table 3-2 is applied. Due to the incremental 

form of constitutive equation of the crystalline phase the incremental form of Cauchy 

stresses is utilized to integrate over the loading path, i.e. Δ𝜍𝑖𝑗(𝑛+1)
= 𝐸𝑖𝑗𝑘𝑙 Δ𝜖𝑘𝑙 , 

Plastic Corrector:  

3- Let Ξ  indicates the iteration number. The stress increment is updated based on a 

primary value of inelastic strain rate:  Δ𝜍𝑖𝑗(𝑛+1)
= 𝐸𝑖𝑗𝑘𝑙  Δ𝜖𝑘𝑙 − 𝛥𝜖𝑘𝑙𝑝  𝑛+1,𝛯  , 

4- For every slip systems values of 𝑅𝑖𝑗(𝛼)
, 𝐴𝑖𝑗 𝛼 

, 𝐶𝑖𝑗 , 𝑆𝑖𝑗𝑐∗, 𝜏 𝛼  and 𝛾  𝛼  are computed to 

obtain 𝐷𝑖𝑗𝑐  𝑛+1,𝛯+1 
. Maximum 𝜏 𝛼  shows the dominant slip mechanism and its 

corresponding 𝛾  𝛼  in a two subsequent iteration numbers Ξth and (𝛯 + 1)th is stored to 

compute the error as: 𝑒 =
 𝛾  𝛼  𝛯 +1 −𝛾  𝛼  𝛯  𝛾  𝛼 (𝛯 ) , 

5- If converged go to the step 6, if not converged go to the step 3 with  𝛥𝜖𝑘𝑙𝑝  𝑛+1,𝛯 
=𝐷𝑖𝑗𝑐  𝑛+1,𝛯+1 

, 

6- Update the crystallographic axes, 𝑐𝑖 , and lattice spin tensor, 𝑊𝑖𝑗∗ , and then go to the 

next load step.   

 

 

The TFA model utilizes the Eshelby inclusion analytical solutions to compose the macroscopic RVE and 

to describe the size and shape of inclusions. These inclusions are assumed to be perfectly bonded to the 

matrix and have standard geometries, e.g. ellipsoidal, fibrous or penny shape inclusions. The macroscale 

mixed boundary conditions are introduced as applied macro strain,  𝛦𝑖𝑗 , on displacement defined 

boundary, 𝛤𝑢 , and macro stress, Σ𝑖𝑗 , on stress defined boundary, 𝛤𝛴, in which 𝛤𝑢 ∩ 𝛤𝛴 = ∅ and 𝛤𝑢 ∪ 𝛤𝛴 =𝛤. The strain, 𝐴𝑖𝑗𝑘𝑙 𝑟 
, and stress, 𝐵𝑖𝑗𝑘𝑙 𝑟 

, concentration tensors are known from trivial elastic solution of Eq. 

(3-41); and they are utilized to derive the microscale loading condition, e.g. microscale local stress 

tensors, 𝜍𝑖𝑗 0 
 and 𝜍𝑖𝑗 1 

, or strain tensors, 𝜖𝑖𝑗 0 
 and 𝜖𝑖𝑗 1 

. These solutions ensure the compatibility in the 
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deformation field and equilibrium in the stress field. These solutions are utilized to find the microscale 

loading conditions. Once the non-linearity is introduced to the material system the updated values based 

on Eq. (3-36) is used to update the curve fit results. The configuration of the inclusion in the RVE 

(morphological texture) is evaluated with respect to Eqs. (25) and (26) where interfacial vectors are 

updated base on the deformation gradients. Fig. 3-10 shows an overall representation of proposed 

computational approach, described in Section 6. 

 

 

 

Figure 3-10 A simplified flowchart for the implementation of the proposed computational strategy 

 

Fine load increments together with running several iterative numerical processes result in a 

computationally stiff problem. A petascale programming may be required to empower the computational 

resources with incorporating parallel processing techniques. The proposed numerical approach allows 

the designers to maximize the parallel code resources and allocate several computational threads to solve 

the problem. This numerical methodology may reduce the computational time significantly especially 

when a complex structure is evaluated.   

3.8 Experimental observations and numerical implementations  

The mechanical properties of a semicrystalline copolymer made from poly (tetramethyleneoxide) 

(PTMO) as the soft segment in conjunction with crystallizable poly (trimethyleneterephthalate)(PTT) as 
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the hard segment has been investigated by [45]. Table 3-5 gives the reported material properties for 

different volume fractions of hard and soft segments [45]. The crystalline micromechanical 

computational module is adjusted to capture the 100 wt% hard segment and the amorphous 

micromechanical computational module is designed to capture the 20 wt% hard segment sample (nearest 

experimental result to the 100wt% soft segment). Table 3-5 shows the related material parameters for 

these simulations and Table 3-6 presents the slippage systems in a crystalline polymeric system with 

hypothetical resistances where notations “{}” and “<>” shows respectively the family of planes and 

directions. 

 

Table 3-5 The tensile properties of PTT–PTMO copolymer [45] 

Sample E(MPa) 

100 wt% Hard Segment 2102.8 

80 wt% Hard Segment 711.2 

40 wt% Hard Segment 130.2 

20 wt% Hard Segment 15.9 

 

Table 3-6 Material parameters for soft and hard segments computational modules 

Amorphous Computational Module (Soft Segment (0) ) 

nkT 

(MPa) 
γ 0(sec-1) A ζ λL  k T (K) σy(MPa) E(MPa) 

20 1e-4 
3.31e-

27 
1e-5 0.316 

1.38e-

23 
298 5 16 

Crystalline  Computational Module (Hard Segment (1) ) 

n γ 0 (sec-1) Reference Cry. Axes 
Slippage 

Systems 
σy(MPa) E(MPa) 

4.5 3 (0.5,0.5,0.5) See Table (3-7) 70 2102.8 
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Table 3-7 Hypothetical crystalline slippage systems [98] 

Slippage Type Indicial Notation Normalized resistance (𝑔𝛼/𝜏0) 

Chain Slip 

(100)[001] 1 

(010)[001] 2.5 

{110}[001] 2.5 

Transverse Slip 

(100)[010] 1.6 

(010)[100] 2.5 

{110}<110> 2.5 

 

Figs. 11 and 12 show the simulation results together with the tension test results [98] for the mentioned 

two phase semicrystalline copolymer system. These experimental test results are utilized to obtain the 𝜒(0) and 𝜒(1) for the two volume fractions as shown in each graph. Then a linear curve is fitted on these 

correction parameters to obtain the following empirical relations: 

  𝜒(0) = −1.05 × 𝑐 0 + 1.71 𝜒(1) = 0.375 × 𝑐 1 + 0.58 

(3-53)  

 

Eq. (3-57) is then utilized to capture the mechanical responses of the semicrystalline polymeric material 

systems with different volume fractions of the hard and soft segments, as shown in Fig. 3-13. 

Next experimental test result corresponds to the polyurethane SMP reported by Tobushi et al. [99]. Due 

to the lack of the experimental results for the individual micro constituents of this semicrystalline 

polymer-based material system, two hypothetical mechanical responses are assumed for the amorphous 

and crystalline phases to show the capability of the proposed micromechanical theory. The behaviors of 

these micro constituents are suggested respectively with red and black lines in Fig. 3-14 while blue line 

shows a semicrystalline system with 40 wt% degree of crystallinity. The correction parameters are 𝜒(0) = 0.73 and 𝜒(1) = 0.8 for this set of test results. The material parameters for the amorphous and 

crystalline phases are presented in Table 3-8. 

Fig. 3-15 shows the micromechanical simulation results for a semicrystalline polyurethane SMP with 

different content of crystalline volume fractions and with fixed values for correction parameters 𝜒(0) and 
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𝜒(1). These hypothetical simulations in Fig. 3-15 confirm the role of crystalline segment volume fraction 

in stiffening the mechanical responses. As shown in this figure, the higher the amorphous phase content 

the softer the mechanical responses.  

 

Figure 3-11 simulation and experimental results for a two-phase semicrystalline copolymer, 

experiments are after [45] 

 

Figure 3-12 simulation and experimental results for a two-phase semicrystalline copolymer, 

experiments are after [45] 
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Figure 3-13 micromechanical simulations based on obtained empirical relations for correction 

factors 𝛘(𝟎) and 𝛘 𝟏  

 

Figure 3-14 simulation and experimental results for a two phase semicrystalline polyurethane 

SMP (experiments are after [99]) 

The simulation results of the proposed micromechanical theory heavily depend on (i) material 

parameters in each sub-phase, (ii) volume fraction of each micro constituent and (iii) correction factors. 

The material parameters for each sub-phase are obtained based on the standard procedures available in 

the literature [60, 65, 79, 83]. While the volume fractions is a known data from the experimental 

procedures, the correction factors are required to be established based on the numerical curve fitting 
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techniques. Here an algorithm is developed to iterate the solutions with different values of correction 

factors until the deviation from the experimental data and the simulation bounds in an acceptable range.  

Table 3-8 Material parameters for crystalline and amorphous computational modules 

Amorphous Computational Module (Soft Segment (0) ) 𝑛𝑘𝑇 

(MPa) 

𝛾 0(sec-1) 𝐴 𝜁 𝜆𝐿 𝑘 𝑇 (K) 𝜍𝑦 (MPa)  E(MPa) 

10 1e-6 3.31e-

27 

1e-2 0.9747 1.38e-

23 

308 15 300 

Crystalline  Computational Module (Hard Segment (1) ) 

n 𝛾 0 (sec-

1) 

Reference Cry. Axes Slippage 

Systems 

𝜍𝑦 (MPa) E(MPa) 

4 5 (0.5,0.5,0.5) See Table (3-7) 60 700 

 

 

Figure 3-15 Micromechanical simulation for semicrystalline polyurethane SMP with different 

crystalline volume fraction content 

In the case of localized evaluation of inelastic fields within the RVE, for the first example a simple two-

phase RVE under uniaxial strain-controlled loading along the x direction is considered, as shown in Fig. 

3-16. The matrix is made from amorphous phase and the ellipsoidal inclusion is made from crystalline 

phase. Each of these phase follow its respective constitutive relations as discussed before. Six 
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computational seeds are assembled on the middle plane of the RVE and the proposed atomic operation is 

applied on this system. The primary microscale strain distribution for this configuration is given by a 4th 

degree curve fit, as depicted in Fig. 3-16, which is fitted on boundary and primary elastic solution of 

local strains. The data point for the curve fitting are extreme values of elastic solution for local strains, 

given by the micromechanics elastic solutions, i.e. 𝐴 0 𝐸 and 𝐴 1 𝐸 and boundary values which are 𝐸 at 𝑥 = 0  and 𝑥 = 𝐵 . This curve fitting is introduced as the local loading condition to the main 

computational module and once the non-linear effects are introduced into the system this 4th degree 

polynomial curve is updated based on the latest local inelastic strains.  

 

Figure 3-16 Microscale strain distribution for a two-phase RVE with schematic RVE 

configuration 

The proposed atomic computation resolves the deficiency of the classical two-phase TFA solution 

which results in the uniform inelastic strain distributions over the sub-phases. The local distribution of 

inelastic strain is depicted at the mid-plane of the RVE, 𝑦/𝐴 = 0.5, in Fig. 3-17 where three level of 

macroscale strain 𝐸 are shown. The magnitudes of the local inelastic strains are gradually increased in 

all seeds while at higher strain levels the gap between inelastic strains in the inclusion and matrix 

enlarges. These localized data can easily be utilized for defining debonding criteria between matrix and 

inclusion. 

In a more general case the curve fit results for a two-phase RVE is shown in Fig. 3-18, where the 

primary microscale strain distribution from micromechanics elastic solution and the 6th degree curve fit 

is depicted in the RVE. Fig. 3-19 shows the local inelastic strain distribution at middle plane of the RVE 

in which two macroscale strain levels are depicted.  
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Figure 3-17 Microscale inelastic strain distribution for a two-phase RVE with 6 computational 

seeds placed at the middle plane of the RVE, y/A=0.5. The macroscale strain levels are: (a) 𝐄 = 𝟏𝟏%, (b) 𝐄 = 𝟐𝟏% and (c) 𝐄 = 𝟒𝟏% 

 

Figure 3-18 Microscale strain distribution for a three-phase RVE with schematic RVE 

configuration 
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Figure 3-19 Microscale inelastic strain distribution for a three-phase RVE with 30 computational 

seeds placed at the middle plane of the RVE, y/A=0.5. The macroscale strain levels are (a) 𝐄 = 𝟏% 

and (b) 𝐄 = 𝟏𝟑% 

At 𝐸 = 1% the dominant inelastic strains are accumulated in inclusions while in 𝐸 = 13%  the gap 

between inelastic strain in matrix and inclusion is getting significant. These data can provide the 

necessary insight for local failure analysis within a multiphase material system. 

 

3.9 Conclusions  

The multiscale analysis within the micromechanics framework is refined in order to obtain the 

computational competency for a localized inelastic and damage analysis within the RVE. In the case of 

dilute heterogeneous media, the classical two-phase TFA solution is generalized in order to apply it on 

local two-phase RVEs. The atomic computation concept is then introduced where a hypothetical 

computational layer is assembled over the RVE. This hypothetical layer consists of a series of 

computational seeds which are dispersed systematically over this layer. The mentioned local two-phase 

RVEs in the dilute heterogeneous media utilize this generalized two-phase TFA solution to identify the 

microscale strain or stress distributions. While the material is responding elastically these microscale 

stress and strain distributions are trivial and for each of the local two-phase RVEs, the maximum and 

minimum strains or stresses are defined by the trivial elastic solution. A basic curve fit over these data 

and their corresponding boundary values approximately monitors the microscale stress and strain 

distribution over the macroscopic RVE. Once the non-linearity is introduced into the material systems 

these microscale fields are updated incrementally based on the latest local inelastic deformation. Hence 

the curve fit results can monitor the state of microscale stress and strain distributions over the 

macroscopic RVE. The computational seeds are fed by these microscale strain and stress distributions 

which are provided by modified TFA solution. The position of these computational seeds defines the 

corresponding governing equations to be utilized for updating the local inelastic strain or residual stress. 

In other words, the local loading on each of these seeds are passed to their corresponding constitutive 
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equations to update the local state of inelastic strain or residual stress. This atomic computational 

approach competes with FEA approach where these localized evaluations are obtainable by fine meshes. 

While several mesh refinement are required in an FEA analysis to ensure that the stress singularities are 

not involved, these methods are highly dependent on the microstructure of the RVE and once the 

configuration of the RVE is changed a new FEA needs to be implemented. This fact promotes the TFA 

based micromechanics multiscale analysis in which the constitutive equations of the system are 

established and the microstructure of the RVE is easily changed when the corresponding Eshelby 

inclusion tensor is substituted. The stiff inelastic TFA responses are then addressed. The modified TFA 

method softens the TFA results and provides the mathematical competency to capture the irregular 

inelastic deformation of glassy polymers. 

     This scheme is then applied on the semicrystalline glassy polymer-based material systems where the 

spherulite crystalline phases are embraced with the amorphous phase. An RVE within the 

micromechanics is defined where matrix is constituted from the amorphous phase and the crystalline 

phase are introduced as inclusions in this matrix. Each of these phases follows their respective 

constitutive equations where molecular alignment in the amorphous phase and crystalline texture 

updates in the crystalline phase are taken into account. The crystalline inclusion may undergo 

deformation and rotation during a finite deformation process which results in a morphological texture 

changes. This texture update is considered based on a predefined normal vector on the interface of the 

inclusion where changes in the magnitude and direction of this interfacial vector represent the 

morphological changes. The interfacial vector is updated by enforcing the deformation compatibility at 

the boundary surface of the inclusion and matrix.  

    The proposed generalized two-phase micromechanics solution together with atomic computation 

scheme appears to be applicable on multiscale analysis of a very general multiphase dilute system. This 

multiscale analysis scheme assists the designers to foretell the mechanical responses of the multiphase 

material system and reduce the trial manufacturing costs substantially, while computational expensive 

FEA are avoided. The developed atomic computation scheme, which provides the localized evaluation 

of the inelastic deformation or damage, provides a supplementary competency for the multiscale 

analysis within the micromechanics framework. While these simulations are of utmost importance to 

optimize the material system design, the localized data aid analyzers to find the microscale failure 

modes and to prevent or heal the damages at their initiation stage. 
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CHAPTER 4 A MULTISCALE VISCOPLASTIC THEORY OF SHAPE MEMORY POLYMER 

FIBERS 

 

4.1 Nomenclature 𝐴𝑖𝑗 𝛼 
 skwe-symmetry part of the Schmid tensor   𝐴𝑖𝑗𝑘𝑙 𝑟 
 strain concentration tensor   𝐵𝑖𝑗𝑘𝑙 𝑟 
 stress concentration tensor   𝑐𝑖  crystallographic axes vector  𝑑𝑖𝑗  Lagrangian strain tensor 𝑑𝑖𝑗𝑒  Lagrangian elastic strain tensor  𝑑𝑖𝑗𝑝  Lagrangian plastic strain tensor 𝐷𝑖𝑗  Eulerian strain tensor 𝐷𝑖𝑗𝑒  Eulerian elastic strain tensor 𝐷𝑖𝑗𝑝   Eulerian plastic strain tensor 𝐷 𝑖𝑗𝑐  inelastic crystalline stretch rate tensor   

Fij total deformation gradient tensor 𝐹𝑖𝑗𝑒  elastic deformation gradient tensor 𝐹𝑖𝑗𝑝   plastic deformation gradient  tensor 𝐿𝑖𝑗𝑐   crystalline velocity gradient tenor 𝐿𝑖𝑗𝑘𝑙   stiffness tensor 𝑀𝑖𝑗𝑘𝑙   compliance tensor 𝜍𝑖𝑗  Cauchy stress tensor 𝜖𝑖𝑗  strain tensor 
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𝜏𝑖𝑗𝑝  first Piola-Kirchhoff tensor 𝜏 𝛼  crystalline phase Cauchy shear stress, associated with the 𝛼th slippage system  𝜏  amorphous phase shearing stress 𝜇 shear modulus 𝜈 Poisson‟s ratio 𝛼𝑖𝑗  amorphous phase back stress tensor  𝑋𝑖𝑗  amorphous phase deviatoric back stress tensor  𝑆𝑖𝑗𝑝  second Piola-Kirchhoff tensor 𝑆𝑖𝑗𝑐   deviatoric Cauchy stress tensor 𝑆𝑖𝑗𝑐∗  crystalline deviatoric Cauchy stress tensor, projected at the 𝑐𝑖  direction 𝑆𝑖𝑗𝑐𝑝   deviatoric Cauchy stress tensor, projected perpendicular to the 𝑐𝑖  direction 𝑠𝑖𝑗∗   driving stress tensor in the amorphous phase 𝑠  amorphous athermal shear strength  𝑅𝑖𝑗  rotation tenor 𝑈𝑖𝑗  stretch tensor 𝑅𝑖𝑗 𝛼 
 symmetric part of the Schmid tensor   𝛾  𝛼  crystalline shearing strain rate associated with 𝛼th slippage system  𝛾 𝑝   amorphous shearing strain rate  𝑊𝑖𝑗𝑐  spin tensor  𝑊𝑖𝑗𝑐∗ lattice spin tensor  

4.2 Introduction 

Damage healing in thermoset polymer composite structures has become a popular topic recently [1]. 

Several healing schemes have been reported in the literature primarily for healing microcracks with 

narrow opening, including incorporation of external healing agent such as liquid healing agent by 

microcapsules [2], hollow fibers [3], and microvascular networks [4], and solid healing agent such as 
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embedded thermoplastic particles [5, 6]. Some polymers such as ionomers [7, 8] and thermally 

reversible covalent bonds (TRCB) [9] by themselves possess healing capabilities. A combination of 

microcapsule and shape memory alloy (SMA) wire has also been studied [10]. Because some damages, 

such as impact damages, are usually in the structural-length scale, the main challenge to heal these 

macrocracks remains the closure of such a wide opening. The existing healing systems are unable to 

very effectively heal macroscopic cracks. For instance, in the case of the microencapsulated liquid 

healing agent, a large amount of healing agent is needed in order to heal macrocracks. However, 

incorporation of a large amount of healing agent will significantly alter the physical/mechanical 

properties of the host structure. Also, large capsules/thick hollow fibers themselves may become 

potential defects when the encased healing agent is released. For ionomers and TRCB polymers, they 

need external help to bring the fractured surfaces in contact before chemical bonds can be established. 

While Kirkby et al. [10] proposed a very smart idea, one limitation is that the SMA is expensive, heavy 

weight, and most critically, its recovery force cannot be effectively transferred because the polymer 

matrix becomes soft at the SMA recovery temperature while the SMA is very stiff. Also, the “run-off” 
of the liquid monomer in wide-opened crack is another challenge before polymerization occurs. 

Therefore, the grand challenge facing the scientific community is how to heal structural-length scale 

damage such as impact damage repeatedly, efficiently, and molecularly. 

Recently, a bio-mimetic healing scheme has been proposed and validated to repeatedly and molecularly 

heal macroscopic crack [11-13]. It utilizes the confined shape recovery of the SMP matrix for the 

purpose of sealing or closing cracks and the incorporated thermoplastic particles for molecular length-

scale healing. The key for the success of this scheme is that the volume of the SMP matrix must be 

reduced during programming and external confinement must be provided during shape recovery [11]. It 

has been proved that volume reduction can be realized through compression programming [11, 14] and 

external confinement can be provided through architectural design of composite structures such as grid 

stiffened SMP cored sandwich [15], 3-D woven fabric reinforced SMP composite [16], or even the 

sandwich skin [17]. In order to speed up the programming process, cold-compression programming of 

thermoset SMP has been proposed, tested, and modeled [18]. However, this bio-inspired scheme cannot 

be extended to healing of conventional thermoset polymers because regular thermoset polymers do not 

have the shape memory capabilities. 

 In order to repeatedly and molecularly heal macroscopic cracks in conventional thermoset polymers, we 

propose a new bio-mimetic scheme: a SMP fiber z-pinned, continuous SMP fiber reinforced polymer 

grid skeleton that is filled in with conventional thermosetting polymer dispersed with thermoplastic 

particles. We envision the proposed composite will work similar to the two-step healing of human skin: 

close then heal (CTH), i.e., close the wound by bleeding and clotting or surgery (suture or sew the skin 

together) before new cells gradually grow. Particularly, we propose to use the constrained shape 

recovery of SMP ribs and z-pins for the purpose of narrowing/closing the macroscopic crack (Step 1) 

and molten thermoplastic particles for healing molecularly (Step 2). The basic idea is that the SMP 

fibers are strain hardened through cold-drawing programming before fabrication. When an impact is 

identified (by surface indentation, portable non-destructive testing such as ultrasound, etc.), localized 
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heating surrounding the impact damaged bay(s) or cell(s) will be conducted using contact or non-contact 

heating such as infrared light. Once the local temperature in the SMP ribs and z-pins are higher than the 

transition temperature, the SMP ribs and z-pins surrounding the damaged bay(s) remember their original 

shape and tend to shrink. Due to the constraints by the neighboring “cold” bays (which have high 
stiffness), the shrinkage of the SMP ribs and z-pins are not free. A 3-D compressive force will be 

applied to the boundary of the damaged bay(s), leading to narrowing or closing of the cracks with wide 

opening. This is the Step 1 of the bio-mimetic scheme. Further heating leads to melting of the embedded 

thermoplastic particles, and the molten thermoplastic will be sucked into the narrowed crack through 

capillary force and diffused into the fractured thermoset polymer matrix due to concentration gradient 

and recovery compressive force. When cooling down, the thermoplastic hardens and glues the crack 

molecularly. This completes one molecular damage-healing cycle. As indicated by Li and Uppu [41], 

each constrained shape recovery process also represents a new training cycle to the SMP ribs and z-pins, 

suggesting that SMP fibers only need to be programmed one time before fabrication. Subsequent 

programming will be autonomous by coupling with shape recovery (healing) of the sandwich. Together 

with the fact that the thermoplastic particles can also be repeatedly melted and hardened, the damage-

healing cycle is repeatable. The working principle can be visualized by Fig. 4-2. It is noted that while 

the bio-inspired self-healing is cited as two steps, it actually just needs one step in practice – heating up 

all the way to the melting temperature of the thermoplastic particles; the SMP ribs and z-pins will shrink 

during the course of heating. In Fig. 4-1, Tg denotes the glass transition temperature of the SMP fiber; 

Tm represents the melting temperature of thermoplastic particles (TPs); Tgp indicates the glass transition 

temperature of the thermoset polymer; and Tc denotes the curing temperature of the thermoset polymer. 

The basic requirement for the designed healing system is: Tgp>Tm>Tg>Tc (Color change visualizes 

temperature change in the figure). 

In order to validate the healing scheme in Fig. 4-1, a finite element analysis was conducted on a SMP 

orthogrid stiffened thermoset polymer composite; see a schematic in Fig. 4-2(a). The central bay in Fig. 

4-2(a) contains a macroscale crack which is an ellipsoidal hole with major diameter of 20 mm, minor 

diameter of 5 mm, and height of 5 mm. Heating is conducted locally on the central bay and its 

surrounding four ribs. The following parameters were assumed: the SMP fiber reinforced rib has a 

modulus of 600MPa and maximum recovery stress of 10MPa, and the polymer composite in the bay has 

a modulus of 1,000MPa. Solid Tetrahedral elements with 10 nodes are used with the number of elements 

of 8,420. Once the localized recovery stresses overcome the stiffness of the bay the walls of the crack is 

collapsed together, as shown in magnified view in Fig. 4-2(b). Also the displacement field in Y direction 

is shown in Fig. 4-2(b), which confirms that the walls of the crack march towards each other due to the 

applied localized stresses from the SMP ribs. Fig 4-2(c) to 4-2(f) show respectively the normal stress at 

x, y directions and shear stress 𝜏𝑥𝑦  and von-Mises equivalent stress. The state of stress confirms that the 

recovered stresses are within yield limit of the matrix and they will not cause more damages. 

Furthermore, due to the elevated temperature the matrix is expected to be softened and released stresses 

by SMP fibers will not induce any further damage within the material system. A more elaborated FEA 

simulation can address the stress singularities at the crack tip during the closing process.  
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Figure 4-1 Schematic of the bio-inspired healing process of the proposed composite (3-D view) (a) 

a unit cell (bay) of SMP grid (ribs and z-pins) stiffened conventional thermoset polymer dispersed 

with thermoplastic particles. A macroscopic crack is introduced in the unit cell, which can be 

identified by visual or non-destructive inspections(T< Tg), (c) crack closure process through 

recovery of the SMP fiber ribs and z-pins, when local heating is applied (T> Tg), (d) further 

temperature rising melts the thermoplastic particles which flow into the crack by capillary force 

and diffuse into the fractured surface by concentration gradient (T> Tm), (e) cooling down to 

below the glassy temperature, solid wedge can be formed and molecular entanglement will be 

established (T< Tg), magnified view shows the molecule entanglement at the crack interface. 

 

It is noted that, as compared to the previous bio-mimetic healing scheme proposed by Li and Uppu 

(2010), the scheme illustrated in Fig. 4-1 has fundamental differences and is considered to be more 

realistic and feasible. The comparisons are summarized in Table 4-1. 

Currently, SMP fibers are primarily made of thermoplastic SMPs, particularly polyurethane [19].The 

polyurethane semicrystalline SMP fibers are constituted from the crystalline hard phase and amorphous 

soft phase and they show excellent solution ability, melting, diffusion, processability, and repeatability 

of the Shape Memory (SM) cycle [20]. Soft segment may consist of the amorphous (e.g. polyester and 

polyether) or the semi-crystalline (e.g. poly(ε-caprolactone) (PCL)) structures while the hard segments 

(e.g. diisocyanate (TDI), aromatic urethane or aramid) may be dispersed over the soft segment to form 

thermally stable chemical or physical cross links .  
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Figure 4-2  Closing of macroscopic crack due to shape recovery of the SMP grid skeleton through 

localized heating , (a) a SMP orthogrid stiffened thermoset polymer composite with a macroscopic 

crack at the center of the central bay, (b) FEA results for the displacement field at Y direction 

when stored stresses in SMP fibers are released by a local heating process. Magnified view shows 

closure of the macroscopic crack, (c) normal stress at x direction, (d) normal stress at y direction, 

(e) shear stress in xy plane, (f) equivalent von-Mises stress. 
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Table 4-1 Fundamental difference between the previous study and the current study 

Items for 
comparison 

Previous bio-mimetic scheme 
proposed by [11] 

The current study 

Matrix SMP. 
Conventional thermosetting 

polymer. 

Fiber No. Yes. Continuous SMP fiber. 

Programming 
Volume reduction by 

compression. 
Strain hardening by cold-tension. 

Mechanism for 
crack closing 

Confined shape recovery by 
resisting free expansion of the 

SMP matrix (need external 
confinement). 

Constrained shape recovery by 
resisting free shrinking of SMP 

grid skeleton (does not need 
external confinement). 

Cost 
High. Large volume fraction of 
SMP as the continuous phase. 

Low. Small volume fraction of 
SMP fibers as the dispersed phase. 

 

Existence of the distinguishable hard phases in the polyurethane elastomers provides the physical basis 

for a micromechanics approach toward the multiscale analysis of these materials [21-23]. The stress 

induced crystallization process in the semicrystalline polymers has been well studied in the literature [24, 

25]. Accordingly during this process, the spherulite morphology is changed upon stretching and the 

crystalline molecular chains orient in the direction of the applied macroscopic loads. In the case of 

polyurethane SMP fibers, this process results in the enhanced mechanical properties along the fiber 

direction.   

In this work, we will experimentally investigate the strain hardening of polyurethane fibers through 

cold-drawing programming, in order to achieve the required recovery stress in Fig. 4-2.   We will then 

investigate the thermomechanical cycle (programming and shape recovery) of the strain-hardened SMP 

fibers. Microstructure change and anisotropic behavior due to programming will be examined by 

Polarized Optical Microscope (POM), Fourier Transform Infrared Spectroscopy (FTIR), Small Angle X-

ray Scattering (SAXS), and Dynamic Mechanical Analysis (DMA). After that, a Representative Volume 

Element (RVE) is utilized to correlate the microstructure of the SMP fiber to the macroscopic loading 

conditions. The soft and hard segments are assumed to follow respectively the amorphous and 

crystalline constitutive relations.  The well-established micromechanics averaging techniques are then 

incorporated to average the micro-stress and micro-strain fields in these sub-phases and the macroscale 

mechanical response of the SMP fiber is then estimated. This approach was proposed formerly by 

Eshelby and later it has been developed to the Mori-Tanaka and self-consistent methods [26, 27]. The 

local-global relations between the applied macroscale and the resulting microscale mechanical fields can 

be established analytically when the medium behaves elastically. Once the non-linearity is introduced in 
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one of the sub-phases a history dependent solution algorithm should be enforced in order to update these 

relations. Shojaei and Li discussed in detail the solution algorithm for such a multiscale analysis 

incrementally [23]. In section 2 experimental characterizations of the SMP fibers are discussed. In 

section 3 the constitutive relations for the amorphous and crystalline phases together with the texture 

updates are elaborated. Furthermore, the constitutive relations for the stress recovery and the stress 

induced crystallization process are proposed. In section 4 the kinematics of the finite deformation 

together with the required numerical algorithms are elaborated. In section 5 simulation results are 

presented.  

4.3 Experimental characterization of shape memory polymer fibers  

In this study, polyurethane was synthesized from poly(butylene adipate)-600 (Mn) (PBA), 4‟4 -

diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). On average, the mole ratio of 

(MDI+BDO): PBA=3:1. The average formula weight ratio of (MDI+BDO): PBA=1021:650. The hard 

segment, soft segment, and their contents were selected to prepare polyurethane with amorphous soft 

segment phase and crystalline hard segment phase. The polyurethane fiber was spun by melt spinning. 

The fiber passed three pairs of rollers with the same rotation speed before being wound up. In this work 

two types of single SMP fibers (filaments) are characterized in which their microstructure changes upon 

cold drawing process are evaluated. Fig. 4-3 shows the optical microscopy picture for a single SMP fiber 

with an initial diameter of 0.04 mm, which is called sample #1 hereinafter. The non-stretched SMP fiber 

#1 is shown in Fig. 4-3(a) in which the microstructure of the fiber is almost random; when the fiber is 

highly stretched, the microstructure aligns along the fiber direction, see Fig. 4-3(b). Fig. 4-4 shows 

similar pictures for the SMP fiber with an initial diameter of 0.002 mm, which is denoted as sample #2 

hereinafter. The oriented microstructures along the fiber direction are obvious when the fiber is cold 

drawn as shown in Fig. 4-4(b). The samples #1 and #2 are respectively cyclic stretched up to 350 % and 

200% level of strains before taking the pictures in Figs. 4-3(b) and 4-4(b).   

Using an MTS Alliance RT/5 machine, which is specified for fiber tension tests, the SMP fiber #1 is 

cyclically stretched and the results are shown in Fig. 4-5(a). The elastic stiffness of the SMP fiber is 

increased gradually while the final strength of the fiber is increased significantly. Obviously, cyclic 

cold-drawing leads to strain hardening of the SMP fibers. The reason for this is the alignment of the 

amorphous phase and crystalline phase along the loading direction up on cold-tension, as evidenced in 

Figs. 4-3 and 4-4.  

The fully constrained (zero strain) stress recovery response of these fibers with respect to time is 

depicted in Fig. 4-6. In this process the programmed fiber is kept by the load cells while the heating 

process is controlled by a digital furnace. An initial stretch within the elastic region, e.g. 𝜖 = 10 %, is 

applied to ensure that the fibers remain zero strain before the shape recovery process starts, which needs 

a temperature rising process and causes thermal expansion and thus loose of the fiber between the grips. 

It is worthwhile to note that this pre-stretch is found in a trial-and-error process in which the stress 

recovery is set to start from almost zero stress. In fact both of these fibers show a sudden stress 
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relaxation before activation of the shape recovery process. In other words, the pre-tension is fully 

consumed by the stress relaxation and thermal expansion before the stress recovery starts. 

 

Figure 4-3 Polarized optical microscope image of the side view of the SMP fiber sample #1 with 

0.04mm diameter (a) non-stretched fiber and (b) after 3rd cyclic load where the sample is 

stretched up to 350% of strain level 

 

 

Figure 4-4 Polarized optical microscope image of the side view of the SMP fiber sample #2 with 

0.002 mm diameter (a) non-stretched fiber and (b) after 3rd cyclic load where the sample is 

stretched up to 200% of strain level 
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Figure 4-5 Cyclic loading tests for a bundle of SMP fibers (a) 4 simple fiber #1 and (b) 4 simple 

fiber #2. 

Therefore, the pre-stretch does not affect the stress recovery.  In this study, the heating rate is 0.35 
oC/sec and the final temperature is set to 90 oC in the digital furnace. From Fig. 4-6, the pre-tension 

stress is relaxed to zero at about 20 s. Because the starting temperature of the fiber is about 20oC, the 

temperature becomes 30oC after 20s of heating. As shown in Fig. 4-7, this is the temperature when the 

glass transition starts. Therefore, as expected, the 10% pre-tension is fully used up by stress relaxation 

and thermal expansion of the fiber. The pre-stretch is a technique to compensate for the inability for the 

machine to measure the stress when the fiber is loose.  

 

Figure 4-6 Stress recovery test results with heating rate 0.35 oC/Sec and up to 90 oC (a) SMP fiber 

#1 after 3 strain controlled cyclic loads each of them up to 350% of the strain level with 50.8 

(mm/min) strain rate, and (b) SMP fiber #2 after 3 strain controlled cyclic loads each of them up 

to 180% of the strain level with 50.8 (mm/min) strain rate 
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From Fig. 4-6, the stabilized recovery stress is about 16MPa. Based on Fig. 4-2, it is seen that the fiber 

after cyclic cold-drawing programming is able to provide the required recovery stress (10MPa in Fig. 4-

2) for close the macroscopic crack. We also tested the stress recovery of non-stretched (as received) 

SMP fiber using the same procedure. The stress recovery is almost zero.   

Fig. 4-7 shows the DMA experiments (with heating rate 5oC/min and frequency 1 Hertz) in which both 

the non-stretched and cold-drawn SMP fibers #1 are tested to investigate the changes in their glass 

transition temperature, Tg, upon work hardening process. The SMP fiber#1 with 30mm length and initial 

diameter of 0.04 mm is mounted on the DMA machine (Rheometric Scientific, RSA III) at room 

temperature. Fig. 4-7 (a), the cold-drawn SMP fiber shows a small shift in its Tg towards higher 

temperature. The glass transition starts at about 30oC, which echoes the claim in Fig. 4-6. From Fig. 4-7 

(b), it is clear that the storage modulus of the strain hardened SMP fibers is much higher than the as 

received counterparts, and plateaus in a wide range of temperature, suggesting significant increase in 

stiffness and its thermal stability. Fig. 4-7(c) shows the loss modulus experimental results. 

In order to better understand the microstructure due to strain hardening by cold-drawing, the change in 

the microstructure of the SMP fiber is further investigated.   

Using TENSOR 27, the Fourier Transform Infrared Spectroscopy (FTIR) test is implemented on two 

samples to check the microstructural changes during cold stretching process of SMP fibers. Fig. 4-8 

shows the FTIR test results for the sample #2 in which the blue line shows the non-stretched SMP fiber 

#2 and the red line represents the SMP fiber #2 which is stretched up to 180% strain level prior to the 

FTIR test. The synchronized peaks confirm that the chemical compositions of the two fibers are the 

same and there are no new chemical bonds upon cold drawing. The change in the intensity after strain 

hardening by cold-drawing programming may indicate the change in density and molecular alignment.  

Using Small Angle X-ray Scattering (SAXS) facilities in the Center for Advanced Microstructures and 

Devices (CAMD) at Louisiana State University the microstructure of the non-stretched and stretched 

SMP fibers (sample #1) is investigated. As shown in Fig. 4-9(a) the SAXS image for the non-stretched 

fiber shows a non-oriented microstructure while in the case of the stretched fiber, the SAXS image 

shows orientational changes in the microstructure in Fig. 4-9(b). 

Based on the above test results and microstructural examination, it is evident that both the soft segments 

and hard segments in the semicrystalline SMP fiber align along the loading direction after cyclic cold-

drawing programming, which also leads to considerable increase in stress recovery. This suggests that 

the polyurethane fibers, after strain hardening through cold-drawing programming, may have a potential 

to be used in load-bearing structural applications, particularly in the bio-mimetic healing scheme 

proposed in Fig. 4-1. However, an in-depth understanding of the thermomechanical behavior of the 

semicrystalline polyurethane fiber needs constitutive modeling.   
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Figure 4-7 DMA test results (a) Phase angle 𝐓𝐚𝐧 𝛅 and (b) Storage modulus 𝐄’ (c) Loss modulus 𝐄" 

4.4   Constitutive behaviors of semicrystalline shape memory polymer fibers  

The proposed viscoplastic theory in this work considers the governing relations for each of the 

individual micro-constituents and establishes the microscale state of the stress and strain in each of the 

sub-phases. These microscale fields are then averaged through the micromechanics framework to 

demonstrate the macroscale constitutive mechanical behaviors. This multiscale approach incorporates 

more realistic material inputs as compared to the pure phenomenological models. Speaking in general 

the individual micro-constituents mechanical behaviors may vary when they are packed in a multiphase 

material system and a certain deviation in their mechanical responses may exist between the individual 

and their assembled configurations. In the following two well-established viscoplastic theories for the 

amorphous and crystalline polymers are presented. These theories are based on certain physical 

description of the viscoplastic deformation mechanisms in the glassy polymers. 

4.4.1 Amorphous phase constitutive relation: 

The well-established Boyce model for the inelastic deformation of the amorphous glassy polymers is 

assumed to be held for the amorphous phase of the semicrystalline SMP fiber. 
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Figure 4-8 FTIR test results for the SMP fiber #2 

 

Figure 4-9 SAXS image for SMP fiber #1 (a) non-stretched fiber and (b) stretched fiber up to 350% 

of the strain level 

   

The plastic multiplier in this model is introduced as follows (Boyce et al., 1989): 

 𝛾 𝑝 = 𝛾 0𝑎 exp  −𝐴 
𝑠 + 𝑎 𝑝𝛩   1 −   𝜏 𝑠 + 𝑎 𝑝 5/6   (4-1)  



76 
 

where 𝑎  is a material parameter,  𝑝  is pressure and 𝑠  is the athermal shear strength. The material 

parameter 𝐴  and the evolution law for 𝑠 are defined as follows: 𝐴 =
39𝜋𝜔2𝑎 3

16𝑘  ;  𝑠 =   1 − 𝑠𝑠𝑠𝑠 𝛩, 𝛾 𝑝     𝛾 𝑝 . (4-2)  

where 𝜔 and 𝑎   are material parameters and 𝑘 is the Boltzmann‟s constant (Argon, 1973). The material 

parameter  shows the rate the strain softening and 𝑠𝑠𝑠  represents the asymptotic preferred structure. The 

initial value of 𝑠 for the annealed material is: 𝑠0 =
0.077𝜇

1−𝜈 , where 𝜇 is the elastic shear modulus and 𝜈 is 

the Poisson‟s ratio.  

The material constant 𝛾 0𝑎  , in Eq. (4-1), is called amorphous pre-exponential inelastic strain rate, and  𝛾 𝑝   is the effective equivalent inelastic deformation rate of a glassy polymer subjected to the effective 

equivalent shear stress,  𝜏 , which is defined at the absolute temperature, 𝛩, as follows: 

 𝜏 =  1

2
𝑠𝑖𝑗∗ 𝑠𝑖𝑗∗  (4-3)  

 

where 𝑠𝑖𝑗∗ = 𝑠𝑖𝑗 − 𝑋𝑖𝑗  in which 𝑠𝑖𝑗 = 𝜍𝑖𝑗 − 1

3
𝜍𝑘𝑘𝛿𝑖𝑗  is the deviatoric Cauchy stress and   𝑋𝑖𝑗 = 𝛼𝑖𝑗 −

1

3
𝛼𝑚𝑚 𝛿𝑖𝑗  is the back stress tensor which is defined as follows [28-30]: 

α𝑖𝑗 = 𝑛𝑘Θ 𝜆𝐿
3

 𝜆𝑖𝑝ℒ−1  𝜁 𝜆𝑗𝑝𝜆𝐿 − 1

3
𝜆𝑘𝑝ℒ−1  𝜁 𝜆𝑘𝑝𝜆𝐿 𝛿𝑖𝑗   no sum on i (4-4)  

where 𝑛 is the number of chains per unit volume, 𝑘 is the Boltzmann‟s constant, and 𝜆𝐿 is the limit of 

chain extensibility and 𝜁 is a viscoplastic related material constant which controls the magnitude of the 

hardening with respect to the inelastic stretches [23, 31]. In limit analysis Langevin function, 𝐿 𝛽 =

coth 𝛽 − 1/𝛽, is used extensively and it imposes a limiting case in the evolution of the back stress 

tensor. Eq. (4-4) represents the magnitude of the amorphous inelastic strain rate; while the direction of 

the amorphous inelastic flow rate, 𝐷 𝑖𝑗𝑎𝑝
, is governed by the deviatoric driving stress, 𝑠𝑖𝑗∗  . The following 

flow rule is then proposed for the inelastic deformation in the amorphous phase (Argon, 1973): 

  

𝐷 𝑖𝑗𝑎𝑝
=  𝛾 𝑝 𝑠𝑖𝑗∗ 2 𝜏  (4-5)  
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4.4.2 Crystalline phase constitutive relation: 

Inelastic deformation of the crystalline phase in semicrystalline polymers includes three different 

mechanisms: (a) crystallographic slip, (b) twining and (c) Martensite transformations (Stevenson, 1995). 

In this work the slippage mechanism is assumed to be the dominant influencing mechanism. A reference 

vector, 𝑐𝑖 , is aligned with the crystallographic texture to show its evolution with deformation while two 

active slip mechanisms in the polymeric slippage system have been taken into account which are: (a) 

chain slip: the burgers vector is aligned with 𝑐𝑖  and (b) transverse slip: the burgers vector is 

perpendicular to 𝑐𝑖  [23, 31]. There are only four linearly independent crystalline slip systems, which are 

indicated by the unit vectors in the direction of the slip and normal to the slip planes including: (i) chain 

slip: (100)[001] and (010)[001], and (ii) transverse slip: (100)[010] and (010)[100] (Lee et al., 1993[23]). 

Vector 𝑠𝑖 𝛼 
 denotes the slip direction and 𝑛𝑖 𝛼 

 represents the unit normal vector to the slip plane, where 𝛼 = 1  to  4 is the number of the slip systems. The inelastic crystalline stretch rate tensor, 𝐷 𝑖𝑗𝑐𝑝 , is 

introduced by the following relation (Lee et al., 1993): 

𝐷 𝑖𝑗𝑐𝑝 =  𝛾  𝛼 𝑅𝑖𝑗(𝛼)𝐾𝛼=1 , (4-6)  

where 𝑅𝑖𝑗 𝛼 
 is the symmetric part of the Schmid tensor as defined by:  𝑅𝑖𝑗 𝛼 

=
1

2
 𝑠𝑖 𝛼 𝑛𝑗 𝛼 

+ 𝑛𝑖 𝛼 𝑠𝑗 𝛼  , 

and it represents the 𝛼th crystalline slip plane and the shear rate, 𝛾 (𝛼), is defined as follows (Asaro, 1979; 

Asaro and Needleman, 1985; Hutchinson, 1976; Lee et al., 1993): 

 

𝛾  𝛼 = 𝛾 0𝑐 𝜏 𝛼 𝑔 𝛼  𝜏 𝛼 𝑔 𝛼  𝑛𝑐−1

, (4-7)  

where 𝛾 0𝑐  is the crystalline reference inelastic strain rate and 𝑔 𝛼  is the shear strength for the 𝛼𝑡  slip 

system, and 𝑛𝑐  is the rate sensitivity factor. The effective shear stress, 𝜏 𝛼 , at the 𝛼𝑡  slippage system, 

is given by [23]: 

𝜏 𝛼 = 𝑆𝑖𝑗𝑐∗𝑅𝑖𝑗 𝛼 
, (4-8)  

where 𝑆𝑖𝑗𝑐∗  is the projected deviatoric Cauchy stress, 𝑠𝑖𝑗 = 𝜍𝑖𝑗 − 1

3
𝜍𝑘𝑘𝛿𝑖𝑗 , at the direction of the 

deviatoric part of the dyadic 𝑐𝑖𝑐𝑗 , i.e. 𝐶𝑖𝑗′ = 𝑐𝑖𝑐𝑗 − 1

3
𝐼𝑖𝑗 . This constraint is enforced based on the 

inextensibility of the crystalline chain together with the incompressibility assumption [31]. The lattice 

spin which controls the rate of changes of the direction of 𝑐𝑖  is introduced as follows (Asaro and Rice, 

1977; Lee et al., 1993): 
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𝑊 𝑖𝑗∗ = 𝑊 𝑖𝑗𝑐𝑝 −  𝛾  𝛼 𝐴𝑖𝑗 𝛼 𝐾𝛼=1 , 
(4-9)  

where 𝐴𝑖𝑗 𝛼 
=

1

2
 𝑠𝑖 𝛼 𝑛𝑗 𝛼 − 𝑛𝑖 𝛼 𝑠𝑗 𝛼   is the skew part of the Schmid tensor and 𝑊 𝑖𝑗𝑐𝑝  is the skew part of 

the velocity gradient 𝐿𝑖𝑗𝑐𝑝  in which 𝐿𝑖𝑗𝑐𝑝 = 𝐷 𝑖𝑗𝑐𝑝 + 𝑊 𝑖𝑗𝑐𝑝
. 

4.4.3 Cyclic texture update: 

It is experimentally confirmed that the amorphous and crystalline polymers undergo the morphological 

texture changes in their polymeric networks upon stretching [28, 30, 32]. Then the strain hardening 

phenomenon in the SMP fiber is influenced by the textures changes in the crystalline and amorphous 

phases. In the following the governing relations for texture updates in each of these sub-phases are 

brought forward.   

(i) Crystalline phase texture update: 

The crystallographic texture is updated based on the applied lattice spins as discussed in Eq. (4-9) and it 

is expressed in the following form [33]: 

𝑐 𝑖 = 𝑊𝑖𝑗∗𝑐𝑗 , 
(4-10)  

where  

𝑐𝑖 𝑡 + Δ𝑡 = exp 𝑊𝑖𝑗∗𝛥𝑡 𝑐𝑗  𝑡 , 
(4-11)  

Based on the Cayley-Hamilton expression for exponential term, one may find [23, 31]: 

  

exp 𝑊𝑖𝑗∗𝛥𝑡 = 𝐼𝑖𝑗 +
sin 𝑤𝑤 𝑊𝑖𝑗∗𝛥𝑡 +  1 − 𝑐𝑜𝑠𝑤𝑤2

 𝑊𝑖𝑘∗ 𝑊𝑘𝑗∗ 𝛥𝑡2 (4-12)  

with 𝑤2 = −𝑡𝑟 𝑊𝑖𝑘∗ 𝑊𝑘𝑗∗ Δ𝑡2 /2. 

 

(ii) Amorphous phase texture update: 

In the case of amorphous phase one may only take into account the influence of the inelastic 

deformation on molecular chain rotations and the subsequent strain hardening effects. Boyce et al. 

relates the initial values of the back stress tensor, 𝛼𝑖𝑗 , athermal shear resistance, 𝑠, network stretch 

vector, Λ𝑖 , and residual stress tensor, 𝜍𝑖𝑗 , to the strain hardening effect in the amorphous phase and it is 
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shown that setting these parameters can effectively monitor the hardening phenomenon in the 

amorphous phase  [34]. 

 

4.4.4  Recoverable stresses: 

One of the vital parameters in designing the bio-inspired Close-Then-Heal healing systems is the 

available amount of the crack closure force which is necessary to close the macroscale cracks. As shown 

in Fig. 4-6, the SMP fibers show considerable recovery stresses which are in general dependent on the 

amount of the induced strain hardening during the cold-drawing process. Basically upon the cold-

drawing process, the crystalline phase of the semicrystalline polyurethane SMP fibers undergoes the 

stress induced crystallization process, and it stores the applied deformations through the entropy changes 

in the crystalline network. Once the temperature exceeds the glass transition temperature of the 

semicrystalline polymer, the viscosity of the polymeric network drops and the frozen crystalline network 

is allowed to release the stored energy and achieve its minimum energy level. In other words upon 

heating, the stored energy in the crystalline phase is released and the polymeric network returns to its 

minimum level of internal energy. As shown in Fig. 4-6 after a few cold-drawing cycles the amount of 

the recoverable stresses is considerably aggrandized. Then one may relate the amount of the recoverable 

stresses to the loading history and stress induced crystallization process. In this study, the recoverable 

stress is assumed to be a function of the stress induced crystallization process and with the accumulated 

inelastic strains in the amorphous phase. Basically a portion of these induced inelastic entropic and 

energetic changes in the SMP molecular network is recoverable upon heating where the viscosity of the 

frozen network drops and the recoverable inelastic strains are restored.  Then the proposed evolution law 

for the stress recovery takes into account the history of the loading, including the inelastic strains in the 

sub-phases. The kinematic and isotropic hardening relations in the classical continuum plasticity context 

provide a suitable governing equation form to explain the stress recovery process [35-37]. The stress 

recovery evolution relation is then proposed as follows: 𝜍𝑟𝑒𝑐 = 𝑅 1 − exp −𝜂 𝑇 − 𝑇𝑟𝑜𝑜𝑚     (4-13)  

where 𝜂 is a material constant that controls the rate of saturation of the recovery stress to its final value 

which is 𝑅, and 𝑇 and 𝑇𝑟𝑜𝑜𝑚  are respectively elevated and room temperatures. Parameter 𝑅 takes into 

account the history of the loading which includes the inelastic deformation, texture updates and residual 

stresses due to the cyclic hardening and this parameter is defined in the following. Taking time 

derivative of Eq. (4-13) results in the following incremental relation for the stress recovery computations: 𝜍 𝑟𝑒𝑐 = 𝑇 𝑅𝜂 𝑒𝑥𝑝 −𝜂 𝑇 − 𝑇𝑟𝑜𝑜𝑚    (4-14)  

where 𝑇  shows the rate of the heating process. As shown in Fig. 4-4(b) the maximum stress recovery is 

achieved after reaching 𝑇𝑔  and the rate of heating controls this peak time. The heating process is 
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controlled by time integration of the heating rate as: 𝑇 = ∫ 𝑇 𝑑𝑡 + 𝑇𝑟𝑜𝑜𝑚 , and during the simulation once 

the temperature reaches its final value the heating rate is set to zero. The saturation limit, 𝑅, for the 

stress recovery is related to the loading history and the amount of the plastic strain by the following 

expression: 𝑅 = 𝜔 ℵ − 𝑅  𝜖 𝑝   (4-15)  

where 𝜔  and ℵ  are two material parameters for controlling the saturation parameter, 𝑅 , and  𝜖 𝑝  = 2

3
𝜖 𝑖𝑗𝑝 (𝑐)𝜖 𝑖𝑗𝑝 (𝑐)

 is the equivalent plastic strain rate. Then during each of the cyclic loadings the magnitude 

of 𝑅 is updated incrementally and its final value is introduced in Eq. (4-13) for the stress recovery 

computation. Eq. (4-15) represents a monotonically increasing value for the parameter 𝑅 up to a certain 

saturation limit which is enforced by ℵ. The underlying physical background for Eqs. (13) and (15) is 

that the recoverable stress in a SMP fiber is a function of the recoverable microstructural changes during 

the cold drawing process and this stress recovery should saturates to a certain limit due to the limit in 

reversibility in these microstructural changes. In other words certain amounts of the microstructural 

changes are reversible in an SMP fiber and after certain limit these microstructural changes may results 

in failure of the polymeric networks and produce non-reversible defects. In this study, it is assumed that 

the recovery stress saturates to a certain limit as a function of the microstructural changes through Eqs. 

(13) and (15) and the physical parameter to control these changes is the accumulated inelastic strain and 

its rate. 

4.4.5 Stress induced crystallization 

The stress induced crystallization is a phenomenon which is experimentally investigated by many 

researchers [25, 38]. Here a phenomenological constitutive relation for the stress induced crystallization 

process is introduced. Fig. 4-10(a) shows the Representative Volume Element of the microstructure of 

the manufactured SMP fiber where a thin layer of initially formed crystalline phase is parallelized with 

the amorphous phase.  Fig. 4-10(b) shows the enlarged cross section of the crystalline phase due to the 

applied stretches. Then one may assume that the microstructural changes are governed by the crystalline 

phase formation upon stretching. In order to take into account this fact into the governing relations of the 

semicrystalline polymers one may propose the following relations which related the initial inner, 𝑟 0𝑖𝑐 , 

and outer, 𝑟 0𝑜𝑐 , radii and the final inner, 𝑟 𝑓𝑖𝑐 , and outer, 𝑟 𝑓𝑜𝑐 , radii of the crystalline phase to the 

magnitude of the inelastic strains as follows:  

 𝑟𝑜𝑐 =  𝑟 𝑓𝑜𝑐 − 𝑟 0𝑜𝑐  1 − exp −𝑞  𝜖𝑝    + 𝑟 0𝑜𝑐 , 𝑟𝑖𝑐 =  𝑟 0𝑖𝑐  exp −𝑞′   𝜖𝑝   + 𝑟 𝑓𝑖𝑐 . 

(4-16)  
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where 𝑞and 𝑞′  are material parameters and  𝜖𝑝 =  2

3
𝜖𝑖𝑗𝑝 𝜖𝑖𝑗𝑝  is the effective accumulated plastic strains 

and the outer, 𝑟𝑜𝑐 , and inner, 𝑟𝑖𝑐 , crystalline radii start from their initial values and they converge to 

their final values. Eq. (4-16) provides a smooth transition between highly amorphous to a highly 

crystalline microstructure while the history of loading is incorporated by formulating this process based 

on the inelastic strains. Then crystalline inner and outer radii change rates are given by the time 

derivation of Eq. (4-16) as follows: 𝑟 𝑜𝑐 = 𝑞  𝜖 𝑝   𝑟 𝑓𝑜𝑐 − 𝑟 0𝑜𝑐 𝑒𝑥𝑝 −𝑞  𝜖𝑝   , 𝑟 𝑖𝑐 = −𝑞′   𝜖 𝑝  𝑟 0𝑖𝑐  exp −𝑞′   𝜖𝑝    . 

 

(4-17)  

The volume fraction of the crystalline, 𝑐𝑐𝑟𝑦 , and amorphous phases are then given by the following 

relations: 

𝑐𝑐𝑟𝑦 =
 𝑟𝑜𝑐 −𝐸𝑧𝜈12

𝑐 𝑟𝑜𝑐  2− 𝑟 𝑖𝑐 −𝐸𝑧𝜈12
𝑐 𝑟 𝑖𝑐  2 𝑟0

𝑎−𝐸𝑧𝜈12
𝑎 𝑟0

𝑎  2 , and 𝑐𝑎𝑚𝑟 = 1 − 𝑐𝑐𝑟𝑦 . 

 

(4-18)  

where 𝐸𝑧  is the macroscopic strain at the fiber direction and 𝜈12
𝑐  and 𝜈12

𝑎  are respectively the crystalline 

and amorphous phases Poison‟s ratio. The fiber is assumed to be transversely isotropic, i.e. 𝜈12
# = 𝜈13

# .  

4.4.6 Micromechanics: 

It is experimentally confirmed in section 2 that the crystalline phase of the semicrystalline polyurethane 

in a SMP fiber is aligned with the loading direction after a few rounds of cyclic hardening. Due to the 

fact that the manufactured fibers are assumed to be transversely isotropic, one may assume that the 

amorphous and crystalline phases in the SMP fibers are assembled in a parallel configuration. While 

other micromechanics configurations, such as series or rule of mixture, are easily applicable without 

affecting the theory, the parallel configuration simplifies the numerical simulations significantly. Then 

the states of the stress and strain are given by the following basic micromechanics relations: 𝐸𝑧 = 𝜖𝑧𝑎 = 𝜖𝑧𝑐 , Σ𝑧 = 𝜍𝑧𝑎 + 𝜍𝑧𝑐 . 
(4-19)  

where 𝐸𝑧  and Σ𝑧  are respectively the longitudinal macroscopic strain and stress and 𝜖𝑧𝑎 and 𝜖𝑧𝑐  are the 

microscale strain fields in the amorphous and crystalline phases, respectively; and 𝜍𝑧𝑎 and 𝜍𝑧𝑐  are 

respectively the local stresses in the amorphous and crystalline phases. One may assume that the loading 

condition is strain controlled, then the strain in all phases are equal to the macroscale applied strain 

while the local stresses are computed from the respective microscale constitutive relations.  
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     The representative volume element is chosen based on the experimental observations of the 

microstructure of the SMP fibers. As shown in section 2 the non-stretched fiber is initially non-oriented 

and upon cold drawing the microstructure of the SMP fiber varies. In this work an asymmetric 

mechanical properties is assumed for both of the stretched and non-stretched fibers while the 

microstructural changes are assumed to be stress induced crystallization and morphological texture 

changes upon loading. Fig. 4-10(a) shows the status of the microstructure for the manufactured SMP 

fiber. Upon loading the stress induced crystallization process results in larger volume fraction of the 

oriented crystalline phase as shown in Fig. 4-10(b). The morphological texture updates for the 

amorphous and crystalline phases however are implicitly accounted in their respective governing 

constitutive relations. In this way the simulations can monitor two significant microstructural changes 

which are texture updates in the amorphous and crystalline phases and the stress induced crystallization 

process. The SAXS picture for the cold drawn SMP fiber #1 is shown in Fig. 4-9 (b) which confirms the 

oriented microstructure after a few cycles of the cold drawing process.  

 

 

Figure 4-10 Microstructural representation for the SMP fiber (a) primary microstructure of the 

SMP fiber which contains some crystalline phase, (b) cold drawn SMP fiber results in stress 

induced crystalline phase. 

 

4.5 Kinematic and Computational Aspect of Finite Stain 

In the case of the finite deformation the strain description based on the displacement gradients become 

non-linear which may results in some computational difficulties for elasto-plastic analysis. To avoid 

such phenomenon the gradients of the elastic and plastic deformations are decomposed multiplicatively. 

This is called multiplicative decomposition proposed previously by Lee [39, 40]:  𝐹𝑖𝑗 = 𝐹𝑖𝑘𝑒 𝐹𝑘𝑗𝑝  (4-20)  
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where 𝐹𝑖𝑗 is the total deformation gradient which correlates the material and deformed configurations,  𝐹𝑖𝑗𝑒  is the elastic deformation gradient and it is obtained by elastically unloading the deformed 

configuration to stress free status; this unloaded state is called intermediate configuration, and 𝐹𝑖𝑗𝑝  is the 

plastic deformation gradient. Additive decomposition of the Lagrangian strain tensor, 𝑑𝑖𝑗 , which is 

measured in the material configuration, was proposed by Green and Naghdi [41, 42] as follows: 𝑑𝑖𝑗 = 𝑑𝑖𝑗𝑒 + 𝑑𝑖𝑗𝑝  (4-21)  

where 𝑑𝑖𝑗𝑒  and 𝑑𝑖𝑗𝑝  are Lagrangian elastic and plastic strain tensors, respectively. This additive 

assumption which follows the basic thermodynamic principals [43] of solids provides the basis for the 

elastic predictor-plastic corrector elasto-plastic solutions as discussed by Simo et al. [44-46]. The 

resulting return mapping algorithms are the direct consequence of the additive decomposition, Eq. (4-

21). Let the second order displacement tensor, 𝑢𝑖𝑗 , describe an incremental deformation field and its 

second order gradient tensor, ∇𝑢𝑖𝑗 , shows the deformation rate. The outline for the return mapping 

algorithm is as follows: (i) an increment of the deformation gradient is introduced as, 𝐹𝑖𝑗 𝑛+1 
= 𝐼𝑖𝑘 + ∇𝑢𝑖𝑘 𝐹𝑘𝑗 𝑛 

 where 𝐼𝑖𝑗  is the unity second rank tensor and the superscripts 𝑛  and 𝑛 + 1  indicate 

respectively the previous and current load steps, (ii) a “Trial-Elastic” deformation gradient is introduced 

subsequently to elastically stretching the material configuration with 𝐹𝑖𝑗𝑒  𝑛+1 𝑇𝑟𝑖𝑎𝑙
=𝐹𝑖𝑘 𝑛+1 𝐹𝑘𝑗𝑝  𝑛 −1

where superscripts “𝑒 ” and “𝑝” denote to the “elastic” and “plastic” components, 

respectively; and 𝐹𝑖𝑗𝑝  𝑛 
 shows the frozen inelastic deformation gradient, (iii) the elastically stretched 

configuration is then relaxed until the state of the stress returns to the yield surface.  The return mapping 

relaxes the stresses along the steepest descent path which is defined based on the yield function 

(associated flow rules) or potential functions (non-associated flow rules) [37]. In this work an isochoric 

condition is assumed for the large deformation process which is stated by λ1λ2λ3 = 1, where λi denotes 

the principal stretches. Then the volume preserving part of the deformation gradient, 𝐹𝑖𝑗 , the elastic 

deformation gradient, 𝐹𝑖𝑗𝑒 , right, 𝐶𝑖𝑗 = 𝐹𝑖𝑘𝑇 𝐹𝑘𝑗 , and left, 𝑏𝑖𝑗 = 𝐹𝑖𝑘𝑇 𝐹𝑘𝑗 , Cauchy-Green tensors are given as 

follows [23, 44]:  𝐹 𝑖𝑗 = 𝐽−1

3𝐹𝑖𝑗 , 𝐹 𝑖𝑗𝑒 = 𝐽−1/3𝐹𝑖𝑗𝑒 , 𝐶 𝑖𝑗 = 𝐽−2

3𝐶𝑖𝑗 ; 𝑏 𝑖𝑗 = 𝐽−2

3𝑏𝑖𝑗 . (4-22)  

 

where    shows the volume preserving components for its respective tensor parameter and 𝐽 = det 𝐹𝑖𝑗  . 

This kinematic decomposition approach results in the isochoric inelastic deformation in which 𝑑𝑒𝑡 𝐹𝑖𝑗𝑝 ≡ 1. The isochoric assumption should be extended for all three steps of the return mapping 

algorithm as discussed by Shojaei and Li [23]. To declare the stress-strain relation in the finite 

deformation process, the proper stress definition should be chosen. Accordingly, the Cauchy stress 
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tensor, 𝜍𝑖𝑗 , is assigned to the deformed body and it is defined as force per unit deformed area. To obtain 

a more convenient description of the stress the first Piola-Kirchhoff (PK) stress, 𝜏𝑖𝑗𝑝 , is computed which 

is the force per unit undeformed area that is still allocated in the deformed configuration. If the first 

Piola-Kirchhoff stress is pulled-back to the material configuration then the second PK stress tensor, 𝑆𝑖𝑗𝑝 , 

is achieved [23, 44]. Anand [47] proposed a relation between the Cauchy stress and the Hencky strain as 

follows: 

 𝜍𝑖𝑗 =
1𝐽 𝐿𝑖𝑗𝑘𝑙𝑒 ln 𝑈𝑘𝑙𝑒   (4-23)  

where 𝑈𝑖𝑗𝑒 =  𝐶 𝑖𝑗𝑒   and 𝐿𝑖𝑗𝑘𝑙𝑒  is the fourth order elastic stiffness tensor. The multiscale analysis in this 

work requires different computational modules to compute the microscale state of the stress and strain in 

each of the sub-phases with respect to their constitutive relations and then these microscale mechanical 

fields are correlated to their macroscale fields through the micromechanics framework. The 

configuration of such a multiscale computational module is depicted in Fig. 4-11, where the general 

outlines for a micromechanics-based multiscale analysis are shown.  

  

 

Figure 4-11 Computation algorithm for a micromechanics based multiscale analysis [23] 
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4.6 Results and Discussion 

The stress recovery test result is demonstrated in Fig. 4-12. The evolution of the parameter 𝑅 controls 

the saturation limit of the recoverable stress based on the loading history and basically this parameter 

identifies the amount of the recoverable stress based on the cyclic strain hardening and accumulated 

inelastic strains. Then the established stress recovery results in Fig. 4-12 takes into account the heating 

rate, initial and final temperatures and history of the loading. As it is obvious from this figure the slower 

heating rates are associated with longer response time for the SMP fiber to reach its maximum stress 

recovery response. Table 4-2 denotes the necessary material constants for the stress recovery and the 

stress induced crystallization simulations.  

 

Table 4-2 Material parameters for the stress recovery and cyclic hardening simulations 

𝜂 𝑇𝑟𝑜𝑜𝑚 (oC) 𝑇𝑓𝑖𝑛𝑎𝑙 (oC) 𝜔 
ℵ 

(MPa) 
𝑞 𝑞′  𝑟 𝑓𝑜𝑐  𝑟 0𝑜𝑐  𝑟 0𝑖𝑐  

0.0294 25 90 1 200 0.2 0.1 0.65 0.5 0.2 

 

 

 

Figure 4-12 Simulation and experimental results for stress recovery of SMP fiber#1 based on 

different heating rates 

Due to the fact that the proposed multiscale viscoplastic analysis incorporates the individual constitutive 

equations for each of the sub-phases, it can easily capture a vast variety of the microstructural 
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configurations, such as 100 wt% amorphous or crystalline fibers or any microstructure configuration 

which lies between these two extreme cases. In Fig. 4-13, three cyclic tension test results for the single 

SMP fiber #1 together with the simulation results are depicted. The simulation for the 10 wt% 

crystalline phase volume fraction shows perfect correlation with the experimental results. In the second 

and third cyclic tensions, the SMP fiber is work hardened and shows stiffer mechanical responses. The 

proposed theory can capture the second cycle while in the third cycle it shows some deviation from the 

experiments. The changes in mechanical responses of the SMP fiber may relies on the fact that the fiber 

undergo large deformation and more accurate strain measurements are required to take into account the 

transverse deformation effects which narrows the fibers in high strain levels.  The theory may then still 

hold its genuinely for larger cycles if the higher order accuracy stress-strain measurements, such as 

image processing measurement techniques [48], are utilized. 

 In reality the fiber structure is a non-homogenous state of material and this fact should be incorporated 

during assembling the stiff matrix for these fibers. Here it is assumed that the fiber is transversely 

isotropic and the primarily non-hardened elastic properties are assumed for the transverse direction 

while the properties along the fiber direction are updated based on the strain hardening process. These 

transient changes in the elastic stiffness at the fiber direction are clearly depicted in Fig. 4-13, where the 

elastic modulus varies gradually from a pure amorphous to a crystalline dominant phase. Once the 

related material parameters for the amorphous and the crystalline phases are established the volume 

fraction of the crystalline phase, which is controlled by the stress induced crystallization governing 

equations, is introduced to the computational module and the resultant macroscale mechanical responses 

are captured subsequently. Table 4-3 shows the amorphous and crystalline related material parameters. 

The crystalline slippage system for the polymeric network is given in Table 4-4. 

Table 4-3 Material parameters for crystalline and amorphous computational modules 

Amorphous Computational Module (Soft Segment) 𝑛𝑘𝑇 

(MPa) 

𝛾 0 

(sec-1) 
𝐴 𝜁 𝜆𝐿 𝑘 𝑇 (K) 

𝜍𝑦  

(MPa) 

Ez 

(MPa) 

Et 

(MPa) 

0.5 0.03 
3.31e-

27 
0.1 0.1 

1.38e-

23 
298 20 100 70 

Crystalline  Computational Module (Hard Segment) 

n 
𝛾 0  

(sec-1) 
Reference Cry. Axes 

Slippage 

Systems 

𝜍𝑦  

(MPa) 

Ez 

(MPa) 

Et 

(MPa) 

5 0.05 (0.5,0.5,0.5) See Table (4-3) 100 70 70 
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Table 4-4 Hypothetical crystalline slippage systems [23] 

Slippage Type Indicial Notation Normalized resistance (𝑔𝛼/𝜏0) 

Chain Slip 

(100)[001] 1 

(010)[001] 2.5 

{110}[001] 2.5 

Transverse Slip 

(100)[010] 1.6 

(010)[100] 2.5 

{110}<110> 2.5 

 

 

 

Figure 4-13 Simulation results for various volume fractions of the crystalline and amorphous 

phases together with cyclic tension test results for the SMP fiber #1 up to 120% strain level with 

50.8 mm/min strain rate 

The stress induced crystallization process is simulated in Fig. 4-14 based on the proposed governing 

relations. The crystallization microstructural change is assumed to follow the SAXS picture in which the 

crystalline microstructure is embraced with the amorphous phase. The inner and outer radii of this 

crystalline annulus are expanded and shrank respectively during the cold drawing process to show the 
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stress induced crystallization microstructural changes. Then upon loading the volume fraction of the 

oriented crystalline phase is gradually increased and the fiber becomes stiffer.    

 

4.7 Concluding remarks  

A bio-inspired healing scheme is proposed in this study through architectural design of a composite 

structure, which is constructed by SMP fiber z-pinned, continuous SMP fiber grid reinforced thermoset 

polymer embedded with thermoplastic particles. The scheme is demonstrated through experimental 

testing and finite element modeling. It is found that the polyurethane thermoplastic fibers, upon strain 

hardening by cold-drawing programming, can achieve the required recovery stress to close macroscopic 

cracks. Further, the microstructure changes due to the cold-drawing programming are characterized by 

instrumented microstructural analysis, which provides fundamental understanding and parameters for 

the constitutive modeling.   

 

 

Figure 4-14 Simulation of the stress induced crystallization process in which internal and outer 

radii of the crystalline phase evolves with loading process 

 

Due to the fact that the polyurethane SMP fibers are categorized in the class of the semicrystalline 

polymers, the enhanced mechanical responses of the cold drawn fibers are correlated to the stress 

induced crystallization process and the morphological texture changes in the amorphous and crystalline 

phases in this work. A micromechanical multiscale viscoplastic theory is developed to link the 

microscale mechanical responses of the amorphous and crystalline sub-phases to the macroscale 

mechanical behaviors of the SMP fibers including the cyclic hardening, and stress recovery responses. 
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The proposed theory takes into account the stress induced crystallization process and the initial 

morphological texture while the polymeric texture is updated based on the applied stresses. The cyclic 

loading and the thermomechanical responses of the SMP fibers are experimentally investigated in which 

the proposed theory is utilized to capture these phenomena. The proposed viscoplastic theory together 

with the material characterizations of the SMP fibers assist designers to predict the final strength, stress 

recovery and life of the self-healing structures made from the semicrystalline SMP fibers. This study 

may open new opportunities for the application of SMP fibers in load-bearing and healing composite 

structures. 
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CHAPTER 5 CYCLIC VISCOPLASTIC-VISCODAMAGEANALYSIS OF SHAPE MEMORY 

POLYMER FIBERS WITH APPLICATION TO SELF HEALING SMART MATERIALS 

 

5.1 Nomenclature 𝑨 𝛼  skwe-symmetry part of the Schmid tensor   𝒄 crystallographic axes vector  𝒅 𝑐  inelastic crystalline stretch rate tensor   

F total deformation gradient tensor 𝑭𝑒  elastic deformation gradient tensor 𝑭𝑝   plastic deformation gradient  tensor 𝑳𝑐   crystalline velocity gradient tenor 𝝈 Cauchy stress tensor 𝝐 strain tensor 𝝉𝑝  first Piola-Kirchhoff tensor 𝜏 𝛼  crystalline phase Cauchy shear stress, associated with the 𝛼th slippage system  𝜏  amorphous phase shearing stress 𝜇 shear modulus 𝜈 Poisson‟s ratio 𝜶 amorphous phase back stress tensor  𝑿 amorphous phase deviatoric back stress tensor  𝑺𝑝  second Piola-Kirchhoff tensor 𝑺𝑐   deviatoric Cauchy stress tensor 𝑺𝑐∗  crystalline deviatoric Cauchy stress tensor, projected at the 𝑐𝑖  direction 𝑺𝑐𝑝   deviatoric Cauchy stress tensor, projected perpendicular to the 𝑐𝑖  direction 
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𝒔∗  driving stress tensor in the amorphous phase 𝑠  amorphous athermal shear strength  𝑹 rotation tenor 𝑼 stretch tensor 𝑹 𝛼  symmetric part of the Schmid tensor   𝛾  𝛼  crystalline shearing strain rate associated with 𝛼th slippage system  𝛾 𝑝   amorphous shearing strain rate  𝑾𝑐  spin tensor  𝑾𝑐∗  lattice spin tensor  

 

5.2 Introduction 

Shape Memory Polymers (SMPs) have shown their excellent functionality as mechanical actuators in 

different smart material systems, although their applications are restricted due to the low actuating force. 

SMP fibers provide enhanced functionality because molecules in fibers are aligned along the 

longitudinal direction. One of the most promising application fields of SMPs is polymeric self-healing 

material systems in which the SMP matrix is designed to close the opened cracks due to different 

category of damages, e.g. structural length scale damages such as impact damage or micron scale 

damages such as fatigue damage. In previous studies a full understanding of these material systems has 

been developed [1-6]. These systems utilize a bio-inspired healing mechanism which is called Close-

Then-Heal [2, 3, 7] in which the cracks are closed through confined shape recovery upon applying 

external trigger and then they are healed, as proved by [8]. Once the crack is closed different healing 

mechanisms such as liquid healing agent [9-11], or solid healing agent such as molten thermoplastic 

particles [12] may be incorporated to obtain a molecular level healed configuration. Most recently, Li 

and Shojaei [13] proposed a new biomimetic self-healing system: cold-drawn SMP fiber grid skeleton 

reinforced conventional thermosetting polymer matrix. The ability to close macroscopic crack through 

localized heating has been demonstrated.   Actually, instead of the SMP fiber grid skeleton, uniformly 

distributed short SMP fibers, after cold-drawn programming, may have the same capability to close 

structural-length scale crack in the thermosetting polymer matrix. As discussed by Li and Shojaei [13], 

the key advantage of this newly proposed approach is (1) it closes macroscopic crack with a small 

amount of SMP material; (2) the SMP fibers can function repeatedly because each constrained recovery 

leads to a new round of tension programming [3]. Fig. 5-1 presents a schematic view of the proposed 

self-healing scheme with distributed short SMP fibers, where short SMP fibers are shown with rods and 

Thermoplastic Particles (TPs) are shown as particles. The color changes show the temperature changes. 
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Fig. 5-1(a) illustrates a Representative Volume Element (RVE) of the material system with a macroscale 

crack. Fig. 5-1(b) shows the crack is closed due to the stress recovery process of these cold-drawn 

programmed fibers upon the heating process. In Fig. 5-1(c) the TPs are molten due to further heating 

and they diffuse into the crack matrix. In Fig. 5-1(d) the room temperature configuration is shown in 

which the molten TPs solidifies and provides a microscale healed configuration.  In order to better 

design this self-healing system, understanding of the SMP fibers under cyclic loading is essential 

because this system is claimed to repeatedly heal damage.  

To this end, a multiscale approach is developed in this work toward incorporating more realistic material 

inputs. We aims at developing a multiscale approach because it provides correlation between micro-

constituent governing behaviors and macroscale mechanical responses and it can describe the physics of 

the deformation more accurately when it is compared with the pure phenomenological models. In this 

work two well-established viscoplastic theories for the amorphous and crystalline polymers are 

presented. These theories are based on certain physical description of the viscoplastic deformation 

mechanisms in each of these sub-phases and the material constants are related to certain physical 

properties of them. These two constitutive relations are linked within the micromechanics framework to 

build the macroscale mechanical responses. The averaging micromechanics techniques are utilized 

herein and certain numerical approaches are adopted to take care of non-linearity, i.e. plasticity and 

damage, in each of the sub-phase [14-18]. Speaking in general the individual micro-constituents 

mechanical behaviors may vary when they are packed in a multiphase material system and a certain 

deviation in their mechanical responses may exist between the individual and their assembled 

configurations. However, this deviation is considered negligible herein.  In section 2 the basic 

thermodynamic governing relations are reviewed and in section 3 the experimental characterization of 

SMP fibers are presented. In section 4 the micromechanics framework is discussed and in section 5 the 

constitutive relations for each of the sub-phases are presented. In section 6 the damage theory is 

formulated and in section 7 the computational aspect of numerical implementation of the proposed 

multiscale scheme is discussed. The results and discussions are presented in section 8. Bold face 

notation show tensorial parameters while scalars are shown by light face. Hereinafter the operators “.”, 
“:” and “::” denote respectively the contraction of one, two and four indices for the tensorial 

multiplications. 

5.3 Thermodynamics of coupled plasticity-damage process 

In the case of finite deformation process, the Helmholtz free energy density takes the following form: ψ = ψ 𝐂, 𝐂 p , 𝐂 d  , 𝛟, ℵ, Ω, T, δT  (5-1) 

where 𝐂,  𝐂 p  and 𝐂 d  are respectively the total, plastic and damage right Cauchy-Green tensors, 𝛟 is 

the damage tensor, second order tensors ℵ and Ω are kinematic hardening variables due to plasticity and 

damage processes, respectively; and T and δT are respectively the temperature and its gradient.  
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Let σ denote the Cauchy stress which is force per unit deformed area at the spatial configuration. The 

first Piola-Kirchhoff stress is the applied force per unit undeformed area at the spatial configuration and 

is defined by: 𝐊 = det 𝐅 𝛔 and the second Piola-Kirchhoff stress which is defined in the material 

configuration is the force per unit undeformed area and is expressed by: 𝐒 = 𝐅−𝟏𝐊𝐅−𝐓  [19-21]. 

 

 

Figure 5-1 Schematic representation of the bio-mimetic self-healing material system (a) damaged 

configuration with a macroscale crack, (b) closed crack configuration due to the stress recovery 

process of SMP fibers, (c) diffusion of the molten Thermoplastic Particles (TPs) into the cracked 

matrix and (d) healed configuration with magnified view of the crack interface which shows 

molecular entanglement of the solidified TPs and thermosetting polymer molecular chain 

 

The applied energy to the material system is then decomposed in three major segments as discussed by 

[4, 22]: ψ = W 𝐂, 𝐂 p , 𝐂 d , 𝛟, T + H ℵ, Ω + Gd 𝛟 + Q δT  (5-2) 

where W is the elastic energy stored in the material system due to the elastic deformation and it is 

recoverable upon unloading. The hardening function H  takes into account the effect of hardening 

mechanisms due to inelastic and damage processes. The hardening effects may include the dislocation 

formation and movement in metallic crystalline microstructures or entropic changes in polymer 
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networks. Once the local energy exceeds the crystalline binding energy or the strength of polymeric 

network, new micro-surfaces, which are termed microcracks herein, are formed within the material 

system. The surface energy function Gd  takes into account the energy dissipations due to formation of 

new microsurfaces and is the representative term for the damage process. The heat dissipation during 

such an irreversible thermodynamic process, e.g. plasticity and damage, is captured by the energy 

function Q.Consequently the dissipation energy is divided into the (i) plastic deformation, (ii) formation 

of microcracks and (iii) heat release.  

As discussed above the microscale damage formations are controlled by the surface energy function Gd . 

In general the polymeric networks are either amorphous or semicrystalline. In crystalline metallic 

material systems once the local applied stress exceeds the binding energy the crystal slippage system is 

activated and dislocations are formed. Through further loading separation between crystalline slip planes 

may occur and produce a microscale crack, as depicted in Fig. 5-2(c). Although in a polymeric material 

system the governing plasticity and damage mechanisms follow different physics the conceptual damage 

initiation process remains the same as metals. The amorphous network consists of a series of randomly 

dispersed polymer chains while in a crystalline network these polymer chains are folded in a certain 

direction. As shown in Fig. 5-3, in the case of amorphous polymers, the applied stress results in 

conformational changes in polymeric network, Fig. 5-3(b), in which the chains rotates to orient along the 

loading direction and upon further loading the chains stretch to a certain limit λL  Fig. 5-3(c), and then 

they break once the applied stretch is greater than λL  and produce a microcrack in Fig. 5-3(d). In Figs. 5-

2 and 5-3 the deformation mechanisms are shown by elastic, F e , plastic, F p , and damage, F d , 

deformation gradient tensors. Inelastic deformation of crystalline phase in semicrystalline polymers 

includes three different mechanisms: (a) crystallographic slip, (b) twining and (c) Martensite 

transformations (Stevenson, 1995).  

As shown in Figs. 4-2 and 4-3 the microcrack formation between the two presented classes of materials 

includes different damaging mechanisms. On the other hand these microcrack formation mechanisms 

enforce the definition of the surface function Gd  which is the governing term in prediction of the damage 

initiation and growth. In Continuum Damage Mechanics (CDM) the designers of the material systems 

can correlate the thermodynamics of the damage process to the measurable mechanical properties such 

as changes in elastic stiffness [23]. Here due to the complexity of the deformation mechanism in SMP 

fibers a new approach is adopted within CDM framework in which the functionality of the SMP fibers is 

calibrated against the state of the damage as discussed in section 6.  

Fig. 5-4 schematically shows the cyclic response of SMP fibers, in which an irregular inelastic 

deformation in tension and excessive reversible inelastic strains in unloading are illustrated. The theory 

presented in this work is based on multiplicative decomposition of the deformation gradient into the 

elastic, 𝐅e , and viscoplastic-damage, 𝐅vpd , gradients as follows [19-21]: 

𝑭 = 𝑭𝑒𝑭𝑣𝑝𝑑  (5-3) 
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The viscoplastic-damage gradient tensor, 𝐅vpd , is further decomposed to the Unloading viscoplastic, 𝐅vp  Unl  
, which measures the reversed inelastic deformations during the unloading process and Residual 

viscoplastic-damage, 𝐅vpd  Res  
, which is the residual inelastic-damaged strains after unloading process: 

𝑭𝑣𝑝𝑑 = 𝑭𝑣𝑝  𝑈𝑛𝑙  𝑭𝑣𝑝𝑑  𝑅𝑒𝑠 
 (5-4) 

In order to provide an experimentally admissible procedure to measure the damage, the residual 

inelastic-damaged strains are assumed to be decomposed into the Recoverable viscoplastic gradient 

tensor,  𝑭𝑣𝑝  𝑅𝑒𝑐  
, which is measured through the recovery process of SMP fibers, and Irreversible 

viscoplastic gradient tensor,  𝑭𝑣𝑝  𝐼𝑟𝑟  
, which takes into account all residual inelastic strains. The 

Damaged gradient tensor, 𝑭𝑑 , accounts for the microcracks formation and polymeric chain failures. 

Then Eq. (5-3) by substituting the above gradients is reduced to: 

𝑭 = 𝑭𝑒  𝑭𝑣𝑝  𝑅𝑒𝑐  
 𝑭𝑣𝑝  𝐼𝑟𝑟  𝑭𝑑𝑭𝑣𝑝  𝑈𝑛𝑙  

 (5-5) 

One may assume small elastic and finite viscoplastic and viscodamage deformations. The additive 

decomposition of the Lagrangian elastic, 𝛜e , and viscoplastic-damage, 𝛜vpd , strain is a fundamental 

assumption in viscoplasticity return mapping solution algorithms [21, 24]: 

𝝐 = 𝝐𝑒 + 𝝐𝑣𝑝𝑑  (5-6) 

This additive decomposition is extended for the presented deformation mechanism in Eq. (5-5) as 

follows: 𝝐𝑣𝑝𝑑 =   𝜖𝑣𝑝  𝑅𝑒𝑐    𝒏𝑣𝑝  𝑅𝑒𝑐  
+   𝜖𝑣𝑝  𝐼𝑟𝑟    𝒏𝑣𝑝  𝐼𝑟𝑟  

+   𝜙  𝒏 𝑑 
+   𝜖𝑣𝑝  𝑈𝑛𝑙    𝒏𝑣𝑝  𝑈𝑛𝑙  

 

(5-7) 

where     shows the norm of the second order tensors, and the second order tensor, n(#), represents the 

flow direction for their corresponding phenomenon. Each of the terms in Eq. (5-7) requires an evolution 

law and they will be proposed in section 5 where the governing constitutive relations are introduced. 

 

5.4 SMP fibers characterization  

 

In the following the experimental results regarding microstructural changes of the SMP fibers are 

presented and then the governing relations for each of the sub-phases are introduced in the next section. 



99 
 

These relations are then correlated to the macroscopic mechanical responses through the 

micromechanics framework.   

 

 

Figure 5-2 Crystalline microstructure under biaxial loading condition (a) undeformed body, (b) 

formation of different type of dislocation due to the external loading condition and (c) microcrack 

formation. 

 

 

Figure 5-3 Polymeric network under biaxial loading condition, (a) undeformed body, (b) 

conformational changes due to external loading, (c) stretched chains after saturation of 

conformational changes and (d) microcrack formation due to breakage of polymer chain. 

    

SMP fibers are mainly manufactured from thermoplastic SMPs, particularly polyurethane [25]. The 

polyurethane semicrystalline SMP fibers are constituted from the crystalline hard phase and amorphous 

soft phase. This class of SMP shows excellent solution ability, melting, diffusion, processability, and 
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repeatability of the Shape Memory (SM) cycle and they are prominent candidates for smart materials 

applications [26]. Soft segment amorphous phase may be constituted from the polyester or polyether or 

semi-crystalline polymers such as poly(ε-caprolactone) (PCL) structures. The crystalline hard segments 

(e.g. diisocyanate (TDI), aromatic urethane or aramid) are dispersed over the soft segment to form 

thermally stable chemical or physical cross links. These distinguishable sub-phases in the polyurethane 

elastomers provides the physical basis for a micromechanics based formulation in which a multiscale 

analysis is implemented to correlate the micro and macro scales [27]. 

 

 

Figure 5-4 Schematic representation of loading-unloading process for SMP fibers 

 

In this study, polyurethane SMP fibers are synthesized from poly(butylene adipate)-600 (Mn) (PBA), 

4‟4 -diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). On average, the mole ratio of 

(MDI+BDO): PBA=3:1. The average formula weight ratio of (MDI+BDO): PBA=1021:650. The hard 

segment, soft segment, and their contents were selected to prepare polyurethane with amorphous soft 

segment phase and crystalline hard segment phase. The polyurethane fiber was spun by melt spinning. 

The fiber passed three pairs of rollers with the same rotation speed before being wound up. It has been 

found that programming below the transition temperature is a faster way of programming SMPs and also 

a way of enhancing the recovery stress, as evidenced by cold-drawing programming of thermoplastic 

SMPs [28] and cold-compression programming of thermosetting SMPs (Li and Xu, 2011). In a previous 

study [13], the SMP fibers were cold-drawn programmed. Polarized Optical Microscope image validated 
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the molecular alignment along the loading direction after cold-drawn programming. This observation 

was further evidenced by Small Angle X-ray Scattering, showing orientation change of microstructures 

after programming. Dynamic Mechanical Analysis test showed a shift of the glass transition temperature 

towards higher temperature, and a higher storage modulus for the strain hardened SMP fiber as 

compared to the as received counterparts.  

 

5.5 Micromechanics Formulation  

The semicrystalline polyurethane SMP contains different shapes of crystalline hard phase, which might 

be treated as inclusions, and the macroscopic stress field strongly depends on the volume fraction and 

orientation of these inclusions and interfacial properties between the crystalline hard phase and the 

amorphous soft phase. Moreover, the microstructural changes during the cold-drawing processes affect 

the macroscopic stress field and these effects should be considered in evaluating the macroscopic 

constitutive behaviors. Then a multiscale micromechanic based theory, which couples the viscodamage 

and viscoplasticity processes in each of the micro-constituents to the macroscale fields, provides an 

excellent correlation between the microscale and macroscale mechanical responses. Fig. 5-5 presents a 

schematic view of the considered Representative Volume Element (RVE) for the SMP fiber in this 

work, in which Fig. 5-5(a) shows dispersed hard phases and Fig 4-5(b) shows the stretched RVE with 

changed microstructures. 

This multiscale approach provides enough flexibility to capture a vast range of mechanical responses 

while the simulation relies on physical based constitutive relations. The well-known rule of mixture is 

utilized here to link the microscale stress fields to the macroscale stress as follows: 

𝝈 = 𝑐 0 𝝈(0) + 𝑐 1 𝝈(1) (5-8) 

where 𝑐 𝑖 , 𝑖 = 1, 2 represents the volume fractions of sub-phases and indices 0 and 1 respectively 

indicate the amorphous and crystalline phases. These volume fractions will be updated based on stress 

induced crystallization process and the microscale stresses, i.e. 𝝈(0)  and 𝝈(1) , take into account the 

microstructural changes during the cold drawing process. The stress induced crystallization process is 

experimentally investigated in the literature by many researchers [29-31]. In this work it is assumed that 

this process is related to the accumulated viscoplastic strain and its rate and it is computed based on the 

loading history. The following evolution law is proposed to update the crystalline and subsequently the 

amorphous volume fractions as follows: 𝑐  1 = 𝜓  𝑝  𝑐0 1 𝑒𝑥𝑝 −𝜓  𝑝   (5-9) 

where  𝑝 =  2𝝐𝑣𝑝 : 𝝐𝑣𝑝  is the effective accumulated viscoplastic strain and  𝜓  is a microstructural 

related material parameter to control the crystallization process. Rate equation (9) provides an 

incremental evolution for the stress induced crystallization process and saturates at high inelastic strains. 
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The physical description for selecting such a behavior is that the stress induced crystallization is 

expected to be saturated at some inelastic strain range in which upon further loading failure of the 

polymeric network occurs. In other words, the stress induced crystallization is assumed to occur prior to 

the microcrack formations and saturates to a certain limit which is governed by the microstructure. 

Exploring the actual volume fractions for each of these sub-phases is experimentally difficult and some 

hypothetical values are assumed herein for these volume fractions. This may not undermine the 

generality of the proposed model because of the fact that upon establishment of the real volume fractions 

of the crystalline and amorphous phases, these values can be easily mapped to the assumed hypothetical 

ones and the results are still valid. As discussed later in section 7, the stress induced crystalline volume 

fraction is partially recovered upon each unloading while at the end of each of the loading-unloading 

cycles a certain amount of stress induced crystalline phase is frozen which consequently results in higher 

elastic stiffness at subsequent cycles.  

To account for the microstructural changes during the cold-drawing process the textures in the 

amorphous and crystalline phases and the morphological texture, which account for the interfacial 

changes between the hard and soft phases, are updated incrementally. These updates are presented in the 

next section after establishment of the micro-constituents governing relations. 

 

 

Figure 5-5 RVE (a) non-stretched SMP fiber, and (b) stretched SMP fiber 

 

5.6 Micro-constituents governing relations  

As discussed before the semicrystalline polyurethane SMP is constituted from crystalline hard phase 

which are randomly dispersed in an amorphous matrix. The amorphous phase is constituted from 

randomly folded polymeric chains while in the crystalline phase these folded chains are oriented in 
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parallel configurations. This phase can be produced during the manufacturing process, where the 

spherulite crystalline structures are formed under isotropic conditions (Fig. 5-6(a)). Once physical 

constraints are imposed during the manufacturing process or external loading condition is applied to the 

manufactured crystalline phase, the crystalline phase shows chain alignment with respect to these 

external confinements as shown in Fig. 5-6(b). The last phenomenon is termed as the stress induced 

crystallization in the literature [32, 33].  

Speaking in general a system of coupled governing differential equations are required to take into 

account the amorphous and crystalline damage, viscoplasticity, molecular texture and morphological 

texture updates. In the following these constitutive equations for the sub-phases are presented in a 

systematic approach in which each of the individual terms in Eq. (5-7) is introduced. These governing 

relations are later coupled with the micromechanics formulation to predict the macroscopic mechanical 

behaviors. The computational implementation is discussed in section 6 for such a multiscale analysis.  

  

 
Figure 5-6 Semicrystalline morphology (a) manufacturing induced spherulite microstructure 

under isotropic conditions and (b) stress induced crystallized microstructure 

 

 

5.6.1 Amorphous soft phase constitutive relation: 

The rate dependent Argon theory describes the viscoplastic deformation of polymers based on double 

kink formations and the intermolecular resistant, which is the free energy barrier to chain segment 

rotation [34]. Boyce and coworkers developed this theory to a pressure and temperature dependent 

version [35-40]. This model is assumed to be held for the amorphous phase of the semicrystalline SMP 

fiber. The plastic multiplier in this model is introduced as follows (Boyce et al., 1989): 
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 𝛾 𝑝 = 𝛾 0𝑎 𝑒𝑥𝑝  −𝐴 
𝑠 + 𝑎 𝑝𝛩   1 −   𝜏 𝑠 + 𝑎 𝑝 5/6   (5-10) 

where Θ is the absolute temperature, and a is a material parameter,  𝑝 is pressure and 𝑠 is the athermal 

shear strength. The material parameter 𝐴  and the evolution law for 𝑠 are defined as follows: 𝐴 =
39𝜋𝜔2𝑎 3

16𝑘  ;  𝑠 =   1 − 𝑠𝑠𝑠𝑠 𝛩, 𝛾 𝑝     𝛾 𝑝  𝑎 . (5-11) 

where 𝜔 and 𝑎   are material parameters and 𝑘 is the Boltzmann‟s constant (Argon, 1973). The material 
parameter  shows the rate of the strain softening and 𝑠𝑠𝑠  represents the asymptotic preferred structure. 

The initial value of 𝑠 for the annealed material is: s0 =
0.077μ

1−ν , where 𝜇 is the elastic shear modulus and 𝜈 

is the Poisson‟s ratio.  
 

The material constant 𝛾 0𝑎  , in Eq. (5-10), is called amorphous pre-exponential inelastic strain rate, and  𝛾 𝑝   𝑎 =  2𝝐 𝑝 (𝑎) ∶ 𝝐 𝑝 (𝑎) is the effective equivalent inelastic deformation rate of the amorphous phase 

subjected to the effective equivalent shear stress,  τ , which is defined as follows:  𝜏 =  1

2
𝑺∗: 𝑺∗ (5-12) 

 

where 𝑺∗ = 𝑺 − 𝑿 in which 𝑺 = 𝝈 − 𝜍𝜹 is the deviatoric Cauchy stress and 𝜍 =
1

3
 𝜍1 + 𝜍2 + 𝜍3  and   𝑿 = 𝜶 − 𝛼𝜹  is the deviatoric back stress tensor and 𝛼 =

1

3
 𝛼1 + 𝛼2 + 𝛼3  which is defined as 

follows [35]: 

 𝜶 = 𝑛𝑘𝛩 𝝀𝐿
3

 𝝀𝑝ℒ−1  𝜁 𝝀𝑝𝝀𝐿 − 𝐼1
𝑝ℒ−1  𝜁 𝝀𝑝𝝀𝐿 𝜹  (5-13) 

 

where 𝐼1
𝑝

=
1

3
(𝜆1

𝑝
+ 𝜆2

𝑝
+ 𝜆3

𝑝
)  and 𝑛  is the number of chains per unit volume, 𝑘  is the Boltzmann‟s 

constant, and λL  is the limit of chain extensibility and ζ is a viscoplastic related material constant which 

controls the magnitude of the hardening with respect to the inelastic stretches. In limit analysis Langevin 

function, ℒ β = coth β − 1/β, is used extensively and it imposes a limiting case in the evolution of 

the back stress tensor. Although the ℒ−1 β  can be obtained numerically, here an approximated Taylor 

series solution is utilized to obtain the inverse of the Langevin function as follows [41]: 

 ℒ−1 𝛽 = 3𝛽 +
9

5
𝛽 +

297

175
𝛽2 +

1539

875
𝛽7 + ⋯ (5-14) 
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Eq. (5-14) represents the magnitude of the amorphous inelastic strain rate; while the direction of the 

amorphous viscoplastic flow rate, 𝛜 𝑣𝑝 (𝑎)
, is governed by the deviatoric driving stress, 𝐒∗ . The following 

flow rule is then proposed for the inelastic deformation in the amorphous phase [38]: 

   𝝐 𝑣𝑝 (𝑎)  𝒏𝑣𝑝 (𝑎)
=  𝛾 𝑝   𝑎 𝑺∗ 2 𝜏  (5-15) 

 

5.6.2 Crystalline hard phase constitutive relation: 

The crystalline phase in the semicrystalline polymers may undergo three different inelastic deformation 

mechanisms including (a) crystallographic slip, (b) twining and (c) Martensite transformations [32]. In this 

work the slippage mechanism is assumed to be the dominant influencing mechanism. To consider the 

crystallographic texture changes upon stretching a vector, 𝒙, is aligned with the crystallographic texture in 

which its evolution with deformation shows the texture updates. Two active slip mechanisms in the 

polymeric slippage system have been taken into account which are: (a) chain slip: the burgers vector is 

aligned with 𝒙 and (b) transverse slip: the burgers vector is perpendicular to 𝒙 [42]. As discussed by Parks 

and Ahzi, in the semicrystalline polymers there are only four linearly independent crystalline slip systems, 

which are indicated by the unit vectors in the direction of the slip and normal to the slip planes including: 

(i) chain slip: (100)[001] and (010)[001], and (ii) transverse slip: (100)[010] and (010)[100] [42]. Vector 𝒔 𝛼  denotes the slip direction and vector 𝒏 𝛼  represents the unit normal vector to the slip plane, where 𝛼 = 1 to 4 is the number of the slip systems. The viscoplastic crystalline deformation rate tensor, 𝝐 𝑣𝑝 (𝑐)
, is 

given by [43]: 

  𝝐 𝑣𝑝  𝑐   𝒏𝑣𝑝  𝑐 
=  𝛾  𝛼 𝑹(𝛼)𝐾𝛼=1 , (5-16) 

where 𝑅(𝛼) is the symmetric part of the Schmid tensor as defined by:  𝑹(𝛼) =
1

2
 𝒔 𝛼 ⊗ 𝒏 𝛼 + 𝒏 𝛼 ⊗𝒔 𝛼  , where ⊗  shows the dyadic multiplication; 𝑹(𝛼)  represents the 𝛼 th

 crystalline slip plane and the 

shear rate, 𝛾 (𝛼), is defined as follows [44, 45]: 

𝛾  𝛼 =  𝛾 𝑝   𝑐  
𝜏 𝛼 𝑔 𝛼  𝜏 𝛼 𝑔 𝛼  𝑛𝑐−1

 (5-17) 

where  𝛾 𝑝  𝑐  is the crystalline reference inelastic strain rate and 𝑔 𝛼  is the shear strength for the 𝛼𝑡  slip 

system, and 𝑛𝑐  is the rate sensitivity factor. Due to the inextensibility assumption of the crystalline chains 

together with the incompressible plastic flow a constraint is enforced on the effective shear stress, 𝜏 𝛼 , at 

the 𝛼𝑡  slippage system, as follows [43]: 
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𝜏 𝛼 = 𝑺∗(𝑐)
: 𝑹(𝛼), (5-18) 

where 𝑺∗(𝑐)
 is the projected deviatoric Cauchy stress, S, in the direction of the deviatoric part of the dyadic 𝒙 ⊗ 𝒙 which is defined as 𝐕 = 𝒙 ⊗ 𝒙 − 1

3
𝑰, [43]. The lattice spin which controls the rate of changes of 

the direction of 𝒙 is introduced as follows [45, 46]: 

𝑾∗ = 𝑾(𝑐) − 𝑾𝑝 (𝑐)
, (5-19) 

where 𝑾(𝒄) =
1

2
 𝑳 𝒄 − 𝑳 𝒄 𝑇 is the spin tensor in the crystalline phase, 𝑳 𝒄 = 𝑭  𝑐 𝑭 𝑐 −1

 is the velocity 

gradient in the crystalline phase and „  ‟ denotes the time derivative, and  𝑾𝑝 (𝑐)
=  𝛾 0𝑐𝐾𝛼=1 𝑨(𝛼) is the 

plastic spin tensor in the crystalline phase with  𝑨(𝛼) =
1

2
 𝒔 𝛼 ⊗ 𝒏 𝛼 − 𝒏 𝛼 ⊗ 𝒔 𝛼  , which is the 

skew part of the Schmid tensor. 

 

5.6.3 Cyclic updates: 

SMP fibers show a primary softening region in tensile which follows by an irregular strain hardening 

response. Based on experimental observations at high cyclic tensile loads the strain hardening responses 

at  high strain levels is aggrandized which can be an indication of the saturation of conformational 

changes in polymeric network. In this work the microstructural changes due to the cold-drawing process 

are updated based on physical descriptions of the deformation mechanisms. In other words, the cyclic 

hardening of the SMP fibers are attributed to: (i) the saturation of the conformational changes in the 

amorphous phase in which the Langevin element response should be updated based on the residual 

viscoplastic strains; (ii) updating the molecular network texture in the amorphous phase; (iii) modeling 

the crystallographic axes changes in the crystalline phase upon cold drawing process. It is assumed that 

the crystalline axes undergo rotation and extension during the stretching while upon unloading a portion 

of these rotations and extensions are reversed. In such a way the configuration of the crystalline phase is 

updated in each of the cycles; (iv) accounting for the morphological updates in the semicrystalline RVE 

in which the interfacial vectors updates represent the overall morphology of the RVE . These topics are 

addressed in the following subsections: 

(i) Cyclic update of the Langevin element: 

The amorphous polymer mechanical responses show a primary softening region in tensile which follows 

by an irregular strain hardening response. Based on experimental observations the cyclic responses of 

SMP fibers follow the same saturation process of the polymeric network stretch. To capture this 

behavior the Langevin function is updated during each loading based on the following governing 

relation: 
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𝜁 = ℵ 𝜅 − 𝜁  𝑝   (5-20) 

where ℵ and 𝜅 are material related constants and  𝑝  =  2𝝐 𝑣𝑝  𝑎 
: 𝝐 𝑣𝑝  𝑎 

 is the effective shear plastic 

strain rate. Eq. (5-20) evaluates the controller coefficient 𝜁 based on the loading history and allows the 

Langevin element to show dominant effects at higher cycles while at low cycles its effect is negligible. 

In such a way at higher cycles the amorphous polymeric network shows stiffer stretches which is in line 

with the experimental observations. It is assumed in this work that only during the tensile loadings the 

Langevin function is active while during the unloading this element is turned off.  

 

(ii) Cyclic texture update in the amorphous phase: 

Boyce et al. showed that the amorphous tensile yield stress is highly dependent on the orientation and 

initial texture of the polymeric chains [40]. It is common to neglect the texture effect in an elastic 

deformation and consider it only during an inelastic deformation by incorporating initial values for the 

back stress tensor, 𝜶, athermal shear resistance, 𝑠, network stretch vector, 𝜦 𝑎  , and residual stress 

tensor, 𝝈 𝑎  (Boyce et al., 1989). 

(iii) Cyclic texture update in the crystalline phase: 

Let the crystalline texture be represented by a crystallographic vector, 𝒙. This vector can be affected by 

the induced rotation in a large deformation process. The following rate equation takes into account the 

changes in direction of the crystallographic axes with respect to the second order skew symmetry spin 

tensor 𝑾∗ [13, 46]: 

𝒙 = 𝑾∗ . 𝒙 (5-21) 

The incremental form of Eq. (5-21) is given by: 𝒙 = exp 𝑾∗𝛥𝑡 𝒙 𝑡   where Δt  indicates the time 

increment. Based on the Cayley-Hamilton expression for exponential term, one may find the following 

expression: 

𝑒𝑥𝑝 𝑾∗𝛥𝑡 = 𝑰 +
sin 𝑤𝑤 𝑾∗𝛥𝑡 +  1 − 𝑐𝑜𝑠𝑤𝑤2

 𝑾∗: 𝑾∗𝛥𝑡2 (5-22) 

where “:” denotes the contraction of indices and 𝑤2 = −𝑡𝑟 𝑾∗: 𝑾∗𝛥𝑡2 /2.  

The crystallographic axes, x, is computed based on the applied stretching gradients during the loading 

process based on Eq. (5-21). The evolved texture at the end of the loading process is introduced to the 

unloading computation module to update it during the unloading process in which a portion of the stored 

crystallographic texture changes is reversed. The reversible part of the applied texture changes is 
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assumed to be related to the loading conditions, loading history and material parameters and the 

following evolution law is proposed: 

𝒙 (𝑅𝑒𝑣 ) = −𝛀1 exp −Ω2  𝛾𝑝   𝑐    (5-23) 

where the material parameters 𝛀1  and Ω2  respectively control the rate and the final value of the 

convergence. It is worthy of noting that 𝒙 (𝑅𝑒𝑣 ) is computed incrementally during the loading process and 

its final value is introduced into the subsequent unloading process.  

 

(iv) Morphological texture updates: 

In this work the crystals are treated as inclusions embedded in the amorphous phase [47]. The 

morphology of such a multiphase system undergoes excessive variations in a large deformation process 

and a proper description for such a morphological texture update is required. Basically this task is 

accomplished by updating the interfacial normal vectors in which the deformation gradient is used to 

compute the variation in these normal vectors. Let the material coordinate system at the interface plane 

be indicated by two infinitesimal independent vectors,  𝛿𝒙(1) and 𝛿𝒙(2) at time 𝑡 = 0. At generic time 𝑡, 

these vectors are transformed respectively to the 𝑭 𝑡 . 𝛿𝒙(1)  and 𝑭(𝑡)𝛿𝒙(2)  where 𝑭 𝑡  is the 

deformation gradient. Then the following expression for the normal vector 𝒏𝐼 is trivial: 

𝒏𝐼 0 =
𝛿𝒙(1) × 𝛿𝒙(2) 𝛿𝒙(1) × 𝛿𝒙(2)  (5-24) 

𝒏𝐼 𝑡 =
𝑭 𝑡 . 𝛿𝒙(1) × 𝑭 𝑡 . 𝛿𝒙(2) 𝑭 𝑡 . 𝛿𝒙(1) × 𝑭 𝑡 . 𝛿𝒙(2)  (5-25) 

Consequently one may assume a specific RVE configuration prior to the loading and then compute the 

changes of the interfacial normal vectors, 𝒏𝐼, for each of the inclusions to update the morphological 

texture changes. 

 

5.7 Cyclic damage analysis 

Due to the high rate dependency in mechanical responses of SMP fibers, a viscous damage model is 

adopted in this work.  Formulation of the damage mechanics with respect to the Zener parameter 

provides enough flexibility to formulate a rate and temperature dependent damage theory [48-51]: 

𝝓 =   𝝓   𝒏𝑑 = 𝜃 𝑇 𝑍𝒏𝑑  (5-26) 
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where 𝜃 𝑇  introduces the temperature dependency in the damage evolution and it is represented by 

Arrhenius function of temperature; 𝑍  is the Zener parameter and 𝒏𝑑  represents the direction of the 

damage flow. The proposed damage theory utilizes the same concept as viscous stresses in plasticity 

theory and Zener parameter controls the rate of changes for the viscous damage conjugate force as 

follows [48, 51]: 

𝑍 = 𝑍𝑠𝑠  𝑓  < 𝒚𝑑 − 𝒚𝑑𝐾 > −1𝐷𝑑    ≥ 0 (5-27) 

where 𝑍𝑠𝑠 0 = 0  and 𝒚𝑑  and 𝒚𝑑𝐾  are respectively the damage and damage kinematic hardening 

thermodynamic conjugate forces and 𝐷𝑑 > 0 is the drag strength and “<>” is the Macaulay brackets. 
Freed and Walker proposed different admissible functional forms for 𝑓, and in this work the power-law 

expression is adopted [48-50]. Neglecting the temperature dependency in the damage evolution, one 

may find: 

  𝝓   =  < 𝒚𝑑 − 𝒚𝑑𝐾 > −1𝐷𝑑   𝑚
 (5-28) 

where  𝒚𝑑𝐾  = 𝑏 𝒚𝑑   with 0 < 𝑏 < 1 and 𝑚  is the power of the viscosity dependence. Basically the 

damage conjugate force is derived based on the Helmholtz free energy function, Eq. (5-1), as discussed 

in detail by Voyiadjis et al. [5, 6]: 

𝒚𝑑 = −𝜌 𝜕𝜓𝜕𝝓 (5-29) 

where 𝜌 is the density. Based on thermodynamics governing relations the damage conjugate force is 

correlated to the Cauchy stress tensor as follows [5, 6]: 

𝒚𝑑 = − 𝝈: 𝑳 −1: 𝑴: 𝝈 ∷ 𝜕𝑴𝜕𝝓   (5-30) 

where fourth order tensors 𝑳  and 𝑴 are respectively the undamaged stiffness and damage-effect tensors, 

which relates the states of partially damaged configuration to the fictitious undamaged configuration. 

They are respectively defined in the context of Micromechanics and Continuum Damage Mechanics as 

follows [52]: 𝑳 = 𝑐 0 𝑳  0 + 𝑐 1 𝑳  1   𝝈 = 𝑴: 𝝈  

(5-31) 

where the over-bar shows the state of fictitious undamaged configuration and the relationship between 

damaged and undamaged stiffness tensors are given by Voyiadjis et al. [6]. A simple expression for the 

damage effect tensor is proposed as follows: 
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𝑴 =   𝑰 − 𝝓 :  𝑰 − 𝝓  1/2  (5-32) 

where 𝑰 is the second order unity tensor. As discussed before the second order tensor 𝝓 represents the 

reduction in functionality of SMP fibers in this work. The flow direction of the damage is given by 

second order tensor 𝒏𝑑  as follows: 

𝒏𝑑 =

𝜕𝐹𝑑𝜕𝒚𝑑  𝜕𝐹𝑑𝜕𝒚𝑑     (5-33) 

 

where 𝐹𝑑  is the damage potential surface and is defined based on the damage and damage kinematic 

hardening conjugate forces: 𝒚𝑑and 𝒚𝑑𝐾 , rate dependent damage threshold 𝑌𝑑 𝝐  , and damage isotropic 

hardening function 𝐾  𝝓   as follows: 

𝐹𝑑 =   𝒚𝑑 − 𝒚𝑑𝐾 : 𝑷:  𝒚𝑑 − 𝒚𝑑𝐾 𝐾  𝝓  + 𝑌𝑑 𝝐   + 1 1/2 − 1  (5-34) 

 

where fourth order tensor 𝑷 = 𝒁−1𝒁−1 controls the damage initiation and growth rate. The second order 

tensor 𝒁 is introduced in the following: 

𝒁 =  𝜆𝜂   𝝓 𝜆  𝜻𝒅 𝜹. 𝝓 + 𝜹𝜆𝜈𝑑 2  (5-35) 

where  𝝓 =  2𝝓: 𝝓 is the effective accumulated shear damage,  𝜆 is the Lame‟ constant and 𝜁𝑑 , 𝜈𝑑  

and 𝜂 are material constants to introduce the damage hardening and damage threshold effects [5] and 𝜹 

is the Kronecker delta. 

One of the milestones in calibrating the damage process in SMP fibers is to find an experimental way to 

measure the damages. As discussed by Voyiadjis et al. [4-6] the coupling between the damage and the 

viscoplastic responses is captured by calibrating the elastic modulus or hardness changes or measuring 

the damaged microsurfaces during a progressive damage mechanism such as fatigue damage [23, 53-

55]. In the case of SMP fibers, these measurement techniques are not applicable, due to the high 

microstructural changes upon the cold-drawing process. In other words, the increasing stiffness due to 

the texture updates and stress-induced crystallization are coupled with the stiffness reduction due to the 

formation of microcracks. In order to provide a physically consistent method to capture the damage 

inside the SMP fibers, a new damage parameter is introduced herein as follows.  
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The main purpose of utilizing the SMP fibers is to gain the recoverable stresses upon the heating process 

in self-healing or other smart material systems. One may consider this functionality to provide an insight 

for the state of the damage inside the SMP fibers. Cyclic changes in the stress recovery, which are then 

measured after each loading-unloading cycle, provide an indication to the state of the damage inside 

these fibers. These measurements are demonstrated in Figs. 4-7 and 4-8 where the polyurethane SMP 

fiber with a diameter of 0.002 mm is cycled up to 150% and 300 % level of strains, respectively, and 

after the unloading, the recovery process is implemented. In the following the corresponding recoverable 

strains are measured through the constrained stress recovery in which the MTS machine picks the 

stresses and a controllable furnace applies the heat. The test procedure is as follows: (i) the SMP fiber is 

loaded-unloaded from zero stress level, (ii) the unloaded fiber is mounted on MTS machine and heat is 

applied by the furnace and the recovery stress level, 𝜍 𝑟𝑒𝑐  , is measured by the MTS, and (iii) the 

loading curve from step (i) is utilized to pick up the corresponding level of strain with respect to the 𝜍 𝑟𝑒𝑐  . Then the recovered stress level, 𝜍 𝑟𝑒𝑐  , at step (ii) is assumed to be a representative for the stored 

recoverable strains,   𝝐𝑣𝑝  𝑅𝑒𝑐    , at step (i). It is imperative to mention that, the elastic stiffness of the 

SMP fiber is assumed to not vary significantly at the recovery temperature ranges. Thermal stability of 

the SMP fibers is shown by Li and Shojaei [56] and this property is of utmost important for deploying 

these fibers into the smart fiber-reinforced structures.  

Fig. 5-7 shows that the recoverable stresses increase upon first four cyclic stretches, which can be 

explained by the fact that the maximum recoverable stresses correspond to some specific stored 

microstructure, and the cyclic loading gradually provides such a microstructural configuration. From 

cycle number five the amount of the stress recovery is reduced. This phenomenon is interpreted herein 

as the damage effect and this reduction of the functionality is utilized later to provide a physical means 

for the damage analysis. In Fig. 5-8 the SMP fiber is stretched up to 300% level of strain in each of the 

cycles and as it is obvious from Fig. 5-8(b), the damage mechanism is started from the first cycle and the 

amount of the recoverable stress is reduced monotonically.  

The reduction of the functionality of SMP fibers upon cyclic loading and cyclic recoveries is interpreted 

as gradually failing microstructures, which are the responsible functional units to store the changes and 

return to their original configuration upon heating process and produce the recoverable stresses. As 

discussed by Shojaei et al. the strain controlled cyclic loading with non-zero mean stresses results in 

ratcheting response in which the inelastic strains are accumulated up to the final failure cycle. Due to the 

fact that the ratcheting plastic strain saturates to a certain value in the case of SMP fibers, the damage 

parameter is defined as follows: 

  𝝓   =
  𝝐𝑣𝑝  𝑅𝑒𝑠  & 𝑆𝑎𝑡    −   𝝐𝑣𝑝  𝑅𝑒𝑐      𝛥𝝐   (5-36) 
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where   Δϵ   shows the cyclic applied strain level, e.g. 150% or 300% herein, and   ϵvp  Res  & 𝑆𝑎𝑡     is the 

saturated residual inelastic strains which is measured at higher cycles and this parameter is defined to 

scale the damage parameter with respect to the loading conditions. Basically the average of the residual 

inelastic strains in the last two cycles before fracture is considered as   ϵvp  Res  & 𝑆𝑎𝑡    . The defined 

damage parameter performs quite well in capturing the cyclic functionality lost of SMP fibers. One may 

interpret this lost of functionality as initiation and propagation of microscale cracks and polymeric 

network failure. The third term in Eq. (5-36) is recoverable viscoplastic strain level which is measured 

through stress recovery tests (see Fig. 5-4). 

 

 

Figure 5-7 Recovery test results for SMP fiber #2 (a) after 150 % cyclic tensions, (b) 

corresponding recoverable strains 

5.8 Multiscale coupled viscoplastic-viscodamage computational aspects 

The proposed multiscale scheme in this work requires different microscale computational modules to 

update the microscale state of plasticity and damage inside each of the sub-phases. Then amorphous and 

crystalline microscale computation modules update the microscale fields and micromechanics 

computational module correlates these microscale fields to the macroscopic responses. The return 

mapping techniques are utilized as the plasticity and damage solution algorithms and these methods are 

elaborated by Voyiadjis et al. [5]. The detailed description for the cyclic loading numerical algorithm 

can be found in [57]. As shown in Fig. 5-4 the unloading axes is placed on the final loading point and 

the unloading stresses and strains are measured with respect to this local coordinate systems. Fig. 5-9 

outlines the sequence of the computational modules and input-output flows. 
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Figure 5-8 Recovery test results for SMP fiber #2 (a) after 300 % cyclic tensions, (b) 

corresponding recoverable strains 

 

Based on the experimental observations of semicrystalline SMP fiber inelastic responses, a specific 

deformation mechanism is considered herein to accurately predict their cyclic loading-unloading 

responses. This deformation mechanism shows excellent correlation with experimental results and it is 

outlined hereinafter. Let random crystallographic axes, 𝒙, represent the crystalline texture and the initial 

amorphous phase is isotropic. The cyclic deformation mechanism of the SMP fiber is assumed to follow 

the following deformation mechanisms: 

1- The crystalline phase deforms in the loading process in accordance with its crystallographic axes. 

These axes undergo rotation and once the direction of the crystallographic axes aligns with the loading 

direction, the axes are locked and only the chain slippage mechanism remains active. The cyclic 

evolution of the 𝒙  component with respect to the loading direction describes the microstructural 

changes, as shown in Fig. 5-12. This mechanism can efficiently describe the strain hardening effects at 

higher strain levels where the plastic strains due to the slippage mechanisms are accumulated and 

crystallographic axes conform to the loading condition. These effects are taken into account through 

incremental formulations and they update the elastic stiffness of the SMP fiber gradually during the 

loading process. In other words, after each increment of load the elastic stiffness is updated and all 

subsequent elastic and plastic strains are computed based on this updated elastic stiffness.  

2- Based on the unloading experimental results it is assumed that during the unloading process the major 

reversed inelastic strains are due to the crystalline phase reverse plasticity. Then the induced texture and 

volume fraction changes due to the cold-drawing and stress induced crystallization are partially 

recovered during the unloading process. These changes are captured incrementally by Eqs. (9) and (20)-

(25). Furthermore, the Langevin function is turned off during the unloading process while incrementally 

updated elastic stiffness captures the unloading responses effectively. One may describe these 
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constraints on the deformation mechanism of SMP fibers through the characterization of the cyclic 

microstructural changes. 

 

Figure 5-9 Computational modules for the proposed multiscale analysis where a Message Passing 

Interface is shown as the blue ellipse for parallel programming applications 

5.9 Results and discussion  

Using an MTS Alliance RT/5 machine, which is specified for fiber tension tests, the SMP fiber is 

cyclically loaded. The results are shown in Figs. 5-10 and 5-11 in which the SMP fiber is stretched up to 

150 % and 300% level of strain respectively with strain rate of 50.80 mm/min. The simulation of the 

cyclic responses of the SMP fibers are shown respectively in these figures with dashed lines. The 

material constants are found to fit the experimental results in Fig. 5-10 and the same material constants 

are utilized to capture the loading condition of 300% level of strain in Fig. 5-11. While excellent 

correlation between the experimental results and simulation are obtained in Fig. 5-10, utilizing the same 

material constants for higher loading condition results in some deviation from the experimental results 

as shown in Fig 5-11.  These deviations are unavoidable due to highly non-linear responses of SMP 

fibers.  
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Figure 5-10 Cyclic loading of SMP fiber with   𝚫𝛜  = 𝟏𝟓𝟎%  and strain rate of 50.8 mm/min 

 

Figure 5-11 Cyclic loading of SMP fiber with   𝚫𝛜  = 𝟑𝟎𝟎%  and strain rate of 50.8 mm/min 
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Table 5-1 and 5-2 summarize the material constants for the multiscale viscoplastic simulations. The 

cyclic texture evolution is depicted in Fig. 5-12 in which the updated crystalline axes 𝒙  are shown for 3 

cycles. As discussed in the previous section it is assumed that the crystalline axes conforms to the 

loading direction and remains locked for the rest of the loading process. Upon the unloading process the 

crystalline axes are reformed to a more aligned configuration with respect to the loading conditions and 

after a few cycles the crystalline texture is gradually aligned along the loading direction.  As shown in 

Fig. 5-12 the first component of 𝒙 is increased after each cycle while the other two components are 

decreasing. Then the crystallographic axes in Fig. 5-12 are gradually aligned on the loading direction, 

which is applied at the 𝑥(1) direction.  

 

Figure 5-12 Cyclic evolution of the crystalline axes  𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓  

 

The performance of the proposed viscoplastic theory in capturing the cyclic viscoplastic behavior of the 

SMP fiber is evaluated at Fig. 5-13. Three different loading rates are examined and it is observed that 

the higher loading rates result in stiffer cyclic mechanical responses.  

The damage evolution in this work relies on functionality of the SMP fibers in which stress recovery 

responses represent the state of the damage inside the material system. The stress recovery responses 

after each cycle are precisely measured, as reported in Figs. 5-7 and 5-8. These experimental data are 

repeated in Fig. 5-14(a) and 5-14(b) together with the simulation results. The material constants for the 
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damage computation are presented in Table 5-3. These constants are obtained to fit the experimental 

data for 150% loading condition at Fig. 5-14(a) and they are utilized to estimate the damage for the 300% 

loading condition at Fig. 5-14(b). While excellent correlation between experiments and simulation is 

obtained for loading condition   𝛥𝜖   = 150%, in the case of   𝛥𝜖  = 300% the simulations deviates 

from the experimental results. These deviations are due to the viscous nature of SMP fibers in which 

certain material parameters can only describe certain loading conditions. 

 

Figure 5-13 Viscoplastic response of SMP fiber at three different strain rates 

 

 

Figure 5-14 Cyclic damage evolution of SMP fiber with loading conditions (a)   𝚫𝛜  = 𝟏𝟓𝟎%, and 

(b)   𝚫𝛜  = 𝟑𝟎𝟎% 
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Table 5-1 Material parameters for the crystalline and amorphous computational modules 

Amorphous Computational Module (Soft Segment) 𝑛𝑘𝑇 

(MPa) 

𝛾 0𝑎  

(sec-1) 
𝐴 𝜆𝐿 

  

(MPa) 

𝑇  

(K) 

𝑠𝑠𝑠  

(MPa) 
ℵ 𝜅 

𝜍𝑦   

(MPa) 

Ez  

(MPa) 

Et 

(MPa) 

0.5 0.03 3.31e-27 7.0 0.5 298 8 0.2 1.2 20 80 50 

Crystalline  Computational Module (Hard Segment) 

𝑛𝑐  
Reference 

Cry. Axes 
Slippage Systems 𝜴1 Ω2 

𝜍𝑦  

(MPa) 

Ez 

(MPa) 

Et 

(MPa) 

5 (0.5,0.5,0.5) See Table 2 (1,1,1) 0.2 100 200 50 

 

Table 5-2 Hypothetical crystalline slippage systems 

Slippage Type Indicial Notation Normalized resistance (𝑔𝛼 /𝜏0) 

Chain Slip 

(100)[001] 1 

(010)[001] 2.5 

{110}[001] 2.5 

Transverse Slip 

(100)[010] 1.6 

(010)[100] 2.5 

{110}<110> 2.5 

 

Table 5-3 Damage related material parameters 

𝐷𝑑  𝑚 𝜁𝑑  𝜈𝑑  𝜂   𝝐𝑣𝑝  𝑅𝑒𝑠  & 𝑆𝑎𝑡     
300 2 0.95 0.002 0.0001 

17.5 forΔ𝜖 = 150% 

102.5 forΔ𝜖 = 300% 
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5.10 Conclusion  

Potential application of SMP fibers as mechanical actuators in smart material systems is evaluated in 

this work. A new bio-inspired self-healing material system is proposed in which the stress recovery of 

the SMP fibers provides the required crack closure force. This system is constituted from thermosetting 

polymer matrix together with dispersed short SMP fibers and embedded thermoplastic particles. It is 

found that the polyurethane thermoplastic fibers, upon strain hardening by cold-drawing programming, 

can achieve the required recovery stress to close macroscopic cracks. Furthermore, the strain hardened 

SMP fibers show excellent mechanical properties in which a new application field is opened for these 

fibers to be deployed in SMP fiber reinforced composite structures.  

 

The enhanced mechanical responses of the cold drawn semicrystalline polyurethane SMP fibers are 

correlated to the stress induced crystallization process and the texture updates in the amorphous and 

crystalline phases in this work. A micromechanical multiscale viscoplastic theory is developed to link 

the microscale mechanical responses of the amorphous and crystalline sub-phases to the macroscale 

mechanical behaviors of the SMP fibers including cyclic hardening, and stress recovery responses. The 

cyclic loading and cyclic damage responses of the SMP fibers are experimentally investigated in which 

the proposed theory is utilized to capture these phenomena. A new damage parameter is proposed based 

on loss of functionality of SMP fibers and the thermodynamic consistent viscodamage theory is develop 

to accurately predict the damage process. The proposed viscoplastic-viscodamage theory together with 

the material characterizations of the SMP fibers provides designers with the ability to predict the cyclic 

strength, stress recovery and life of smart structures made from the semicrystalline SMP fibers. 
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CHAPTER 6 SUMMARY AND FUTURE WORKS 

6.1 Summary 

In this dissertation, the application of SMP fibers as actuators is investigated with application in smart 

material systems. A multiscale viscoplastic scheme is developed to analyze the bulk SMP and then this 

scheme is further developed to study the viscoplastic and viscodamage responses of SMP fibers. Several 

experimental results, such as DMA, SAXS, and TFIR, are brought forward to justify the theoretical 

formulations. A summary of the main results is as follows. 

6.1.1 Modified two-phase TFA multiscale scheme 

 A multiscale scheme is developed which utilizes the physical description of mechanical responses 

of each of the micro-constituents phases. The developed theory incorporates more realistic 

deformation mechanisms compared to phenomenological models.  

 A novel modification is proposed on TFA multiscale analysis in which analytical solution of a 

two-phase material system is generalized to capture the localized viscoplastic behaviors.  

6.1.2 SMP fiber evolution 

 Cyclic loading of SMP fibers is investigated and the proposed multiscale theory is extended further 

to investigate the cyclic responses of SMP fibers. 

 A viscodamage theory is developed to investigate the cyclic damage responses of SMP fibers. A 

new damage parameter is defined based on lose of functionality of SMP fibers and the cyclic 

damage behavior of these fibers is investigated theoretically and experimentally.  

6.2 Recommendation of Future Works 

SMP fibers are relatively new topics in the smart materials field.  Much more research works are 

necessary to gain a thorough understanding of their working mechanism. The following 

recommendations are made for possible future research: 

 According to the experiment results in this dissertation, the texture evolution of the SMP fibers is 

highly related to the loading conditions. A full understanding of texture dependency on level of the 

loading and also effect of stress relaxation on texture changes is required.    

 A complete three-dimensional FEA model considering time dependent stress relaxation and texture 

evolution needs to be developed to simulate the behavior of the embedded SMP fiber within a 

material system such as self-healing grid structures.  

 Utilizing the FEA analysis the crack closure and diffusion of molten TP into the crack surfaces can 
be investigated. 
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 The responses of short SMP fibers can be analyzed through FEA analysis and introducing the 
developed theory to the commercial FEA codes such as ABAQUS by developing user-defined 
subroutines such as UMAT (ABAQUS standard) or VUMAT (ABAQUS explicit).  
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APPENDIX A: ESHELBY TENSOR  
 
 

For simplification the fourth order tensors are compacted into six order matrix and second order tensors 

are compacted into sixth order vectors as indicated in the following: 

𝑇𝑖𝑗𝑘𝑙 ⇒ 𝑇 𝑖𝑗 =

   
   
𝑇1111 𝑇1122 𝑇1133𝑇2211 𝑇2222 𝑇2233𝑇3311 𝑇3322 𝑇3333

  

𝑇1123 𝑇1113 𝑇1112𝑇2223 𝑇2213 𝑇2212𝑇3323 𝑇3313 𝑇3312𝑇2311 𝑇2322 𝑇2333𝑇1311 𝑇1322 𝑇1333𝑇1211 𝑇1222 𝑇1233

  

𝑇2323 𝑇2313 𝑇2312𝑇1323 𝑇1313 𝑇1312𝑇1223 𝑇1213 𝑇1212    
   

6×6

 

𝑃𝑖𝑗 ⇒ 𝑃 𝑖 =

   
   
𝑃11𝑃22𝑃33𝑃23𝑃31𝑃12   

   
6×1

 

(A1)  

 

With this approach the stress-strain relation is reduced to the following expression in the case of the 

orthotropic materials: 

  

𝜍𝑖𝑗𝑘𝑙 = 𝐿𝑖𝑗𝑘𝑙 𝜖𝑘𝑙 ⇒    
   
𝜍11𝜍22𝜍33𝜍23𝜍31𝜍12   

   

=

   
   
𝐿1111 𝐿1122 𝐿1133𝐿2211 𝐿2222 𝐿2233𝐿3311 𝐿3322 𝐿3333

  

𝐿1123 𝐿1113 𝐿1112𝐿2223 𝐿2213 𝐿2212𝐿3323 𝐿3313 𝐿3312𝐿2311 𝐿2322 𝐿2333𝐿1311 𝐿1322 𝐿1333𝐿1211 𝐿1222 𝐿1233

  

𝐿2323 𝐿2313 𝐿2312𝐿1323 𝐿1313 𝐿1312𝐿1223 𝐿1213 𝐿1212    
   
   
   
𝜖11𝜖22𝜖33𝜖23𝜖31𝜖12   

    
(A2)  

 

where 𝐿1111 = 1/𝐸1; 𝐿1122 = −𝜈12/𝐸2; 𝐿1133 = −𝜈31/𝐸3 ; 𝐿2211 = −𝜈12/𝐸1; (A3)  
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𝐿2222 = 1/𝐸2;  𝐿2233 = −𝜈23/𝐸3 ; 𝐿3311 = −𝜈31/𝐸1; 𝐿3322 = −𝜈23/𝐸2; 𝐿3333 = 1/𝐸3; 𝐿2323 = 1/𝜇23; 𝐿1313 = 1/𝜇13; 𝐿1212 = 1/𝜇12; 

 

where 𝐸1, 𝐸2 and 𝐸3 are elastic modulus in principal directions and 𝜈12 , 𝜈23  and 𝜈31  are Poission‟s ratio; 
and 𝜇12 , 𝜇23  and 𝜇13  are shear modulus with respect to principal directions.   The following components 

of the Eshelby tensor for ellipsoidal cylinder inclusion (𝑎1 ≠ 𝑎2, and 𝑎3 →  ∞) are then assembled into a 

sixth order matrix: 𝑆1111 =
1

2 1−𝜈   𝑎2
2+2𝑎1𝑎2 𝑎1+𝑎2 2

+  1 − 2𝜈 𝑎2𝑎1+𝑎2
 ; 

𝑆2222 =
1

2 1−𝜈   𝑎1
2+2𝑎1𝑎2 𝑎1+𝑎2 2

+  1 − 2𝜈 𝑎1𝑎1+𝑎2
 ; 𝑆3333 = 0; 𝑆1122 =

1

2 1−𝜈   𝑎2
2 𝑎1+𝑎2 2

−  1 − 2𝜈 𝑎2𝑎1+𝑎2
 ; 

𝑆2233 =
𝜈 1−𝜈   𝑎1𝑎1+𝑎2

 ; 

𝑆2211 =
1

2 1−𝜈   𝑎1
2 𝑎1+𝑎2 2

−  1 − 2𝜈 𝑎1𝑎1+𝑎2
 ; 

𝑆1133 =
𝜈 1−𝜈   𝑎2𝑎1+𝑎2

 ; 𝑆3311 = 𝑆3322 = 0; 𝑆1212 =
1

2 1−𝜈   𝑎1
2+𝑎2

2

2 𝑎1+𝑎2 2
+

1−2𝜈
2

 ; 𝑆2323 =
𝑎1

2 𝑎1+𝑎2 ; 𝑆3131 =
𝑎2

2 𝑎1+𝑎2 . 

(A4)  

For a penny shape inclusion (𝑎1 = 𝑎2 ≫ 𝑎3) the Eshelby tensor components are: 𝑆1111 =  𝑆2222 =
𝜋 13−8𝜈 
32 1−𝜈 𝑎3𝑎1

 , 

𝑆3333 = 1 − 𝜋 1−2𝜈 
4 1−𝜈 𝑎3𝑎1

, 

𝑆1122 = 𝑆2211 =
𝜋 8𝜈−1 
32 1−𝜈 𝑎3𝑎1

, 

(A5)  
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𝑆1133 = 𝑆2233 =
𝜋 2𝜈−1 
8 1−𝜈 𝑎3𝑎1

, 

𝑆3311 = 𝑆3322 =
𝜈

1−𝜈  1 − 𝜋 4𝜈+1 
8𝜈 𝑎3𝑎1

 , 

𝑆1212 =
𝜋 7−8𝜈 
32 1−𝜈 𝑎3𝑎1

, 

𝑆2323 = 𝑆3131 =
1

2
 1 +

𝜋 𝜈−2 
4 1−𝜈 𝑎3𝑎1

 . 
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